
Estimating structural mean
models with multiple
instrumental variables using
the generalised method of
moments

Paul S. Clarke
Tom M. Palmer
Frank Windmeijer

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP28/11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6494809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Estimating Structural Mean Models with Multiple
Instrumental Variables using the Generalised

Method of Moments

Paul S Clarke,a Tom M Palmerb and Frank Windmeijera,c,d

aCMPO, University of Bristol, UK
bMRC CAiTE Centre, School of Social & Community Medicine, University of Bristol, UK

cDepartment of Economics, University of Bristol, UK
dCEMMAP/IFS, London, UK

August 2011

Abstract

Instrumental variables analysis using genetic markers as instruments is now a widely
used technique in epidemiology and biostatistics. As single markers tend to explain
only a small proportion of phenotypical variation, there is increasing interest in us-
ing multiple genetic markers to obtain more precise estimates of causal parameters.
Structural mean models (SMMs) are semi-parametric models that use instrumen-
tal variables to identify causal parameters, but there has been little work on using
these models with multiple instruments, particularly for multiplicative and logistic
SMMs. In this paper, we show how additive, multiplicative and logistic SMMs
with multiple discrete instrumental variables can be estimated effi ciently using the
generalised method of moments (GMM) estimator, how the Hansen J -test can be
used to test for model mis-specification, and how standard GMM software rou-
tines can be used to fit SMMs. We further show that multiplicative SMMs, like
the additive SMM, identify a weighted average of local causal effects if selection is
monotonic. We use these methods to reanalyse a study of the relationship between
adiposity and hypertension using SMMs with two genetic markers as instruments
for adiposity. We find strong effects of adiposity on hypertension, but no evidence
of unobserved confounding.

Key Words: Structural Mean Models, Multiple Instrumental Variables, Gener-
alised Method of Moments, Mendelian Randomisation, Local Average Treatment
Effects.
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1 Introduction

Additive and multiplicative structural mean models (SMMs) and G-estimaton were in-

troduced by Robins (1989, 1994) for estimating the causal effects of treatment regimes

on outcomes from encouragement designs, namely, randomised controlled trials (RCTs)

affected by non-compliance. Additive SMMs are parameterised in terms of average treat-

ment effects, and multiplicative SMMs in terms of causal risk ratios; the G-estimators for

these models are consistent, asymptotically normal and can be semi-parametrically effi -

cient. Vansteelandt and Goetghebeur (2003) subsequently developed a class of estimators

for generalized SMMs and, in particular, for estimating causal odds ratios using the ‘dou-

ble logistic’SMM; see also Robins and Rotnitzky (2004), Goetghebeur and Vansteelandt

(2005), and van der Laan et al. (2007).

The application of SMMs is not limited to encouragement designs, however, and ex-

tends to the analysis of observational studies using instrumental variables; see e.g. Hernán

and Robins (2006). Instrumental variables analysis involves estimating the causal rela-

tionship between an outcome and a temporally antecedent predictor variable using an

instrumental variable that is associated with the outcome only through its association

with the predictor. Instrumental variables analyis has historically been the domain of

econometrics, but is now frequently used within epidemiology and biostatistics. In partic-

ular, genetic markers were proposed as instruments for modifiable risk factors by Davey

Smith and Ebrahim (2003). Epidemiological studies using genetic markers are known as

Mendelian randomisation studies after the assumption that each individual’s genotype is

randomly assigned at conception, which implies that the genetic marker is an instrumen-

tal variable if it at least partly explains variation in the risk factor. In practice, genetic

markers explain only a small proportion of phenotypic variation, and so large sample

sizes are required to obtain any reasonable precision. The number of genome-wide as-

sociation studies has increased as the costs of genotyping have decreased, which has led
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to the identification of multiple genetic variants for the same risk factor. An important

attraction of using multiple genetic variants as instrumental variables is that more precise

causal estimates can potentially be obtained.

In this paper, we propose a framework for the estimation and testing of SMMs using

multiple instrumental variables. Techniques for multiple instruments in linear instru-

mental variables analysis are already in use; see e.g. Palmer et al. (2011). However,

our framework extends to non-linear semi-parametric models which are suitable for the

study of binary and discrete outcomes, and the estimation of causal risk ratios and causal

odds ratios. We use this framework to reanalyse data from the study of the relationship

between hypertension and adiposity by Timpson et al. (2009). In the original study,

two genetic markers were used as instruments for adiposity and analysed using linear

instrumental variables models. We reanalyse this study by focusing on hypertension as

a binary outcome, and estimating causal effects of adiposity using multiplicative and

logistic SMMs.

The framework we propose does not come from extending the existing estimating

equations for SMMs. Instead, we show how the basic model assumptions for SMMs lead

straightforwardly to a generalised method of moments (GMM) estimator; see Hansen

(1982). The theory and application of GMM are already standard within econometrics,

where Chamberlain (1987) established results on the asymptotic effi ciency of GMM esti-

mators, and the Hansen J -test is a widely used test of instrument validity in applications

involving multiple instruments. Moreover, routines for parameter estimation using GMM

are already implemented in standard software packages like Stata and R; see Chaussé

(2010). These routines can be used to obtain asymptotically correct inferences for all the

SMMs considered here, and so make this important technique straightforwardly accessible

to applied researchers.

We also consider the interpretation of additive and multiplicative SMMs with multiple
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instruments when a key SMM assumption fails, namely, that of no effect modification

by the instrumental variables (NEM). In such circumstances, an additive SMM with one

binary instrument identifies a ‘local’average treatment effect (LATE) - also known as

a ‘complier’average causal effect (CACE) - provided that selection is monotonic, and

multiplicative SMMs identify local causal risk ratios; see e.g. Clarke and Windmeijer

(2010). When there are multiple instruments, Imbens and Angrist (1994) show that

a GMM estimator for the additive SMM identifies a weighted average of LATEs. We

extend their analysis to multiplicative SMMs to show that a GMM estimator identifies

weighted averages of local risk ratios.

The remainder of the paper is organised as follows. In Section 2 we review the

potential outcomes framework and the additive, multiplicative and logistic SMMs for a

single binary instrument. In Section 3, we discuss the GMM estimation procedure and

rework the SMM moment conditions to fit into the GMM framework. Section 4 discusses

the estimation of SMMs using GMM when there are multiple instruments. Section 5

presents some Monte Carlo results for the multiplicative and logistic SMMs. In Section

6 we derive the multiple instruments results for the local risk ratio. Section 7 applies the

estimation procedures to the adiposity and hypertension data of Timpson et al. (2009).

