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PROGRESSIVE SCREENING

1. INTRODUCTION

Long-term contracts are a salient feature of a wide variety of economic situations. In many
of these settings, the fundamental features of the contractual relationship are not static; rather,
these features may change over time. Moreover, while the dynamic nature of the relationship may
be acknowledged by all parties involved, the precise nature of the changes may be the private
information of only one of the parties; for instance, a seller need not be aware of how her buy-
ers’ preferences have evolved, and a downstream retailer need not know the effectiveness of an
upstream manufacturer’s investments in cost reduction. Thus, the manner in which a contract
accounts for these dynamic information asymmetries is crucial, and several recent papers (see,
among others, Courty and Li (2000), Battaglini (2005), Pavan (2007), and Pavan, Segal, and Toikka
(2009)) have explored this question in a variety of settings.

In the present work, we explore the impact of an additional source of private information on
the structure and properties of optimal long-term contracts. In particular, we are interested in
studying settings in which one party is privately informed not only about the current state of the
contracting environment, but also about the manner in which this state evolves. We analyze this
issue in the standard setting of the literature, that of an ongoing trading relationship between a
monopolist seller and a single consumer. In this relationship, the seller has all of the bargaining
power and can credibly commit to the terms of trade for the entire interaction at the outset, while
the buyer is privately informed about both her preferences in each period and a parameter of the
stochastic process which governs the evolution of her value.

Formally, we characterize the profit-maximizing T-period contract (where T is potentially infi-
nite) for a single seller facing a buyer with single-unit demand whose value evolves according to
a stochastic process with a privately known transition probability. We assume that in the initial
period, the buyer privately observes the value of a parameter λ ∈ [0, 1]. In subsequent periods,
the buyer privately observes a random shock, and her value in each of these periods is the prod-
uct of all previously observed shocks. Each shock can take one of two values: it can be either a
“good” shock u with probability λ, or a “bad” shock d < u with probability 1− λ. The values u
and d are both common knowledge, but the realization of each shock is known only to the buyer.
Thus, a buyer with a high value of λ is more likely to experience the good shock in each period,
and the distribution of her value at any point in time first-order stochastically dominates the value
distribution of a buyer with a lower realization of λ.

At the beginning of the interaction, the seller’s goal is to design a long-term contract to max-
imize her expected profit. We assume that the seller has the ability to fully commit to arbitrary
contractual forms, and so the revelation principle allows us to restrict attention, without loss of
generality, to the class of direct revelation mechanisms in which the buyer is incentivized to report
her private information truthfully.1 These incentives are required to hold both at the time of initial
contracting and in every future period thereafter. Moreover, we assume that the buyer is free to
terminate the relationship at any point in time, implying that the buyer’s continued participation
must be incentivized as well. Thus, the seller’s problem in its most general form is to design a

1This is in contrast to, for instance, Kennan (2001) and Loginova and Taylor (2008), where the seller’s lack of commit-
ment power restricts her to offering only one-period spot contracts.
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direct revelation mechanism that maximizes the expected discounted sum of payments made by
the buyer, subject to incentive compatibility and individual rationality constraints in each period.2

The main result of this paper is that the optimal mechanism can be implemented by a long-term
contract with an especially simple structure. In the case where the good is produced in each period
at zero cost, the seller (optimally) commits to a finite menu of price plans, each of which presents
the buyer with an entry fee and a predetermined sequence of prices for the good in each period.3

On the basis of λ, the buyer selects a plan and then is free, in each period, to exercise an option
to purchase the good at the price specified for that period by her chosen plan.4 Because prices
are fixed by the seller at the beginning of the interaction, this mechanism can be implemented
without eliciting any further information from the buyer over the lifetime of the contract—the
only information that the seller needs the buyer to reveal is her choice of price plan.

Moreover, each of these price plans begins with a finite “honeymoon” phase. In each period
of this phase, the price for the good is the lowest possible value that any buyer could have; af-
ter the honeymoon phase ends, the price of the good is multiplied by a factor u in each period.
Thus, the buyer is incentivized to purchase the good in each period of the honeymoon phase,
regardless of the realizations of her value shocks. After this phase, however, the price rises de-
terministically, while the buyer’s value grows only stochastically—with a sufficiently long time
horizon, this serves to (inefficiently) terminate the relationship. As the prices in a plan with a
longer honeymoon phase are always (weakly) lower than the prices in a plan with a shorter hon-
eymoon phase, such a plan is more attractive to all buyers, regardless of the probabilities of good
and bad shocks. However, the entry fees for the various plans are increasing in the length of their
honeymoon phases. So in order to justify paying a larger initial fee, the buyer must anticipate that
her future values will be (with high probability) sufficiently high that the lower future prices fully
compensate for the initial fee—paying a larger entry fee is justified only if the buyer’s probability
of good shocks λ is sufficiently high. Thus, the various entry fees and honeymoon phase lengths
serve to screen across realizations of λ, while the post-honeymoon-phase rise in prices serves to
restrict supply to lower-valued buyers, reducing the rents paid to higher-valued buyers.

As an example of a real-world setting with an information structure of the type described above,
consider the market for life insurance. Under the terms of a typical life insurance contract, the in-
surance provider agrees to pay the buyer’s beneficiaries (usually her dependents) a predetermined
sum in the case of the policyholder’s death, while individuals purchase this insurance in order to
provide for their dependents after their passing. Obviously, the probability of death at any point
in time is a critical factor in determining the value of life insurance to the individual. Because the
individual is privately informed about her physical and mental health, family history, lifestyle,
stress levels, and so on, her valuation for a life insurance policy is private. However, she may also
have private information about how this value is likely to evolve in the future: for example, she
may anticipate receiving a series of promotions (with some probability), each of which will lead to
more responsibility, more stress, a more sedentary lifestyle, and more travel, all of which increase

2Maximizing social welfare in this setting is trivial, as the buyer’s initial-period private information is irrelevant to
payoffs post-contracting when the buyer learns her valuations.
3These qualititative features of the optimal contract carry over to the case of positive marginal cost; see Section 4.
4Thus, the buyer chooses among a set of priority pricing schemes à la Harris and Raviv (1981) or Wilson (1993).
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the probability of death (and hence the value for life insurance). Thus, a potential buyer of life
insurance will have private information about both her value for an insurance policy as well as
the manner in which this value evolves over time.

Translating these features into our model, we interpret u > 1 as a negative health shock which
increases the buyer’s value for life insurance. In the absence of such a shock, the buyer’s life
insurance remains constant (and so d = 1). We may then interpret λ as the probability of a negative
health shock in each period. Buyers with higher values of λ are more pessimistic about their future
health, and consequently expect higher future values for life insurance.

In this setting, our model predicts that the seller optimally offers the buyer her choice from a
set of contracts differentiated by their temporal price profile. In particular, each contract offers a
constant price during a honeymoon phase of predetermined length, followed by a steep increase in
prices in each period thereafter. This is, in fact, precisely the nature of the contracts we observe in
the term life insurance market. Insurance companies typically offer a set of contracts differentiated
by length of term, where longer-term contracts have a longer and flatter time profile of premiums
over the duration of the term, followed by a steep rise in premiums. Thus, real-world term life
insurance contracts match the qualitative features of the optimal contracts predicted by our model.
(We elaborate further on this point in Section 4.2.)

We also extend our analysis to the setting in which the seller faces an increasing and convex
cost function, while dropping the single-unit demand assumption. Meanwhile, the buyer’s val-
uation shocks are independently drawn from a family of continuous distributions parameterized
by λ. We assume that this family is ordered by first-order stochastic dominance, so that larger
realizations of λ generate, in expectation, higher valuations. As before, the search for an optimal
long-term contract can be restricted to the class of incentive compatible and individually rational
direct mechanisms.

While the optimal contract in this more general environment is (as is expected) not quite as
simple as that in the single-unit demand case described above, it continues to follow a relatively
straightforward form. In the initial period, the buyer is offered her choice from a continuum of
contingent price-quantity schedules. For each possible initial-period report of λ, the buyer faces
a fixed sequence of menus of price-quantity pairs that screen across her sequence of shocks. As
is standard in the nonlinear pricing literature, each of these menus provides greater quantities
of the good to buyers that report higher shocks. Moreover, these menus feature more generous
quantity provision for buyers with higher reported values of λ, increasing the quantities allocated
to buyers that receive a positive amount of the good and excluding a smaller range of realized
valuations. However, within a particular sequence of menus, the quantity schedule in a given
period is less permissive than the preceding period’s menu. The seller progressively screens the
buyer and “tightens the screws”: the set of period-(t + 1) reports that lead to positive quanti-
ties is a subset of the corresponding set of period-t reports. Thus, as in the optimal contract for
the single-unit demand case, the seller inefficiently restricts supply in order to extract additional
rents, and these restrictions are greater for buyers that report lower values of λ. Meanwhile, the
prices corresponding to this optimal long-term contract are similar to those in the discrete model:
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within each period’s price-quantity menu, the prices are determined entirely by the standard in-
tegral payment rule that guarantees incentive compatibility in static settings, depending only on
the allocation rule for the period in question. Finally, the entry fees for more permissive menus are
higher than those of less permissive menus. Again, in order to justify paying a greater initial entry
fee, a buyer must anticipate higher future values—the seller screens across the initial private infor-
mation by using entry fees and more or less generous sequences of menus, and then progressively
screens across values with nonlinear prices in future periods.

As is typically the case in dynamic mechanism design, the primary hurdle we face in solving
for the seller’s optimal long-term contract is the nature of the incentive compatibility constraints
when private information is multidimensional. In particular, incentive compatibility requires that
the buyer prefers the truthful reporting of her private information to all potential misreports,
including compound multi-stage deviations from truthfulness. This generates a complex and rel-
atively intractable set of constraints that must be satisfied by any optimal contract. The predomi-
nant approach in the literature for dealing with this issue is to impose a Markov structure on the
evolution of types, which (when combined with a “strong monotonicity” property of the alloca-
tion rule) implies that the buyer’s optimal strategy following a misreport is to make an additional
“corrective” misreport.5 In our model, however, the buyer’s “type” in each period consists of both
her initial-period private information λ and her valuation. Since λ has a persistent impact on the
distribution of future values, it is impossible to fully “correct” an initial-period misreport by using
additional misreports. Thus, the standard approach is not applicable in the present setting.

We therefore employ an indirect approach to solving for the seller’s optimal long-term contract:
we solve a relaxed problem that imposes only a restricted set of constraints that are necessarily
satisfied by any incentive compatible mechanism, and then show that (in our setting) this re-
stricted set of constraints is, in fact, sufficient for “full” incentive compatibility. More specifically,
we impose a set of single-deviation constraints that rule out “one-shot” deviations from truthful
reporting. We show that, in the discrete shock setting, the allocation rule that follows from this
restricted set of constraints depends only on the buyer’s realized value in any period, and not
on the particular sequence of shocks generating that value. By pairing this allocation rule with a
payment scheme that is also path independent, we are able to decouple the buyers incentives in
any one period from those in the next. This guarantees that truthfulness is an optimal continu-
ation strategy for a buyer, regardless of her history of past reports or misreports. This property
implies that the restricted class of constraints in our relaxed problem are, in fact, sufficient for
“global” incentive compatibility. In the more general setting with continuously distributed valu-
ation shocks, however, the solution to the relaxed version of the seller’s problem need not have
this property. We therefore present a sufficient condition on the conditional distribution of shocks
that guarantees the path-independence of the allocation rule, thereby justifying our approach.

5This is the approach of, for instance, Battaglini (2005), Pavan (2007), and Pavan, Segal, and Toikka (2009). Courty and
Li (2000) do not require a Markov assumption since they consider only a two-period model, while Kakade, Lobel, and
Nazerzadeh (2011) directly assume incentive compatibility after initial-period misreports.
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Our paper contributes to the recent, and growing, literature on optimal dynamic mechanism de-
sign. This literature focuses on the design of profit-maximizing mechanisms in dynamic settings.6

Much of this recent work focuses on settings where agents arrive and depart dynamically over
time while their private information remains fixed, including, for example, the work of Board and
Skrzypacz (2010); Gershkov and Moldovanu (2009a); Pai and Vohra (2011); Said (2011); and Vul-
cano, van Ryzin, and Maglaras (2002). In contrast, our paper joins another strand of the literature
where the population of agents is fixed, but their private information changes over time—see, for
instance, Baron and Besanko (1984); Battaglini (2005); Besanko (1985); Courty and Li (2000); Deb
(2009, 2011); Esö and Szentes (2007); Krähmer and Strausz (2011); and Pavan (2007). The recent
work of Pavan, Segal, and Toikka (2009, 2010) presents a broad and general framework subsuming
much of the pre-existing literature on dynamic contracting and screening as special cases. Among
their many contributions, they provide general necessary conditions for incentive compatibility
and optimality in dynamic environments, as well as sufficient conditions in some environments.7

In contrast to their work, which develops a quite general toolkit for dynamic mechanism design,
our present focus is narrower and significantly more applied. In particular, we are concerned
with the structure of optimal contracts in a particular setting—one in which the buyer is initially
privately informed about the process by which her value evolves. Therefore, our work extends
the existing dynamic mechanism design literature by considering a novel information structure
within a multi-period time horizon, allowing us to examine the dynamics of revenue-enhancing
distortions in a new setting.

The most closely related work to our own is the sequential screening model of Courty and Li
(2000), who study dynamic price discrimination when consumers are initially uncertain about
their future demand but receive new private information before consumption; however, we ex-
tend their model in important ways.8 First, we extend their two-period model to an arbitrary (and
potentially infinite) time horizon. This allows us to explore the long-term characteristics of opti-
mal contracts; for instance, the progressive screening, “screw-tightening,” and (inefficient) early
termination of the relationship by the seller are features of the optimal contract that cannot be in-
tuited from a two-period model. In addition, the longer time horizon necessitates consideration of
a richer set of incentive compatibility constraints, as the buyer may choose to misreport her value
multiple times in an attempt to take advantage of future contractual terms. This introduces ad-
ditional technical difficulties in identifying the optimal contract, and we provide a new approach
to circumventing such issues. Moreover, since multiple allocations are made over time, we find
it more compelling to consider contracts where the buyer pays a price for consumption in each
period instead of refund contracts where the buyer pays only an upfront fee and then receives

6There is also a parallel literature focusing on the design of efficient mechanisms for dynamic settings; see, among
others, Athey and Segal (2007a,b); Bergemann and Välimäki (2010); Gershkov and Moldovanu (2009b, 2010a,b); and
Kuribko and Lewis (2010). The curious reader is directed to Bergemann and Said (2011), who survey both literatures.
7This is complemented by the recent work of Kakade, Lobel, and Nazerzadeh (2011), who provide sufficient conditions
for optimality in a particular class of “separable” environments.
8Dai, Lewis, and Lopomo (2006) examine similar issues in a procurement setting, while Esö and Szentes (2007) extend
the work of Courty and Li (2000) in a different direction and examine a two-period setting in which the seller is able to
control the release of new information to multiple buyers. Meanwhile, Miravete (2003) demonstrates empirically the
importance of sequential screening considerations in the design of contracts for telephone service.
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a refund in the next period. Finally, we extend our results to a setting with infinitely divisible
goods and convex costs of production in addition to the standard setting of single-unit demand
and constant marginal cost.

