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ABSTRACT

This paper investigates the asymptotic size properties of robust subset tests when instruments are left out

of the analysis. Recently, robust subset procedures have been developed for testing hypotheses which are

specified on the subsets of the structural parameters or on the parameters associated with the included exoge-

nous variables. It has been shown that they never over-reject the true parameter values even when nuisance

parameters are not identified. However, their robustness to instrument exclusion has not been investigated.

Instrument exclusion is an important problem in econometrics and there are at least two reasons to be con-

cerned. Firstly, it is difficult in practice to assess whether an instrument has been omitted. For example, some

components of the “identifying” instruments that are excluded from the structural equation may be quite un-

certain or “left out” of the analysis. Secondly, in many instrumental variable (IV) applications, an infinite

number of instruments are available for use in large sample estimation. This is particularly the case with most

time series models. If a given variable, sayXt, is a legitimate instrument, so too are its lagsXt−1, Xt−2, . . .

Hence, instrument exclusion seems highly likely in most practical situations. After formulating a general

asymptotic framework which allows one to study this issue in a convenient way, I consider two main setups:

(1) the missing instruments are (possibly) relevant, and, (2) they are asymptotically weak. In both setups, I

show that all subset procedures studied are in general consistent against instrument inclusion (hence asymp-

totically invalid for the subset hypothesis of interest). I characterize cases where consistency may not hold,

but the asymptotic distribution is modified in a way that would lead to size distortions in large samples. I

propose a “rule of thumb” which allows to practitioners to know whether a missing instrument is detrimental

or not to subset procedures. I present a Monte Carlo experiment confirming that the subset procedures are

unreliable when instruments are missing.

Key words: Robust subset tests; LIML estimator; missing instruments; weak identification; non robust;

consistency; projection-based method.

JEL classification: C12; C13; C30.
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1. Introduction

Subset hypotheses testing is likely to be prevalent in applied work. Many interesting hypotheses

are specified on subsets of the structural parameters or on the parameters associated with the in-

cluded exogenous variables. Several models where subset hypotheses are often specified include

but are not restricted to: (1) forward-looking models, such as the new Keynesian Phillips curve

[Mavroeidis (2004, 2005), Dufour, Khalaf and Kichian (2006), Kleibergen and Mavroeidis (2008)];

(2) stochastic discount factor models, in particular the linear factor model [Kocherlakota (1990),

Hansen, Heaton and Yaron (1996), Kleibergen (2005, 2009)]; and (3) models of unemployment

[Bean (1994), Malcomson and Mavroeidis (2006)].

The literature concerned with subset hypotheses testing falls globally into two categories. The

first is the projection method based on identification-robust statistics [see Dufour (1997), Dufour

and Jasiak (2001), Dufour and Taamouti (2005, 2007)]. This method consists of inverting robust

statistics to build a confidence set for the full set of parameters, and then uses projection techniques

to obtain a confidence set for the subset of parameters of interest. The projection method is robust

to weak instruments and other statistical difficulties, such as instrument exclusion. However, it has

often been criticized for: (1) being overly conservative and (2) having low power when too many

instruments are used. Recently, Chaudhuri and Zivot (2010) have suggested a new projection proce-

dure based on the K-statistic, namely EPK (efficient projection based on the K-statistic) which ex-

hibits more power than the standard projection method. Nevertheless, the robustness of the EPK to

instrument exclusion has not been investigated. The second category is the robust subset procedures

proposed by Stock and Wright (2000) and recently developed by Kleibergen (2004, 2005, 2008),

Startz, Nelson and Zivot (2006). These procedures, commonly called the conventional plug-in based

tests, consist of replacing the nuisance parameters that are not specified by the hypothesis of interest

by estimators. Several studies have shown that the plug-in based tests never over-reject the true

parameter values even when nuisance parameters are not, or weakly, identified [ see Startz et al.

(2006) and Kleibergen (2008, 2009)].

However, the robustness of these tests to instrument exclusion has not been explored. Instrument

exclusion is an important problem in econometrics and there are at least two reasons to be concerned.

Firstly, it is difficult in practice to assess whether an instrument has been omitted. For example, in

model (2.1)-(2.2) , some components of the “identifying” instruments Z that are excluded from the

structural equation (2.1) may be quite uncertain or “left out” of the analysis. Secondly, in many
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instrumental variable (IV) applications, an infinite number of instruments are available for use in

large sample estimation. This is particularly the case with most time series models. If a given

variable, say Xt, is a legitimate instrument, so too are its lags Xt−1, Xt−2, . . . Hence, instrument

exclusion seems highly likely in most practical situations.

Although several authors have worked on proposing optimal instrumental variable estimations

[see Hayashi and Christopher (1983), Hansen (1985), Hansen, Heaton and Masao (1988), West

(2001)] or proposing optimal IV selection [Donald (1999), Donald and Newey (2001), Hall and

Peixe (2003), Dufour and Taamouti (2003)], there are still issues related to inference. For example,

use of the entire set of available instruments can result in large asymptotic efficiency gains relative

to the use of a small set of instruments [see Hansen and Singleton (1991), West and Wilcox (1996)].

More recently, Doko and Dufour (2008) have shown that when identification is deficient or weak

(weak instruments) and endogeneity moderate, the use of additional instruments (even invalid) im-

proves the efficiency of partial IV estimators and pretest-estimators based on Generalized Wald-type

exogeneity tests.

This paper has two main goals. The first is to explore the asymptotic size properties of ro-

bust subset tests when instruments are omitted. The second is to provide a tool which allows to

practitioners to know whether or not a set of instruments omitted is detrimental to subset inference.

Dufour and Taamouti (2007) have investigated the robustness of the Anderson and Rubin (1949,

AR), Kleibergen (2002, K), and Moreira (2003, CLR) tests to instrument exclusion. They found that

the K-and CLR-tests are seriously size distorted when relevant instruments are omitted. However,

the AR-test is typically robust to instrument exclusion. One of the difficulties with Dufour and

Taamouti (2007) is that the null hypothesis is specified on the full set rather than a subset of struc-

tural parameters. It is natural to conjecture that with missing instruments, even the validity of the

AR-test is not guaranteed when testing subset hypotheses. The reason is that all subset procedures

studied here are plug-in based methods that require the available instruments to be valid (uncorre-

lated with the structural errors). However, when some instruments are omitted, they become part of

the residuals (see Section 2) and the exogeneity assumption is generally violated. Hence, it is not

clear how subset tests behave when subject to instrument exclusion.

This paper focuses on the linear IV model and investigates the asymptotic size of robust sub-

set tests when instruments are missing. An extension to the GMM framework is studied in Doko

(2010). Four subset tests are considered in this study: Anderson and Rubin (1949, AR-test), Kleiber-

gen (2005, KLM-test), Moreira (2003, MQLR-test), and the J-statistic (JKLM) that tests the miss-
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specification of the model. After formulating a general asymptotic framework which allows one to

study this issue in a convenient way, I consider two main setups: (1) the missing instruments are

(possibly) relevant, and (2) they are asymptotically weak, i.e. the parameter which controls their

quality in the first step regression that identifies the nuisance parameters, converges to zero at rate

[T−
1
2 ] when the sample size T increases.

In both setups, I show that all subset procedures are in general consistent against instrument

inclusion (hence asymptotically invalid for the subset hypothesis of interest). I characterize cases

where consistency may not hold, but the asymptotic distribution is modified in a way that would

lead to size distortions in large samples. I also provide conditions under which the asymptotic

distribution of the statistics remains the same as in the case where any instrument is omitted (despite

the exclusion of some of them). I present a Monte Carlo experiment which confirms the theoretical

results. I find that when no instrument is missing, all the test procedures studied are valid whether

identification is strong or weak. In particular, they are conservative when identification is deficient

or weak (weak instruments) [similar to Kleibergen (2008, 2009) and Kleibergen and Mavroeidis

(2009)]. However, all tests are seriously size distorted with maximal size distortion as great as 100

percent if instruments are missing, while the projection method remains valid (level is controlled).

Overall, my results underscore the importance of using the projection techniques [see Dufour

(1997), Dufour and Jasiak (2001), Dufour and Taamouti (2005, 2007)] which do not exhibit such a

problem.

The paper is organized as follows. Section 2 formulates the model. Section 3 briefly describes

the robust subset statistics. Section 4 studies the asymptotic distribution of the statistics (under

the null hypothesis) when potential relevant instruments are omitted. Section 5 deals with the case

where the omitted instruments are weak. Section 6 presents the Monte Carlo experiment, and con-

clusions are drawn in Section 7. Proofs are presented in the Appendix.

2. Framework

Consider the following simplified simultaneous equations model:

y = Y1θ1 + Y2θ2 + ε , (2.1)

(Y1 , Y2) = Z(Π ,Γ ) + (V ∗1 , V
∗
2 ) , (2.2)
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where y ∈ RT is a vector of observations on the dependent variable, Y1 ∈ RT×G1 and Y2 ∈ RT×G2

are matrices of explanatory (supposedly) endogenous variables, Z ∈ RT×kz is a matrix of excluded

exogenous variables, ε ∈ RT is a vector of structural disturbances, V ∗1 ∈ RT×G1 and V ∗2 ∈ RT×G2

are matrices of reduced form disturbances. θ1 ∈ RG1×1 and θ2 ∈ RG2×1 are unknown structural

coefficients, Π ∈ Rkz×G1 and Γ ∈ Rkz×G2 are matrices of unknown reduced form of coefficients.

Let θ = (θ′1, θ
′
2)
′, and G = G1 +G2 with G ≥ 1.

We are interested in making inference on the first component θ1, treating the second component

θ2 as a nuisance parameter. More formally, we want to test the hypothesis

H0 : θ1 = θ01 , (2.3)

where θ01 ∈ RG1×1 is fixed.