Finally, in Section 8 we make some concluding remarks. The Appendix provides Stata

and R code for the estimation of the three SMMs by GMM.

2 Structural Mean Models

2.1 The basic set-up

To introduce SMMs, we follow the exposition in Hernán and Robins (2006) and focus on

SMMs for a randomised controlled trial where Zi, Xi and Yi are i.i.d. dichotomous ran-

dom variables for individual subjects i = 1, . . . , n drawn from the target population. For

individual i, let Zi to be a binary indicator of treatment assignment following random-
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ization, Xi the selected treatment, and Yi the study outcome. For notational simplicity

the subject index is sometimes suppressed for the random variables.

The potential outcomes can now be defined in the usual way. The potential treat-

ments X0 and X1 are the treatments selected by the individual following assignment

to treatment z = 0, 1, respectively. Similarly, the potential study outcome Yxz is that

obtained if the individual is assigned to treatment z but given treatment x. Using poten-

tial outcomes notation, we can now state five key conditions that must be satisfied for

causal inference: (i) the ‘stable unit treatment value assumption’that each individual’s

potential treatments and potential study outcomes are mutually independent of those

for any other individual; (ii) the ‘consistency assumption’X = XZ and Y = YXZ that

links the observed realisations to the potential outcomes; (iii) the ‘causal relationship’

assumption that E(Xz) and E(Yxz) are non-trivial functions of z and (x, z), respectively;

(iv) the ‘exclusion restriction’Yxz = Yx; and (v) the ‘independence assumption’that Z is

independent of (X0, X1, Y0, Y1). Alternative statements of these key conditions are given

by Robins and Rotnitzky (2004) and Tan (2010).

2.2 SMM Identification

For the basic set-up defined above, the generalised SMM of Vansteelandt and Goetghe-

beur (2003) is

h{E(Y |X,Z)} − h{E(Y0|X,Z)} = (ψ0 + ψ1Z)X, (1)

where Y0 is often referred to as the exposure-free potential outcome, and h is the link func-

tion that determines the interpretation of the target causal parameters ψ0 and ψ0 + ψ1.

For example, the identity link leads to the additive SMM E(Y |X,Z) − E(Y0|X,Z) =

(ψ0 + ψ1Z)X, where ψ0 = E(Y1 − Y0|X = 1, Z = 0) and ψ0 + ψ1 = E(Y1 − Y0|X =

Z = 1) are both average treatment effects; the log link leads to the multiplicative SMM

E(Y |X,Z)/E(Y0|X,Z) = exp{(ψ0 + ψ1Z)X}, where exp(ψ0) = E(Y1|X = 1, Z =
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0)/E(Y0|X = 1, Z = 0) and exp(ψ0 + ψ1) = E(Y1|X = Z = 1)/E(Y0|X = Z = 1)

are causal risk ratios. These models are saturated, or non-parametric, because each has

one parameter for each value of Z.

In both cases, the SMM parameters are identified by exploiting the conditional mean

independence (CMI), or randomisation, assumption

E(Y0|Z = 0) = E(Y0|Z = 1) = E(Y0), (2)

which follows automatically from the independence condition defined above. Under the

additive SMM, E(Y0|Z) = E{Y − (ψ0 + ψ1Z)X|Z} and its G-estimator is based on the

moment condition

E{Y − (ψ0 + ψ1)X|Z = 1} = E(Y − ψ0X|Z = 0), (3)

which follows from CMI. However, it is clear from (3) that further assumptions are re-

quired to identify ψ0 and ψ1 because there are two unknowns but only one moment

condition; the multiplicative SMM is similarly non-identified without further assump-

tions.

Hernán and Robins (2006) highlight the identification assumption that there is no

effect modification by Z (NEM), which constrains ψ1 = 0 so that the two conditional

causal effects in the model are equal. Under NEM, the identified parameter of the additive

SMM is ψ0 = E(Y1−Y0|X = 1), that is, the average treatment effect among the treated;

for the multiplicative SMM it is exp(ψ0) = E(Y1|X = 1)/E(Y0|X = 1), that is, the causal

risk ratio among the treated.

The logistic SMM is given by

logit{E(Y |X,Z)} − logit{E(Y0|X,Z)} = (ψ0 + ψ1Z)X,

where logit(p) = log{p/(1− p)} and the parameters exp(ψ0) and exp(ψ0 +ψ1) are causal

odds ratios for the (X,Z) = (1, 0) and (1, 1) groups, respectively. Under NEM,E(Y0|Z) =

E[expit{logit(E(Y |X,Z))− ψ0X}|Z], where expit(a) = exp(a)/{1 + exp(a)}.
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G-estimation cannot be used for the logistic SMM because the moment conditions

following from CMI depend on E(Y |X,Z); see e.g. Robins (1999). The estimating equa-

tions for the logistic SMM must be adjusted for estimates of an ‘association model’for

E(Y |X,Z). Vansteelandt and Goetghebeur (2003) proposed the double-logistic SMM

based on a logistic association model; in this example, E(Y |X,Z) = expit(β0 + β1X +

β2Z + β3XZ) so that

E(Y0|Z) = E[expit{β0 + (β1 − ψ0)X + β2Z + β3XZ}|Z].

In general, a saturated association model like this one implies no further identifying

assumptions because the estimator is effectively non-parametric; see Vandsteelandt et

al. (2011). However, a non-saturated association model implies further semi-parametric

assumptions that will lead to bias if this model is mis-specified; see Robins and Rotnitzky

(2004) and Vansteelandt et al. (2011).

Standard approaches to estimating the SMMs discussed above are based on estimating

equations for the moment condition

E[{Z − E(Z)}E(Y0|Z)] = 0,

which holds under CMI. Asymptotic inference is based on theory for semi-parametric

models; see e.g. Tsiatis (2006).

3 The Generalised Method of Moments

The three SMMs above are all just-identified in the sense that each has one parameter

and one moment condition under CMI (conveniently taking β to be known for the double-

logistic SMM). The solutions to these moment conditions for the just-identified models

are unique; for example, the solution to (3) under NEM (ψ1 = 0) gives

ψ0 =
E(Y |Z = 1)− E(Y |Z = 0)

E(X|Z = 1)− E(X|Z = 0)
, (4)
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namely, the classical instrumental variable estimator; see e.g. Hernán and Robins (2006).