This latter feature of our analysis is shared with Battaglini (2005), who also studies long-term
contracts when the buyer’s type evolves over time. Unlike the present work, his paper considers
a setting where the stochastic process governing the buyer’s values (a two-state Markov process)
is commonly known, but the current state of the process is privately observed by the buyer alone.
The optimal contract in that setting converges to the efficient level of supply, sharply contrasting
with the inefficiently early termination we find in our setting. This difference stems from the
multiplicative structure of the buyer’s preferences in our model and the absence of a “highest”
value—regardless of the past history of shocks, the buyer’s value may increase further, and so the
seller continues to distort allocations in order to extract surplus from these higher types. Thus,
the cumulative effect of the buyer’s new information leads to further restriction of supply over
time instead of eventual efficiency. We should point out that this payoff structure also provides a
counterpoint to the additive preferences of Krähmer and Strausz (2011), as well as the examples
with autoregressive values presented by Pavan, Segal, and Toikka (2009, 2010).

2. ENVIRONMENT

We consider a dynamic setting in which a buyer repeatedly purchases a nondurable good from
a single seller. When the buyer in period t pays a price p and receives quantity q of the good, her
utility is vtq − p. The buyer’s value for the good vt evolves over time; in particular, we assume
that the buyer’s value is subject to a series of multiplicative shocks, so that

vt = αtvt−1,

where we take v0 = 1 to be exogenously given and commonly known.
In each period t = 1, . . . , T, the buyer privately observes the shocks to her valuation, which are

the realizations {αt} of a sequence of independently and identically distributed random variables
{α̃t}. In particular, we assume that each shock αt is drawn from A := {u, d}, where

Pr(α̃t = u) = λ and Pr(α̃t = d) = 1− λ.

We assume that u > d > 0, and let ∆ := u − d. Thus, the buyer’s value evolves according to
a recombinant binomial tree process with upward transition probability λ.9 In each period, the
buyer’s value experiences either a “good” shock (u) or a “bad” shock (d), and the probability λ of
the buyer experiencing the higher shock u in each period is fixed across time.

At the time of contracting (which we take to be period zero), the buyer is privately informed
about this transition probability λ. Specifically, the buyer privately observes the realization λ of a
random variable λ̃, where it is commonly known that λ̃ is distributed according to the distribution
function F on the interval Λ := [0, 1]. We denote by f the density of F, and assume throughout
that f is strictly positive and differentiable on Λ.

9Recombinant binomial tree processes have been frequently used in finance to model asset prices since their introduc-
tion by Cox, Ross, and Rubinstein (1979).
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In each period t ≥ 1, the seller can produce q units of the good at a cost c(q).10 We assume that
the relationship between the buyer and the seller is repeated for T ≤ ∞ periods and discounted
with the common discount factor δ ∈ (0, 1] (with the additional restriction that δu < 1 if T = ∞).
In the initial period (period 0), the seller offers a long-term supply contract to the buyer; the buyer
can either accept or reject this offer. If the buyer accepts, sales and consumption occur in periods
t = 1, . . . , T in accordance with the terms of the contract. We normalize the buyer’s outside option
to 0. As is standard in dynamic models of price discrimination, we assume that the monopolist
fully commits to the contract that is offered. However, we will assume that commitment is one-
sided: the buyer is free to break off the relationship at any time.

3. THE SELLER’S PROBLEM

The seller in this setting wishes to design and offer the contract that maximizes her expected
profits. It is easy to show that in our environment, the Myerson (1986) revelation principle for
multistage games holds. Therefore, the search for optimal contracts may be restricted without
loss of generality to the class of direct mechanisms where, in each period, the agent is asked to
report her new information and, conditional on having reported truthfully in the past, she finds it
optimal to report truthfully.

3.1. Direct Mechanisms

In particular, a contract in our setting is a sequence of payment rules p = {pt(rt, ht)}T
t=0 and

allocation probabilities q = {qt(rt, ht)}T
t=1, where rt is the buyer’s report at time t, and ht is the

public history at time t. Note that in such a direct mechanism, r0 ∈ Λ, while rt ∈ A for all t ≥ 1. In
addition, ht can be defined recursively by h0 := ∅ and ht := {rt−1, ht−1} for all t ≥ 1, where rt−1 is
the agents report in period t− 1. We denote the set of time t public histories by Ht. Since the agent
is free to misreport her private information at any time, her private history is ĥt := {αt, rt−1, ĥt−1},
where ĥ0 := {λ}. We denote the set of time t private histories by Ĥt; the buyer’s strategy, given the
seller’s mechanism, is then simply a sequence of mappings r̂t : Ĥt → A for t ≥ 1, and r̂0 : Λ→ Λ.

In addition, we will find it convenient to denote histories using a particular notation. We will
denote by αt the sequence of shocks received by the buyer up to, and including, time t; that is,

αt := (αt, αt−1, . . . , α1).

In addition, the notation αt
−s will denote the sequence of shocks up to (and including) period t,

but after period s, so that
αt
−s := (αt, αt−1 . . . , αs+1).

Finally, we will abuse notation somewhat to simplify the exposition and write v(αt) to denote the
value of a buyer who has experienced the sequence of shocks αt, so that

v(αt) :=
t

∏
τ=1

ατ.

10In Section 4, we will examine the case of single-unit demand for a good produced at a constant marginal cost (c(q) =
cq), as well as the case of an infinitely divisible good with an increasing and convex cost function (c(q) = q2/2).
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A direct mechanism is said to be incentive compatible if it induces truthtelling in every period;
that is, on the equilibrium path, the agent has no incentive to misreport her new private informa-
tion. In particular, this implies that the agent prefers revealing her private information truthfully
to any potential misreport, followed by optimal reporting in the future (where optimal continua-
tion reporting may involve future misreports). This implies that the set of incentive compatibility
constraints in our setting is large and potentially quite complex, and therefore intractable.

In order to avoid this problem, we use an indirect approach to solving for the seller’s optimal
mechanism. In particular, we consider a restricted set of constraints that are necessarily satisfied
by any incentive compatible mechanism, and then show that (in our setting) this restricted set of
constraints is, in fact, sufficient for “full” incentive compatibility. More specifically, we require that
the buyer prefers reporting her private information truthfully to misreporting in any given period
and then reporting truthfully in every future period; that is, we rule out single-period deviations
from truthful reporting. The optimal allocation rule that follows from this restricted set of con-
straints has a “path independence” property (that will be made clear in subsequent sections) that is
inherited from the stochastic process governing values. Since there is an additional degree of free-
dom in choosing payment rules in dynamic mechanisms (relative to their static counterparts), this
allocation rule can be paired with a path independent payment rule that guarantees truthtelling
as an optimal continuation strategy for a buyer who has misreported in the past, thereby implying
the sufficiency of the restricted set of constraints for “global” incentive compatibility.

To state the initial (period 0) single-deviation constraint, let U0(λ) denote the utility of a buyer
with initial type λ who always reports her private information truthfully; thus, for all λ ∈ Λ,

U0(λ) := −p0(λ) +
T

∑
t=1

δtE
[
qt(α

t, λ)v(αt)− pt(α
t, λ)

∣∣λ] . (1)

Similarly, let Û0(λ′, λ) denote the expected utility of a buyer with initial type λ who reports some
λ′, but then truthfully reports all future shocks; for all λ, λ′ ∈ Λ, we have

Û0(λ
′, λ) := −p0(λ

′) +
T

∑
t=1

δtE
[
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

∣∣λ] . (2)

Thus, the initial period single-deviation constraint requires that

U0(λ) ≥ Û0(λ
′, λ) for all λ, λ′ ∈ Λ. (IC-0)

As with U0(λ), denote by Ut(αt, λ) the expected utility of a buyer in period t whose initial type
was λ and whose observed shocks were αt ∈ At, and who has reported truthfully in the past and
continues to do so in the present and future. Then

Ut(α
t, λ) := qt(α

t, λ)v(αt)− pt(α
t, λ)

+
T

∑
s=t+1

δs−tE
[
qs(α

s
−t, αt, λ)v(αs

−t, αt)− ps(α
s
−t, αt, λ)

∣∣αt, λ
]

.
(3)
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Preventing a single deviation in period t requires, for all (αt, λ) ∈ At ×Λ and all α′t ∈ A, that

Ut(α
t, λ) ≥ qt(α

′
t, αt−1, λ)v(αt)− pt(α

′
t, αt−1, λ)

+
T

∑
s=t+1

δs−tE
[
qs(α

s
−t, α′t, αt−1, λ)v(αs

−t, αt)− ps(α
s
−t, α′t, αt−1, λ)

∣∣∣αt, λ
]

.
(IC-t)

In addition, we will say that a direct mechanism is individually rational if, in every period and for
every history of private signals, it guarantees the buyer’s (continued) willingness to participate
in the contract by providing expected utility greater than her outside option. These individual
rationality constraints may be summarized by the following:

U0(λ) ≥ 0 for all λ ∈ Λ, and (IR-0)

Ut(α
t, λ) ≥ 0 for all (αt, λ) ∈ At ×Λ and all t = 1, . . . , T. (IR-t)

The seller’s profit from any feasible contract is the difference between total surplus and the
buyer’s utility. Thus, when the buyer is of initial type λ, the seller’s expected profit is

Π(λ) := p0(λ) +
T

∑
t=1

δtE
[
pt(α

t, λ)− c(qt(α
t, λ))

∣∣λ]
= −U0(λ) +

T

∑
t=1

δtE
[
qt(α

t, λ)v(αt)− c(qt(α
t, λ))

∣∣λ] (4)

The seller’s optimal contract maximizes profits, subject to the constraints that the consumer re-
ceives at least her reservation utility and that the consumer has no incentive to misreport her type.
Thus, any optimal contract must also solve the relaxed problem that imposes the individual ratio-
nality constraints and the restricted set of single-deviation incentive compatibility constraints:

max
{p,q}

{∫ 1

0
Π(λ)dF(λ)

}
subject to (IC-0), (IR-0), (IC-t), and (IR-t) for all t = 1, . . . , T.

(P)

3.2. Simplifying the Seller’s Relaxed Problem

We approach the seller’s optimal contracting problem by simplifying the single-deviation and
participation constraints in the relaxed problem (P). Recall that in a standard static contracting
setting, the combination of quasilinearity and a single-crossing condition imply that incentive
constraints are equivalent to (i) the monotonicity of the allocation rule; and (ii) the determination
of a buyer’s utility (up to a constant) by that allocation rule alone. In addition, the single-crossing
property and individual rationality constraint pin down this constant. We begin by showing that a
similar technique may be applied in our setting to the period-t constraints. Note, however, that the
buyer is forward looking, and her utility depends upon her expectations (given her information in
period t) over future shocks. Naturally, this implies that the “localized” period-t constraints will
involve the expected discounted value of current and future allocations, which we denote by

q̄t(α
t, λ) := qt(α

t, λ)v(αt−1) +
T

∑
s=t+1

δs−tE
[
qs(α

s
−t, αt, λ)v(αs

−t, αt−1)
∣∣∣αt, λ

]
. (5)

9
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Thus, we have the following “standard” result (whose proof may be found in appendix):

LEMMA 3.1. The period-t incentive compatibility and individual rationality constraints (IC-t) and (IR-t),
where t = 1, . . . , T, are satisfied if, and only if, for all αt−1 ∈ At−1 and all λ ∈ Λ,

Ut(u, αt−1, λ)−Ut(d, αt−1, λ) ≥ q̄t(d, αt−1, λ)∆; (IC′-t)

q̄t(u, αt−1, λ) ≥ q̄t(d, αt−1, λ); and (MON-t)

Ut(d, αt−1, λ) ≥ 0. (IR′-t)

Notice that at the time of initial contracting (in contrast to any period t ≥ 1), the buyer’s pri-
vate information does not directly affect her payoffs. Rather, the realization of λ only provides the
buyer a (noisy) signal about the evolution of her future preferences. Therefore, the buyer has pref-
erences over the entire sequence of allocations, and so we cannot appeal to a single-crossing condi-
tion to simplify the initial-period constraints. However, using an envelope argument (detailed in
the appendix), we can show that period-zero single-deviation constraint necessarily implies that
the buyer’s interim (in the initial period) expected utility depends only upon the the expectation
of future payoff gradients; in particular, this observation—in conjunction with the period-t single-
deviation constraints (IC′-t)—will then allow us to reformulate the seller’s relaxed problem (P)
into one involving only allocation rules (and not the payment rules).

LEMMA 3.2. If the period-zero incentive compatibility constraint (IC-0) is satisfied, then the derivative
U′0(λ) of the buyer’s period-zero expected utility is given by

U′0(λ) =
T

∑
t=1

δtE
[
Ut(u, αt−1, λ)−Ut(d, αt−1, λ)

∣∣∣λ] . (IC′-0)

Note that since allocation probabilities are non-negative, if condition (IC′-t) is satisfied, U′0(λ)
is also non-negative. Therefore, U0 must be increasing in any solution to the seller’s problem, and
we can replace the period-zero individual rationality constraint (IR-0) with the requirement that

U0(0) ≥ 0. (IR′-0)

We should point out that (IC′-0) is a necessary implication of period-zero incentive compatibil-
ity, but that it is not sufficient. Although this expression allows us to simplify the optimization
problem by eliminating transfers from the seller’s objective function, those transfers remain a part
of the problem’s constraints.

Finally, we may return to the seller’s problem. Since (IC′-0) must hold in any incentive compat-
ible mechanism, we may use the standard integration by parts methodology to reformulate the
optimization problem (P) as

max
{q,p}


−U0(0) +

T

∑
t=1

δt
∫

Λ
E
[
qt(α

t, λ)v(αt)− c(qt(α
t, λ))

∣∣λ] dF(λ)

−
T

∑
t=1

δt
∫

Λ

1− F(λ)
f (λ)

E
[
Ut(u, αt−1, λ)−Ut(d, αt−1, λ)

∣∣∣λ] dF(λ)


subject to (IC-0), (IC′-t), (MON-t), (IR′-0), and (IR′-t) for all t = 1, . . . , T.

10
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Clearly, any solution to this problem must have U0(0) = 0, as this is merely an additive con-
stant that is bounded by the constraint (IR′-0)—as is standard, providing additional surplus to
the lowest type only reduces the seller’s profit without helping provide incentives for truthtelling.
In addition, it is clear that solving the problem requires minimizing Ut(u, αt−1, λ)−Ut(d, αt−1, λ)

for each αt−1 ∈ At−1 and λ ∈ Λ. However, the constraints (IC′-t) provide a lower bound on this
difference, and so these constraints must bind. In particular, this implies that we may incorporate
these constraints into the seller’s objective function, rewriting it as

T

∑
t=1

δt
∫

Λ
E

[
qt(α

t, λ)v(αt)− q̄t(d, αt−1, λ)∆
1− F(λ)

f (λ)
− c(qt(α

t, λ))

∣∣∣∣λ] dF(λ).