The projection method proposed by Dufour (1997), Dufour and Jasiak (2001), Dufour and

Taamouti (2005, 2007), and Doko and Dufour (2006), provides a two-step weak instrument ro-

bust procedure for H0. The first step consists of testing the joint hypothesis Hθ0 : θ = θ0. Since the

reduced form for model (2.1)-(2.2) can be written as:

y − Y θ0 = Zπ + ε∗ , (2.4)

where π = Π(θ1 − θ01) + Γ (θ2 − θ02) and ε∗ = ε + V ∗1 (θ1 − θ01) + V ∗2 (θ2 − θ02), Hθ0 can be

assessed by testing Hπ : π = 0 from a F -type statistic in (2.4), namely AR-statistic [see Anderson

and Rubin (1949)]. Hence, a confidence set for the true value θ0 can be obtained by inverting this

statistic. The second step consists of applying projection techniques to obtain a confidence set with

correct coverage probability for θ1, whether identification is deficient or weak (weak instruments).

More interestingly, the confidence set for θ1 obtained by projection is robust to instrument exclu-

sion [see Dufour and Taamouti (2007)]. A common criticism is that the projection method is overly

conservative and has low power when too many instruments are used. Robust subset procedures

have then been suggested to assess subset hypotheses [see Stock and Wright (2000), Kleibergen

(2004, 2005, 2008, 2009), Kleibergen and Mavroeidis (2008, 2009), and Startz et al. (2006)]. How-

ever, not much is known about their behavior when instruments are omitted in model specification.

The main goal of this paper is to investigate the asymptotic size properties of the plug-in based

subset tests when such problems arise.

To better circumscribe the problem, suppose that Y1 and Y2 depend on a second set of instru-
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ments W which are not used within the subset procedures, i.e.:

y = Y1θ1 + Y2θ2 + ε , (2.5)

(Y1 , Y2) = Z(Π ,Γ ) +W (Φ1
w , Φ

2
w) + (V1 , V2) , (2.6)

where W ∈ RT×kw is a matrix of explanatory variables (possibly correlated with u). Note that

W may include any variable that could be viewed as independent of the structural disturbance u

in (2.1), and could be unobservable; Φ1
w ∈ Rkw×G1 and Φ2

w ∈ Rkw×G2 are unknown coefficients

associated with W in each first step regression. The link between (V1 , V2) in (2.6) and (V ∗1 , V
∗
2 )

in (2.2) is:

(V ∗1 , V
∗
2 ) = (V1 , V2) +W (Φ1

w , Φ
2
w) . (2.7)

Under H0, the reduced form for y − Y1θ01 from (2.5)-(2.6) can be written as:

y − Y1θ01 = Zπ∗ +Wφw + V2θ2 + ε = Zπ∗ + V2θ2 + u , (2.8)

where π∗ = Γθ2, φw = Φ2
wθ2, and the errors u are given by:

u = ε+Wφw . (2.9)

In this paper, I examine the size property of robust subset procedures when u is used in the compu-

tation of the statistics instead of the true errors ε.More precisely, what happens to subset procedures

if instruments W are ignored while they are part of the true DGP given by (2.5)-(2.6)?

Let θ̃2 be the limited information maximum likelihood (LIML) estimator of θ2 under H0. From

(2.5)-(2.8), the variable y−Y1θ01−Y2θ̃2 used as the dependent variable in robust subset procedures

satisfies:

y − Y1θ01 − Y2θ̃2 = Zπ̃ + ũ , (2.10)

where ũ = Wφ̃w + ε̃ and

π̃ = Π(θ1 − θ01)− Γ (θ̃2 − θ2), φ̃w = Φ1
w(θ1 − θ01)− Φ2

w(θ̃2 − θ2)

ε̃ = ε+ V1(θ1 − θ01)− V2(θ̃2 − θ2). (2.11)
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The robust subset procedures consider that the errors ũ in (2.10) are asymptotically uncorrelated

with Z. However, we can see from (2.10)-(2.11) that this is true only if Z and W are uncorrelated

or θ̃2 is consistent to θ2. Furthermore, even if θ1 = θ01, H0 cannot be assessed from (2.10) via

H∗π : π̃ = 0 even asymptotically. Indeed, suppose that we have θ̃2 − θ2
p→ ∆ under H0, thus,

π̃
p→ π = Γ∆ and φ̃w

p→ φ∗w = Φ2
w∆. If ∆ 6= 0, it is clear that H0 does not entail HAs

π : π = 0

unless Γ∆ = 0. This suggests that the omission of the instruments W may have negative impact in

term of size control.

I now make the following generic assumptions on the asymptotic behavior of model variables

[where X > 0 for a matrix X means that X is positive definite (p.d.), and → refers to limits as

T →∞]:

1

T
(ε : V1 : V2)

′ (ε : V1 : V2)
p→ Σ > 0, (2.12)

Σ =


σεε σε1 σε2

σ1ε Σ11 Σ12

σ2ε Σ21 Σ22

 , (2.13)

where σεε : 1×1, σε1 = σ′ε1 : 1×G1, σε2 = σ′ε2 : 1×G2, Σ11 : G1×G1, Σ12 = Σ′12 : G1×G2,

Σ22 : G2 ×G2.

1

T
(Z , W )′ (Z , W )

p→ ΩZW =

 ΣZ ΣZW

Σ′ZW ΣW

 , (2.14)

1

T
(Z , W )′ (ε, V1, V2)

p→

 0 0 0

δwε ΣW1 ΣW2

 , (2.15)

where ΣZ : kz × kz, ΣZW : kz × kw, ΣW : kw × kw, ΣW1 : kw ×G1, ΣW2 : kw ×G2 and

δwε : kw × 1.

1√
T
Z ′ (ε, V1, V2)

d→ (Szε, Sz,1, Sz,2) , (2.16)

where

vec (Szε, Sz,1, Sz,2) ∼ N[0, Σ ⊗ΣZ ] (2.17)
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with Szε : kz×1, Sz,1 : kz×G1, Sz,2 : kz×G2, Szε ∼ N[0, σεεΣZ ], vec(Sz,1) ∼ N[0, Σ11⊗

ΣZ ] and vec(Sz,2) ∼ N[0, Σ22 ⊗ΣZ ].

Note that ΣW may be singular, i.e. the columns of W may be redundant or asymptotically

dependent. In addition, Z and W may be asymptotically correlated so that ΣZW 6= 0. Furthermore,

we allow a dependence between W (the missing instruments) and ε, i.e. δWε 6= 0. Clearly, the

above framework is quite general and allows W to include potential endogenous regressors. An im-

portant question that is often addressed is the validity of the set of available instruments. However,

Doko and Dufour (2008) have shown that when identification is deficient or weak, and endogene-

ity moderate, using invalid instruments may result in an asymptotic efficiency gain relative to not

including them in the set of available instruments. Strictly speaking, there is no reason to assume

δWε = 0.

Now, from (2.12)-(2.17), we have:

plim
T→∞

(
Z ′Y2
T

)
= ΣZY2 = ΣZΓ +ΣZWΦ

2
w, plim

T→∞

(
Z ′W

T

)
= ΣZW , (2.18)

plim
T→∞

(
Y ′2Y2
T

)
= ΣY2 , plim

T→∞

(
Y ′2(IT − k̃M)Y2

T

)
= Σ̃Y2 , (2.19)

plim
T→∞

(
Y ′2(IT − k̃M)W

T

)
= ∆ZW . (2.20)

I will assume that

rank(Σ̃Y2) = G2 . (2.21)

Assumption (2.21) replaces the usual high-level assumption of identification of θ2. However, the

results obtained can easily be extended to weak and complete non identification of θ2. Of course, in

these later two cases the concentrated LIML estimator of θ2 under H0 : θ1 = θ01, say θ̃2 = θ̃2(θ01),

converges to a non degenerate random variable [see Staiger and Stock (1997, Theorem 1) in the

context of k-class estimators]. Strictly speaking, this assumption facilitates the exposition of the

results but can be relaxed without changing their meaning. Following Startz et al. (2006), the LILM

estimator θ̃2 of θ2 computed from model (2.1)-(2.2) is given by:

θ̃2 = [Y ′2(IT − k̃MZ)Y2]
−1Y ′2(IT − k̃MZ)(y − Y1θ01), (2.22)
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where k̃ = k̃LILM is obtained by minimizing

k(θ01, θ2) =
(y − Y1θ01 − Y2θ2)′(y − Y1θ01 − Y2θ2)

(y − Y1θ01 − Y2θ2)′MZ(y − Y1θ01 − Y2θ2)
(2.23)

with respect to θ2 and k̃ = argminθ2 [k(θ01, θ2)]. Stock and Wright (2000) have shown that if

rank(Γ ) = G2 (i.e. the hight-level assumption for identification of θ2 holds), plim
T→∞

(k̃) = 1 and θ̃2

is consistent to θ2 , i.e.:

plim
T→∞

θ̃2 = θ2. (2.24)

Of course, (2.24) holds under no instrument exclusion in (2.1)-(2.2). Consistency may not hold if

some instruments are left out of the analysis.

Now, define:

DY = Y2[Y
′
2(IT − k̃MZ)Y2]

−1Y ′2(IT − k̃MZ)

≡ [dtj ]1≤ t,j≤T , (2.25)

Σ̃ZW = plim
T→∞

(
Z ′(IT −DY )W

T

)
|k∗=1

= [Ikz ,kw −ΣZY2(Σ′ZY2Σ
−1
Z ΣZY2)−1ΣZY2Σ

−1
Z ]ΣZW , (2.26)

where ΣZY2 = plim
T→∞

(
Z′Y2
T

)
and dtj is the (t, j)-th element of DY . Let ε̃t =

∑T
j=1 d̃tjεt, where

d̃tj =


−dtj if j 6= t

1− dtj if j = t.