More generally, there will be fewer SMM parameters than moment conditions and

the model is said to be ‘over-identified’. There is no unique solution to the CMI moment

conditions for over-identified models, but it is still possible to construct an estimator that

is consistent and effi cient. Hansen (1982) proposed the generalised method of moments

(GMM) estimator for ‘models’of the form E{g (δ)} = 0, where g (δ) is a random vector

and a function of parameter δ, and 0 is an appropriately dimensioned column vector of

zeros. The GMM estimator can be written as

δ̂ = arg min
δ

{
n−1

∑n
i=1 g

′
i (δ)

}
W−1
n

{
n−1

∑n
i=1 gi (δ)

}
, (5)

where gi(δ) is the random vector for subject i, g′i(δ) is the matrix transpose of gi(δ),

and the weight matrix Wn determines the effi ciency of the estimator.

Instrumental variables models take the form g (δ) = v(δ)S, where v(δ) is a ‘residual’

depending on Y , X and δ, and S is a random vector of instrumental variables. The

moment conditions for the three SMMs introduced above can be written in this form: the

CMI moment conditions can be expressed as E(Y0|Z = z) − α0 = 0 for z = 0, 1, where

α0 = E(Y0) is treated as a parameter and results in the additional moment condition

E(Y0) − α0 = 0. It follows that one of E(Y0|Z = z) − α0 = 0 is redundant because Z

is discrete and E{E(Y0|Z)} = α0 by definition. However, using the additional E(Y0) −

α0 = 0 moment condition allows the system of moment conditions to be expressed in a

convenient form. For example, under the additive SMM it follows that[
E(Y − ψ0X)− α0

E(Y − ψ0X|Z = 1)− α0

]
=

(
0

0

)
⇒ E

[
Y − ψ0X − α0

(Y − ψ0X − α0)Z

]
=

(
0

0

)
, (6)

that is, E{g(ψ0, α0)} = 0, where g(ψ0, α0) = (Y −ψ0X−α0)S, and S = (1, Z)′. Similarly,

for the multiplicative SMM it follows that

E

[
Y exp (−ψ0X)− α0
{Y exp (−ψ0X)− α0}Z

]
=

(
0

0

)
, (7)
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and for the double-logistic SMM,

E

[
expit(β0 + β1X + β2Z + β3XZ − ψ0X)− α0
{expit(β0 + β1X + β2Z + β3XZ − ψ0X)− α0}Z

]
=

(
0

0

)
, (8)

where in both cases α0 = E(Y0).

The estimators for these three models are trivial special cases of GMM because each is

just-identified, but it is clear that moment conditions (6-7) are of the form E{v (δ)S} =

0, where 0 is an appropriately dimensioned vector of zeros. This generalises to over-

identified models through different choices of S and specifications of v (δ). It is also clear

that the moment condition for the double-logistic SMM has the more complicated form

E{g (δ;β)} = 0, where β is the vector of association model parameters. In practice,

this complicates variance estimation because β must be estimated, which we discuss in

Section 4.2.

4 Multiple Instruments

Mendelian randomisation studies justify the use of genetic markers as instrumental vari-

ables by arguing that a) the random allocation of genes from parents to offspring mimics

a randomised experiment, and b) there is an established relationship between the marker

and some modifiable risk factor of interest; see e.g. Davey Smith and Ebrahim (2003)

and Lawlor et al. (2008).

The genetic variant typically has three forms: homozygous for the common allele;

and heterozygous and homozygous for the rare allele. If we code these 0, 1, and 2,

respectively, then the resulting instrument Z is multivalued. In fact, this is a simple

multiple instruments example because the three-level variable can be coded using two

dichotomous variables; for example, Z1 = I(Z = 1) and Z2 = I(Z = 2), where I is the

indicator function.

The additive SMM for multiple instruments in this case can be written as

E(Y |X,Z1, Z2)− E(Y0|X,Z1, Z2) = (ψ0 + ψ1Z1 + ψ2Z2)X
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where NEM corresponds to constraining ψ1 = ψ2 = 0 and CMI yields the moment

conditions 
E(Y − ψ0X − α0)

E(Y − ψ0X − α0|Z1 = 1)
E(Y − ψ0X − α0|Z2 = 1)

 =

 0
0
0

 ,

where α0 = E(Y0) as before. The unconditional moment condition is

E{(Y − ψ0X − α0)S} = 0,

where S = (1, Z1, Z2)
′ is a random vector representing the multiple instruments. In

fact, this model is linear and so the parameters can be consistently estimated using

standard Two-Stage Least Squares (2SLS). The 2SLS estimator can be obtained as the

OLS estimator from the regression of Y on X̂, where X̂ is the prediction from the first-

stage regression of X on S. The 2SLS estimator is a special case of a ‘one-step’GMM

estimator with Wn = n−1
∑

i SiS
′
i (see next section), and is commonly used for linear

instrumental variables analysis with multiple instruments; see Palmer et al. (2011) for

its use with Medelian randomisation studies.

4.1 Multiplicative SMM

The saturated multiplicative SMM for the two instruments is

E(Y |X,Z1, Z2)/E(Y0|X,Z1, Z2) = exp{(ψ0 + ψ1Z1 + ψ2Z2)X},

where NEM here corresponds to ψ1 = ψ2 = 0. Using the same vector of instrumen-

tal variables S, there are three over-identified systems of multiplicative SMM moment

conditions:

E

[{
Y

exp (Xψ0)
− α0

}
S

]
= 0, (9)

E

{
Y − exp (α∗0 +Xψ0)

exp (Xψ0)
S

}
= 0, (10)

E

{
Y − exp (α∗0 +Xψ0)

exp (α∗0 +Xψ0)
S

}
= 0, (11)
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where α∗0 = log(α0) and (11) is obtained by dividing (10) by exp(α∗0) 6= 0. The last

of these expressions equal the moment conditions for exponential mean models pro-

posed by Mullahy (1997). For example, consider a GMM estimator based on mo-

ment conditions (9); the GMM estimator for δ = (α0, ψ0)
′ is the solution to (5) with

g (δ) = {Y exp (−Xψ0)− α0}S.