Finally, note that

T

∑
t=1

δtE
[
q̄t(d, αt−1, λ)

∣∣∣λ] = T

∑
t=1

δtE

[
qt(d, αt−1, λ)v(αt−1)

+
T

∑
s=t+1

δs−tE
[
qs(α

s
−t, d, αt−1, λ)v(αs

−t, αt−1)
∣∣∣αt−1, λ

]∣∣∣∣∣λ
]

=
T

∑
t=1

T

∑
s=t

δsE
[
qs(α

s
−t, d, αt−1, λ)v(αs

−t, αt−1)
∣∣∣λ]

=
T

∑
t=1

t

∑
s=1

δtE
[
qt(α

t
−s, d, αs−1, λ)v(αt

−s, αs−1)
∣∣∣λ] , (6)

where the final equality follows from interchanging the order of summations. Substituting this ex-
pression back into the seller’s profit-maximization problem yields the following relaxed problem:

max
{q,p}


T

∑
t=1

δt
∫

Λ
E

 qt(α
t, λ)v(αt)− c(qt(α

t, λ))

−
t

∑
s=1

qt(α
t
−s, d, αs−1, λ)v(αt

−s, αs−1)∆
1− F(λ)

f (λ)

∣∣∣∣∣∣∣λ
 dF(λ)


subject to (IC-0), (MON-t), and (IR′-t) for all t = 1, . . . , T.

(P ′)

3.3. Virtual Values

Before proceeding to the solution of the seller’s problem, it is helpful to interpret the seller’s
objective function in (P ′), especially by way of comparison with a standard nonlinear pricing
setting (as in, for instance, Mussa and Rosen (1978)). For each t and every λ ∈ Λ, we can rewrite
the integrand in the objective function as

∑
αt∈At

Pr(αt|λ)
(
v(αt)qt(α

t, λ)− c(qt(α
t, λ)

)
− ∑

αt∈At

∆
1− F(λ)

f (λ)

t

∑
s=1

Pr(αt
−s, αs−1|λ)v(αt

−s, αs−1)1d(αs)qt(αt, λ)

= ∑
αt∈At

Pr(αt|λ)
(

v(αt)

[
1−

t

∑
s=1

1d(αs)
∆/d

1− λ

1− F(λ)
f (λ)

]
qt(αt, λ)− c(qt(α

t, λ))

)
,

11
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where 1d(αs) is the indicator function for the event {αs = d}. Thus, the seller is essentially maxi-
mizing, in the Myersonian tradition, virtual surplus, where the buyer’s virtual value is

ϕ(αt, λ) := v(αt)

[
1−

t

∑
s=1

1d(αs)
∆/d

1− λ

1− F(λ)
f (λ)

]
= v(αt)− v(αt)

t

∑
s=1

1d(αs)
∆/d

1− λ

1− F(λ)
f (λ)

. (7)

As in the static mechanism design setting, the first term in this expression is the buyer’s con-
tribution to the social surplus, while the second term represents the information rents that must
be “paid” to the buyer in order to induce truthful revelation of her private information. The in-
verse hazard rate (1− F(λ))/ f (λ) appears since any information rents paid to a buyer with initial
type λ must also be paid to buyers with higher initial types. Finally, as is well-established in
the dynamic mechanism design literature, distortions in the optimal contract are determined by
the sensitivity of future values to the buyer’s initial private information. In our setting, the re-
sponsiveness of the buyer’s period-t value to her private information at the time of contracting is
given by v(αt)∑t

s=1 1d(αs)
∆/d
1−λ ; more specifically, this expression is equal to the derivative ∂vt/∂λ

of the period-t value vt with respect to λ. Since our environment is a hybrid of continuous and
discrete type spaces, this property is most easily demonstrated by using the “independent shock
approach” introduced in Esö and Szentes (2007) and further developed in Pavan (2007).

With this in mind, define {ξt}T
t=1 to be a sequence of independent (across t and, crucially, also

from λ) draws from a uniform distribution on [0, 1], and let

ṽt(ξ
t, λ) :=

dṽt−1(ξ
t−1, λ) if ξt < 1− λ,

uṽt−1(ξ
t−1, λ) if ξt ≥ 1− λ,

where ξs denotes the s-tuple (ξs, ξs−1, . . . , ξ1) and we define ṽ0(λ) := 1 for all λ. Thus, we can
identify all ξt < 1− λ with the shock αt = d, and similarly, we can identify all ξt ≥ 1− λ with
the shock αt = u. This implies that we may identify a buyer with private type (αt, λ) with the
“average buyer” whose private type is (ξt, λ) with ξτ corresponding to ατ for all τ = 1, . . . , t.

Since we can write
ṽt(ξ

t, λ) = (d + ∆H1−λ(ξt)) ṽt−1(ξ
t−1, λ),

where Hz(·) is the Heaviside step function shifted by z ∈ R, it is straightforward to see that

∂ṽt(ξt, λ)

∂λ
= (d + ∆H1−λ(ξt))

∂ṽt−1(ξ
t−1, λ)

∂λ
+ ∆δ1−λ(ξt)ṽt−1(ξ

t−1, λ),

where δz(·) denotes the Dirac delta centered at z ∈ R. Then

E

[
∂ṽt(ξt, λ)

∂λ

∣∣∣∣ξt < 1− λ

]
= d

∂ṽt−1(ξ
t−1, λ)

∂λ
+ ∆

∫ 1−λ
0 dH1−λ(ξt)∫ 1−λ

0 dξt
ṽt−1(ξ

t−1, λ)

= d
∂ṽt−1(ξ

t−1, λ)

∂λ
+

∆
1− λ

ṽt−1(ξ
t−1, λ),

12
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while

E

[
∂ṽt(ξt, λ)

∂λ

∣∣∣∣ξt ≥ 1− λ

]
= u

∂ṽt−1(ξ
t−1, λ)

∂λ
+ ∆

∫ 1
1−λ dH1−λ(ξt)∫ 1

1−λ dξt
ṽt−1(ξ

t−1, λ)

= u
∂ṽt−1(ξ

t−1, λ)

∂λ
.

Proceeding recursively (and noting that ∂ṽ0(λ)/∂λ = 0), this implies that

v(αt)
t

∑
τ=1

1d(ατ)
∆/d

1− λ
= E

[
∂ṽt(ξt, λ)

∂λ

∣∣∣∣∣ ξs < 1− λ if αs = d,
ξs ≥ 1− λ if αs = u.

]
.

Therefore, the virtual value of a buyer with type (αt, λ) is given by

ϕ(αt, λ) = v(αt)

[
1−

t

∑
s=1

1d(αs)
∆/d

1− λ

1− F(λ)
f (λ)

]
.

Note that the fact that each shock enters the buyer’s value multiplicatively implies that the addi-
tional distortions generated by the dependence of αt on λ have the additive structure above. This
is in contrast to, for example, the nature of distortions in Besanko (1985), the Markovian setting of
Battaglini (2005), the autoregressive values examples presented by Pavan, Segal, and Toikka (2009,
2010), and the procurement model of Krähmer and Strausz (2011).

Before moving on, we make the following additional assumption:

ASSUMPTION A. The distribution of initial-period values F is such that

1− F(λ)
(1− λ) f (λ)

is (weakly) decreasing in λ.

This regularity assumption is a sufficient condition for the buyer’s virtual value ϕ(αt, λ) to be
nondecreasing in λ for all αt ∈ At and all t, and will allow us to avoid concerns about ironing
that arise when virtual values are non-monotone. This assumption is satisfied by a large vari-
ety of distributions F on [0, 1]. For instance, the uniform distribution on [0, 1], as well as any
power distribution F(λ) = λx, where x ≥ 1, satisfies this assumption. Similarly, the beta and Ku-
maraswamy distributions satisfy Assumption A whenever their shape parameters are a ≥ 1 and
b > 0. We should note that this assumption is strictly stronger than the standard regularity as-
sumption that F is log-concave; however, similar regularity conditions are imposed in essentially
all dynamic mechanism design settings.11

11The utility of such conditions was first noted by Baron and Besanko (1984) and Besanko (1985), and an analogous
condition was imposed by Matthews and Moore (1987) in a multi-dimensional screening setting. An equivalent con-
dition on the conditional distribution of future types on initial period private information is found in, for instance, the
sequential screening model of Courty and Li (2000), the information disclosure setting of Esö and Szentes (2007), and
the Krähmer and Strausz (2011) model of pre-project planning in procurement. Pavan, Segal, and Toikka (2009) also
make additional monotonicity conditions on primitives in order to avoid ironing concerns. A notable exception to this
trend is found in Kakade, Lobel, and Nazerzadeh (2011); however, their model imposes “separability” conditions that
rule out the dependence of buyer values on initial-period private information found in the present work.
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4. THE OPTIMAL LONG-TERM CONTRACT

We now solve for the optimal dynamic mechanism in this setting for two important cases. We
first consider the case in which the buyer has single-unit demand and the good is produced at
a constant marginal cost. In this setting, the optimal contract has an especially simple structure:
the seller commits to a menu of deterministic price sequences. We then turn to the case of an
increasing and convex cost function, and relax the single-unit demand assumption. In this case,
the optimal long-term contract has a more sophisticated, but qualitatively similar, structure: the
seller commits to a menu of deterministic sequences of price-quantity schedules. In both cases,
the initial menu screens across the buyer’s initial-period private information, while the sequence
of prices (or schedules) progressively screen across the buyer’s realized valuations.

4.1. Single-Unit Demand and Constant Marginal Cost

Suppose first that the seller produces the good in each period at a constant marginal cost, so that
c(q) = cq for some constant c ≥ 0. In addition, suppose that the buyer has single-unit demand. In
this case, the seller’s optimization problem becomes

max
{q,p}

{
T

∑
t=1

δt
∫

Λ
E
[
(ϕ(αt, λ)− c)qt(α

t, λ)
∣∣λ] dF(λ)

}
subject to (IC-0), (MON-t), and (IR′-t).

Notice that for all t, the seller’s objective function is linear in qt(αt, λ) for all αt ∈ At and λ ∈
Λ. Therefore (temporarily ignoring the constraints (IC-0), (MON-t), and (IR′-t)), the seller sets
qt(αt, λ) = 1 if, and only if, ϕ(αt, λ) ≥ c, and otherwise sets qt(αt, λ) = 0.

Consider a history (αt, λ) where ∑t
s=1 1d(αs) = k, and note that the condition ϕ(αt, λ) ≥ c may

be rewritten as

ut−kdk
(

1− ∆/d
1− λ

1− F(λ)
f (λ)

k
)
≥ c.

So for all λ < 1, ∆/d
1−λ

1−F(λ)
f (λ) > 0, implying that the left-hand side of this inequality is decreasing in

k. Therefore, for every t = 1, . . . , T and every initial-period type λ, the buyer is allocated an object
as long as she has experienced sufficiently few downward shocks d.12 Formally, we define

kt(λ) := max
{

k ∈ Z+ : ut−kdk
(

1− ∆/d
1− λ

1− F(λ)
f (λ)

k
)
≥ c
}

, (8)

where we let kt(λ) := 0 if the set being maximized over is empty. The cutoff kt(λ) is finite for all
λ < 1. To see this, note that as long as F has a derivative of any order that is non-zero when λ = 1,
l’Hôpital’s rule implies that

lim
λ→1

∆/d
1− λ

1− F(λ)
f (λ)

= γ for some constant γ > 0; (9)

12Note that, for a buyer with initial-period type λ = 1, ϕ(αt, λ) = v(αt) for all αt ∈ At; thus, such a buyer’s allocation
experiences no distortions away from the efficient allocation. We do not focus on this, however, as this is a zero-
probability type.
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thus, for any t, a buyer who has experienced more than 1/γ downward shocks d will have a
negative virtual value. Clearly, our regularity assumption on the distribution F implies that the
cutoff kt(λ) is non-decreasing in λ for all t.

Finally, let us define

q∗t (α
t, λ) :=

1 if ∑t
s=1 1d(αs) ≤ kt(λ),

0 otherwise.
(10)

Since the term ∑t
s=1 1d(αs) simply counts the number of realized d shocks in a given history of

signals αt, it is trivial to see that q∗t (u, αt−1, λ) ≥ q∗t (d, αt−1, λ) for all αt−1 ∈ At−1 and λ ∈ Λ.
Moreover, this also implies that q∗s (αs

−t, u, αt−1, λ) ≥ q∗s (αs
−t, d, αt−1, λ) for all s > t and all αs

−t ∈
As−t and λ ∈ Λ. Since this holds for every realization of αs

−t, it must also hold when taking
expectations (given λ), and therefore condition (MON-t) is satisfied. This fact, combined with the
fact that the constraints (IC′-t) bind, implies that the complete set of period-t (for t ≥ 1) single-
deviation constraints (IC-t) are satisfied.13

Of course, these single-deviation constraints are only a (necessary) subset of the full set of incen-
tive constraints that must be satisfied. In particular, the constraints (IC-t) guarantee only that the
buyer prefers reporting her type truthfully in period t ≥ 1 to a single deviation from truthfulness;
this property is not, in general, sufficient to guarantee that the buyer does not wish to misreport
her type multiple times over the course of the relationship. However, the allocation rule in Equa-
tion (10) depends only on the number of downward shocks d the buyer has experienced, but not
the order in which they were received—q∗t is path independent. This observation suggests that
combining the optimal allocation rule with a path-independent payment rule may lead to “full”
incentive compatibility.

The payment scheme we propose is essentially a sequence of prices determined by the standard
(static) Myersonian payment rule applied to the entire range of possible values in each period, and
not just those that are possible given a particular history of reports. Thus, the “price” of the good
in each period t ≥ 1 is simply the lowest possible reported period-t value for which the buyer still
receives the good:

p∗t (α
t, λ) :=

ut−min{t,kt(λ)}dmin{t,kt(λ)} if ∑t
s=1 1d(αs) ≤ kt(λ),

0 otherwise.
(11)

Having fixed a payment scheme for all future periods, the period-zero “entry fee” is easily pinned
down. Using the definition of U0(λ) in Equation (1), we may write

p0(λ) =
T

∑
t=1

δtE
[
qt(α

t, λ)v(αt)− pt(α
t, λ)

∣∣λ]−U0(λ).

13We will show shortly (see Theorem 1) that the remaining constraints (IC-0) and (IR′-t) in the seller’s relaxed problem
(P ′) are also satisfied, as is the complete set of incentive compatibility constraints.
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Since U0(λ) =
∫ λ

0 U′0(µ)dµ, we can use Lemma 3.2 (combined with the fact that the constraints
(IC′-t) and (IR′-0) bind) to show that the initial payment must be

p∗0(λ) :=
T

∑
t=1

δtE
[
q∗t (α

t, λ)(v(αt)− p∗t (α
t, λ))

∣∣λ]− ∫ λ

0

T

∑
t=1

δtE
[
q̄∗t (d, αt−1, µ)∆

∣∣∣µ] dµ. (12)

Note that this contract (q∗, p∗) guarantees that p∗t (α
t, λ) ≤ q∗t (α

t, λ)v(αt) for all (αt, λ) ∈ At ×Λ,
and so the buyer’s expected flow payoff (when truthful) in each period is always non-negative.
Therefore, the individual rationality constraints (IR′-t) are all satisfied.