(2.27)

I assume that the following distributional limit holds jointly:

 1√
T

∑T
t=1

[
Z ′tε̃t − plim

T→∞

(
Z′ε̃
T

)]
1√
T

[
Z ′(IT −DY )W − Σ̃ZW

]
φw

 d→ S ≡

 Sd

Sφw

 , (2.28)

where S ∼ N[0, ΣS ], Sd ∼ N[0, Σd] and Sφw ∼ N[0, Σφw ]. Note that from the above nota-

tions, we can write Z ′(IT − DY )ε =
∑T

t=1 Z
′
tε̃t. It is also worthwhile noting that the normality

assumption can be relaxed. In particular, S , Sd and Sφw could have any distribution. Furthermore,
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Sd and Sφw may also be correlated. That should be the when W and ε are correlated.

Before characterizing the asymptotic behavior of θ̃2, I first present the subset statistics studied

here.

3. Test statistics

This section introduces the four robust subset statistics which are studied.

(a) The AR subset statistic to test H0 : θ1 = θ01 reads

AR(θ01) =
1

kzσεε(θ01)
(y − Y1θ01 − Y2θ̃2)′PZ(y − Y1θ01 − Y2θ̃2), (3.1)

where σεε(θ01) = 1
T−kz (y − Y1θ01 − Y2θ̃2)′MZ(y − Y1θ01 − Y2θ̃2).

(b) Kleibergen’s (2002) Lagrange multiplier (KLM) statistic to test H0 : θ1 = θ01 reads

[see Kleibergen (2004)],

KLM(θ01) =
1

σεε(θ01)
(y − Y1θ01 − Y2θ̃2)′PZ(Π̃(θ01) : Γ̃ (θ01))

(y − Y1θ01 − Y2θ̃2), (3.2)

where

Π̃(θ01) = (Z ′Z)−1Z ′[Y1 − (y − Y1θ01 − Y2θ̃2)
σεY1(θ01)

σεε(θ01)
], (3.3)

Γ̃ (θ01) = (Z ′Z)−1Z ′[Y2 − (y − Y1θ01 − Y2θ̃2)
σεY2(θ01)

σεε(θ01)
], (3.4)

and σεYi(θ01) = 1
T−kz (y − Y1θ01 − Y2θ̃2)′MZYi, i = 1, 2.

(c) A J-statistic that tests miss-specification under H0, HM : E[Z ′(y − Y1θ01 − Y2θ̃2)] = 0, reads,

JKLM(θ01) = AR(θ01)− KLM(θ01). (3.5)
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(d) And a subset extension of the conditional likelihood ratio statistic to test H0 : θ1 = θ01 reads

[see Moreira (2003)]:

MQLR(θ01) =
1

2
(AR(θ01)− τm(θ01)) +

1

2

√
[AR(θ01) + τm(θ01)]2 − 4[AR(θ01)− KLM(θ01)]τm(θ01)], (3.6)

where τm(θ01) is the smallest eigenvalue of

Σ̂MQLR(θ01) = [T(θ01)]
′[T(θ01)], (3.7)

T(θ01) = (Z ′Z)
1
2 [Π̃(θ01)

... Γ̃ (θ01)]Σ̂
− 1

2

(Y1 :Y2)(Y1 :Y2).ε
, (3.8)

Σ̂
− 1

2

(Y1 :Y2)(Y1 :Y2).ε
=

 Σ̂
− 1

2

Y1Y1.(ε :Y2)
0

−Σ̂−1Y2Y2.εΣ̂Y2Y1.εΣ̂
− 1

2

Y1Y1.(ε :Y2)
Σ̂
− 1

2
Y2Y2.ε

 , (3.9)

Σ̂Y1Y1.(ε :Y2) =
1

T − k
Y ′1M(Z :Y2 : ε̂)Y1, Σ̂Y2Y1.ε =

1

T − k
Y ′2M(Z : ε̂)Y1,

Σ̂Y2Y2.ε =
1

T − k
Y ′2M(Z : ε̂)Y2, ε̂ = y − Y1θ01 − Y2θ̃2. (3.10)

If rank(Γ ) = G2, and no instrument is omitted, the null (conditional) limiting distribution of the

above statistics are standard chi-squares [see Kleibergen (2008, Theorem 1)]. Furthermore, Kleiber-

gen and Mavroeidis (2009) extend their validity to a weak identification setup. More precisely, the

authors show that the null limiting distribution of the test statistics when rank(Γ ) = G2, provides

an upper bound for their limiting distribution when the nuisance parameter is not identified. So, all

subset procedures are typically identification-robust if no instrument is omitted, but may not be if

instruments are missing.

Let

σ̃2ε = (1− k∗)(Φ2′
wδwε + σ2ε), ∆θ2(k∗, φw) = Σ̃−1Y2 (σ̃2ε +∆ZWφw), (3.11)

σ̃εε = σεε + 2φ′wδwε + φ′wΣWφw +∆θ2(k∗, φw)′ΣY2∆θ2(k∗, φw)

−2[σ′2ε + φ′w(Σ′ZWΓ +ΣWΦ
2
w +ΣW2)]∆θ2(k∗, φw), (3.12)

σ̃ε, w = [ΣZWφw −ΣZY2∆θ2(k∗, φw)]′Σ−1Z [ΣZWφw −ΣZY2∆θ2(k∗, φw)], (3.13)

σ∗εε = σεε + 2φ′wδwε + φ′wΣWφw +∆θ2(1, φw)′ΣY2∆θ2(1, φw)
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−2[σ′2ε + φ′w(Σ′ZWΓ +ΣWΦ
2
w +ΣW2)]∆θ2(1, φw), (3.14)

k∗ =
σ̃εε

σ̃εε − σ̃ε, w
= 1 +

σ̃ε, w
σ̃εε − σ̃ε, w

. (3.15)

where σ̃εε − σ̃ε, w ≥ 0, i.e. k∗ ≥ 1. Lets also define

Γφw = Γ +Σ−1Z ΣZWΦ
2
0w −Σ−1Z (ΣZWφw −ΣZY2∆θ2(k∗, φw))

σ̄ε2
σ̄εε

, (3.16)

Θφw = Πφw − Γφw(Γ ′φwΣZΓφw)−1Γ ′φwΣZΠφw , (3.17)

Πφw = Π0 +Σ−1Z ΣZWΦ
2
0w −Σ−1Z (ΣZWφw −ΣZY2∆θ2(k∗, φw))

σ̄ε1
σ̄εε

, (3.18)

Θ∗b = Π∗φw − Γφw(Γ ′φwΣZΓφw)−1Γ ′φwΣZΠ
∗
φw
, (3.19)

Π∗φw = Σ−1Z (ΣZWφw −ΣZY2∆θ2(k∗, φw))
σ̄ε1
σ̄εε

, (3.20)

where σ̄εi, i = 1, 2 are given by

σ̄εi = (σ′iε + φ′wΣWYi)(IG2 − Σ̃−1Y2 ΣY2Yi)− (ΣZWφw −ΣZY2∆θ2(k∗, φw))′Σ−1Z ΣZYi .

And finally, let

Π∗φw = Σ−1Z (ΣZWφw −ΣZY2∆θ2(k∗, φw))
σ̄ε1
σ̄εε

, (3.21)

Θ∗φw = Π∗φw − Γφw(Γ ′φwΣZΓφw)−1Γ ′φwΣZΠ
∗
φw
, (3.22)

ψφw = Π0 +Σ−1Z ΣZWΦ
2
0w +Σ−1Z Sz,1 −Σ−1Z (Sd + Sφw)

σ̄ε1
σ̄εε

, (3.23)

Γ 0
φw

= Γ +Σ−1Z ΣZWΦ
2
w, Λφw = ψφw − Γ

0
φw

(Γ 0′
φw
ΣZΓ

0
φw

)−1Γ 0′
φw
ΣZψφw . (3.24)

Lemma 3.1 characterizes the asymptotic behavior of the concentrated LIML estimator θ̃2 of θ2.

Lemma 3.1 ASYMPTOTIC BEHAVIOR OF θ̃2 WITH MISSING INSTRUMENTS. Suppose the as-

sumptions (2.12) - (2.17) and (2.21) hold, and let θ1 = θ01. If model (2.1) - (2.2) is used in the

computation of θ̃2 instead of the true model (2.5) - (2.6), we have

plim
T→∞

( θ̃2 − θ2) = ∆θ2(k∗, φw), (3.25)

where ∆θ2(k∗, φw) is defined by (3.11).

(i) We observe that the above lemma requires rank(Σ̃Y2) = G2, which is the high-level as-

sumption of identification of θ2. However, the result extends to a weak identification setup from
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similar assumptions, as in Staiger and Stock (1997, Theorem 1). In which case ∆θ2(k∗, φw) is a

non degenerate random variable rather than a fixed vector.

(ii) We note that ∆θ2(k∗, φw) is not necessarily equal to zero even if k∗ = 1. Hence, k∗ = 1 is

neither a necessary nor sufficient condition for consistency when instruments are missing.

(iii) We can decompose ∆θ2(k∗, φw) as:

∆θ2(k∗, φw) = (1− k∗)Σ̃−1Y2 σ2ε︸ ︷︷ ︸
bias if any missing instruments

+ Σ̃−1Y2 [(1− k∗)Φ2′
wδwε +∆ZWφw]︸ ︷︷ ︸

bias due to missing instruments

. (3.26)

If any instrument is missing, the second term in (3.26) vanishes and the asymptotic bias of θ̃2

reduces to the first term. Since when no instrument is omitted we have k∗ = 1, the first term

also disappears so that ∆θ2(1, φw) = 0. Hence, θ̃2 is consistent to θ2 as expected. However, if

instruments are missing, both terms may not vanish and ∆θ2(k∗, φw) may not be zero except when

the sum is zero. Which means that θ̃2 is generally inconsistent with missing instruments. So, it is

natural to conjecture that this inconsistency affects the asymptotic distributions of subset tests, as

shown in Sections 4-5.