There are two choices of weight matrix Wn to consider. A ‘one-step’GMM estimator

δ̂1 is obtained by choosing an initial weight matrix such as Wn = n−1
∑

i SiS
′
i. The

‘two-step’GMM estimator δ̂2 is obtained using

Wn

(
δ̂1

)
= n−1

∑n
i=1 gi

(
δ̂1

)
g′i

(
δ̂1

)
,

that is, the weighting matrix Wn for the two-step GMM is estimated using the one-

step GMM estimator δ̂1. We will refer throughout to the one-step and two-step GMM

estimators as those obtained using Wn = n−1
∑

i SiS
′
i as the initial weight matrix.

Under standard regularity conditions, the limiting distributions of the one-step and

two-step GMM estimators are

n1/2
(
δ̂1 − δ0

)
d−→ N

{
0, (C ′0WC0)

−1
C0WΩ0WC0 (C ′0WC0)

−1
}

n1/2
(
δ̂2 − δ0

)
d−→ N

{
0, (C ′0Ω0C0)

−1
}
,

respectively, where δ0 is the true parameter value,
d−→ indicates convergence in distrib-

ution, N indicates a normally distributed random vector,

C0 = E

{
∂g (δ0)

∂δ′

}
,Ω0 = E {g (δ0)g

′ (δ0)} ,

andW = E(SiS
′
i) is the probability limit of the one-step GMM estimator’s weight matrix.

Chamberlain (1987) shows that the two-step GMM estimator is asymptotically effi -

cient because the instruments are mutually exclusive indicators that follow a multinomial

distribution. The GMM estimators based on (10) and (11) have the same asymptotic

distribution and effi ciency, but will differ in finite samples for over-identified models.
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A useful property of two-step GMM for over-identified models is that it admits the

use of the Hansen J -test for the validity of the moment conditions; see Hansen (1982).

The test statistic, and its limiting distribution under the null that the moment conditions

are valid, are given by

J
(
δ̂2

)
= n

{
n−1

∑n
i=1 g

′
i

(
δ̂2

)}
W−1
n

(
δ̂1

){
n−1

∑n
i=1 gi

(
δ̂2

)}
d−→ χ2q,

where χ2q indicates a chi-square random variable with q degrees of freedom, and q is the

number of parameters by which the model is over-identified (e.g. q = 1 in this illustration).

4.2 Logistic SMM

Under NEM, the logistic SMM for the two instruments is

logit{E(Y |X,Z1, Z2)} − logit{E(Y0|X,Z1, Z2)} = ψ0X,

and the saturated association model for E(Y |X,Z1, Z2) is specified as

expit{mβ(X,Z1, Z2)} = expit(β0 + β1X + β2Z1 + β3Z2 + β4XZ1 + β5XZ2). (12)

Denoting β̂ as the maximum likelihood estimator for the parameters of the association

model, it follows that

E{g(δ; β̂)} = E[{q(ψ0; β̂)− α0}S] = 0 (13)

where δ = (ψ0, α0)
′, q(ψ0;β) = expit{mβ (X,Z1, Z2)−Xψ0} and S = (1, Z1, Z2)

′. Point

estimation is carried out exactly as before, but standard error estimates obtained by

fixing β̂ and plugging it into the asymptotic covariance matrices presented above will

be biased because the first stage estimation of β is ignored. However, theory for ‘two-

stage’GMM estimators (2SGMM) has been developed by Gouriéroux et al. (1996). The

2SGMM δ̂1,β is the solution to (5) and its asymptotic distribution is

n1/2
(
δ̂1,β − δ0

)
d−→ N

{
0, (C ′0WC0)

−1
C0WΩ∗0WC0 (C ′0WC0)

−1
}
,
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where C0 and W are both defined as above, and Ω∗0 is the asymptotic variance of the

limiting normal distribution of

n−1/2
∑n

i=1 gi (δ0;β0) + E

{
∂g (δ0;β0)

∂β′

}
n1/2

(
β̂ − β0

)
,

which has the consistent estimator

nΩ̂∗ =
∑n

i=1 ĝiĝ
′
i + Ĝ′βV̂ (β̂)Ĝβ + Ĝ′βV̂ (β̂) (

∑n
i=1QiRiĝ

′
i) + (

∑n
i=1QiĝiR

′
i) V̂ (β̂)Ĝβ,

with ĝi = gi(δ̂1,β; β̂), Ĝβ =
∑

i ∂g
′
i(δ̂1,β; β̂)/∂β, V̂ (β̂) = (

∑
i p̂i (1− p̂i)RiR

′
i)
−1, Ri =

(1, Xi, Z1i, Z2i, XiZ1i, XiZ2i)
′, p̂i = expit{mβ̂(Xi, Zi1, Zi2)} and Qi = Yi − p̂i. Ω̂∗ is also

the weight matrix for the asymptotically effi cient two-step 2SGMM estimator, and so the

limiting distribution of the Hansen J -test statistic (with Wn = Ω̂∗) is also valid.

Vansteelandt and Goetghebeur (2003) developed estimating equations for the double-

logistic SMM by expanding its system of estimating equations to include those for the

association model. In the same spirit, a ‘joint’GMM estimator can be obtained by

applying the GMM estimator to

g (δ;β) =

(
[Y − expit {mβ (X,Z1, Z2)}]R

[expit{mβ (X,Z1, Z2)− ψ0X − α0]S

)
, (14)

where R is defined above and δ = (α0, ψ0)
′. Gouriéroux et al. (1996) show that the

asymptotic distributions of the 2SGMM and the joint GMM estimators are the same.

An important advantage of using the joint moments (14) is that standard GMM software

can be used to make asymptotically correct inferences about the target parameter ψ0.

Further details on how the gmm command in Stata and the gmm() function in R can be

used to implement these estimators are given in the Appendix.

