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Abstract. This paper describes the relative merits and attractiveness of the newest Bayesian
model averaging package, BMS, available in the statistical software R to implement a Bayesian
model averaging exercise. This package provides the user with a wide range of customizable priors for
conducting a BMA analysis, provides ample graphs to visualize results and offers several alternative
model search mechanisms.

1. Introduction

The BMS package, created by Feldkircher & Zeugner (2009), implements linear Bayesian model

averaging with a comprehensive choice of priors, Monte Carlo Markov Chain samplers, and post-

processing functions in the statistical environment R (R Development Core Team 2009). This

package provides a large degree of flexibility in the specification of the underlying features used

to analyze the model and produces a wide range of easily-readable outputs including the posterior

inclusion probabilities, means, and standard deviations, the number of models visited, and the

number of draws from the sample. This package also takes advantage of R’s powerful graphical

interface and creates useful graphs that allow the user to visualize the posterior model size distribu-

tion, posterior model probabilities and cumulative model probabilities as well as providing plotting

facilities for the marginal densities of the posterior coefficients.

The following sections provide an overview of how to install the BMS package and implement a

BMA empirical exercise using this package. We describe the main features under the user’s control

for this package including the set of prior probabilities and model sampling algorithms as well as

the plot diagnostics available to visualize the results. We show how a user can obtain estimates,

posterior inclusion probabilities, and model statistics from this package with a mock empirical

example. We do this both with a set of covariates that allows for full enumeration of the model

space as well as requiring the implementation of a model space search mechanism.

2. Installation and Install Setup

Prior to invocation of the BMS package, R must be installed. R can be downloaded at no charge

from http://www.cran.r-project.org. The R statistical environment runs on all common operating
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systems including Linux, Unix, Windows, and Mac-OS X.1 Once R is installed it is preferable to

install BMS directly within R simply by typing

> install.packages("BMS")

in your R console. Then you will be prompted to choose a CRAN repository and the package

should be installed after a few seconds. The package can then be loaded into the R workspace

by typing library(BMS) at the command prompt.2 For users who prefer to work with MATLAB,

the core functionality of the BMS package can be accessed via the BMS Toolbox for Matlab. This

toolbox provides MATLAB core functions that perform Bayesian model averaging by calling a

hidden instance of R. This functionality requires a Windows operating system (NT, XP, Vista, or

7) and the installation of both MATLAB (Version 6 or higher) and the R statistical environment.3

3. Functionality

The main command within the BMS package is bms() which deploys a standard Bayesian normal-

conjugate linear model. The various options available to the user to control aspects of the Bayesian

model averaging exercise via bms() are summarized in Table 1. Primarily, the options for the

bms() command hinge on sampling from the model space and selection of both model priors and

Zellner’s g priors. These three categories comprise the most important aspects of conducting a

BMA exercise.

3.1. Controlling the BMA Exercise.

3.1.1. Model Sampling. A BMA analysis begins with constructing model weights for each model

within the defined model space. However, since enumerating all potential variable combinations

quickly becomes infeasible for even a modest number of covariates, the BMS package uses a Markov

Chain Monte Carlo (MCMC) samplers to gather results on the most important part of the posterior

distribution when more than 14 covariates exist. The BMS package offers two different MCMC

samplers to probe the model space. These two methods differ in the way they propose candidate

models. The first method is called the birth-death sampler (mcmc=bd). In this case, one of the

potential regressors is randomly chosen; if the chosen variable is already in the current model Mi,

then the candidate model Mj will have the same set of covariates as Mi but drops the chosen

variable. If the chosen covariate is not contained in Mi, then the candidate model will contain all

the variables from Mi plus the chosen covariate; hence the appearance (birth) or disappearance

(death) of the chosen variable depends if it already appears in the model. The second approach

is called the reversible-jump sampler (mcmc=rev.jump). This sampler draws a candidate model

by the birth-death method with 50% probability and with 50% probability the candidate model

1See Cribari-Neto & Zarkos (1999) and Racine & Hyndman (2002) for an overview of R.
2Ample applications, tutorials, empirical examples, and additional documentation can be found at
http://bms.zeugner.eu.
3For more details see http://bms.zeugner.eu/matlab/.
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Table 1. A summary of available bms() options