Now, let V(v) be the affine hyperplane given by:

V(v) =
{
v ∈ Rkw : Bwv − bw = 0

}
, (3.27)

where Bw = ΣZW−ΣZY2Σ̃−1Y2 ∆ZW is a kz×kw matrix and bw = (1−k∗)ΣZY2Σ̃−1Y2 (σ2ε+Φ
2′
wδwε)

is a kz×1 vector. We observe that if φw ∈ V(v),we have σ̃ε, w = ΣZWφw−ΣZY2∆θ2(k∗, φw) = 0

and k∗ = 1. Let B−w be any generalized inverse of Bw. We then have

v1 ∈ V(v)⇔ v1 = B−wbw + (Ikw −B−wBw)v0 , (3.28)

where v0 is any arbitrary vector in Rkw .

To give an intuitive regression interpretation of V(v), assume that k̃ = 1, and define Ỹ2 = PZY2.

Then, we have

Z ′(IT −DY )W = Z ′(W − PỸ2W ) = Z ′ûW , (3.29)

where ûW are the residuals from the regression of W on Ỹ2 and PỸ2 = Ỹ2(Ỹ
′
2 Ỹ2)

−1Ỹ ′2 . So, under

12



the assumptions of Lemma 3.1, if further k∗ = 1, then we have:

plim
T→∞

(
Z ′ûW
T

)
= plim

T→∞

(
Z ′(IT −DY )W

T

)
= Bwφw . (3.30)

Hence, since bw = 0 when k∗ = 1, we have φw ∈ V(v) ⇔ plim
T→∞

(
Z′ûW
T

)
= 0, i.e. Z is

asymptotically uncorrelated with the residuals ûW . Clearly, V(v) characterizes the set of parameters

in which Z is asymptotically uncorrelated with the residuals ûW .We will see in the next section that

(3.30) provides a necessary condition for subset procedures to be valid (in terms of size control).

Moreover, even if k∗ = 1, we may have Bwφw − bw 6= 0. Hence, k∗ = 1 is not a sufficient

condition for the subset tests to be valid.

To study the effect of instrument exclusion on subset statistics, I distinguish two setups, related

to the strength of the missing instruments W : (I) Φ2
w = Φ2

0w is fixed and (II) Φ2
w = Φ2

0w/
√
T .

Setup (I) describes the case where the missing instruments are (possibly) relevant. For example,

W is strong if rank(Φ2
0w) = G2 and weak if 0 ≤ rank(Φ2

0w) < G2. In the latter case, some

linear combination of the columns of W are strong. Setup (II) represents asymptotically weak

missing instruments. It is assumed here that all the columns of W are asymptotically weak [similar

to Staiger and Stock (1997)]. Of course, an extension of (II) that is more relevant for practical

purposes arises when at least one component of W is strong. However, the meaning of the results

will not change from such an extension. Section 4 presents the asymptotic distributions of subset

statistics when Φ2
w is fixed.

4. Asymptotic behavior with possibly relevant missing instruments

In this section, I characterize the limiting distributions of robust subset statistics when potential

relevant instruments are left out of the analysis. Theorem 4.1 characterizes the limiting distributions

of the subset AR statistic.

Theorem 4.1 DISTRIBUTION OF SUBSET AR STATISTIC WITH MISSING IV. Suppose the as-

sumptions (2.13) - (2.17) and (2.28) hold. Assume that model (2.1) - (2.2) is used in the compu-

tation of the statistics instead of the true model (2.5) - (2.6). Assume furthermore that (2.21) is

satisfied. Let Φ2
w = Φ2

0w and θ1 = θ01, where Φ2
0w ∈ Rkw×G2 and θ01 ∈ RG1 are fixed. If

13



φw /∈ V(v) :

AR(θ01)
d→ +∞. (4.1)

If φw ∈ V(v) :

AR(θ01)
d→ ξ1d,φw =

1

kzσ∗εε
(Sd + Sφw)′Σ−1Z (Sd + Sφw), (4.2)

where Sd and Sφw are defined in (2.28).

First, the results of Theorem 4.1 holds irrespective of whether θ1 is identified or not, i.e. Π

and Φ1
w may have fixed, zero or weak (local to zero) values. Second, we note clearly that when

instruments are missing, subset AR-test may be seriously size distorted in large samples. Indeed,

if φw /∈ V(v), AR(θ01) diverges. Hence, the maximal asymptotic size distortion of this statistic

is as high as 100 % when we use standard chi-square critical values. Furthermore, asymptotic

size correction is infeasible since the limiting distributions of the statistics diverge. However, if

φw ∈ V(v), the asymptotic distribution of the AR-statistic is finite but is modified in a way that may

lead to size distortions in large samples. Corollary 4.2 characterizes the necessary and sufficient

condition under which subset AR-test is valid (level is controlled).

Corollary 4.2 VALIDITY OF SUBSET AR-TEST. Suppose the assumptions of Theorem 4.1 hold.

A necessary and sufficient condition for the subset AR test to be valid is:

plim
T→∞

(
Z ′ûW
T

)
= 0 and φw = 0, (4.3)

where ûW is defined in (3.29). More precisely, if (4.3) is satisfied, we have:

AR(θ01)
d→ 1

kz
χ2(kz −G2). (4.4)

The above corollary indicates that the validity of the subset AR-test requires the set of instru-

ments Z that is used the inference to be asymptotically uncorrelated with the residuals which result

from the regression of the missing instruments W on the fitted value Ỹ2 = PZY2 in the first step

regression. If W is known, this condition can be used as a rule of thumb to check whether the AR

subset test is valid or not. Unfortunately, the missing instruments could be unobservable, leaving
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this rule of thumb infeasible. It is important to observe that neither plim
T→∞

(
Z′ûW
T

)
= 0 nor φw = 0

provide the sufficient condition for the validity of the test. The condition φw = 0 is sufficient only

when W is uncorrelated with ε, i.e. W is exogenous. In this case, we have ∆θ2(k∗, 0) = 0 and the

AR-test is valid.

I now focus on the subset KLM, JKLM and MQLR statistics. In what follows, the notation

MQLR(θ01)
d→ X reads MQLR(θ01)|τm(θ01)

d→ X, for any random variable X . Theorem 4.3

present the results.

Theorem 4.3 DISTRIBUTIONS OF KLM, JKLM AND MQLR SUBSET STATISTICS WITH MISS-

ING IV. Suppose the assumptions (2.13) - (2.17) and (2.28) hold. Assume that model (2.1) - (2.2)

is used in the computation of the statistics instead of the true model (2.5) - (2.6). Assume further-

more that Φ2
w = Φ2

0w and θ1 = θ01, where Φ2
0w ∈ Rkw×G2 and θ01 ∈ RG1 are fixed. If φw /∈ V(v),

then:

KLM(θ01)
d→ +∞, JKLM(θ01)

d→ +∞, MQLR(θ01)
d→ +∞ (4.5)

when at least one of the following conditions holds: (A) Π = Π0, Φ
1
w = Φ10

w , with rank(Γφw) =

G2 and rank(Θφw) = G1 or (B) Π = Π0/
√
T , Φ1

w = Φ10
w /
√
T , with rank(Γφw) = G2 and

rank(Θ∗φw) = G1. If φw ∈ V(v), then:

KLM(θ01)
d→ ζ2d,φw , JKLM(θ01)

d→ kzξ
1
d,φw
− ζ2d,φw , (4.6)

MQLR(θ01)
d→ 1

2
[kzξ

1
d,φw
− τm(θ01)] +

1

2

[√
(kzξ

1
d,φw

+ τm(θ01))2 − 4(kzξ
1
d,φw
− ζ2d,φw)τm(θ01)

]
, (4.7)

where

ζ2d,φw = ξ2d,φw =
1

σ∗εε
(Sd + Sφw)′PΘφw (Sd + Sφw), (4.8)

kzξ
1
d,φw
− ζ2d,φw =

1

σ∗εε
(Sd + Sφw)′MΘφw

(Sd + Sφw), (4.9)
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when (A) Π = Π0, Φ
1
w = Φ10

w with rank(Γφw) = G2 and rank(Θφw) = G1 and:

ζ2d,φw = ξ∗
2

d,φw
=

1

σ∗εε
(Sd + Sφw)′PΛφw (Sd + Sφw), (4.10)

kzξ
1
d,φw
− ζ∗2d,φw =

1

σ∗εε
(Sd + Sφw)′MΛφw

(Sd + Sφw), (4.11)

when (B) Π = Π0/
√
T , Φ1

w = Φ10
w /
√
T , with rank(Γ 0

φw
) = G2, ξ

1
d,φw

is defined in Theorem 4.1.

The above theorem is similar to Theorem 4.1. When φw /∈ V(v), the subset KLM, JKLM and

MQLR procedures are seriously size distorted in large samples, hence invalid for the hypothesis of

interest. Even when φw ∈ V(v), the asymptotic distribution of the statistics can be modified in a

way that could lead to size distortions. Unlike Theorem 4.1, the results of Theorem 4.3 additionally

require the full rank assumption of the matrices Γφw , Θφw , and Γ 0
φw
. An extension to cases where

these assumptions break down is more complex and not covered by this paper.

Corollary 4.4 characterizes the case where the subset KLM, JKLM and MQLR procedures are

valid.

Corollary 4.4 VALIDITY OF SUBSET KLM, JKLM AND MQLR TESTS. Suppose the assump-

tions of Theorem 4.3 hold. A necessary and sufficient condition for the subset KLM, JKLM and

MQLR tests to be valid, is:

plim
T→∞

(
Z ′ûW
T

)
= 0 and φw = 0, (4.12)

where ûW is defined in (3.29). More precisely, if this condition is satisfied, we have

KLM(θ01)
d→ ξ1d ∼ χ2(G1), JKLM(θ01)

d→ ξ2d ∼ χ2(kz −G) , (4.13)

MQLR(θ01)
d→ 1

2
[kzξ

1
d − τm(θ01)] +

1

2

[√
(kzξ

1
d + τm(θ01))2 − 4(kzξ

1
d − ξ2d)τm(θ01)

]
(4.14)

where ξ1d and ξ2d are independent distributed random variables.