One natural way to think about the allocation and payment rules above is to consider the cor-
responding indirect mechanism: the seller can implement the contract described above by giving
the buyer a choice among several “plans” differentiated by their initial up-front cost and future
sequence of prices. In each period after the initial choice of plan, the seller does not elicit any
further information from the buyer, but instead simply presents her with a deterministic sequence
of prices. Since the buyer’s behavior after the initial period does not affect future prices, she can
simply make the myopically optimal choice of purchasing the good in period t if the price is lower
than her value.

This elimination of dynamic incentives is precisely the feature of the proposed contract that
guarantees satisfaction of the “full” set of incentive compatibility constraints: the contract induces
truthful reporting by the buyer even after histories in which she previously misreported her pri-
vate information (be it λ or αt for some t). This is because a period-t misreport (for t ≥ 1) has one of
two effects: over-reporting the number of d shocks leads to the exclusion of the buyer in situations
where truthful reporting may have led to a profitable allocation, while under-reporting the num-
ber of d shocks leads to allocations at prices greater than the buyer’s value. As neither of these two
outcomes affects future prices or values, the buyer has no ability to manipulate the mechanism in
future periods, and so there is neither a static nor dynamic incentive for misreporting one’s value.

Thus, it only remains to verify that the proposed solution satisfies the initial-period single-
deviation constraint (IC-0). As previously noted, the “localized” version of the constraint derived
in Lemma 3.2 is generally only a necessary, but not sufficient, condition for period-zero incentive
compatibility. However, since it guarantees the monotonicity of the allocation in λ, Assumption A
is sufficient for incentive compatibility in the initial period. The theorem below (whose proof is
found in the appendix) demonstrates this fact.

THEOREM 1. Suppose that the distribution F satisfies Assumption A. Then the contract (q∗, p∗), where
q∗ denotes the quantity schedules from Equation (10) and p∗ denotes the payment rules from Equations (11)
and (12), is an optimal contract that solves the seller’s problem (P ′).

So as to fully appreciate the optimal mechanism proposed above, it is helpful to consider the
special case where the good is produced at zero cost in each period. In this case, the condition
ϕ(αt, λ) ≥ c is equivalent to the requirement that

∆/d
1− λ

1− F(λ)
f (λ)

t

∑
s=1

1d(αs) ≤ 1.
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Thus, the optimal allocation rule is time independent, and simply sets an upper bound k̄(λ) on the
number of downward shocks d permitted over the course of the relationship for every period-zero
report λ. Moreover, given Assumption A, the optimal contract partitions the set of initial-period
types into a set of intervals Λn := [λn−1, λn) such that k̄(λ) = n for all λ ∈ Λn. Each of these
intervals corresponds to a “plan” of future price paths offered by the seller.

Within each plan, the path of prices is straightforward, with the price changing at a predeter-
mined rate in each period—in the plan designated for a buyer with λ ∈ Λn, the price grows by
a factor d in each of the first n periods, and then grows by a factor u in every period thereafter.
(Technically, the price need not actually “grow”: if u < 1 or d < 1, prices will be decreasing.) This
initial period of slower growth in prices is essentially a “honeymoon” phase, after which the slope
of the price path increases. Thus, the set of plans offered by the seller vary by the length of their
honeymoon phases, with longer honeymoon phases demanding higher entry fees in the initial pe-
riod. Indeed, in order to justify paying a larger initial fee, the buyer must anticipate that her future
values will be (with high probability) sufficiently high that the lower future prices fully compen-
sate her for the upfront cost—paying a larger initial fee for a future price discount is justified only
if the buyer’s probability λ of experiencing upward shocks u is sufficiently high.

Additionally, it is important to note that the length of the honeymoon phase in each plan is
finite, as is the number of plans offered. (This finiteness follows from the observation in Equa-
tion (9).) Thus, the seller never finds it optimal to continue serving a buyer after they have ex-
perienced a fixed finite number of downward shocks, regardless of the number of upward shocks
already experienced. Furthermore, note that k̄(λ) is independent of the length of the time horizon
T (as well as the discount factor δ). This implies that early (inefficient) termination of the contract
will occur with probability arbitrarily close to 1 given a sufficiently long time horizon T. Indeed,
the law of large numbers implies that, for all λ < 1, the probability of the buyer experiencing more
than k̄(λ) downward d shocks in the first n < T periods approaches 1 as n grows large. Once this
occurs, the buyer will make no additional payments, and will never again receive the good. Thus,
the seller commits to early termination of the relationship so as to increase her revenue.

When the cost of producing the good is strictly positive, then the optimal allocation rule q∗t
need not be time independent, nor does the seller necessarily offer a finite number of plans. In
particular, kt(λ) ≥ kt+1(λ) when u < 1, and kt(λ) ≤ kt+1(λ) when u > 1. In this latter case,
a buyer with a virtual value that is positive but less than the marginal cost c will be excluded,
but if her value recovers with sufficiently many u shocks, she may be allocated the object again.
However, note that since ϕ(αt, λ) ≤ 0 whenever ∑t

s=1 1d(αs) > k̄(λ), we must have kt(λ) ≤ k̄(λ)
for all t, where k̄(λ) is the upper bound from the costless production case discussed above—once
the buyer’s virtual value becomes negative, it remains negative and the buyer is excluded in all
future periods. Thus, the “price” of the good will eventually grow deterministically at the higher
rate u, while the buyer’s value will only probabilistically grow at that rate—as time proceeds, the
seller progressively screens the buyer by restricting supply when she receives a downward shock
d so as to extract additional rents from the buyer when she receives the higher u shocks. With a
sufficiently long time horizon T, this rent extraction leads to the eventual exclusion of all buyers.
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4.2. Term Life Insurance

Recall the life insurance example discussed in the introduction, where a buyer’s value for life
insurance at any point in time varies, as it is influenced by the probability of death. Moreover,
recall that this probability of death may be influenced by privately observed factors whose evolu-
tion is also the potential policyholder’s private information. So letting λ denote the probability of
a negative health shock in each period, and letting u > 1 =: d, we may interpret our model as one
in which the buyer’s health (and hence value for insurance) remains constant unless she receives
a negative health shock. (Buyers with higher values of λ therefore have more pessimistic expecta-
tions about their future health, and are likely to have higher future values for life insurance.)

In such a setting, our model predicts several features of the optimal long-term contract. First,
the optimal contract can be implemented without eliciting information from the buyer over the
lifetime of the relationship. Second, the seller can implement this optimal contract by committing
to a menu of deterministic price plans, each element of which is differentiated by the length of its
honeymoon phase. Moreover, plans with longer honeymoon phases involve a higher upfront fee
but (weakly) lower per-period prices.

Table 1 demonstrates the annualized premiums and cumulative payments, sampled over the
course of 65 years, for each of the Select Term 10 Year, 20 Year, and 30 Year renewable term life in-
surance policies offered by the State Farm Life Insurance Company.14 The initial premium for each
plan is guaranteed for the length of the term (ten, twenty, and thirty years, respectively), during
which no health information is elicited. After this term, the policyholder is free to renew the policy
without providing a statement of health or additional proof of insurability to State Farm; however,
the premiums “increase significantly” and “continue to increase annually and are adjustable but
will not exceed the maximum premiums listed in the policy.” As with the term life insurance con-
tracts studied by Hendel and Lizzeri (2003), there is one-sided commitment: the insurer is legally
bound to the terms of the contract while the policyholder may costlessly terminate it at any time.

Select Term 10 Year Select Term 20 Year Select Term 30 Year
Year Premium Cumulative Premium Cumulative Premium Cumulative

5 335 1,675 350 1,750 525 2,625
10 335 3,350 350 3,500 525 5,250
15 3,365 17,385 350 5,250 525 7,875
20 4,850 38,905 350 7,000 525 10,500
30 12,815 124,695 12,815 92,790 525 15,750
35 22,100 214,495 22,100 182,590 22,100 105,550
50 96,440 990,070 96,440 958,165 96,440 881,125
60 264,680 2,763,960 264,680 2,732,055 264,680 2,655,015
65 385,295 4,440,145 385,295 4,408,240 385,295 4,331,200

TABLE 1. State Farm Term Life Insurance Policy Premiums

14Premiums are the “Elite Preferred Non-Tobacco” rates, calculated for $500,000 of coverage for a 30-year-old male in
the state of Missouri. This data can be obtained by visiting http://www.statefarm.com/insurance/quote/lrq.asp.
Similarly structured term life insurance policies are described by, for instance, Hendel and Lizzeri (2003).
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Thus, State Farm (among other insurers) offers buyers a choice of period of time in which pre-
miums remain constant, followed by an increasing premium thereafter. It should be clear that the
premiums during the term of the 20- and 30-year plans may be reduced to the initial premiums of
the 10-year plan without changing the cumulative expenditure by charging an upfront entry fee
equal to the discounted value of the payment difference.15 Moreover, these longer-term policies
cost more (over the course of their term) than the shorter-term 10-year policy. Thus, these term
life insurance policies appears to closely match the optimal long-term contract prescribed by our
model; while we do not want to suggest that State Farm acts as though it were a monopolist, the
natural interpretation is that the insurer is using the different terms to screen across buyers with
differing future health profiles, while raising the premiums over time to progressively screen and
filter out the consumers with the lowest willingness to pay for insurance.

4.3. Convex Costs

The results presented and discussed above are not limited to the unit-demand setting above; a
similar contractual structure arises in a setting in which the seller faces an increasing convex cost
function and we relax the assumption of single-unit demand. To see this, consider the case where
the seller can produce q units of the good in each period at a cost of c(q) = q2/2.16 Then the seller’s
problem (P ′) may be written as

max
{q,p}

{
T

∑
t=1

δt
∫

Λ
E

[
ϕ(αt, λ)qt(α

t, λ)− q2
t (α

t, λ)

2

∣∣∣∣λ] dF(λ)

}
subject to (IC-0), (MON-t), and (IR′-t).

Pointwise maximization (for each (αt, λ) tuple) of the integrand while ignoring (for now) the con-
straints yields the following solution:

q∗t (α
t, λ) := max

{
v(αt)

(
1−

t

∑
s=1

1d(αs)
∆/d

1− λ

1− F(λ)
f (λ)

)
, 0

}
. (13)

Notice that this allocation rule distorts the buyer’s quantity away from the first-best (efficient)
allocation by a factor that depends on the number of downward shocks d that the buyer reports.
Thus, a report of d in period t affects the buyer’s allocation in two ways: first, it leads to a decrease
in her reported value (relative to the value that would have been inferred from a report of u),
thereby decreasing the quantity she would have been allocated in a complete-information setting;
and second, it leads to an increase in the distortion away from the efficient allocation. Moreover,
both of these effects carry through to the allocation in all future periods. Therefore, for every
t = 1, . . . , T,

q∗t (u, αt−1, λ) ≥ q∗t (d, αt−1, λ)

15The 20-year plan above is equivalent to a 20-year policy with an annual premium of $335 and an upfront fee of
∑20

τ=1(350− 335)/(1 + r)τ , where r is the interest rate. Similarly, the 30-year plan is equivalent to a 30-year policy with
an annual premium of $335 and an upfront fee of ∑30

τ=1(525− 335)/(1 + r)τ .
16Assuming a quadratic cost function, as in Battaglini (2005), Pavan (2007), and much of the static contracting literature,
yields significant gains in tractability and ease of exposition without significant loss of generality.
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for all αt−1 ∈ At−1 and λ ∈ Λ, and, for all s > t,

q∗s (α
s
−t, u, αt−1, λ) ≥ q∗s (α

s
−t, d, αt−1, λ)

for all αs
−t ∈ As−t and λ ∈ Λ. Since this latter inequality holds for every realization of αs

−t, it also
holds in expectation (conditional on λ), and therefore the constraint (MON-t) is satisfied. Since
the constraints (IC′-t) also bind, this implies that the complete set of period-t (with t ≥ 1) single-
deviation incentive constraints are satisfied.

Again, we must note that the satisfaction of these constraints need not, in general, guarantee
that the buyer prefers truthful reporting of her type to (potentially complicated) compound de-
viations. However, as was the case in Section 4.1, the allocation rule defined in Equation (13) is,
essentially, a function of λ and the buyer’s reported period-t value alone—for each λ ∈ Λ and all
t, q∗t (α

t, λ) = q∗t (α̂
t, λ) for any αt, α̂t ∈ At such that v(αt) = v(α̂t). Therefore, we make use of a

path-independent payment rule in order to incentivize the buyer to treat her reporting decision in
any period t ≥ 1 as a single-period (static) problem.

To this end, we make use of the standard (static) nonlinear pricing rule á la Mussa and Rosen
(1978); however, instead of applying this pricing rule to the set of possible values conditional on
the reported history αt−1 (that is, over the set {uv(αt−1, dv(αt−1)}), we apply it to the entire set of
possible period-t values {ut, ut−1d, . . . , udt−1, dt}. Thus, letting

m(αt) :=
t

∑
s=1

1d(αs),

we define, for all t = 1, . . . , T and all (αt, λ) ∈ At ×Λ,

p∗t (α
t, λ) := q∗t (α

t, λ)v(αt)−
t

∑
j=m(αt)+1

q∗t (d, . . . , d︸ ︷︷ ︸
j

, u, . . . , u︸ ︷︷ ︸
t−j

)∆ut−jdj−1. (14)

Note that, with the payments defined above, the buyer’s flow payoff in each period (assuming
truthful reporting of αt) is

q∗t (α
t, λ)v(αt)− p∗t (α

t, λ) =
t

∑
j=m(αt)+1

q∗t (u, . . . , u︸ ︷︷ ︸
t−j

, d, . . . , d︸ ︷︷ ︸
j

)∆ut−jdj−1 ≥ 0.

Therefore, the individual rationality constraints (IR′-t) are satisfied for all t ≥ 1. Moreover, the
initial-period payment p∗0(λ) is uniquely determined by combining the definition of U0(λ) in
Equation (1) with the envelope condition from Lemma 3.2:

p∗0(λ) :=
T

∑
t=1

δtE
[
q∗t (α

t, λ)(v(αt)− p∗t (α
t, λ))

∣∣λ]− ∫ λ

0

T

∑
t=1

δtE
[
q̄∗t (d, αt−1, µ)∆

∣∣∣µ] dµ. (15)

Again, it is helpful to interpret the direct mechanism above by considering its indirect counter-
part. In the period zero, the seller offers the buyer her choice from a menu of options

{p∗0(λ), {q∗t (·, λ), p∗t (·, λ)}T
t=1}λ∈Λ,
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where each period-zero menu choice consists of an entry fee and a predetermined sequence of price-
quantity schedules. Then, in each period t ≥ 1, the buyer is free to choose any of the t + 1 price-
quantity pairs on the period-t schedule that correspond to the t + 1 possible values in period t.
Crucially, her choice in any period t ≥ 1 does not alter the prices or quantities available to her in
any future periods. This implies that, given any initial-period report of λ, the buyer’s decision
problem in each period t ≥ 1 is decoupled from her decision problem in any other period t′ ≥ 1.
Her choice of price-quantity pair then (myopically) maximizes her flow utility in that period.