4.3 A note on combining multiple intruments

The one-step GMM estimator combines multiple instruments in the following way. Note

that the GMM estimator is the solution to the first derivative of the objective function
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in (5) evaluated at zero. For the multiplicative SMM based on (9), this gives{
n−1

∑n

i=1

∂g′i (δ)

∂δ

}
W−1
n

{
n−1

∑n

i=1
gi (δ)

}
=

{
n−1

∑n

i=1

(
1

YiXi exp (−Xiψ0)

)
S′i

}
W−1
n

{
n−1

∑n

i=1
gi (δ)

}
= 0,

where gi (δ) = {Y exp(−Xψ0)− α0}S. This system can be expressed as

D′S (S ′S)
−1
S ′v = 0,

where D = {d′i} and S = {S′i} are matrices obtained by stacking the vectors d′i =

(1, YiXi exp (−Xiψ0)) and S
′
i, respectively, and v = {vi} is a column vector with elements

given by vi = Yi exp (−Xiψ0)−α0. It is thus apparent that the GMM estimator combines

the instruments in the projection S (S ′S)−1 S ′D, that is, the multiple instruments for

each individual are replaced by the linear projection of di onto the space spanned by S;

alternatively put, the combined instrumental variable can be thought of as the prediction

from a linear regression of di on the instruments Si.

For the binary variables case considered here, we have that

YiXi exp (−Xiψ0) = YiXi exp (−ψ0) (15)

and therefore the one-step GMM combination of instruments is equivalent to the simple

projection of Y X onto the space spanned by S.

It also follows that an equivalent one-step GMM estimate of ψ0 is obtained by specify-

ing moment conditions based on gi (ψ0) = Yi exp (−Xiψ0) S̃i, where S̃i =(
Zi1 − Z1, Zi2 − Z2

)′
and Zj is the sample average of Zj (j = 1, 2). This is the trans-

formation generally used for semi-parametric estimation of SMMs; see e.g. Vansteelandt

and Goetgebheur (2003).

The logistic SMM estimator also has the form of a linear projection of di onto the

space spanned by S, but here d′i =
(

1, qi(ψ0; β̂)
{

1− qi(ψ0; β̂)
}
Xi

)
. In fact, for both
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the multiplicative and logistic SMMs, these are the combinations of multiple instruments

as proposed by Bowden and Vansteelandt (2011).

In the simple set-up involving only binary variables, the one-step GMM estimator for

the multiplicative SMM can be expressed as a linear 2SLS estimator. Following Angrist

(2001), note that exp (−ψ0X) = (1−X) +X exp (−ψ0) and therefore

Y exp (−ψ0X)− α0 = Y (1−X) + Y X exp (−ψ0)− α0.

Hence, the moment conditions can be expressed as the linear (in exp (−ψ0)) moments

E[{Y (1−X) + Y X exp (−ψ0)− α0}]S = 0, (16)

from which we see that the one-step GMM estimator for exp (−ψ0) using moment condi-

tion (9) is identical to the 2SLS estimator from regressing Y (X − 1) on Ŷ X, where Ŷ X

are the predictions from the linear regression of Y X on S.

Multiplying (16) by the risk ratio exp (ψ0), we obtain

E[{Y X + Y (1−X) exp (ψ0)− γ0}S] = 0 (17)

where γ0 = α0 exp (ψ0). In this case, the same estimator as the one-step GMM estimator

for exp (ψ0) is obtained from a linear instrumental variable estimator where Y (X − 1) is

instrumented by Ŷ X. We will use this result later in Section 6 when deriving results for

Local Risk Ratios.

5 Monte Carlo Studies

5.1 Multiplicative SMM

We now present two Monte Carlo simulation studies to demonstrate the properties of

GMM estimators with multiple instruments. First, we consider the multiplicative SMM

by generating data from population model M1, which satisfies the multiplicative SMM
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under both the NEM and CMI restrictions. Population model M1 is defined so that

E (Y |X,Z1, Z2) = exp{β0 + (β1 + ψ0)X + β2Z1 + β3Z2 + β4XZ1 + β5XZ2},

where ψ0 = 0.6 is the treatment effect. To define the distribution of the observed data,

we further define Z to follow the marginal distribution given by P (Z = 1) = 0.3 and

P (Z = 2) = 0.2, and P (X = 1|Z = z) = p10+0.15×z for z = 0, 1, 2. To define the joint

distribution of the observed and potential outcomes, we set the expected treatment-free

outcome in the population to be α0 = E (Y0) = 0.19, which leads to α∗0 = logE (Y0) =

−1.6607 in moment conditions (10) and (11), and E (Y ) = 0.25, β1 = 0.15, β4 = −0.6

and β5 = 0.6. The other parameter values are then numerically found in order for CMI

and NEM to hold: β0 = −1.766, β2 = −0.1307, β3 = 0.0827 and p10 = 0.2321.

Table 1. Monte Carlo estimation results for multiplicative SMM
Single instrument Multipe Instruments

Instruments S 1, Z 1, Z1, Z2
Moment conditions (10) or (11) (10) (11)
One-Step GMM
α∗0 -1.6597 -1.6618 -1.6588

(.0844) (.0570) (.0570)
[.0844] [.0566] [.0566]

ψ0 0.6153 0.6122 0.6053
(.2177) (.1376) (.1371)
[.2163] [.1360] [.1355]

Two-Step GMM
α∗0 -1.6619 -1.6588

(.0570) (.0570)
[.0565] [.0565]

ψ0 0.6116 0.6045
(.1373) (.1369)
[.1358] [.1352]

Hansen J .9895 .9885
rej freq, 5% .0499 .0490
Notes: Sample size 10,000; means based on 10,000 Monte Carlo replications;
std. eror in brackets; means of estimated standard errors in square brackets;
data drawn from population model M1 as described in Section 5.1;
α∗0= −1.6607 and ψ0= 0.6.
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Table 1 presents some estimation results for 10, 000 samples of size 10, 000 drawn from

population model M1. Three different versions of the GMM estimator are applied: the

first column of Table 1 contains the results of the just-identified model using the multival-

ued instrument Z ∈ {0, 1, 2} as a single instrument so that S = (1, Z)′; in the second and

third columns, we present the one- and two-step GMM estimates for moment conditions

(10) and (11) respectivley, using multiple instruments so that S = (1, Z1, Z2)
′.