The proof of the above corollary is similar to Corollary 4.2 and is omitted. The following section

focuses on the setup where the missing instruments are asymptotically weak.
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5. Behavior with asymptotically weak missing instruments

In this section, I consider the missing asymptotically weak instruments setup. I characterize the

asymptotically weak instruments setup by the assumption:

Φ2
w = Φ2

0w/
√
T , (5.1)

where Φ2
0w : kw × G2 is a fixed matrix. Assumption (5.1) is similar to the weak instrument

asymptotic of Staiger and Stock (1997). Theorem 5.1 characterizes the limiting distributions of the

subset AR statistic.

Theorem 5.1 DISTRIBUTION OF SUBSET AR STATISTIC WHEN THE MISSING IVS ARE ASYMP-

TOTICALLY WEAK. Suppose the assumptions (2.13) - (2.17), (2.28) and (2.28) hold. Assume that

model (2.1) - (2.2) is used in the computation of the statistics instead of the true model (2.5) - (2.6).

Let Φ2
w = Φ2

0w/
√
T and H0 : θ1 = θ01, where Φ2

0w is a kw ×G2 fixed matrix. If k∗ 6= 1, then:

AR(θ01)
d→ +∞. (5.2)

If k∗ = 1, then

AR(θ01)
d→ ξ1d,0 =

1

kzσεε
(Sd + µφw)′Σ−1Z (Sd + µφw), (5.3)

where µφw = Σ̃ZWφ
0
w, Σ̃ZW is given by (2.26) and Sd is defined in (2.28).

We note from the above theorem that the subset AR procedure may be invalid even if the omitted

instruments are weak. In particular, if k∗ 6= 0, AR(θ01)
d→ +∞ and the size distortions of the

AR-test are as great as 100 %. Even when k∗ = 0, the asymptotic distribution of AR(θ01) is

not necessarily a standard chi-square. The subset AR procedure is only valid when µφw = 0, as

indicated in Corollary 5.2.

Corollary 5.2 VALIDITY OF SUBSET AR-TEST WITH WEAK OMITTED INSTRUMENTS. Suppose

the assumptions of Theorem 5.1 hold. If k∗ = 1 and Σ̃ZWφ0w = 0, then

AR(θ01)
d→ 1

kz
χ2(kz −G2). (5.4)
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The proof of Corollary 5.2 is straightforward. Under the assumptions of Theorem 5.1, if further

k∗ = 1 and Σ̃ZWφ0w = 0, we have µφw = 0. Putting this in Corollary 4.2 yields the result. Observe

that the condition Σ̃ZWφ0w = 0, which insures the validity of the AR-test is a special case. Hence,

the subset AR-test is generally invalid unless this condition holds. If kz 6= kw, the kernel of Σ̃ZW

is different from {0}. Thus, there exists z0 6= 0 such that Σ̃ZW z0 = 0. In that case, one could have

φ0w 6= 0 satisfying Σ̃ZWφ0w = 0 and the subset AR-test procedure will still be invalid. The next

theorem deals with the KLM, JKLM and MQLR subset statistics.

Theorem 5.3 DISTRIBUTIONS OF SUBSET KLM, JKLM AND MQLR STATISTICS WHEN THE

MISSING IVS ARE WEAK. Suppose the assumptions (2.13) - (2.17), (2.28) and (2.28) hold.

Assume that model (2.1) - (2.2) is used in the computation of the statistics instead of the true model

(2.5) - (2.6). Let Φ2
w = Φ2

0w/
√
T and H0 : θ1 = θ01, where Φ2

0w is a kw × G2 fixed matrix. If

k∗ 6= 1, then:

KLM(θ01)
d→ +∞, JKLM(θ01)

d→ +∞, MQLR(θ01)
d→ +∞ (5.5)

when at least one of the following conditions holds: (A) Π = Π0 with rank(Γ0) = G2 and

rank(Θ0) = G1 or (B) Π = Π0/
√
T with rank(Γ0) = G2 and rank(Θ∗0) = G1, where Γ0,

Θ0 and Θ∗0 are obtained by setting φw = 0 in the expressions of Γφw , Θφw and Θ∗φw defined in

(3.21)-(3.24). If k∗ = 1, then:

KLM(θ01)
d→ ζ2d,0 , JKLM(θ01)

d→ kzξ
1
d,0 − ζ2d,0, (5.6)

MQLR(θ01)
d→ 1

2
[kzξ

1
d,0 − τm(θ01)] +

1

2

[√
(kzξ

1
d,0 + τm(θ01))2 − 4(kzξ

1
d,0 − ζ2d,0)τm(θ01)

]
, (5.7)

where

ζ2d,0 = ξ2d,0 =
1

σεε
(Sd + µφw)′PΘ0(Sd + µφw), (5.8)

kzξ
1
d,0 − ζ2d,0 =

1

σεε
(Sd + µφw)′MΘ0(Sd + µφw), (5.9)
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when (A) Π = Π0 with rank(Γ0) = G2 and rank(Θ0) = G1 and

ζ2d,0 = ξ∗
2

d,0 =
1

σεε
(Sd + µφw)′PΛ0(Sd + µφw), (5.10)

kzξ
1
d,0 − ζ∗

2

d,0 =
1

σεε
(Sd + µφw)′MΛ0(Sd + µφw), (5.11)

when (B) Π = Π0/
√
T with rank(Γ0) = G2,

Λ0 = ψ0 − Γ0(Γ ′0ΣZΓ0)−1Γ ′0ΣZψ0,

ψ0 = Π0 +Σ−1Z Sz,1 −Σ−1Z (Sd + µφw)
σ̄0ε1
σεε

, (5.12)

ξ1d,0, µφw are defined in Theorem 4.1, σ̄0εi, i = 1, 2, are obtained by setting φw = 0 in the expres-

sion of σ̄εi, defined in (3.16)-(3.20).

The proof follows from Theorem 4.3 and Theorem 5.1. Again, note that the subset KLM, JKLM

and MQLR procedures may be seriously size distorted even when the missing instruments are weak.

I now characterize cases where the subset KLM, JKLM and MQLR are valid.

Corollary 5.4 VALIDITY OF SUBSETKLM, JKLM AND MQLR TESTS WITH WEAK OMITTED

INSTRUMENTS. Suppose the assumptions of Theorem 5.3 hold. If k∗ = 1 and Σ̃ZWφ0w = 0, then:

KLM(θ01)
d→ ξ1d ∼ χ2(G1), JKLM(θ01)

d→ ξ2d ∼ χ2(kz −G) , (5.13)

MQLR(θ01)
d→ 1

2
[kzξ

1
d − τm(θ01)] +

1

2

[√
(kzξ

1
d + τm(θ01))2 − 4(kzξ

1
d − ξ2d)τm(θ01)

]
, (5.14)

where ξ1d and ξ2d are independent distributed random variables.

The proof is obtained by setting µφw = 0 and k∗ = 1 in Theorem 5.3. Section 6 presents the

Monte Carlo experiment.

6. Monte Carlo simulations

In this section I explore the effect of missing instruments on the size of robust subset statistics

through a Monte Carlo experiment. I consider the model with two endogenous variables described
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by the following data generating process:

y = Y1θ1 + Y2θ2 + u, (Y1, Y2) = Z (Π,Γ ) +W (δ1, δ2) + (V1, V2). (6.1)

The instrument T × kz matrix Z is such that Zt follows i.i.d N(0, Ikz) for t = 1, . . . , T. The

errors u, V1 and V2 are T × 1 vectors drawn as:

(ut, V1t, V2t)
′ i.i.d∼ N

0,


1 .8 .8

.8 1 0

.8 0 1


 for all t = 1, . . . , T . (6.2)

W is a T×1 omitted instrument vector which is not taken into account when computing the different

subset statistics. The sample correlation between Wt and Zjt cov(Wt, Zjt) = 0.4, for each j =

1, . . . , kz. I define:

Π = η1Π0, Γ = η2Γ0, (δ1, δ2) = λ (1, 1) (6.3)

where η1 and η2 take the value 0 (design of complete non-identification), 0.01 (design of weak

identification) or 1 (design of strong identification), [Π0, Γ0] is a kz × 2 matrix obtained by taking

the first two columns of the identity matrix of order kz, λ takes the value 0, 0.01 and 1 . If λ = 0,

there is no omitted instrument. If λ = 0.01, the omitted instrument is weak and finally if λ = 1, it

is relevant. The correlation coefficient between u and Vi (i = 1, 2) is 0.8, hence the variables Y1

and Y2 are endogenous and the IVs Z are necessary. I want to test the hypothesis

H0 : θ1 = θ01. (6.4)

The number of instruments kz varies in {5, 10, 40} and the true value of θ1 and θ2 are set at θ01 = 2,

θ02 = 5. The simulations are run with the sample size T = 300, and the number of replications is

N = 10, 000. The nominal level of the tests is 5%.

The results are presented in Table 1. In the first column of the table, I report the statistics

(including the projection-based, say ARpj , which uses the AR-test that tests the joint Hypothesis

θ1 = θ01 and θ2 = θ02.). In the second column, I report the values of kz (number of excluded

instruments). The other columns report (for each value of λ and instrument qualities η1 and η2),

the rejection frequencies of the statistics at nominal level 5%. Except for the critical value of the

subset MQLR statistic which is computed in the simulations [see Moreira (2003)], I use standard
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chi-squares critical values for the other statistics. The main findings can be summarized as follows:

(i) the projection-based AR-test (here ARpj) is typically robust to instrument exclusion whether

identification is strong or weak [similar to Dufour and Taamouti (2007)],

(ii) if no instrument is missing, all plug-in based subset tests are valid (size is controlled) even if

identification is deficient (weak IVs). In particular, they are conservative when IVs are weak [similar

to Kleibergen (2008, 2009) and Kleibergen and Mavroeidis (2009)],

(iii) all plug-in based subset tests are seriously size distorted, with empirical rejection frequencies

as high as 100 % (rather than 5 %). The distortion persists even when the omitted instrument is

not very strong. However, the more relevant the missing instrument is, the larger the distortions.