Notice, however, that since q∗t (·, λ) is decreasing in the reported number of downward d shocks
for all t and all λ, it is increasing in the buyer’s value. Standard results from static mechanism
design then imply that the period-t menu is incentive compatible (in the static sense), regard-
less of the buyer’s initial-period report, and so the buyer will choose the price-quantity pair that
corresponds to her true value.17 Thus, for any initial-period report λ, the contract described in
Equations (13), (14), and (15) is “fully” incentive compatible: the buyer has no incentive to ever
misreport her shocks, even when multiple deviations are permitted.

Of course, this observation does not imply that the initial-period single-deviation constraint
(IC-0) is satisfied—recall that the envelope condition derived in Lemma 3.2 is only a necessary im-
plication of period-zero incentive compatibility. However, Assumption A implies that the quantity
schedules are (weakly) increasing in λ for all t and all possible reports αt ∈ At. The following the-
orem (with proof in the appendix) shows that this property is, in fact, sufficient to guarantee that
the buyer reports truthfully in the initial period, and therefore the incentive compatibility of the
proposed contract.

THEOREM 2. Suppose that the distribution F satisfies Assumption A. Then the contract (q∗, p∗), where
q∗ denotes the quantity schedules from Equation (13) and p∗ denotes the payment rules from Equations (14)
and (15), is an optimal contract that solves the seller’s problem (P ′).

In this setting, the regularity assumption on the distribution F implies that q∗t is monotone in-
creasing in λ; therefore, the seller’s menu is infinite. However, as in the indivisible goods case dis-
cussed in Section 4.1, the optimal contract allows only a fixed finite number of reported d shocks
before permanently excluding the buyer, and this upper bound depends only on the buyer’s re-
ported initial-period type λ. Thus, each additional d shock reported by the buyer not only de-
creases the quantity she is allocated, but it also brings her closer to contract termination. Since
such shocks occur with strictly positive probability whenever λ < 1, this outcome is essentially
unavoidable given a long enough time horizon T.

5. CONTINUOUS SHOCKS

In order to investigate the robustness of the results presented in the previous section, we now
present a more general formulation of the model. Instead of a setting with discrete shocks, we

17Note that this does not imply that the period-t menu is the optimal menu for (statically) screening across the buyer’s
potential period-t values in a setting where λ is commonly known.
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examine a setting where the buyer’s valuation shocks in each period are drawn from a continu-
ous distribution. For concreteness, we focus on the case where the seller faces an increasing and
convex cost function.

5.1. Environment

As before, we consider a dynamic setting in which the buyer repeatedly purchases a nondurable
good from a single seller. The buyer’s utility in period t from consuming q units bought at a price
p is given by vtq− p. As before, the buyer’s marginal value for an additional unit vt is subject to a
series of multiplicative shocks, so that vt = αtvt−1, where we take v0 = 1 to be exogenously given
and commonly known.

In each period t = 1, . . . , T, the buyer privately observes the shocks to her valuation, which
are the realizations {αt} of a sequence of random variables {α̃t}, independently and identically
drawn from the conditional distribution G(·|λ) on the interval A := [α, ᾱ] with 0 ≤ α < ᾱ ≤ ∞.
We denote by g(·|λ) the conditional density of G(·|λ), and assume that g(·|λ) is strictly positive
and differentiable on A for all λ ∈ Λ. Moreover, we assume that the family {G(·|λ)}λ is ordered
in terms of first-order stochastic dominance; that is, G(·|λ) first-order stochastically dominates
G(·|λ′) whenever λ > λ′. In addition, we assume, for technical reasons, that all partial derivatives
of G exist and are bounded. Note that this, combined with the previous assumption, implies that
∂G(α|λ)/∂λ ≤ 0.

At the time of contracting (period zero), the buyer is privately informed about the parameter λ

of the distribution that generates the sequence of shocks {αt}. Specifically, the buyer privately ob-
serves the realization λ of a random variable λ̃, where it is commonly known that λ̃ is distributed
according to the distribution function F on an interval Λ := [λ, λ̄] with 0 ≤ λ < λ̄ ≤ ∞. We
assume that f , the density of F, is strictly positive and differentiable on Λ.

We assume that the seller can produce q units of the good in each period at a cost of c(q) := q2/2.
The buyer-seller relationship is repeated for T ≤ ∞ periods and payoffs are discounted with a
common discount factor δ ∈ (0, 1] (where we impose the additional restriction that δᾱ < 1 if
T = ∞). The timing remains identical to that described in Section 2: in period zero, the seller
offers a long-term contract to the buyer; the buyer can either accept or reject this offer. If accepted,
the contract is executed in periods t = 1, . . . , T. The buyer’s outside option is normalized to 0. We
continue to assume that the monopolist enjoys full commitment to the contract she offers, but that
the buyer is free to break off the relationship at any time.

5.2. The Seller’s Problem

As in Section 3, the seller wishes to design and offer the contract that maximizes her expected
profits. The Myerson (1986) revelation principle for multistage games continues to hold, and so
the search for optimal contracts is again greatly simplified (without loss of generality) by the con-
sideration of direct mechanisms where the buyer is incentivized to report truthfully conditional
on having reported truthfully in the past.

Thus, a contract in our setting is a sequence of payment rules p = {pt(rt, ht)}T
t=0 and allocation

probabilities q = {qt(rt, ht)}T
t=1, where rt is the buyer’s report at time t, and ht is the public history
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at time t. Note that in such a direct mechanism, r0 ∈ Λ, while rt ∈ A for all t ≥ 1. In addition, ht

can be defined recursively by h0 := ∅ and ht := {rt−1, ht−1} for all t ≥ 1, where rt−1 is the agents
report in period t− 1. We denote the set of time t public histories by Ht. Since the agent is free
to misreport her private information at any time, her private history is ĥt := {αt, rt−1, ĥt−1}, where
ĥ0 := {λ}. We denote the set of time t private histories by Ĥt; the buyer’s strategy, given the
seller’s mechanism, is then simply a sequence of mappings r̂t : Ĥt → A for t ≥ 1, and r̂0 : Λ→ Λ.

A mechanism is incentive compatible if, having reported truthfully in previous periods, the
agent has no incentive to misreport her new private information. As in Section 3, this implies
that the seller’s optimal mechanism must prevent the buyer from making multi-stage deviations
from truthtelling. So as to avoid considering this large class of potentially complex deviations,
we consider a relaxed version of the seller’s problem that considers only one-shot deviations from
truthfulness. We will then present a sufficient condition that guarantees the optimal allocation rule
for this relaxed problem is path independent. Our main result in this section shows that combining
this allocation rule with a path-independent payment scheme yields an optimal mechanism that
guarantees the (full) incentive compatibility of the proposed mechanism.

With this in mind, let U0(λ) denote the utility of a buyer with initial type λ who always reports
her private information truthfully; thus, for all λ ∈ Λ, we have

U0(λ) := −p0(λ) +
T

∑
t=1

δt
∫

At

(
qt(α

t, λ)v(αt)− pt(α
t, λ)

)
dWt(αt|λ), (16)

where dWt(αt|λ) = ∏t
τ=1 dG(ατ|λ). Similarly, let Û0(λ′, λ) denote the expected utility of a buyer

with initial type λ who reports some λ′, but then truthfully reports all future shocks:

Û0(λ
′, λ) := −p0(λ

′) +
T

∑
t=1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ). (17)

Thus, the initial-period single-deviation constraint requires that

U0(λ) ≥ Û0(λ
′, λ) for all λ, λ′ ∈ Λ. (IC-0)

Similarly, denote by Ut(αt, αt−1, λ) the expected utility of a buyer who observes the period-t
shock αt after truthfully reporting (αt−1, λ), and then continues to report truthfully. Then

Ut(αt, αt−1, λ) := qt(αt, αt−1, λ)v(αt)− pt(αt, αt−1, λ)

+
T

∑
s=t+1

δs−t
∫

As−t

(
qs(α

s
−t, αt, αt−1, λ)v(αs

−t, αt)− ps(α
s
−t, αt, αt−1, λ)

)
dWs−t(αs

−t|λ).
(18)

The period-t single-deviation constraint requires, for all truthful histories (αt, λ) ∈ At × Λ, the
superiority of continued truthfulness to a single misreport α′t ∈ A:

Ut(αt, αt−1, λ) ≥ qt(α
′
t, αt−1, λ)v(αt)− pt(α

′
t, αt−1, λ)

+
T

∑
s=t+1

δs−t
∫

As−t

(
qs(α

s
−t, α′t, αt−1, λ)v(αs

−t, αt)− ps(α
s
−t, α′t, αt−1, λ)

)
dWs−t(αs

−t|λ).
(IC-t)
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In addition, a mechanism is individually rational if, in every period, continued truthtelling
guarantees the buyer’s continued willingness to participate in the contract. These individual ra-
tionality constraints may be summarized by the following:

U0(λ) ≥ 0 for all λ ∈ Λ, and (IR-0)

Ut(α
t, λ) ≥ 0 for all (αt, λ) ∈ At ×Λ and all t = 1, . . . , T. (IR-t)

The seller’s profit from any feasible contract is the difference between total surplus and the
buyer’s utility. Thus, when the buyer is of initial type λ, the seller’s expected profit is

Π(λ) := −U0(λ) +
T

∑
t=1

δt
∫

At

(
qt(α

t, λ)v(αt)− c(qt(α
t, λ))

)
dWt(αt|λ). (19)

The seller’s optimal contract must then maximize profits, subject to the constraints that the con-
sumer receives at least her reservation utility and that the consumer have no incentive to misreport
her type. Therefore, any optimal long-term contract must solve the relaxed problem that imposes
only the participation and single-deviation truthtelling constraints:

max
{p,q}

{∫
Λ

Π(λ)dF(λ)
}

subject to (IC-0), (IC-t), (IR-0), and (IR-t).
(Q)

5.3. Simplifying the Seller’s Relaxed Problem

We approach the optimal contracting problem by incorporating the period-t (where t ≥ 1)
single-deviation and participation constraints into the objective function. As the buyer’s utility is
quasilinear and satisfies the standard single-crossing conditions, the single-deviation constraints
are equivalent to (i) monotonicity of the buyer’s expected discounted allocation; and (ii) the deter-
mination of the buyer’s utility entirely by that expected allocation, up to a constant. In addition,
the single-crossing property pins down this constant by the individual rationality constraint. Since
the period-t buyer is forward-looking, her utility depends upon her expectations (in period t) over
future shocks in periods s ≥ t. Naturally, this implies that the “localized” version of the period-t
constraints will involve the expected discounted allocations for s ≥ t, which we denote by

q̄s(αt, αt−1, λ) := qt(αt, αt−1, λ)v(αt−1)

+
T

∑
s=t+1

δs−t
∫

As−t
qs(α

s
−t, αt, αt−1, λ)v(αs

−t, αt−1)dWs−t(αs−t|λ).
(20)

The standard machinery yields the following result, whose proof may be found in the appendix:

LEMMA 5.1. The period-t single-deviation and individual rationality constraints (IC-t) and (IR-t) are sat-
isfied if, and only if, for all t = 1, . . . , T, and all (αt−1, λ) ∈ At−1 ×Λ,

∂

∂αt
Ut(αt, αt−1, λ) = q̄t(αt, αt−1, λ) for all αt ∈ A; (IC′-t)

q̄t(αt, αt−1, λ) is nondecreasing in αt; and (MON-t)

Ut(α, αt−1, λ) ≥ 0. (IR′-t)
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Note that the buyer’s private information at the time of initial contracting does not directly af-
fect her payoffs. Rather, λ only provides information about the path of future preferences over the
entire sequence of allocations. Therefore, the standard single-crossing condition does not apply,
and we must resort instead to an envelope argument in order to simplify the seller’s problem.
Using the following result (with proof in the appendix), we are able to remove the payment rules
from the objective function in the seller’s relaxed problem (Q). As in the case of discrete shocks
discussed in Section 3, this envelope condition is a necessary implication of period-zero incentive
compatibility, but it is not in general sufficient.

LEMMA 5.2. Suppose that the single-deviation constraints (IC-0) and (IC-t) are satisfied for all t. Then the
derivative U′0(λ) of the buyer’s period-zero expected utility is given by

U′0(λ) = −
T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)/∂λ

g(αt|λ)
dWt(αt|λ). (IC′-0)

Moreover, if the single-deviation constraints are satisfied, then the period-zero incentive rationality con-
straint (IR-0) is equivalent to the requirement that

U0(λ) ≥ 0. (IR′-0)

Finally, we return to the seller’s problem. Since (IC′-0) must hold in any incentive compatible
mechanism, integration by parts implies that the relaxed problem (Q) may be rewritten as

max
{q,p}


−U0(λ) +

∫
Λ

T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)/∂λ

g(αt|λ)
1− F(λ)

f (λ)
dWt(αt|λ) f (λ)dλ

+
∫

Λ

T

∑
t=1

δt
∫

At

(
qt(α

t, λ)v(αt)− c(qt(α
t, λ))

)
dWt(αt|λ) f (λ)dλ


subject to (IC-0), (MON-t), (IR′-0), and (IR′-t).

Since U0(λ) is an additive constant in the objective function above, it must be the case that the
individual rationality constraint (IR′-0) binds. Moreover, note that

T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)/∂λ

g(αt|λ)
dWt(αt|λ)

=
T

∑
t=1

δt
∫

At
qt(α

t, λ)
t

∑
s=1

v(αt
−s, αs−1)

∂G(αs|λ)/∂λ

g(αs|λ)
dWt(αt|λ).

(21)

Thus, the relaxed version of the seller’s problem becomes

max
{q,p}



T

∑
t=1

δt
∫∫

Λ×At

(
qt(α

t, λ)

[
v(αt) +

t

∑
s=1

v(αt
−s, αs−1)

∂G(αs|λ)/∂λ

g(αs|λ)
1− F(λ)

f (λ)

]

− c(qt(α
t, λ))

)
dWt(αt|λ)dF(λ)


subject to (IC-0), (MON-t), and (IR′-t).

(Q′)
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5.4. The Optimal Contract

As in Section 3 (and as is standard in optimal mechanism design more generally), the seller here
is essentially maximizing virtual surplus, where the buyer’s virtual value in period t = 1, . . . , T is

ϕ(αt, λ) := v(αt) +
t

∑
s=1

v(αt
−s, αs−1)

∂G(αs|λ)/∂λ

g(αs|λ)
1− F(λ)

f (λ)
(22)

The first term in each of these expressions is the buyer’s contribution to the social surplus, while
the second term represents the information rents that must be left to the buyer in order to induce
truthful revelation of her private information. The inverse hazard rate (1− F(λ))/ f (λ) appears
since any information rents paid to a buyer with initial type λ must also be paid to buyers with
higher initial types. Meanwhile, the additional

∂G(α|λ)/∂λ

g(α|λ)
terms are the “informativeness measures” of Baron and Besanko (1984), which reflect the infor-
mativeness of the initial-period private information λ on future shocks αs, where we sum over all
s ≤ t to account for the different shocks through which λ influences v(αt).18 Note that first-order
stochastic dominance implies that ∂G(α|λ)/∂λ ≤ 0, and so these cumulative information rents are
not paid by the buyer, but rather to her; therefore, ϕ(αt, λ) ≤ v(αt) for all (αt, λ) ∈ At ×Λ and all
t = 1, . . . , T.