All of the estimators display a small positive bias for ψ0 = 0.6, and the mean estimated

standard errors are very close to the true standard errors. Among the two estimators

using multiple instruments, this bias is slightly larger for the estimator based on moment

condition (10). There is here a neglible gain in precision from using the two-step GMM

estimator as compared to the one-step estimator. However, there is a substantial gain

in effi ciency from using two instrumental variables rather than one, with the standard

error decreasing from 0.22 for the just-identified model to 0.14 for the two-step GMM

estimators. This is because the GMM projection (15) in this case is not linear in Z, even

though the conditional probablities P (X = 1|Z) are. More specifically, the coeffi cient

on Z2 in the regression of Y X on (1, Z1, Z2) from (15) is actually smaller than that of

Z1. Under this particular population model (but not generally) the relationship between

the coeffi cients is roughly linear: the average coeffi cient on Z1 is equal to 0.1067 and for

Z2 it equals 0.0557. Hence, a single instrument that takes the value 1 if Z = 2 and 2 if

Z = 1 leads to a just-identified estimator which is likely to be almost as effi cient as the

over-identified GMM estimators. Further simulations show that this is indeed the case,

with the just-identified estimator for ψ0 just described having an average of 0.6077 and a

standard error of 0.1375, which are both virtually identical to those of the over-identified

GMM estimators.

We repeated the analysis above for a similar design to M1 but with the instrument Z

taking the six values 0, 1, ..., 5; full details of this design are available from the authors.
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The GMM estimators are again well behaved. Using moment conditions (11), the mean

based on 10,000 Monte Carlo estimates using the two-step GMM estimator is 0.5966 with

a standard error 0.0801; the mean estimated standard error equals 0.0806. The rejection

frequency of the J -test is 5.1% at the 5% level.

Returning to the design with Z taking the values 0, 1, 2, we modify population model

M1 so as to study how the multiplicative GMM performs when Z does not satisfy the

key conditions of an instrumental variable. We do this by keeping all M1 parameters the

same but making the “instrument”Z1 invalid. This is done by specifying

E(Y |X,Z1, Z2) = exp{β0 + (β1 + ψ0)X + (β2 + φ)Z1 + β3Z2 + β4XZ1 + β5XZ2},

with φ = 0.15. The GMM estimators are now severely biased upwards. The mean based

on 10,000 Monte Carlo estimates of the two-step GMM estimator using moments (11) is

equal to 1.1191, with a standard error of 0.1681. The mean (variance) of Hansen’s J -test

is equal to 3.56 (3.70) with a rejection frequency at the 5% level of 34%. If instead we

change the coeffi cient on Z2 to β3 + 0.15, we get a much smaller bias, with the mean

(std. error) of the estimator equal to 0.6452 (0.1370), but the rejection frequency of the

J -test is now much larger, namely, 93% at the 5% level.

5.2 Logistic SMM

To consider the performance of the GMM estimators for the logistic SMM, we generate

data from population M2 satisfying the logistic SMM model and its corresponding NEM

and CMI identification restrictions. More specifically, the data are generated from

E (Y |X,Z1, Z2) = expit{β0 + (β1 + ψ0)X + β2Z1 + β3Z2 + β4XZ1 + β5XZ2},

where the treatment effect is again ψ0 = 0.6. Similarly to model M1, we set P (Z = 1) =

0.3, P (Z = 2) = 0.2,P (X = 1|Z = z) = p10 + 0.15 × z, E (Y0) = 0.19, E (Y ) = 0.25,

β1 = 0.15, β4 = −0.6 and β5 = 0.6. The other parameters are such that CMI and NEM

hold: β0 = −1.518, β2 = 0.3183, β3 = −0.5202, and p10 = 0.4404.
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Table 2. Monte Carlo estimation results for logistic SMM
Single instrument Multiple instruments

Instruments S 1, Z 1, Z1, Z2 1, Z1, Z2
Moment conditions Joint/2SGMM 2SGMM Joint-GMM
One-Step GMM
α0 0.1912 0.1905 0.1907

(.0168) (.0153) (.0153)
[.0167] [.0152] [.0152]

ψ0 0.5970 0.6033 0.6001
(.1905) (.1729) (.1731)
[.1899] [.1722] [.1721]

Two-Step GMM
α0 0.1904 0.1911

(.0153) (.0154)
[.0152] [.0152]

ψ0 0.6038 0.5957
(.1729) (.1735)
[.1722] [.1722]

Hansen J 0.9882 0.9827
rej-freq 5% 0.0503 0.0495
Notes: Sample size 10,000; means based on 10,000 Monte Carlo replications;
std. [error] in brackets; means of estimated standard errors in square brackets;
data drawn from population model M2 as described in Section 5.2;
α0= 0.19 and ψ0= 0.6.

Table 2 contains estimation results for 10, 000 samples of size 10, 000 drawn from

population model M2. Three different versions of the GMM estimator for the logistic

SMM are applied: the first column of Table 1 contains the results of the just-identified

model using multivalued Z as a single instrument; in the second column, we present the

one- and two-step GMM estimates for the 2SGMM using multiple instruments; and the

third column contains the corresponding results for the joint-GMM estimator based on

(14). Both the 2SGMM and joint-GMM estimators use saturated logistic models for β

as in (12)

All of the estimators are virtually unbiased and the means of the estimated standard

errors are close to Monte Carlo standard errors. There is an effi ciency gain from using the

instruments separately: the standard error in the just identified case is 0.1905, compared
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to 0.1729 for the 2SGMM estimator. The performances of the 2SGMM estimator and the

GMM estimator using the joint moment conditions are virtually identical. The Hansen

J -tests are well behaved in both cases. There is no effi ciency gain from using the two-step

GMM estimators as compared to the one-step estimators in this design.

As with the multiplicative SMM, we also find that the estimators behave well for

instruments with 6 or even 11 values, although we find that the 2SGMM estimator has

a small upward bias in the designs we considered. For example, for an instrument with

values 0, 1, 2, ..., 10, we get means (std. error) of the two-step GMM estimates of 0.6323

(0.1073) for 2SGMM and 0.5999 (0.1066) for the joint moments GMM estimator. Details

of this design are available from the authors.

Finally, we return to the design with Z taking the values 0, 1, 2, and modify population

modelM2 so as to study how these estimators perform when Z is not a valid instrumental

variable. We keep all parameters the same but make the “instrument”Z2 invalid, by

changeing the parameter of Z2 to β3 + τ with τ = 0.25. The GMM estimators are now

severely biased upwards. The mean of 10,000 Monte Carlo estimates of the two-step

GMM estimator using the joint moments (14) is equal to 1.2805, with a standard error

of 0.1511. However, in this case the mean (variance) of Hansen’s J -test is equal to 1.26

(3.09), with a rejection frequency at the 5% level of only 8.5%. In contrast, if we instead

change the parameter of Z1 to β2 + τ with τ = 0.1, the estimator has a much smaller

bias, with a mean of 0.5527 and standard error of 0.1660, but the J -test has much more

power in this case as it rejects 49.4% of the time at the 5% level.