Furthermore, we observe that AR(θ01) is less size distorted than MQLR which itself is more robust

than KLM. The JKLM statistic which tests the miss-specification under H0 exhibits less distortions

than the AR, KLM and MQLM tests,

(iv) overall, these results underscore the importance of using the projection techniques [see Dufour

(1997), Dufour and Jasiak (2001), and Dufour and Taamouti (2005, 2007)] which do not exhibit

such a problem.
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7. Conclusion

In this paper, I focus on the linear IV regression model and study the asymptotic size properties

of the subset tests proposed by Kleibergen (2004, 2008), namely AR-test, KLM-test, JKLM-test

and MQLR-test. I consider two main setups: the first where the missing instruments are (possi-

bly) relevant and the second where they are asymptotically weak. In both setups, I show that the

asymptotic distributions of all statistics diverges generally when instruments are omitted. Hence,

all subset procedures are in general consistent against instrument inclusion (hence asymptotically

invalid for the subset hypothesis of interest) I characterize cases where consistency may not hold,

but the asymptotic distribution is modified in a way that would lead to size distortions in large sam-

ples. I provide a necessary and sufficient conditions under which the asymptotic distribution of the

statistics remains the same as in the case where any instrument is missing (despite the exclusion

of some of them). And finally, I propose a “rule of thumb” which allows to practitioners to know

whether a missing instrument is detrimental or not to subset inference. I present a Monte Carlo

experiment which confirms the theoretical results. I find that when no instrument is missing, all

the test procedures studied are valid whether identification is strong or weak. In particular, they

are conservative when identification is deficient or weak (weak instruments) [similar to Kleibergen

(2008, 2009) and Kleibergen and Mavroeidis (2009)]. However, all tests are seriously size distorted

with maximal size distortion as great as 100 percent if instruments are missing, while the projection

method remains valid (level is controlled).

Overall, my results underscore the importance of using the projection techniques

[see Dufour (1997), Dufour and Jasiak (2001), and Dufour and Taamouti (2005)Dufour-

Taamouti(2005),Dufour-Taamouti(2007)] which do not exhibit such a problem.

23



APPENDIX

A. Proofs

PROOF OF LEMMA 3.1 Assume that H0 : θ1 = θ01. From (2.1), we have

y − Y1θ01 = Y2θ2 + u0. (A.1)

Substituting (A.1) in (2.22) gives

θ̃2 = θ2 + [Y ′2(IT − k̃MZ)Y2]
−1Y ′2(IT − k̃MZ)u0. (A.2)

By Using the first equality in (??) and the notation DY = [Y ′2(IT − k̃MZ)Y2]
−1Y ′2(IT − k̃MZ), we

have

θ̃2 − θ2 = DY ε+DYWφw. (A.3)

From the expression of Y2 given by (2.6), we have under the assumptions (2.12) - (2.17)

Z ′Y2
T

p→ ΣZY2 = ΣZΓ +ΣZWΦ
2
w, (A.4)

Y ′2Y2
T

=
(ZΓ +WΦ2

w + V2)
′(ZΓ +WΦ2

w + V2)

T

= Γ ′
(
Z ′Z

T

)
Γ + Γ ′

(
Z ′W

T

)
Φ2
w + Γ ′

(
Z ′V2
T

)
+ Φ2′

w

(
W ′Z

T

)
Γ

+Φ2′
w

(
W ′W

T

)
Φ2
w + Φ2′

w

(
W ′V2
T

)
+

(
V ′2Z

T

)
Γ +

(
V ′2W

T

)
Φ2
w

+

(
V ′2V2
T

)
p→ ΣY2 , (A.5)

ΣY2 = Γ ′ΣZΓ + Γ ′ΣZWΦ
2
w + Φ2′

wΣ
′
ZWΓ + Φ2′

wΣWΦ
2
w + Φ2′

wΣW2

+Σ′W2Φ
2
w +Σ22 (A.6)

Y ′2(IT − k̃MZ)Y2
T

= (1− k̃)
Y ′2Y2
T

+ k̃
Y ′2Z

T

(
Z ′Z

T

)−1 Z ′Y2
T

p→ Σ̃Y2 = (1− k∗)ΣY2 + k∗Σ′ZY2Σ
−1
Z ΣZY2 , (A.7)
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Y ′2(IT − k̃MZ)ε

T

p→ (1− k∗)(Φ2′
wδwε + σ2ε) = σ̃2ε. (A.8)

Y ′2(IT − k̃MZ)W

T

p→ ∆ZW = Φ2′
wΣW + Γ ′ΣZW + (1− k∗)Σ′W2 +

−k∗Φ2′
w (ΣW −Σ′ZWΣ−1Z ΣZW ). (A.9)

Hence, provided rank(Σ̃Y2) = G2, we have

DY ε

T

p→ Σ̃−1Y2 σ̃2ε,
DYW

T
φw

p→ Σ̃−1Y2 ∆ZWφw, (A.10)

θ̃2 − θ2
p→ ∆θ2(k∗, φw) = Σ̃−1Y2 (σ̃2ε +∆ZWφw), (A.11)

where k∗ is defined by plim
T→∞

(k̃) = k∗. We note that even if k∗ = 1, ∆θ2(1, φw) may be different

from zero. Hence, the condition k∗ = 1 is not sufficient for identifying θ2 in presence of missing

instruments. The formula that determines k∗ (implicitly) is given by (3.15).

PROOF OF THEOREM 4.1 Under H0 : θ1 = θ01, we have

ε(θ01) = y − Y1θ01 − Y2θ̃2 = y − Y1θ01 − Y2θ2 − Y2(θ̃2 − θ2)

= u0 − Y2(θ̃2 − θ2) = (IT −DY )u0, (A.12)

where DY = Y2[Y
′
2(IT − k̃M)Y2]

−1Y ′2(IT − k̃M). So, we can write the numerator of the AR-

statistic (times k) as

ε(θ01)
′PZε(θ01) = T

[
u′0(IT −DY )′PZ(IT −DY )u0

T

]
=

T

[
ε′(IT −DY )′PZ(IT −DY )ε

T
− φ′wW

′(IT −DY )′PZ(IT −DY )Wφw
T

]
, (A.13)

where the last equality in (A.13) holds because u = ε + Wφw. Let focus on each term of (A.13)

(without times T ). The first is such that

ε′(IT −DY )′PZ(IT −DY )ε

T
=
ε′(IT −DY )′Z

T

(
Z ′Z

T

)−1 Z ′(IT −DY )ε

T
, (A.14)
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where

Z ′(IT −DY )ε

T
=

Z ′ε

T
− Z ′Y2

T

[
Y2(IT − k̃M)′Y2

T

]−1
Y2(IT − k̃M)′ε

T

p→ −ΣZY2Σ̃−1Y2 σ̃2ε. (A.15)

Thus we have

ε′(IT −DY )′PZ(IT −DY )ε

T

p→ σ̃′2εΣ̃
−1
Y2
Σ′ZY2Σ

−1
Z ΣZY2Σ̃

−1
Y2
σ̃2ε. (A.16)

By the same way, we get for the second term

φ′wW
′(IT −DY )′PZ(IT −DY )Wφw

T

p→ σφw (A.17)

σφw = φ′w(ΣZW −ΣZY2Σ̃−1Y2 ∆ZW )′Σ−1Z (ΣZW −ΣZY2Σ̃−1Y2 ∆ZW )φw. (A.18)

So, we find

[
u′0(IT −DY )′PZ(IT −DY )u0

T

]
p→ σ̃ε, w = [ΣZWφw −ΣZY2∆θ2(k∗, φw)]′Σ−1Z ×

[ΣZWφw −ΣZY2∆θ2(k∗, φw)]. (A.19)

Furthermore, using the third equality in (A.12), i.e., y−Y1θ01−Y2θ̃2 = u0−Y2(θ̃2− θ2), we have

ε(θ01)
′ε(θ01)

T
=

u′0u0
T
− 2

u′0Y2
T

(θ̃2 − θ2) + (θ̃2 − θ2)′
Y ′2Y2
T

(θ̃2 − θ2), (A.20)

where

u′0u0
T

=
(ε+Wφw)′(ε+Wφw)

T

p→ σεε + 2φ′wδwε + φ′wΣWφw, (A.21)

u′0Y2
T

=
(ε+Wφw)′Y2

T

p→ σ′2ε + φ′w(Σ′ZWΓ +ΣWΦ
2
w +ΣW2). (A.22)

Hence, we get

ε(θ01)
′ε(θ01)

T

p→ σ̃εε = σεε + 2φ′wδwε + φ′wΣWφw

−2[σ′2ε + φ′w(Σ′ZWΓ +ΣWΦ
2
w +ΣW2)]∆θ2(k∗, φw) +∆θ2(k∗, φw)′ΣY2∆θ2(k∗, φw), (A.23)
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and

ε(θ01)
′MZε(θ01)

T

p→ σ̃εε − σ̃ε, w ≥ 0, (A.24)

where

k∗ =
σ̃εε

(σ̃εε − σ̃ε, w)
. (A.25)

If b /∈ V(v), we have σ̃ε, w > 0 and from (A.13), we have

ε(θ01)
′PZε(θ01)

p→ +∞. (A.26)

Since the denominator of the AR statistic, say ε(θ01)′MZε(θ01)
T−k converges to σ̃εε − σ̃ε, w ≥ 0, it is

clear that

AR(θ01)
d→ +∞. (A.27)

Suppose now that φw ∈ V(v), we have σ̃ε, w = 0, i.e. ΣZWφw − ΣZY2∆θ2(k∗, φw) = 0. From

(A.25), this is equivalent to k∗ = 1 and ΣZWφw −ΣZY2∆θ2(k∗, φw) = 0 becomes Σ̃ZWφw = 0,

where Σ̃ZW = [Ikz ,kw−ΣZY2Σ̃−1Y2 (Γ ′+Φ2′
wΣ
′
ZWΣ

−1
Z ]ΣZW .We can then write 1√

T
Z ′(y−Y1θ01−

Y2θ̃2) as

Z ′(y − Y1θ01 − Y2θ̃2)√
T

=
1√
T

[Z ′(y − Y1θ01 − Y2θ̃2)− Σ̃ZWφw]

=
Z ′(IT −DY )ε√

T
+

[Z ′(IT −DY )W − Σ̃ZW ]φw√
T

, (A.28)

where we recall DY = Y2[Y
′
2(IT − k̃MZ)Y2]

−1Y ′2(IT − k̃MZ). Note that the presence of the

term [Z′(IT−DY )W−ΣZW ]φw√
T

in (A.28) is due to missing instrument W . If no instrument is missing,

φw = 0 and this term vanishes from (A.28).