Pointwise maximization (for each (αt, λ) tuple) of the integrand in (Q′) while ignoring (for now)
the remaining constraints yields the following solution:

q∗t (α
t, λ) = max

{
ϕ(αt, λ), 0

}
.

It is important to note that (unlike the buyer’s virtual value when values follow a recombinant
binomial tree), the virtual value ϕ(αt, λ) need not be path independent: without additional re-
strictions on the conditional distribution G(·|λ), there may be αt, α̂t ∈ At such that v(αt) = v(α̂t)

but the summation in Equation (22) yields ϕ(αt, λ) 6= ϕ(α̂t, λ).19 Meanwhile, our approach to solv-
ing for the optimal long-term contract (considering the single-deviation relaxation of the seller’s
problem) relies on pairing a path-independent allocation rule with a path-independent pricing
rule to guarantee incentive compatibility with respect to compound deviations.

To enable this approach, we impose an additional separability assumption on the conditional
distribution of shocks in order to guarantee path-independence of the allocation rule:

ASSUMPTION B.1. There exist some constants a, b ∈ R and a function γ : Λ→ R such that

∂G(α|λ)/∂λ

g(α|λ) = α(a + b log(α))γ(λ)

for all α ∈ A and all λ ∈ Λ.

18Since values are multiplicative in the shocks, the additional distortions generated by the dependence of v(αt) on λ
have the additive structure above. This is in contrast to, for example, the nature of distortions in Besanko (1985), the
autoregressive values examples of Pavan, Segal, and Toikka (2009, 2010), and the model of Krähmer and Strausz (2011).
19It is still true, however, that shocks commute: ϕ(αt, λ) = ϕ(σ(αt), λ) for all αt ∈ At and all possible permutations σ.
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Notice that, under this assumption, we may write the buyer’s virtual value as

ϕ(αt, λ) = v(αt) +
t

∑
s=1

v(αt
−s, αs−1) [αs(a + b log(αs)γ(λ)]

1− F(λ)
f (λ)

= v(αt)

[
1 +

(
at + b log(v(αt))

)
γ(λ)

1− F(λ)
f (λ)

]
,

where the second equality follows from the fact that v(αt
−s, αs−1)αs = v(αt). Thus, Assumption B.1

implies that the period-t virtual value (and hence the allocation rule above) depends only on t, on
λ, and on the buyer’s value in that period, but not on the specific sequence of shocks generating
that value. This does not imply, however, that the allocation rule is independent of t, as for any
distinct t and t′, v(αt) = v(αt′) implies that ϕ(αt, λ) 6= ϕ(αt′ , λ) (as long as a 6= 0).

Clearly, Assumption B.1 involves some loss of generality. However, there are many natural
and commonly used parametric classes of distributions for which the condition is satisfied. For
example, if the G is a power distribution, so G(α|λ) = αλ, then ∂G(α|λ)/∂λ

g(α|λ) = α log(α)
λ . Similarly,

if G is an exponential distribution with mean λ, a Pareto distribution with minimum value λ

and arbitrary shape parameter, or a truncated normal distribution with mean 0 and variance λ2,
then ∂G(α|λ)/∂λ

g(α|λ) = − α
λ . When the shocks are distributed according to a lognormal distribution

with mean λ (and arbitrary non-zero variance), then the ratio in question equals −α. Thus, while
Assumption B.1 is not without loss of generality, it certainly does not rule out all cases of interest.

Therefore, under Assumption B.1, it is possible to write the optimal allocation rule as a function
q̂∗t of the buyer’s reported value v(αt) instead of the specific sequence of shocks αt:

q̂∗t (v(α
t), λ) := q∗t (α

t, λ) = max{ϕ(αt, λ), 0}. (23)

We then pair this path-independent allocation rule with a path-independent payment rule that
simply screens across each period’s values as in a standard Mussa and Rosen (1978) nonlinear
pricing problem. To this end, we define

p∗t (α
t, λ) := q̂∗t (v(α

t), λ)v(αt)−
∫ v(αt)

αt
q̂∗t (v

′, λ)dv′, (24)

where αt is the buyer’s lowest possible value in period-t. Thus, in each period t, the seller offers
what is essentially a static screening mechanism (q∗t (·, λ), p∗t (·, λ)) that depends only on the initial
report of λ. Note that Assumption B.1 implies that incentives for truthful reporting in the period-t
mechanism are completely uncoupled from the incentives in any other period—the initial period
report of λ determines specific menu offered in period t, but does not affect the buyer’s incentives
within that menu. Therefore, the single-deviation constraints (IC-t) are sufficient for “full” incen-
tive compatibility. Standard results then yield the following necessary and sufficient condition for
the proposed allocation rule in Equation (23) to satisfy these single-deviation constraints:

ASSUMPTION B.2. For all t = 1, . . . , T, the allocation rule q∗t that solves the seller’s relaxed problem (Q′)
is (weakly) increasing in v(αt).
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Moreover, note that—since ϕ(αt, λ) ≤ v(αt) for all (αt, λ) ∈ At × Λ—the buyer’s flow utility
in each period (when reporting truthfully) is non-negative. This immediately implies that the
period-t participation constraints (IR-t) are satisfied for all t ≥ 1.

The final remaining piece of the optimal contract is the period-zero payment. However, since
we have p∗t for all t ≥ 1, this payment is easily determined using the integral representation of
U0(λ) from Lemma 5.2. In particular, note that Equation (16) implies that

p0(λ) =
T

∑
t=1

δt
∫

At
(qt(α

t, λ)v(αt)− pt(α
t, λ))dWt(αt|λ)−U0(λ).

Therefore,

p∗0(λ) :=
T

∑
t=1

δt
∫

At

∫ v(αt)

αt
q̂∗t (v

′, λ)dv′ dWt(αt|λ)

+
T

∑
t=1

δt
∫ λ

λ

∫
At

q̄∗t (α
t, µ)

∂G(αt|µ)/∂λ

g(αt|µ)
dWt(αt|µ)dµ.

(25)

It remains to be seen that this contract is, in fact, incentive compatible, as the envelope condi-
tion derived in Lemma 5.2 is, in general, only a necessary condition for the initial-period single-
deviation constraint (IC-0). As in Section 4, the additional assumption that the quantity schedules
are increasing in λ does yield initial-period incentive compatibility.

ASSUMPTION B.3. For all t = 1, . . . , T, the allocation rule that solves the seller’s relaxed problem (Q′)—
q∗t in Equation (23)—is (weakly) increasing in λ.

This assumption is the counterpart to Assumption A, and the following theorem (which we
prove in the appendix) is the counterpart in this more general setting to Theorems 1 and 2.

THEOREM 3. Suppose that Assumptions B.1, B.2, and B.3 are satisfied. Then the contract (q∗, p∗), where
q∗ denotes the quantity schedules from Equation (23) and p∗ denotes the payment rules from Equations (24)
and (25), is an optimal contract that solves the seller’s problem (Q′).

Having established this result, let us explore an important property of the optimal contract.
Define k1(λ) to be the lowest value of α1 that the buyer can report that, given her initial-period
report of λ, leads to a non-negative allocation in period one; formally,

k1(λ) := inf
{

α′1 ∈ A : q∗1(α
′
1, λ) > 0

}
. (26)

The cutoff k1(λ) is decreasing (weakly) since, by Assumption B.3, q∗1 is increasing (weakly) in λ.
Similarly, define kt(αt−1, λ) to be the lowest value of αt that the buyer can report in period t that,

given her previous reports (αt−1, λ), leads to a non-negative allocation in period t; that is, let

kt(α
t−1, λ) := inf

{
α′t ∈ A : q∗t (α

′
t, αt−1, λ) > 0

}
(27)

for all t = 2, . . . , T, where we let kt(αt−1, λ) := ᾱ if the set above is empty. Again, because As-
sumptions B.2 and B.3 imply that q∗t is (weakly) increasing in λ and αs for all s ≤ t, kt is (weakly)
decreasing in each of its arguments.
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As (∂G(ᾱ, λ)/∂λ)/g(ᾱ|λ) = 0 for all λ ∈ Λ, it must be the case that q∗1(ᾱ, λ) = ᾱ > 0 and thus
k1(λ) < ᾱ for all λ. Similarly, this implies that qt(ᾱ, . . . , ᾱ, λ) = ᾱt > 0, and so (by continuity)
kt(ᾱ, . . . , ᾱ, λ) < ᾱ for all λ. Hence, for every possible initial-period report of λ, the set of reports
leading to positive quantities in any period t ≥ 1 is of non-zero measure. However, unlike k1(λ),
it is entirely possible that kt(αt−1, λ) = ᾱ, implying that the buyer is not allocated any amount of
the good, regardless of her period-t report.

One such instance is when αt < kt(αt−1, λ) (or equivalently, whenever q∗t (α
t, λ) = 0). If this is

the case, we must have

ϕ(αt, λ) = v(αt) +
t

∑
s=1

v(αt
−s, αs−1)

∂G(αs, λ)/∂λ

g(αs|λ)
1− F(λ)

f (λ)
≤ 0.

But note that the buyer’s period-(t + 1) virtual value, given αt and λ, is

ϕ(αt+1, αt, λ) = v(αt+1) +
t+1

∑
s=1

v(αt+1
−s , αs−1)

∂G(αs, λ)/∂λ

g(αs|λ)
1− F(λ)

f (λ)
.

We may rewrite this as

ϕ(αt+1, αt, λ) = αt+1

(
v(αt) +

t

∑
s=1

v(αt
−s, αs−1)

∂G(αs, λ)/∂λ

g(αs|λ)
1− F(λ)

f (λ)

)

+ v(αt)
∂G(αt+1|λ)/∂λ

g(αt+1|λ)
1− F(λ)

f (λ)

= αt+1ϕ(αt, λ) + v(αt)
∂G(αt+1|λ)/∂λ

g(αt+1|λ)
1− F(λ)

f (λ)
≤ 0,

where the inequality is guaranteed by the fact that ∂G(α|λ)/∂λ ≤ 0 for all α and λ via first-order
stochastic dominance. Therefore, kt+1(α

t, λ) = ᾱ whenever αt ≤ kt(αt−1, λ). Thus, if the buyer
is excluded in some period t, she continues to be excluded in all future periods, regardless of her
reported shocks—once a buyer has been “cut off,” she is cut off permanently.

In addition, note that the optimal contract involves a form of “tightening the screws,” as the set
of reports that lead to a positive quantity in any period t+ 1 ≤ T is contained in the corresponding
set for period t. To see this, let α∗ := kt(αt−1, λ), and suppose that α∗ > α, so that there are some
period-t reports that lead to the buyer’s exclusion. If the buyer’s period-t shock is α∗ (so she is
“just barely” excluded), while her period-(t + 1) shock is any α > α∗, then

ϕ(α, α∗, αt−1, λ) = αϕ(α∗, αt−1, λ) + α∗v(αt−1)
∂G(α|λ)/∂λ

g(α|λ)
1− F(λ)

f (λ)

= α∗v(αt−1)
∂G(α|λ)/∂λ

g(α|λ)
1− F(λ)

f (λ)
≤ 0,

where the second equality follows from the definition of α∗ as the largest excluded shock in period-
t (so ϕ(α∗, αt−1, λ) = 0). Therefore,

q∗t+1(α, α∗, αt−1, λ) = max
{

α∗v(αt−1)
∂G(α|λ)/∂λ

g(α|λ)
1− F(λ)

f (λ)
, 0
}

= 0,
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implying that
kt+1(kt(α

t−1, λ), αt−1, λ) = ᾱ.

Thus, a buyer who is on the cusp of allocation in period t is excluded in period t + 1, regardless of
her realized shock.

Meanwhile, note that for any αt ∈ At and λ ∈ Λ, the virtual value of a buyer who experiences
the highest possible shock ᾱ is simply the product of this shock with her virtual value from the
previous period; that is,

ϕ(ᾱ, αt, λ) = ᾱϕ(αt, λ) + v(αt)
∂G(ᾱ|λ)/∂λ

g(ᾱ|λ)
1− F(λ)

f (λ)
= ᾱϕ(αt, λ).

This expression is positive if, and only if, αt ≥ kt(αt−1, λ); thus,

kt+1(ᾱ, αt−1, λ) = kt(α
t−1, λ).

Thus, if a buyer receives a positive quantity of the good in period t and then observes the highest
possible shock ᾱ in period t+ 1, she will again be allocated a positive quantity period t+ 1. In fact,
a straightforward continuity argument implies that a buyer allocated a positive quantity in period
t will be allocated a positive quantity in period t + 1 as long as her shock is sufficiently close to ᾱ.

Finally, recall that kt+1(α
t, λ) is decreasing in αt. This property, combined with the two obser-

vations above, implies that, for any αt ≥ kt(αt−1, λ), the set of “admissible” period-(t + 1) reports
[kt+1(α

t, λ), ᾱ] that lead to a positive allocation in period t + 1 is a subset of the corresponding set
of “admissible” period-t reports [kt(αt−1, λ), ᾱ].

This feature of the optimal contract is the continuous analog of the finite honeymoon phases
in the discrete shock single-unit demand setting of Section 4.1. Recall that the optimal contract
in that setting allowed, for each initial-period report λ, a fixed number of “low” d reports before
excluding the buyer from future allocations, implying that the probability of contract termination
by the seller was increasing over time. In the continuous-convex setting considered here, this
effect is captured by the fact that the set of reports that lead to an allocation (or, equivalently, that
prevent permanent exclusion) is shrinking over time. Thus, as in Section 4, the seller progressively
screens the buyer by restricting supply and increasing the probability of permanent exclusion as
the relationship progresses.

6. CONCLUSION

In this paper, we examine a model of long-term contracting in which the buyer is not only pri-
vately informed about her value at every point in time, but also about the process by which her
value evolves. We then solve for the seller’s optimal contract, taking into account the buyer’s in-
centives for participation and for truthful revelation throughout the interaction. As in earlier work
in dynamic mechanism design and sequential screening, we demonstrate that option contracts—
contracts where the seller offers the buyer her choice from a menu of “buy” options—are profit-
maximizing mechanisms. However, by extending the literature to more general time horizons, we
are able to study the dynamic features of these contracts. Thus, the optimal long-term contract in
our more general setting features surprisingly simple menus of options that vary not only by up-
front cost and future strike price, but also by the generosity of quantity provision over the course
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of the contract. In particular, these more generous choices require greater upfront investments by
the buyer while featuring lower strike prices. Moreover, we identify an additional mechanism by
which the seller price discriminates across buyers with differing willingness to pay: over time,
sales are made to fewer and fewer buyers, as the seller progressively screens and excludes lower-
valued buyers and ratchets prices upwards, thereby reducing the rents paid to higher-valued buy-
ers. In the long-run, this leads to inefficiently early termination of the buyer-seller relationship, a
feature that is not readily intuited using the two-period models prevalent in the literature.