6 Local Average Treatment Effects

The parameters of the SMMs we have considered thus far are all identified by the as-

sumption of no effect modification by the instruments (NEM). For the case where we

have two instruments Z1 and Z2, recall that the NEM assumption for the identification
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of the conditional causal relative risk is that

E(Y |X,Z1, Z2)
E(Y0|X,Z1, Z2)

= exp (ψ0X) ,

i.e., the instruments Z1 and Z2 do not modify the causal effect of X on the risk. In this

section, we consider how the failure of NEM impacts on GMM estimators for additive

and multiplicative SMMs with multiple instruments.

Clarke and Windmeijer (2010) review identification results concerning the additive

and multiplicative SMMs in the simple case of a single binary instrument where both X

and Y are also binary. If the NEM assumption fails then a causal effect is identified if

selection is ‘monotonic’. In this simple case, where Z is randomised treatment assignment

and X is the selected treatment, selection is monotonic if

P (X1 −X0 ≥ 0) = 1,

that is, subjects cannot defy their treatment assignments in every potential scenario,

so that {X1 = 0, X0 = 1} has zero probability. Under monotonicity, the additive SMM

estimator (4) identifies the ‘local average treatment effect’(LATE), and the multiplicative

SMM identifies the ‘local risk ratio’(LRR), where

LATE = E(Y1 − Y0|X1 > X0); LRR =
E(Y1|X1 > X0)

E(Y0|X1 > X0)
.

LATE is the average treatment effect for the subgroup of subjects who actually and

counterfactually accept the treatments to which they have been assigned, that is, X1 = 1

and X0 = 0; for this reason, these subjects are also known as ‘compliers’and LATE

is also known as the ‘complier average causal effect’(CACE). The logistic SMM does

not estimate a local causal effect when NEM fails, but for binary outcomes the local

odds ratio can be estimated by taking the ratio of LRR estimates obtained by fitting

multiplicative SMMs to binary Y and 1− Y .

If we have two instruments, then these instruments could in principle define two

different local causal effects, provided that the two instruments can be combined into a
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single multivalued instrument. We consider using the single K-valued instrument Z ∈

{0, 1, 2, ..., K − 1} for binary X. In this scenario, monotonic selection does not have the

convenient ‘no defiers’interpretation; instead, selection is monotonic if z > z̃ implies that

Xz ≥ Xz̃ with probability 1, for any two values z 6= z̃ of the instrument. From this, we

can define the analogue of (4) for z > z̃ as

βz,z̃ =
E(Y |Z = z)− E(Y |Z = z̃)

E(X|Z = z)− E(X|Z = z̃)
,

where βz,z̃ = E(Y1 − Y0|Xz > Xz̃) ≡ LATEz,z̃ under monotonicity.

The 2SLS estimator for the additive SMM is obtained as the OLS estimator from the

regression of Y on X̂, where X̂ is the prediction from the first-stage regression of X on

S = {1, Z1, ..., ZK−1}′ and Zk = I(Z = k). Let monotonicity hold and the values of Z

be ordered such that E (X|Z = k) > E (X|Z = k − 1). Imbens and Angrist (1994) show

that the 2SLS estimator is consistent for

βz =
K−1∑
k=1

µkβk,k−1

where

µk = {E(X|Z = k)− E(X|Z = k − 1)}
∑K−1

l=k {E(X|Z = l)− E(X)}πl∑K−1
l=0 E(X|Z = l){E(X|Z = l)− E(X)}πl

,

and πl = P (Z = l) such that 0 ≤ µk ≤ 1 and
∑K−1

l=1 µk = 1; see also Angrist and Imbens

(1995) and Angrist and Pischke (2009). In other words, when NEM fails but selection is

monotonic, the 2SLS estimator is not consistent for E(Y1−Y0|X = 1), but for a weighted

sum of local average treatment effects.

Alternatively, if we define

βk,0 =
E (Y |Z = k)− E (Y |Z = 0)

E (X|Z = k)− E (X|Z = 0)
,

then, following the proof given by Angrist and Imbens (1995), it is easily established that

βz =
K−1∑
k=1

λkβk,0,
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where

λk = {E(X|Z = k)− E(X|Z = 0)} {E(X|Z = k)− E(X)}πk∑K−1
l=0 E(X|Z = l){E(X|Z = l)− E(X)}πl

,

such that
∑K−1

l=1 λk = 1. However, in this case, βz is only a weighted average of the βk,0

(i.e., 0 ≤ λk ≤ 1) if E(X|Z = 1) > E(X).

We now extend this result to the multiplicative SMM and give an analogous result

for local risk ratios. In Section 4.3 we established that the one-step GMM estimator for

exp (−ψ0) using moment condition (9) was equivalent to a linear 2SLS estimator because

Y exp (−Xψ0)− α0 = Y (1−X) + Y X exp(−ψ0)− α0.

We can therefore straightforwardly generalise the above results of Imbens and Angrist

(1994) for the additive SMM to the multiplicative SMM for the inverse local risk ratio.

As above, let

e−βk,k−1 =
E{Y (X − 1)|Z = k} − E{Y (X − 1) |Z = k − 1}

E (Y X|Z = k)− E (Y X|Z = k − 1)
,

where

e−βk,k−1 =
E (Y0|Xk > Xk−1)

E (Y1|Xk > Xk−1)
≡ ILRRk,k−1,

is the inverse local risk ratio under monotonicity; see Angrist (2001). We then get

equivalent results to the above for the linear SMM, namely,

e−βz =
K−1∑
k=1

µke
−β
k,k−1,

where

µk = {E(Y X|Z = k)−E(Y X|Z = k−1)}
∑K−1

l=k {E(Y X|Z = l)− E(Y X)}πl∑K−1
l=0 E(Y X|Z = l){E(Y X|Z = l)− E(Y X)}πl

,

which is a weighted average if E (Y X|Z = k) > E (Y X|Z = k − 1).