Now, from (2.28), we have

1√
T
Z ′(y − Y1θ01 − Y2θ̃2)

d→ Sd + Sφw (A.29)
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and

ε(θ01)
′PZε(θ01)

d→ (Sd + Sφw)′Σ−1Z (Sd + Sφw). (A.30)

Furthermore, we have

1

T − k
ε(θ01)

′MZε(θ01)
d→ σεε + 2φ′wδwε + φ′wΣWφw +∆θ2(1, φw)′ΣY2∆θ2(1, φw)

−2[σ′2ε + φ′w(Σ′ZWΓ +ΣWΦ
2
w +ΣW2)]∆θ2(1, φw)

= σ∗εε.

Thus

AR(θ01)
d→ ξ1d,φw =

1

kzσ∗εε
(Sd + Sφw)′Σ−1Z (Sd + Sφw). (A.31)

PROOF OF COROLLARY 4.2 (A) NC: Suppose that (4.3) is not satisfied. It is useful to distinguish

the following three cases: (i) plim
T→∞

(
Z′ûW
T

)
6= 0 and φw = 0; (ii) plim

T→∞

(
Z′ûW
T

)
= 0 and φw 6= 0;

and (iii) plim
T→∞

(
Z′ûW
T

)
6= 0 and φw 6= 0. By noting that φw /∈ V(v) ⇔ plim

T→∞

(
Z′ûW
T

)
6= 0, from

the first part of Theorem 4.1, AR(θ01) diverges under cases (i) and (iii) hold. Now, assume that (ii)

is satisfied. From the second part of Theorem 4.1, we have

AR(θ01)
d→ ξ1d,φw =

1

kzσ∗εε
(Sd + Sφw)′Σ−1Z (Sd + Sφw). (A.32)

where Sφw is a non degenrate random variable. Hence, ξ1d,φw cannot follow standard chi-square

with kz − G2 degrees of freedom. So, the AR subset test is invalid. So, the condition (4.3) is

necessary for the validity of the subset AR-test.

(B) SC: Suppose that

plim
T→∞

(
Z ′ûW
T

)
= 0 and φw = 0. (A.33)
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Since φw ∈ V(v) ⇔ plim
T→∞

(
Z′ûW
T

)
= 0, from Theorem 4.1, we have

AR(θ01)
d→ ξ1d,φw =

1

kzσ∗εε
(Sd + Sφw)′Σ−1Z (Sd + Sφw). (A.34)

If further φw = 0, then Sφw ≡ 0 so that ∆θ2(1, 0) = 0 and σ∗εε = σεε. Hence, we get

AR(θ01)
d→ ξ1d,0 ≡ ξ1d =

1

kzσεε
S ′
dΣ
−1
Z Sd. (A.35)

Furthermore, we can show that

Sd = [Ikz −ΣZY2(Σ′ZY2Σ
−1
Z ΣZY2)−1Σ′ZY2Σ

−1
Z ]Sz,ε

ξ1d = S ′
z,εΣ

− 1
2

Z M
Σ
− 1

2
Z ΣZY2

Σ
− 1

2
Z Sz,ε, (A.36)

where MB = Ikz − B(B′B)−1B′, B = Σ
− 1

2
Z ΣZY2 . Since M

Σ
− 1

2
Z ΣZY2

is idempotent of rank G2

and Σ
− 1

2
Z Sz,ε ∼ N[0, σεεIkz ], we have

ξ1d ∼
1

kz
χ2(kz −G2). (A.37)

PROOF OF THEOREM 4.3 Let H0 : θ1 = θ01. For both setups φw /∈ V(v) and φw ∈ V(v), we

shall distinguish two cases: (A)Π = Π0, whereΠ0 is a kz×G1 fixed matrix and (B)Π = Π0/
√
T ,

where Π0 is a kz ×G1 fixed matrix (Π0 = 0 is allowed).

Suppose first that φw /∈ V(v).

Let (A) Π = Π0 and Φ1
w = Φ10

w , where Π0 and Φ10
w are kz × G1 and kw × G1 fixed matrices. We

first prove the result for KLM. This statistic can be written as

KLM(θ01) =
1

σεε(θ01)
ε(θ01)

′PMZΓ̃ (θ01)
ZΠ̃(θ01)

ε(θ01) (A.38)

=
1

σεε(θ01)
ε(θ01)

′Z ′Θ̃[Θ̃′(Z ′Z)Θ̃]−1Θ̃Zε(θ01) (A.39)

=
T

σεε(θ01)

(
ε(θ01)

′Z ′

T

)
Θ̃

[
Θ̃′
(
Z ′Z

T

)
Θ̃

]−1
Θ̃

(
Zε(θ01)

T

)
, (A.40)
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where Θ̃ ≡ Θ̃(θ01) = Π̃(θ01)− Γ̃ (θ01)
[
Γ̃ (θ01)

′
(
Z′Z
T

)
Γ̃ (θ01)

]−1
Γ̃ (θ01)

(
Z′Z
T

)
Π̃(θ01).

Since

σεε(θ01)
p→ σ̄εε > 0,

σεYi(θ01)
p→ σ̄εi = σ′iε + φ′wΣWYi − (σ′iε + φ′wΣWY2)Σ̃−1Y2 ΣY2Yi +

−(ΣZWφw −ΣZY2∆θ2(k∗, φw))′Σ−1Z ΣZYi

Π̃(θ01)
p→ Πφw = Π +Σ−1Z ΣZWΦ

1
w −Σ−1Z (ΣZWφw −ΣZY2∆θ2(k∗, φw))

σ̄ε1
σ̄εε

,

Γ̃ (θ01)
p→ Γφw = Γ + Σ−1Z ΣZWΦ

2
w −Σ−1Z (ΣZWφw −ΣZY2∆θ2(k∗, φw))

σ̄ε2
σ̄εε

,

provided rank(Γφw) = G2, we have

Θ̃(θ01)
p→ Θφw = Πφw − Γφw(Γ ′φwΣZΓφw)−1Γ ′φwΣZΠφw (A.41)

If further Θφw has full columns rank, then

Zε(θ01)

T

p→ ω(k∗, φw) = ΣZWφw −ΣZY2∆θ2(k∗, φw) 6= 0,(
ε(θ01)

′Z ′

T

)
Θ̃

[
Θ̃′
(
Z ′Z

T

)
Θ̃

]−1
Θ̃

(
Zε(θ01)

T

)
p→ ω(k∗, φw)′Θφw(Θ′φwΣZΘφw)−1Θφw ×

ω(k∗, φw) > 0

so that we get

KLM(θ01)
d→ +∞. (A.42)

By the same way, we can show that

JKLM(θ01) =
1

σεε(θ01)
ε(θ01)

′MMZΓ̃ (θ01)
ZΠ̃(θ01)

ε(θ01)
d→ +∞. (A.43)

Now, let focus on MQLR(θ01). Following Kleibergen (2008), we have

∂MQLR(θ01)

∂KLM(θ01)
=

1

2
[1 +

KLM(θ01) + JKLM(θ01) + τm(θ01)√
[KLM(θ01) + JKLM(θ01) + τm(θ01)]2 − 4JKLM(θ01)τm(θ01)

]

≥ 0, (A.44)
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and

∂MQLR(θ01)

∂JKLM(θ01)
=

1

2
[1 +

KLM(θ01) + JKLM(θ01)− τm(θ01)√
[KLM(θ01) + JKLM(θ01) + τm(θ01)]2 − 4JKLM(θ01)τm(θ01)

]

≥ 0. (A.45)

Note that (A.44) is obvious. For the condition (A.45), we can see that: (1) if KLM(θ01) +

JKLM(θ01)− τm(θ01) ≥ 0, the result is obvious; (2) if KLM(θ01) + JKLM(θ01)− τm(θ01) ≤ 0,

we have

1

2
[1 +

KLM(θ01) + JKLM(θ01)− τm(θ01)√
[KLM(θ01) + JKLM(θ01) + τm(θ01)]2 − 4JKLM(θ01)τm(θ01)

]

=
1

2
[1 +

KLM(θ01) + JKLM(θ01)− τm(θ01)√
[KLM(θ01) + JKLM(θ01)− τm(θ01)]2 + 4KLM(θ01)τm(θ01)

]

=
1

2

1− 1√
1 + 4KLM(θ01)τm(θ01)

[KLM(θ01)+JKLM(θ01)−τm(θ01)]2

 ≥ 0. (A.46)

So, the derivatives of MQLR(θ01) with respect to both KLM(θ01) and JKLM(θ01) are non-negative.