Option Description Default

mcmc Indicates the model sampler to be used. If bd, a birth/death MCMC
algorithm will be used. If rev.jump, a reversible jump algorithm is used
that adds a swap step to the birth/death algorithm. If enumerate, the
entire model space will be enumerated.

bd

burn The number of burn-in draws for the MCMC sampler. Not taken into
account if mcmc=enumerate

1000

iter Shows the number of iteration draws to be sampled excluding burn-ins. 3000
nmodel The number of best models for which information is stored. 500
g Indicates the hyperparameters on Zellner’s g-prior for the regression

coefficients. If UIP, the number of observations, g = N , is used as g-
prior. If BRIC, g = max(N,K2), where K is the number of covariates,
will be used. If RIC, g = K2 is considered. If HQ, the package sets
g = log(N)3. If EBL, a local empirical Bayes g-parameter will be used.
If hyper, the package takes the hyper-g prior distribution.

N

mprior Indicates the choice of model prior. If fixed, then fixed common prior
inclusion probabilities for each regressor is employed. The random op-
tion employs the random theta prior. If uniform, the uniform model
prior will be utilized. The customk option, allows for cusom model size
priors. Alternatively, the pip option allows for custom prior inclusion
probabilities.

random

start.value Specifies the starting model of the iteration algorithm. NA
g.stats If TRUE, statistics on the shrinkage factor g/(1 + g) will be collected.

Set to FALSE for faster iteration.
TRUE

force.full.ols If TRUE, the OLS estimation part of the sampling algorithm relies on a
slower matrix inversion procedure. Setting this option to TRUE, slows
down sampling but more capably handles highly collinear data.

FALSE

fixed.reg Includes the explanatory variables that the user wants to always have
included in every sampled model.

numeric(0)

mprior.size If mprior=fixed or mprior=random, then mprior.size is a scalar
that denotes the prior expected value of the model size prior. If
mprior=customk, then a custom model size prior can be provided as a
K+1 vector detailing the priors from model size 0 to K. If mprior=pip,
then custom prior inclusion probabilities can be provided as a vector of
size K, with elements in the interval (0, 1).

K/2

user.int If TRUE, the package prints out results to R console after ending the
routine.

TRUE

logfile If TRUE, a logfile named “test.log” will be produced in the current work-
ing directory, in order to keep track of the sampling procedure.

FALSE

logstep Specifies at which number of posterior draws information is written to
the log file.

10000

Notes: This table presents the available options, their default settings, and a a brief description of each option for the

Bayesian model averaging package, BMS, within the statistical software environment R. More details are provided in sections

3.1.1 through 3.1.3.

randomly drops one covariate with respect to Mi and randomly adds one random variable from the

potential covariates that were not included in model Mi.

The precision of any MCMC sampling mechanism depends on the number of draws the procedure

runs through. Given that the MCMC algorithms used in the BMS package may begin using models

which might not necessarily be classified as ‘good’ models, the first set of iterations do not usually
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draw models with high posterior model probabilities (PMP). This indicates that the sampler will

only converge to spheres of models with the largest marginal likelihoods after some initial set of

draws (known as the burn-in) from the candidate space. Therefore, this first set of iterations will be

omitted from the computation of future results. In the BMS package the argument (burn) specifies

the number of burn-ins (models omitted), and the argument (iter) the number of subsequent

iterations to be retained. The default number of burn-in draws for either MCMC sampler is 1000

and the default number of iteration draws to be sampled (excluding burn-ins) is 3000 draws.

3.1.2. Model Priors. The BMS package offers considerable freedom in the choice of model prior.

One can employ the uniform model prior as the choice of prior model size (mprior="uniform"),

the Binomial model priors4 where the prior probability of a model is the product of inclusion and

exclusion probabilities (mprior="fixed"), the Beta-Binomial model prior (mprior="random")

that puts a hyperprior on the inclusion probabilities drawn from a Beta distribution5 or a custom

model size and prior inclusion probabilities (mprior="customk").