Our model and results set the stage for several avenues of further inquiry. For example, there
are a number of settings where the contracting environment or the value of the relationship are
influenced by investments made by the agent. Exploring the dynamics of contracting in such
an environment would advance our understanding of incentive provision beyond the present
work’s focus on adverse selection. Another set of interesting questions arise when considering
the seller’s power to commit: since the optimal contract in our setting is not renegotiation-proof,
our assumption of full commitment power has substantial bite. Understanding the precise role of
commitment would therefore be a natural topic for additional investigation. Finally, competition
among both buyers and sellers in a dynamic environment such as our own is not particularly well-
understood; progress in this direction would greatly advance our knowledge and yield important
insights for market analysis and design. We leave these questions, however, for future research.
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APPENDIX OF OMITTED PROOFS

PROOF OF LEMMA 3.1. Notice that the single-deviation constraint (IC-t) may be rewritten as

Ut(αt, αt−1, λ) ≥ qt(α
′
t, αt−1, λ)v(αt)− pt(α

′
t, αt−1, λ)

+
T

∑
s=t+1

δs−tE
[
qs(α

s
−t, α′t, αt−1, λ)v(αs

−t, αt)− ps(α
s
−t, α′t, αt−1, λ)

∣∣∣αt, λ
]

.

Adding and subtracting the quantity

qt(α
′
t, αt−1, λ)v(α′t, αt−1) +

T

∑
s=t+1

δs−tE
[
qs(α

s
−t, α′t, αt−1, λ)v(αs

−t, α′t, αt−1)
∣∣∣αt, λ

]
from the right-hand side of the inequality yields

Ut(αt, αt−1, λ) ≥ Ut(α
′
t, αt−1, λ) + (αt − α′t)qt(α

′
t, αt−1, λ)v(αt−1)

+ (αt − α′t)
∞

∑
s=t+1

δs−tE
[
qs(α

s
−t, α′t, αt−1, λ)v(αs

−t, αt−1)
∣∣∣αt, λ

]
.

Therefore, for all αt, α′t ∈ A, αt−1 ∈ At−1 and λ ∈ Λ, we have

Ut(αt, αt−1, λ) ≥ Ut(α
′
t, αt−1, λ) + (αt − α′t)q̄t(α

′
t, αt−1, λ).

Letting αt = u and α′t = d, we can write the inequality above as

Ut(u, αt−1, λ) ≥ Ut(d, αt−1, λ) + q̄t(d, αt−1, λ)∆ for all αt−1 ∈ At−1 and λ ∈ Λ,

where ∆ := u− d. In addition, letting αt = d and α′t = u, the inequality above implies that

Ut(d, αt−1, λ) ≥ Ut(u, αt−1, λ)− q̄t(u, αt−1, λ)∆ for all αt−1 ∈ At−1 and λ ∈ Λ.

Notice that rearranging the first of these two inequalities immediately yields condition (IC′-t).
Similarly, adding the two inequalities yields condition (MON-t).

Finally, with conditions (IC′-t) and (MON-t) in hand, (IR-t) is satisfied only if

Ut(d, αt−1, λ) ≥ 0 for all αt−1 ∈ At−1 and λ ∈ Λ;

that is, only if (IR′-t) holds.
Note that the sufficiency of the conditions derived above for the period-t single-deviation and

individual rationality constraints follows immediately via basic arithmetic. �

PROOF OF LEMMA 3.2. Note first that, for all s ≤ T, the definition of Us(αs, λ′) implies that

T

∑
t=s

δtE
[
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

∣∣λ]
= δsE

[
Us(α

s, λ′)
∣∣λ]+ T

∑
t=s+1

δtE
[
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

∣∣λ]
−

T

∑
t=s+1

δtE
[
E
[
qt(α

t
−s, αs, λ′)v(αt

−s, αs)− pt(α
t
−s, αs, λ′)

∣∣αs, λ′
]∣∣λ] .
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Also, note that for all s ≤ T,
T

∑
t=s+1

δtE
[
E
[
qt(α

t
−s, αs, λ′)v(αt

−s, αs)− pt(α
t
−s, αs, λ′)

∣∣αs, λ′
]∣∣λ]

= E

[
T

∑
t=s+1

δtE
[
qt(α

t
−s, αs, λ′)v(αt

−s, αs)− pt(α
t
−s, αs, λ′)

∣∣αs, λ′
]∣∣∣∣∣λ
]

= δs+1E
[
E
[
Us+1(αs+1, αs, λ′)

∣∣αs, λ′
]∣∣λ] ,

where we have made use of the definition of Us+1(α
s, λ′). With this in hand, recall the definition

of Û0(λ′, λ) from Equation (2):

Û0(λ
′, λ) := −p0(λ

′) +
T

∑
t=1

δtE
[
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

∣∣λ] .

We can rewrite this expression as

Û0(λ
′, λ) = −p0(λ

′) + δE
[
U1(α1, λ′)

∣∣λ]+ T

∑
t=2

δtE
[
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

∣∣λ]
−

T

∑
t=2

δtE
[
E
[
qt(α

t
−1, α1, λ′)v(αt

−1, α1)− pt(α
t
−1, α1, λ′)

∣∣α1, λ′
]∣∣λ]

= −p0(λ
′) + δE

[
U1(α1, λ′)

∣∣λ]+ δ2E
[
U2(α

2, λ′)
∣∣λ]− δ2E

[
E
[
U2(α2, α1, λ′)

∣∣α1, λ′
]∣∣λ]

+
T

∑
t=3

δtE
[
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

∣∣λ]
−

T

∑
t=3

δtE
[
E
[
qt(α

t
−2, α2, λ′)v(αt

−2, α2)− pt(α
t
−2, α2, λ′)

∣∣α2, λ′
]∣∣λ]

Proceeding inductively, we may conclude that

Û0(λ
′, λ) = −p0(λ

′) + δE
[
U1(α1, λ′)

∣∣λ]
+

T

∑
t=2

δtE
[
E
[
Ut(αt, αt−1, λ′)

∣∣∣αt−1, λ
]
−E

[
Ut(αt, αt−1, λ′)

∣∣∣αt−1, λ′
]∣∣∣λ]

= −p0(λ
′) + δ

(
λ
(
U1(u, λ′)−U1(d, λ′)

)
+ U1(d, λ′)

)
+ (λ− λ′)

T

∑
t=2

δtE
[
Ut(u, αt−1, λ′)−Ut(d, αt−1, λ′)

∣∣∣λ] .

With this in hand, note that

∂

∂λ
Û0(λ

′, λ) =
T

∑
t=1

δtE
[
Ut(u, αt−1, λ′)−Ut(d, αt−1, λ′)

∣∣∣λ]
+ (λ− λ′)

T

∑
t=2

δt ∂

∂λ

(
E
[
Ut(u, αt−1, λ′)−Ut(d, αt−1, λ′)

∣∣∣λ]) .
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Since condition (IC-0) requires that Û0(λ, λ) = maxλ′{Û0(λ′, λ)} for all λ, the envelope theorem
(see Milgrom and Segal (2002)) implies that

U′0(λ) =
∂

∂λ
Û0(λ

′, λ)

∣∣∣∣
λ′=λ

=
T

∑
t=1

δtE
[
Ut(u, αt−1, λ)−Ut(d, αt−1, λ)

∣∣∣λ] . �

PROOF OF THEOREM 1. Note that we may rewrite Û0(λ′, λ) from Equation (2) as

Û0(λ
′, λ) =

∫ λ′

0

T

∑
t=1

δtE
[
q̄∗t (d, αt−1, µ)∆

∣∣∣µ] dµ−
T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′]
+

T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ] .

Therefore,

Û0(λ, λ)− Û0(λ
′, λ) =

λ∫
λ′

T

∑
t=1

δtE
[
q̄∗t (d, αt−1, µ)∆

∣∣∣µ] dµ−
T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ]
+

T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′] .

Since q∗t (α
t, ·) is non-decreasing for all t and αt (due to Assumption A), so is q̄∗t (d, αt−1, ·). There-

fore,

Û0(λ, λ)− Û0(λ
′, λ) ≥

∫ λ

λ′

T

∑
t=1

δtE
[
q̄∗t (d, αt−1, λ′)∆

∣∣∣µ] dµ

+
T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′]
−

T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ]
=
∫ λ

λ′

T

∑
t=1

t

∑
s=1

δtE
[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ] dµ

+
T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′]
−

T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ] ,

where the equality follows from the identity in Equation (6).
For each t = 1, . . . , T, let mt := kt(λ′), and note that for all µ ∈ Λ, we have

E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣µ] = min{mt,t}

∑
j=0

(
t
j

)
µt−j(1− µ)j

(
ut−jdj − ut−min{mt,t}dmin{mt,t}

)

=

∑t
j=0 (

t
j)µ

t−j(1− µ)j (ut−jdj − dt) if mt ≥ t,

∑mt
j=0 (

t
j)µ

t−j(1− µ)j (ut−jdj − ut−mt dmt
)

if mt < t.
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Therefore, we may write (for each t = 1, . . . , T)

E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′]−E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ]

=


∑t

j=0 (
t
j)
[
µt−j(1− µ)j]λ′

µ=λ
ut−jdj if mt ≥ t,

∑mt−1
j=0 (t

j)
[
µt−j(1− µ)j]λ′

µ=λ
ut−jdj

−∑mt−1
j=0 (t

j)
[
µt−j(1− µ)j]λ′

µ=λ
ut−mdm

if mt < t.

Meanwhile, note that for each t = 1, . . . , T,

t

∑
s=1

E
[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ] = t

∑
s=1

min{mt,t}

∑
j=0

(
t− 1

j

)
µt−1−j(1− µ)jut−1−jdj∆

=
min{mt,t}

∑
j=0

t
(

t− 1
j

)
µt−1−j(1− µ)jut−1−jdj∆,

so we must have
t

∑
s=1

E
[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ]

=

t(µ∆ + d)t−1∆ if mt ≥ t,

∑mt
j=0 t(t−1

j )µt−1−j(1− µ)jut−1−jdj∆ if mt < t.

This implies that, for all t such that mt ≥ t,∫ λ

λ′

t

∑
s=1

E
[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ] dµ =

∫ λ

λ′
t(µ∆ + d)t−1∆ dµ

=
t

∑
j=0

(
t
j

) [
µt−j(1− µ)j

]λ

µ=λ′
ut−jdj.

Meanwhile, for all t such that mt < t, we may write
mt

∑
j=0

t
(

t− 1
j

)
µt−1−j(1− µ)jut−1−jdj∆

=
mt−1

∑
j=0

t
[(

t− 1
j

)
µt−j−1(1− µ)j −

(
t− 1
j− 1

)
µt−j(1− µ)j−1

]
ut−jdj

− t
(

t− 1
mt − 1

)
µt−mt(1− µ)mt−1ut−mt dmt

=
mt−1

∑
j=0

(
t
j

) [
(t− j)µt−j−1(1− µ)j − jµt−j(1− µ)j−1

]
ut−jdj

− t
(

t− 1
mt − 1

)
ut−mt dmt

mt−1

∑
k=0

(
mt − 1

k

)
(−1)kµt−mt+k.
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Thus, for all t with mt < t, we have∫ λ

λ′

t

∑
s=1

E
[
q∗t (α

t
−s, d, αs−1, λ′)v(αt

−s, αs−1)∆
∣∣∣µ] dµ

=

(
t
j

)
ut−jdj

∫ λ

λ′

[
(t− j)µt−j−1(1− µ)j − jµt−j(1− µ)j−1

]
dµ

− t
(

t− 1
mt − 1

)
ut−mt dmt

∫ λ

λ′

mt−1

∑
k=0

(
mt − 1

k

)
(−1)kµt−mt+k

=

(
t
j

) [
µt−j(1− µ)j

]λ

µ=λ′
ut−jdj

−
mt−1

∑
k=0

[
t

t−mt + k + 1

(
t− 1

mt − 1

)(
mt − 1

k

)
(−1)kµt−mt+k+1

]λ

µ=λ′
ut−mt dmt .

Finally, note that

t
t−mt + k + 1

(
t− 1

mt − 1

)(
mt − 1

k

)
(−1)kµt−mt+k+1

=
t−mt + 1

t−mt + k + 1

(
t

mt − 1

)(
mt − 1

k

)
(−1)kµt−mt+k+1

=

(
t

mt − 1− k

)(
t−mt + k

k

)
(−1)kµt−mt+k+1.

Using the binomial identity (n−1
k )(−1)k = ∑k

j=0 (
n
j)(−1)j, we may write

mt−1

∑
k=0

t
t−mt + k + 1

(
t− 1

mt − 1

)(
mt − 1

k

)
(−1)kµt−mt+k+1

=
mt−1

∑
k=0

k

∑
j=0

(
t

j + mt − k− 1

)(
j + mt − k− 1

j

)
(−1)jµt−mt+k+1

=
mt−1

∑
j=0

j

∑
k=0

(
t
j

)(
j
k

)
(−1)kµt−j+k

=
mt−1

∑
j=0

(
t
j

)
µt−j(1− µ)j.

Therefore, for each t = 1, . . . , T, we may conclude that∫ λ

λ′
E
[
q̄∗t (d, αt−1, λ′)∆

∣∣∣µ] dµ

+ E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′]−E
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ] = 0.

Therefore, for all λ, λ′ ∈ Λ, Û0(λ, λ) ≥ Û0(λ′, λ); that is, for each λ ∈ Λ, Û0(λ′, λ) achieves a
global maximum when λ′ = λ, implying that the buyer has no incentive to misreport her private
information in the initial-period. Combined with the observation that the mechanism (q∗, p∗) is
incentive compatible in all t ≥ 1, this implies that this mechanism does, in fact, maximize the
seller’s profits. �
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PROOF OF THEOREM 2. Recall from Equation (2) that we may write Û0(λ′, λ) as

Û0(λ
′, λ) =

∫ λ′

0

T

∑
t=1

δtE
[
q̄∗t (d, αt−1, µ)∆

∣∣∣µ] dµ−
T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′]
+

T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ]
=
∫ λ′

0

T

∑
t=1

δt
t

∑
s=1

E
[
q∗s (α

t
−s, d, αs−1, µ)v(αt

−s, αs−1)∆
∣∣∣µ] dµ

−
T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ′]
+

T

∑
t=1

δtE
[
q∗t (α

t, λ′)(v(αt)− p∗t (α
t, λ′))

∣∣λ] ,

where the equality comes from the identity in Equation (6). Since for all t and all µ ∈ Λ, q∗t (α
t, µ)

only depends on αt through m(αt) = ∑t
s=1 1d(αs), we will abuse notation slightly and write q∗t (k, µ)

to denote the quantity allocated in period t to a buyer who has reported (αt, µ) with m(αt) = k.
Therefore, we can rewrite the expression above as

Û0(λ
′, λ) =

∫ λ′

0

T

∑
t=1

δt
t−1

∑
k=0

t
(

t− 1
k

)
µt−1−k(1− µ)kq∗t (k + 1, µ)∆ut−1−kdk dµ

−
T

∑
t=1

δt
t

∑
k=0

(
t
k

)
(λ′)t−k(1− λ′)k

t

∑
j=k+1

q∗t (j, λ′)∆ut−jdj−1

+
T

∑
t=1

δt
t

∑
k=0

(
t
k

)
λt−k(1− λ)k

t

∑
j=k+1

q∗t (j, λ′)∆ut−jdj−1.