Since when φw /∈ V(v), we have KLM(θ01)
d→ +∞ and JKLM(θ01)

d→ +∞, (A.44)-(A.45) entail

that

MQLR(θ01)
d→ +∞. (A.47)

(B) Now, let Π = Π0/
√
T and Π = Φ10

w /
√
T , where (Π0 = 0 and Φ10

w = 0 are allowed). Consider

the KLM statistic defined in (A.40). We have

σεε(θ01)
p→ σ̄εε,

σεYi(θ01)
p→ σ̄εi = σ′iε + φ′wΣWYi − (σ′iε + φ′wΣWY2)Σ̃−1Y2 ΣY2Yi +

−(ΣZWφw −ΣZY2∆θ2(k∗, φw))′Σ−1Z ΣZYi , i = 1, 2

Π̃(θ01)
p→ Π∗φw = Σ−1Z (ΣZWφw −ΣZY2∆θ2(k∗, φw))

σ̄ε1
σ̄εε

,

Γ̃ (θ01)
p→ Γφw = Γ +Σ−1Z ΣZWΦ

2
w −Σ−1Z (ΣZWφw −ΣZY2∆θ2(k∗, φw))

σ̄ε2
σ̄εε

.

Hence, if rank(Γφw) = G2, we have

Θ̃(θ01)
p→ Θ∗φw = Π∗φw − Γφw(Γ ′φwΣZΓφw)−1Γ ′φwΣZΠ

∗
φw
. (A.48)
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If further φw /∈ V(v) and Θ∗φw has full columns rank, then

(
ε(θ01)

′Z ′

T

)
Θ̃

[
Θ̃′
(
Z ′Z

T

)
Θ̃

]−1
Θ̃

(
Zε(θ01)

T

)
p→ ω∗

′
(k∗, φw)Θ∗φw(Θ∗

′
φw
ΣZΘ

∗
φw

)−1Θ∗
′
φw
×

ω∗(k∗, φw) > 0 (A.49)

so that

KLM(θ01)
d→ +∞. (A.50)

By the same arguments, we get

JKLM(θ01)
d→ +∞, (A.51)

and from (A.44)-(A.47), we also have

MQLR(θ01)
d→ +∞. (A.52)

Suppose now that φw ∈ V(v).

As before, assume first that (A) Π = Π0 and Φ1
w = Φ10

w . From the proof of Theorem 4.1, we have

Z ′(y − Y1θ01 − Y2θ̃2)√
T

d→ Sd + Sφw . (A.53)

The numerator of KLM can be written as

ε(θ01)
′PMZΓ̃ (θ01)

ZΠ̃(θ01)
ε(θ01) =

ε(θ01)
′Z ′√
T

Θ̃(θ01)

[
Θ̃′(

Z ′Z

T
)Θ̃

]−1
Θ̃(θ01)

′Zε(θ01)√
T

, (A.54)

where σεε(θ01)
p→ σ∗εε, and σεYi(θ01)/T

p→ σ̄εi, i = 1, 2. So, if rank(Γφw) = G2, we have

Π̃
p→ Πφw , Γ̃

p→ Γφw ,

Θ̃(θ01)
p→ Θφw = Πφw − Γφw(Γ ′φwΣZΓφw)−1Γ ′φwΣZΠφw , (A.55)

If further Θφw has full columns rank, we have

KLM(θ01)
d→ ξ2d, φw =

1

σ∗εε
(Sd + Sφw)′PΘφw (Sd + Sφw). (A.56)
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where PΘφw = Θφw(Θ′φwΘφw)−1Θ′φw . By following the same way, we get

JKLM(θ01)
d→ kzξ

1
d,φw
− ξ2d,φw =

1

σ∗εε
(Sd + Sφw)′MΘφw

(Sd + Sφw), (A.57)

MΘφw
= I − PΘφw . Using the definition of MQLR(θ01), we then easily have

MQLR(θ01)
d→ 1

2
[kzξ

1
d,φw
− τm(θ01)] +

1

2

[√
(kzξ

1
d,φw

+ τm(θ01))2 − 4(kzξ
1
d,φw
− ξ2d,φw)τm(θ01)

]
. (A.58)

(B) Now, let Π = Π0/
√
T and Φ1

w = Φ10
w /
√
T . We can write the KLM statistic as

KLM(θ01) =
1

σεε(θ01)

ε(θ01)
′Z ′√
T

√
TΘ̃(θ01)

[√
TΘ̃′

(
Z ′Z

T

)√
TΘ̃

]−1√
TΘ̃(θ01)

′Zε(θ01)√
T

,

where
√
TΘ̃(θ01) =

√
TΠ̃(θ01) − Γ̃ (θ01)

[
Γ̃ (θ01)

′
(
Z′Z
T

)
Γ̃ (θ01)

]−1
Γ̃ (θ01)

(
Z′Z
T

)√
TΠ̃(θ01).

Now, we know that σεε(θ01)
p→ σ∗εε,

Zε(θ01)√
T

d→ Sd + Sφw , σεYi(θ01)
p→ σ̄0εi, i = 1, 2 with

σ̄εi = σ′iε + φ′wΣWYi − (σ′iε + φ′wΣWY2)Σ̃−1Y2 ΣY2Yi . (A.59)

From (A.59), we see that σ̄ε2 = 0, since Σ̃Y2 = ΣY2Yi . Moreover, we have

√
TΠ̃(θ01)

d→ ψφw = Π0 +Σ−1Z ΣZWΦ
2
0w +Σ−1Z Sz,1 −Σ−1Z (Sd + Sφw)

σ̄ε1
σ̄εε

, (A.60)

Γ̃
p→ Γ 0

φw
= Γ +Σ−1Z ΣZWΦ

2
w, (A.61)

√
TΘ̃(θ01)

d→ Λφw = ψφw − Γ
0
φw

(Γ 0′
φw
ΣZΓ

0
φw

)−1Γ 0′
φw
ΣZψφw . (A.62)

So, we get

KLM(θ01)
d→ ξ∗

2

d, φw
=

1

σ∗εε
(Sd + Sφw)′PΛφw (Sd + Sφw), (A.63)

JKLM(θ01)
d→ kzξ

1
d, φw

− ξ∗2d, φw =
1

σ∗εε
(Sd + Sφw)′MΛφw

(Sd + Sφw), (A.64)

and

MQLR(θ01)
d→ 1

2
[kzξ

1
d,φw
− τm(θ01)] +
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1

2

[√
(kzξ

1
d,φw

+ τm(θ01))2 − 4(kzξ
1
d,φw
− ξ∗2d,φw)τm(θ01)

]
, (A.65)

where PΛφw = Λφw(Λ′φwΛφw)−1Λ′φw and MΛφw
= I − PΛφw .

PROOF OF COROLLARY 4.4 Similar to the proof of Corollary 4.2.

PROOF OF THEOREM 5.1 Let H0 : θ1 = θ01. As in Theorem 4.1, we have

ε(θ01) = y − Y1θ01 − Y2θ̃2 = y − Y1θ01 − Y2θ2 − Y2(θ̃2 − θ2)

= u0 − Y2(θ̃2 − θ2) = (IT −DY )u0. (A.66)

Let φw = φ0w√
T
, where φ0w = Φ2

0wθ2. We have

u′0u0
T

=
(ε+W φ0w√

T
)′(ε+W φ0w√

T
)

T

p→ σεε,
Z ′u0
T

=
Z ′(ε+W φ0w√

T
)

T

p→ 0, (A.67)

u′0Y2
T

=
(ε+W φ0w√

T
)′(ZΓ +W

Φ2
0w√
T

+ V2)

T

p→ σ′2ε. (A.68)

So, we have

θ̃2 − θ2
p→ ∆θ2(k∗, 0) = (1− k∗)Σ̃−1Y2 σ2ε. (A.69)

Hence, we get

ε(θ01)
′ε(θ01)

T

p→ σ0εε = σεε − 2σ2ε∆θ2(k∗, 0) +∆θ2(k∗, 0)′ΣY2∆θ2(k∗, 0), (A.70)

Z ′(y − Y1θ01 − Y2θ̃2)
T

p→ −ΣZY2∆θ2(k∗, 0), (A.71)

ε(θ01)
′PZε(θ01)

T

p→ σ0ε, w = ∆θ2(k∗, 0)′Σ′ZY2Σ
−1
Z ΣZY2∆θ2(k∗, 0), (A.72)

ε(θ01)
′MZε(θ01)

T

p→ σ0εε − σ0ε, w ≥ 0, k∗ =
σ0εε

(σ0εε − σ0ε, w)
. (A.73)

We then observe from (A.69)-(A.73) that ΣZY2∆θ2(k∗, 0) = 0 if and only k∗ = 1.
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Suppose that ΣZY2∆θ2(k∗, 0) 6= 0⇔ k∗ 6= 1. Then, we have σ0ε, w 6= 0 and

ε(θ01)
′PZε(θ01)

T

p→ σ0ε, w 6= 0, (A.74)

ε(θ01)
′PZε(θ01) = T

ε(θ01)
′PZε(θ01)

T

p→ +∞. (A.75)

Since the denominator of AR is ε(θ01)′MZε(θ01)/(T − k)
p→ σ0εε − σ0ε, w ≥ 0, we then get

AR(θ01)
d→ +∞. (A.76)

Suppose now thatΣZY2∆θ2(k∗, 0) = 0⇔ k∗ = 1. We can write Z ′(y − Y1θ01 − Y2θ̃2) as

Z ′(y − Y1θ01 − Y2θ̃2)√
T

=
Z ′(IT −DY )ε√

T
+

[Z ′(IT −DY )Wφ0w
T

d→ Sd + µφw , (A.77)

where µφw = Σ̃ZWφ
0
w, Σ̃ZW = plim

T→∞

(
Z′(IT−DY )W

T

)
= (I(kz ,kw) − ΣZY2Σ̃

−1
Y2
Σ′ZY2Σ

−1
Z )ΣZW .

So, we get

ε(θ01)
′PZε(θ01)

d→ (Sd + µφw)′Σ−1Z (Sd + µφw). (A.78)

Moreover, we have

ε(θ01)
′MZε(θ01)

T − k
p→ σ0εε = σεε. (A.79)

Thus

AR(θ01)
d→ ξ1d,0 =

1

kzσεε
(Sd + µφw)′Σ−1Z (Sd + µφw). (A.80)

PROOF OF THEOREM 5.3 The proof of Theorem 5.3 follows from those of Theorem 4.3 and

Theorem 5.1.
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