3.1.3. Alternative Zellner’s g Priors. Different mechanisms have been proposed in the literature

for specifying g priors. The options in the BMS package are as follows

(1) g="UIP"; Unit Information Prior, that corresponds to g = N , the sample size.6

(2) g="RIC"; Sets g = K2 and conforms to the risk inflation criterion.7

(3) g="BRIC"; A mechanism that asymptotically converges to the unit information prior (g =

N) or the risk inflation criterion (g = K2). That is, the g prior is set to g = max(N,K2).8

(4) g="HQ"; Follows the Hannan-Quinn criterion asymptotically and sets g = log(N3).

(5) g="EBL"; Estimates a local empirical Bayes g-parameter.9

(6) g="hyper"; Takes the “hyper-g” prior distribution.10

3.2. Outputs. In addition to posterior inclusion probabilities (PIP) and posterior means and stan-

dard deviations, bms() returns a list of aggregate statistics including the number of draws, burn-ins,

models visited, the top models, and the size of the model space. It also returns the correlation be-

tween iteration counts and analytical PMPs for the best models, those with the highest PMPs.

3.3. Plot Diagnostics. BMS package users have access to plots of the prior and posterior model

size distributions, a plot of posterior model probabilities based on the corresponding marginal

likelihoods and MCMC frequencies for the best models that visualize how well the sampler has

converged. A grid with signs and inclusion of coefficients vs. posterior model probabilities for the

best models and plots of predictive densities for conditional forecasts are also produced.

4See Sala-i-Martin, Doppelhofer & Miller (2004)
5See Ley & Steel (2009)
6See Fernandez, Ley & Steel (2001)
7See Foster & George (1994) for more details
8See Fernandez et al. (2001)
9See George & Foster (2000) and Liang, Paulo, Molina, Clyde & Berger (2008)
10See Liang et al. (2008) and Feldkircher & Zeugner (2009)
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3.4. Additional Functions. Beyond the baseline bms() command, the BMS package has many

additional controls available to the user. Table 2 lists these alternative options. The first three

functions create nicely formatted matrices containing posterior probabilities, means, standard er-

rors, and R2s for each of the best models in a BMA object. If the BMS package is used for prediction

purposes, then plotting commands listed in this table are useful tools that plot predictive densities

and provide a visualization of PIPs. The package also provides an accessible function that extracts

quantiles from the produced densities.

Table 2. A summary of available functions within the BMS package

Function Description

beta.draws.bma Returns a matrix whose columns are the expected value and standard
deviations of coefficients for the best models in a BMA object.

post.var Returns posterior residual variance, deviance, or pseudo R-squared,
according to the choice of prior distributions.

pmp.bma Returns the posterior model probabilities for the best models computed
by the bms() command.

plot.pred.density Plots predictive densities for conditional forecasts.
plotComp Plots a comparison of PIPs, coefficients or their standard errors between

various BMA objects.
gdensity Calculates the mixture marginal posterior density for the shrinkage

factor g/(1 + g) from a BMA object under the hyper-g prior and plots
the density.

quantile.density Extracts quantiles from density objects.
lps.bma Computes the Log Predictive Score, an indicator for the likelihood of

several forecasts, to evaluate a forecast based on a BMA object.
c.bma Combines BMA objects and can be used to split estimation over sev-

eral machines, or combine the MCMC results obtained from different
starting points.

Notes: This table lists some of the important functions within the BMS package and provides a brief description of each

function.

4. Empirical Illustration

This section shows the results of a basic BMA exercise using the Hedonic dataset available in the

plm package (Croissant & Millo 2008). This dataset contains information aggregated across census

tracts for the metropolitan area that comprised Boston in 1970, originally published in Harrison &

Rubinfeld (1978). This cross-section dataset consists of 506 observations along with 13 potential

determinants of median housing prices in Boston. The dependent variable (MV ) is the corrected

median value of owner-occupied homes in $1000’s, and among the explanatory variables we have are

the per capita crime rate (CRIM), the pupil-teacher ratio by town school district (PTRATIO), the

index of accessibility to radial highways (RAD), the proportion of owner-occupied units built prior

to 1940 (AGE), the proportion of non-retail business acres per town (INDUS), the proportion of

African-Americans per town (B), and a variable reflecting the nitric oxides concentration (NOX).