Taking the partial derivative of the expression above with respect to λ′ yields

∂Û0(λ′, λ)

∂λ′

=
T

∑
t=1

δt
t−1

∑
k=0

t
(

t− 1
k

)
(λ′)t−1−k(1− λ′)kq∗t (k + 1, λ′)∆ut−1−kdk

−
T

∑
t=1

δt
t

∑
k=0

(
t
k

)(
(t− k)(λ′)t−k−1(1− λ′)k − k(λ′)t−k(1− λ′)k−1

) t

∑
j=k+1

q∗t (j, λ′)∆ut−jdj−1

+
T

∑
t=1

δt
t

∑
k=0

(
t
k

)(
λt−k(1− λ)k − (λ′)t−k(1− λ′)k

) t

∑
j=k+1

∂q∗t (j, λ′)

∂λ′
∆ut−jdj−1.

Fix an arbitrary t ≥ 1, and note that (ignoring the δt coefficient) the summand in the second line
of the expression above may be rewritten as

t−1

∑
k=0

(
t
k

)(
(t− k)(λ′)t−k−1(1− λ′)k − k(λ′)t−k(1− λ′)k−1

) t

∑
j=k+1

q∗t (j, λ′)∆ut−jdj−1,
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where we have used the fact that the innermost (rightmost) summation equals zero when k = t.
Reversing the order of summation, this quantity becomes

t

∑
j=1

j−1

∑
k=0

(
t
k

)(
(t− k)(λ′)t−k−1(1− λ′)k − k(λ′)t−k(1− λ′)k−1

)
q∗t (j, λ′)∆ut−jdj−1

=
t−1

∑
j=0

q∗t (j + 1, λ′)∆ut−j−1dj
j

∑
k=0

(
t
k

)(
(t− k)(λ′)t−k−1(1− λ′)k − k(λ′)t−k(1− λ′)k−1

)
.

Notice, however, that for any j = 0, 1, . . . , k− 1, we may write

j

∑
k=0

(
t
k

)(
(t− k)(λ′)t−k−1(1− λ′)k − k(λ′)t−k(1− λ′)k−1

)
=

j

∑
k=0

(
t
k

)
(t− k)(λ′)t−k−1(1− λ′)k −

j

∑
k=1

(
t
k

)
k(λ′)t−k(1− λ′)k−1

=
j

∑
k=0

(
t
k

)
(t− k)(λ′)t−k−1(1− λ′)k −

j−1

∑
k=0

(
t

k + 1

)
(k + 1)(λ′)t−k−1(1− λ′)k

=

(
t
j

)
(t− j)(λ′)t−j−1(1− λ′)j +

j−1

∑
k=0

((
t
k

)
(t− k)−

(
t

k + 1

)
(k + 1)

)
(λ′)t−k−1(1− λ′)k

= t
(

t− 1
j

)
(λ′)t−j−1(1− λ′)j,

where the final equality makes use of the fact that(
t
k

)
(t− k)−

(
t

k + 1

)
(k + 1) =

t!(t− j)
(t− j)!j!

− t!(j + 1)
(t− j− 1)!(j + 1)!

= 0.

Therefore, the first and second lines of the expression for ∂Û0(λ′, λ)/∂λ′ sum to zero; that is,

∂Û0(λ′, λ)

∂λ′
=

T

∑
t=1

δt
t

∑
k=0

(
t
k

)(
λt−k(1− λ)k − (λ′)t−k(1− λ′)k

) t

∑
j=k+1

∂q∗t (j, λ′)

∂λ′
∆ut−jdj−1.

=
T

∑
t=1

δt (E[Φt(κt)|λ]−E[Φt(κt)|λ′]
)

,

where Φt(k) := ∑t
j=k+1

∂q∗t (j,λ′)
∂λ′ ∆ut−jdj−1 is a decreasing function of k and κt is a random variable

drawn from a binomial distribution with parameters t and µ ∈ {λ, λ′}. Therefore, the stochastic
ordering of binomial distributions implies that, for all λ ∈ Λ,

∂Û0(λ′, λ)

∂λ′


> 0 if λ′ < λ,

= 0 if λ′ = λ,

< 0 if λ′ > λ.

Thus, holding λ fixed, Û0(λ′, λ) is maximized when λ′ = λ—the buyer has no incentive to misre-
port her initial-period private information. As established in the main text, the mechanism (q∗, p∗)
is incentive compatible in all periods t ≥ 1, and so this mechanism is, indeed, optimal. �
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PROOF OF LEMMA 5.1. Fix any t = 1, . . . , T, and notice that the period-t single-deviation con-
straint (IC-t) may be rewritten as

Ut(αt, αt−1, λ) = max
α′t

{
qt(α

′
t, αt−1, λ)αtv(αt−1)− pt(α

′
t, αt−1, λ)

+
T

∑
s=t+1

δs−t
∫

As−t

(
qs(α

s
−t, α′t, αt−1, λ)v(αs

−t, αt−1)αt − ps(α
s
−t, α′t, αt−1, λ)

)
dW(αs

−t|λ)
}

.

Thus, Ut(αt, ·) is an affine maximizer, and therefore a convex function of αt. Moreover, standard
techniques imply that we can rewrite the expressions above as

Ut(αt, αt−1, λ) ≥ Ut(α
′
t, αt−1, λ) + q̄t(αt, αt−1, λ)(αt − α′t).

Thus, q̄t(αt, ·) is a subderivative of Ut(αt, ·). But since the Ut(αt, ·) is convex, it is absolutely con-
tinuous and, hence, differentiable almost everywhere. Moreover, whenever the partial derivative
exists, it must equal its subderivative. Finally, convexity implies that this partial derivative must
be a nondecreasing function of αt. Thus, the period-t single-deviation constraint (IC-t) implies
conditions (MON-t) and (IC′-t).

In addition, recall that every absolutely continuous function is equal to the definite integral of
its derivative. Therefore, for all αt ∈ At and λ ∈ Λ,

Ut(αt, αt−1, λ) = Ut(α, αt−1, λ) +
∫ αt

α
q̄t(α

′
t, αt−1, λ)dα′t.

But since the quantity schedule qt(·) is non-negative, the integrand above is also non-negative;
therefore, condition (IR-t) is satisfied only if Ut(α, αt−1, λ) ≥ 0.

Note that the sufficiency of the localized conditions derived above for the period-t single-
deviation and participation constraints essentially follows from the Fundamental Theorem of Cal-
culus and monotonicity of the (expected) allocation q̄t. �

PROOF OF LEMMA 5.2. Recall from Equation (17) that Û0(λ′, λ) is defined as

Û0(λ
′, λ) := −p0(λ

′) +
T

∑
t=1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ).

So, note that for any s ≤ T, we may write

T

∑
t=s

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ)

=
T

∑
t=s

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ)

+
T

∑
t=s+1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt−s(αt

−s|λ′)dWs(αs|λ)

−
T

∑
t=s+1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt−s(αt

−s|λ′)dWs(αs|λ).

39



BOLESLAVKSY AND SAID

However, it is straightforward to see that, for all s ≤ T,

δs
∫

As

(
qs(α

s, λ′)v(αs)− ps(α
s, λ′)

)
dWs(αs|λ)

+
T

∑
t=s+1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt−s(αt

−s|λ′)dWs(αs|λ) = δs
∫

As
Us(α

s, λ′)dWs(αs|λ)

and
T

∑
t=s+1

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt−s(αt

−s|λ′)dWs(αs|λ)

= δs+1
∫

As+1
Us+1(αs+1, αs, λ′)dG(αs+1|λ′)dWs(αs|λ).

Therefore, we may write

Û0(λ
′, λ) = −p0(λ

′) + δ
∫

A
U1(α1, λ′)dG(α1|λ)

− δ2
∫

A2
U2(α

2, λ′)dG(α2|λ′)dG(α1|λ)

+
T

∑
t=2

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ).

Substituting in from the expressions above yields

Û0(λ
′, λ) = −p0(λ

′) + δ
∫

A
U1(α1, λ′)dG(α1|λ)− δ2

∫
A2

U2(α2, α2, λ′)dG(α2|λ′)dG(α1|λ)

+ δ2
∫

A2
U2(α2, α1, λ′)dG(α2|λ)dG(α1|λ)− δ3

∫
A3

U3(α
3, λ′)dG(α3|λ′)dW2(α2|λ)

+
T

∑
t=3

δt
∫

At

(
qt(α

t, λ′)v(αt)− pt(α
t, λ′)

)
dWt(αt|λ).

Proceeding inductively in this manner (and making use of the fact that dG(α|µ) = g(α|µ)dα for
all µ ∈ Λ), we may conclude that

Û0(λ
′, λ) = −p0(λ

′) + δ
∫

A
U1(α1, λ′)g(α1|λ)dα1

+
T

∑
t=2

δt
∫

At
Ut(α

t, λ′)(g(αt|λ)− g(αt|λ′))dWt−1(αt−1|λ)dαt.

Furthermore, recall that the constraint (IC-0) requires that U0(λ) = maxλ′{Û0(λ′, λ)} for all
λ ∈ Λ. Therefore, the envelope theorem (see Milgrom and Segal (2002)) implies that

U′0(λ) =
∂

∂λ
Û0(λ

′, λ)

∣∣∣∣
λ′=λ

=
T

∑
t=1

δt
∫

At
Ut(α

t, λ)
∂g(αt|λ)

∂λ
dWt−1(αt−1|λ)dαt

=
T

∑
t=1

δt
∫

At−1

[
Ut(α

t, λ)
∂G(αt|λ)

∂λ

]ᾱ

αt=α

dWt−1(αt−1|λ)

−
T

∑
t=1

δt
∫

At

∂Ut(αt, λ)

∂αt

∂G(αt|λ)
∂λ

dWt−1(αt−1|λ)dαt,
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where the final equality follows from integration by parts. Note, however, that G(α|λ) = 0 for
all λ, and G(ᾱ|λ) = 1 for all λ; therefore, ∂G(α, λ)/∂λ = ∂G(ᾱ, λ)/∂λ = 0. Substituting in the
expression for ∂Ut/∂αt from (IC′-t) then yields

U′0(λ) = −
T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)

∂λ
dWt−1(αt−1|λ)dαt

= −
T

∑
t=1

δt
∫

At
q̄t(α

t, λ)
∂G(αt|λ)/∂λ

g(αt|λ)
dWt(αt|λ).

Finally, note that qt(·) is non-negative for all t, implying that q̄t is also non-negative for all t.
In addition, ∂G(α|λ)/∂λ ≤ 0 for all α ∈ A by first-order stochastic dominance. Therefore, U′0(λ)
is positive and U0 is an increasing function. This implies that we can replace the period-zero
participation constraint (IR-0) with the requirement that U0(λ) ≥ 0. �

PROOF OF THEOREM 3. Making use of the definition of p∗ from Equations (24) and (25), we may
rewrite Û0(λ′, λ) from Equation (17) as

Û0(λ
′, λ) =

T

∑
t=1

δt
∫

At

∫ v(αt)

αt
q̂∗t (v

′, λ′)dv′ dWt(αt|λ)

−
T

∑
t=1

δt
∫

At

∫ v(αt)

αt
q̂∗t (v

′, λ′)dv′ dWt(αt|λ′)

−
T

∑
t=1

δt
∫ λ′

λ

∫
At

q̄∗t (α
t, µ)

∂G(αt|µ)/∂λ

g(αt|µ)
dWt(αt|µ)dµ.

Taking the partial derivative of this expression with respect to λ′ yields

∂Û0(λ′, λ)

∂λ′
=

T

∑
t=1

δt
∫

At

∫ v(αt)

αt

∂q̂∗t (v
′, λ′)

∂λ
dv′ dWt(αt|λ)

−
T

∑
t=1

δt
∫

At

∫ v(αt)

αt

∂q̂∗t (v
′, λ′)

∂λ
dv′ dWt(αt|λ′)

−
T

∑
t=1

δt
∫

At

∫ v(αt)

αt
q̂∗t (v

′, λ′)dv′
(

t

∑
s=1

∂g(αs|λ′)/∂λ

g(αs|λ′)

)
dWt(αt|λ′)

−
T

∑
t=1

δt
∫

At
q̄∗t (α

t, λ′)
∂G(αt|λ′)/∂λ

g(αt|λ′)
dWt(αt|λ′).

Recall from Equation (21), however, that

T

∑
t=1

δt
∫

At
q̄t(α

t, λ′)
∂G(αt|λ′)/∂λ

g(αt|λ′)
dWt(αt|λ′)

=
T

∑
t=1

δt
∫

At
qt(α

t, λ′)
t

∑
s=1

v(αt
−s, αs−1)

∂G(αs|λ′)/∂λ

g(αs|λ′)
dWt(αt|λ′)

=
T

∑
t=1

δt
t

∑
s=1

∫
At−1

∫
A

q̂∗t (αsv(αt
−s, αs−1), λ′)v(αt

−s, αs−1)
∂G(αs|λ′)

∂λ
dαs dWt−1(αt

−s, αs−1|λ′).
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Straightforward integration by parts implies that∫
A

q̂∗t (αsv(αt
−s, αs−1), λ′)v(αt

−s, αs−1)
∂G(αs|λ′)

∂λ
dαs = −

∫
A

∫ αsv(αt
−s,αs−1)

αt
q̂∗t (v

′, λ′)dv′
∂g(αs|λ′)

∂λ
dαs,

and so
T

∑
t=1

δt
∫

At
q̄t(α

t, λ′)
∂G(αt|λ′)/∂λ

g(αt|λ′)
dWt(αt|λ′)

= −
T

∑
t=1

δt
t

∑
s=1

∫
At

∫ v(αt)

αt
q̂∗t (v

′, λ′)dv′
∂g(αs|λ′)/∂λ

g(αs|λ′)
dWt(αt|λ′).

Thus, we may conclude that

∂Û0(λ′, λ)

∂λ′
=

T

∑
t=1

δt
∫

At

∫ v(αt)

αt

∂q̂∗t (v
′, λ′)

∂λ
dv′ d

[
Wt(αt|λ)−Wt(αt|λ′)

]
.

Note, however, that Assumption B.3 implies that, for all t = 1, . . . , T, ∂q̂∗t (v
′, λ′)/∂λ ≥ 0 for all

v′ ∈ [αt, ᾱt] and λ′ ∈ Λ, and therefore ∫ v(αt)

αt

∂q̂∗t (v
′, λ′)

∂λ
dv′

is an increasing functions of αs for all s = 1, . . . , t. The fact that {G(·|λ)}λ∈Λ is ordered by first-
order stochastic dominance then implies that, for all λ ∈ Λ,

∂Û0(λ′, λ)

∂λ′


> 0 if λ′ < λ,

= 0 if λ′ = λ,

< 0 if λ′ > λ.

Thus, holding λ fixed, Û0(λ′, λ) achieves a global maximum when λ′ = λ, implying that period-
zero single-deviation constraint (IC-0) is satisfied.

Finally, note that (as discussed earlier) Assumptions B.1 and B.2 imply that the buyer is always
incentivized to report her private information truthfully in any period t ≥ 1, regardless of her
reports (or misreports) in previous periods. Therefore, the contract (q∗, p∗) not only solves the
seller’s relaxed problem (Q′), but is fully incentive compatible: the buyer prefers truthful reporting
to any potential deviation, regardless how complex. �
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