See Harrison & Rubinfeld (1978, Table IV) for more details.



6 SHAHRAM M. AMINI AND CHRISTOPHER F. PARMETER

The authors use a hedonic housing price model to generate quantitative estimates of the will-

ingness to pay for air quality improvements. We assume there exists uncertainty about which

housing attributes should be a part of the final model. The small number of covariates allows the

bms() command to fully enumerate the model space. To show how to call options for the model

space search we append 12 fictitious variables (generated as independent standard normal random

deviates) which pushes the number of covariates beyond the threshold search level. We present

diagnostic plots to illustrate the flexibility of the calls within the package.

4.1. Enumeration of the Model Space. We first present the results of performing basic Bayesian

model averaging with the original Hedonic dataset, which is small enough to fully enumerate the

model space. First, we load the required packages and set the R options via the following commands:

> set.seed(2011)

> library(plm)

> library(BMS)

> library(xtable)

Next we load the dataset, append the 12 fictitious variables, and manipulate it using the following

commands:

> data(Hedonic, package = "plm")

> Hedonic$chas <- as.numeric(Hedonic$chas)

> Hedonic <- subset(Hedonic, select = -townid)

> noise <- matrix(rnorm(12 * nrow(Hedonic)), ncol = 12)

> colnames(noise) <- paste("noise", 1:12, sep = "")

> Hedonic.large <- cbind(Hedonic, noise)

Now, we perform Bayesian model averaging via the bms() command, and retrieve the main results

via the coef function. The following commands will implement the Bayesian model averaging

analysis over the Hedonic dataset.

> bms_enu <- bms(Hedonic, mcmc = "enumerate", g = "UIP", mprior = "uniform",

+ user.int = FALSE)

> model.enu <- coef(bms_enu)

In this setup, bms() enumerates all 213 = 8, 192 models. The current call uses a uniform dis-

tribution for model priors and unit information priors (UIP) for the distribution of regressions

coefficients.

Table 3 shows the output for model.enu. The first column, named PIP, shows the posterior

inclusion probabilities indicating the probability that each variable belongs to the final model. BMS

sorts these probabilities from the highest to the lowest automatically. The second and third columns

show the posterior means and standard errors of regressors calculated from this package.

Other additional information about the model averaging procedure can be obtained using the

summary function. In our case the output would be
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Table 3. model.enu Estimation Output

PIP Post Mean Post SD
crim 1.000 -0.012 0.001
lstat 1.000 -0.371 0.023

dis 1.000 -0.194 0.027
ptratio 1.000 -0.031 0.005

nox 1.000 -0.006 0.001
rm 1.000 0.006 0.001
rad 0.999 0.095 0.019
tax 0.988 -0.000 0.000

blacks 0.964 0.355 0.122
chas 0.695 0.064 0.050

indus 0.044 0.000 0.001
age 0.044 0.000 0.000
zn 0.043 0.000 0.000

> summary(bms_enu)

Mean no. regressors Draws Burnins Time

"9.7776" "8192" "0" "1.343281 secs"

No. models visited Modelspace 2^K % visited % Topmodels

"8192" "8192" "100" "6.1"

Corr PMP No. Obs. Model Prior g-Prior

"NA" "506" "uniform / 6.5" "UIP"

Shrinkage-Stats

"Av=0.998"

As is apparent, some useful statistics including the number of models visited, the average number

of regressors used, and time performance are produced.

4.2. Model Sampling. In this section we present results obtained when full enumeration is com-

putationally infeasible or undesirable. Using the Hedonic.large dataset, the following commands

will implement the Bayesian model averaging analysis using the birth-death MCMC search algo-

rithm (see section 3.1.1) with 10000 iterations and a burn in of 2000 models.

> bms_sam <- bms(Hedonic.large, burn = 2000, iter = 10000, mcmc = "bd",

+ g = "UIP", mprior = "uniform", nmodel = 2000, user.int = FALSE)

> model.sam <- coef(bms_sam)[1:10, ]

The PIPs for this exercise are shown in the first column of Table 4 after invocation of the

coef function on the bms object. The choices for model priors and the distribution of the model

coefficients are uniform distribution and unit information priors, respectively. The next two columns

show the estimated posterior means and standard deviations of the covariates. Even with the

addition of the 12 fictitious variables the birth-death sampler provides PIPs consistent with the

earlier full enumeration example. Additional statistical information is revealed via the call
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Table 4. model.sam Estimation Output

PIP Post Mean Post SD
crim 1.000 -0.012 0.001
nox 1.000 -0.006 0.001
rm 1.000 0.006 0.001
dis 1.000 -0.194 0.027
rad 1.000 0.096 0.018

ptratio 1.000 -0.031 0.005
lstat 1.000 -0.371 0.023
tax 0.997 -0.000 0.000

blacks 0.979 0.360 0.115
chas 0.667 0.061 0.051

> summary(bms_sam)

Mean no. regressors Draws Burnins Time

"10.5527" "10000" "2000" "1.52063 secs"

No. models visited Modelspace 2^K % visited % Topmodels

"1205" "3.4e+07" "0.0036" "100"

Corr PMP No. Obs. Model Prior g-Prior

"0.9943" "506" "uniform / 12.5" "UIP"

Shrinkage-Stats

"Av=0.998"

Note that the MCMC search algorithm visited less than one half of one percent of the total number

of models in the model space and still provided results consistent with full enumeration over the

model space.

4.3. Plot Diagnostics. The plotting facilities within BMS are an important tool that allows the

user to visualize the shape of the posterior distributions of coefficients, assess the final model size,

compare PIPs and investigate model complexity. The BMS package plots the marginal inclusion

densities as well as images that show inclusion and exclusion of variables within models using

separate colors. This package also provides graphics for both the PMPs and posterior model size

distribution. The following figures are some examples of the available plots corresponding to the

above example where we added 12 fictitious covariates to force the package to engage in searching

over the model space. In order to produce a plot for comparison of prior and posterior distributions

of the model size simply use

> plot(bms_sam[1:200], lty = c(1, 2))

The first argument in the command is the R object where we have saved our estimation results and

the second argument defines the type of line we are going to use for our graphs.

Figure 1 is a combined plot from the BMS package. The upper plot shows the prior and posterior

distribution of model sizes and helps the user illustrate the impact of the model prior assumption
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Figure 1. Posterior model size distribution and model probabilities produced from
the BMS package with “uniform” model priors.

on the estimation results. For example, the upper plot of Figure 1 assumes a uniform distribution

on model priors and if the user wants to examine how far the posterior model size distribution

matches up to the prior, he might consider other popular model priors that allow more freedom in

choosing prior expected model size and other factors. The lower plot of the figure is an indicator

of how well the first 200 best models encountered by BMS have converged. These plots are useful in

determining the search mechanisms ability to find ‘good’ models throughout the model space.

Figure 2 is a visualization of the mixture marginal posterior density for the coefficient for the

Charles River Dummy produced by the BMS package. The bar above the density shows the PIP,

and the dotted vertical lines show the corresponding standard deviation bounds. This figure can

be generated simply via density.bma function within the BMS package

> density.bma(bms_sam, reg = "chas", addons = "esEpl")
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This is an extremely flexible command and provides several options for the user. addons receives

string values specifying which additional information should be added to the plot via low-level

commands. To see more details run help(density.bma) in your R Console.
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Figure 2. Marginal density of the coefficient for the Charles River dummy (chas)
from the BMS package.

5. Conclusions

This paper has outlined the most recently available Bayesian model averaging package (BMS)

in the statistical computing environment R. Our goal was to familiarize users with the different

options that this package has to offer. We highlighted how this package implements a BMA analysis

as well as the options available to the user and the outputs that are returned. To demonstrate the

operation of this package in practice, we presented both a simple empirical example that allowed

full enumeration of the model space as well as requiring engagement of MCMC methods to search

across the model space. In both instances the insights gleaned were virtually identical.
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