For the local risk ratio, we use the results from Section 4.3 that the one-step GMM

estimator for exp (ψ0) can be obtained from a linear IV estimator in the additive SMM
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with Y X as the ‘outcome’and Y (X − 1) as the ‘treatment’, but with instruments a

constant and E(Y X|S). Let

eβk,k−1 =
E (Y X|Z = k)− E (Y X|Z = k − 1)

E{Y (X − 1)|Z = k} − E{Y (X − 1) |Z = k − 1} ,

where eβk,k−1 = E(Y1|Xk > Xk−1)/E(Y0|Xk > Xk−1) ≡ LRRk,k−1 under monotonicity. It

follows that

eβz =
K−1∑
k=1

τ ke
β
k,k−1,

where

τ k = {E (Y (X − 1) |Z = k)− E (Y (X − 1) |Z = k − 1)}

×
∑K−1

l=k {E(Y X|Z = l)− E(Y X)}πl∑K−1
l=0 E{Y (X − 1) |Z = l}{E(Y X|Z = l)− E(Y X)}πl

,

is a weighted average of local risk ratios if E(Y X|Z = k) > E(Y X|Z = k − 1) and

E {Y (X − 1) |Z = k} > E {Y (X − 1) |Z = k − 1}.

As an example, consider an instrument that takes the values Z = {0, 1, 2, 3}, with Y

and X generated form a bivariate normal distribution as

X = I(c0 + c1Z1 + c2Z2 + c3Z3 − V > 0),

Y = I(b0 + b1X − U > 0),(
U
V

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

with, as before, Zk = I(Z = k). Setting πl = P (Z = l) = 0.25 for all l; the cl parameters

are such that P (X = 1|Z = l) = 0.1 + 0.1 × l; b0 = Φ−1(0.4); b1 = 0.5 and ρ = 0.8.

The local risk ratios in this population are LRR1,0 = 1.1585, LRR2,1 = 1.3227 and

LRR3,2 = 1.5303; the population τ -weights are

τ 1 = 0.3725, τ 2 = 0.3991, τ 3 = 0.2285.

Clarke and Windmeijer (2010) show that the NEM assumption does not hold under this

design, and so the one-step GMM estimator based on moment conditions (9) identifies
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the weighted average τ 1 LRR1,0 +τ 2 LRR2,1 +τ 3 LRR3,2 = 1.3090. Table 3 presents some

estimation results confirming this, for a sample of size 40,000 and for 10,000 Monte Carlo

replications. Using the two-step GMM results, the Hansen J -test rejects the null 47%

of the time at the 5% level, therefore clearly having power to reject this violation of the

NEM assumption.

Table 3. Risk ratio estimation results

eβ1,0 eβ2,1 eβ3,2 eβz τ 1 τ 2 τ 3
mean 1.1644 1.3304 1.5415 1.3113 0.3726 0.3995 0.2279
st. dev. 0.0946 0.1213 0.1601 0.0377 0.0268 0.0321 0.0216
Notes: Estimation results from 10,000 MC replications. Sample size 40,000.

7 The Effect of Adiposity on Hypertension

Timpson et al. (2009) used multiple genetic instruments to estimate the causal effect of

adiposity on hypertension from the Copenhagen General Population Study; full details

of the variable definitions and selection criteria are given in that paper. We apply the

procedures described above to reanalyse these data using additive, multiplicative and

logistic SMMs, using the same genetic markers as instruments for adiposity. Furthermore,

our sample includes additional individuals who have been recruited into the study since

the previous study was published; the total number of individuals in our analyses is

55,523.

The binary outcome variable is an indicator of whether an individual has hypertension,

which is defined as a systolic blood pressure of >140 mmHg, diastolic blood pressure

of > 90 mmHg, or the taking of antihypertensive drugs. The intermediate adiposity

phenotype is being overweight, defined as having a BMI>25. The two Single Nucleotide

Polymorphisms (SNPs) that were used as instruments by Timpson et al. (2009) and that

have been consistently shown to relate to BMI and adiposity are the FTO (rs9939609)

and MC4R (rs17782313) loci; see Frayling et al. (2007) and Loos et al. (2008). Lawlor
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et al. (2008) provide further details on the use of genes as instruments in Mendelian

Randomisation studies.

FTO is specified as having three categories: no risk alleles (homozygous TT), one risk

allele (heterozygous AT) and two risk alleles (homozygous AA). Due to the nature of the

association betweenMC4R and adiposity (a dominant genetic model), MC4R is specified

as having two categories: no risk alleles (TT) versus one or two risk alleles (CT or CC).

Combining the two instruments together results in an instrument with 6 different values,

but we found that two pairs of combinations of alleles gave the same predicted value of

being overweight, also for the projection in the multiplicative SMM, and we therefore

condensed the number of values of the instrument to four. The combinations for the four

values are given in Table 4. Table 5 gives the frequency distributions for the hypertension

(Y ) and overweight (X) variables.

Table 4. Combinations of instruments
FTO MC4R Z Freq
0 0 0 0.20
0 1 1 0.15
1 0 1 0.27
1 1 2 0.21
2 0 2 0.09
2 1 3 0.07

Table 5. Frequency distributions for the hypertension (Y )
and overweight (X) variables
All Z = 0 Z = 1 Z = 2 Z = 3
X X X X X

Y 0 1 0 1 0 1 0 1 0 1
0 0.18 0.12 0.19 0.12 0.19 0.12 0.17 0.13 0.16 0.13
1 0.25 0.44 0.27 0.42 0.26 0.43 0.23 0.46 0.23 0.48

The estimation results for the linear, multiplicative and logistic SMM estimators are

presented in Table 6. The instrument set for the GMM estimators is S = (1, Z1, Z2, Z3)
′.

For the linear SMM, the 2SLS and two-step GMM estimates are virtually identical to
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the OLS estimate. As the F-statistic in the regression of overweight on S is equal to 113,

this is not due to a weak instrument problem and therefore indicates that there is no

unobserved confounding bias. The estimate of the risk difference is quite large and equal

to 0.20. The J -test does not reject the null of the validity of the model assumptions,

including the NEM assumption. We find similar results for the multiplicative and logistic

SMMs. There is no indication of biases due to unobserved confounding, as the GMM

estimates are virtually identical to the Gamma and the logistic regression estimates

respectively, and all estimates indicate that being overweight leads to hypertension. The

Gamma estimate for the risk ratio is equal to 1.3464 (95% CI, 1.3300-1.3630), whereas the

logistic regression odds ratio is equal to 2.5823 (95% CI, 2.4885-2.6797). We present and

compare the multiplicative SMM results to that of the Gamma with log link here, because

moment conditions (9)-(11) when using X as an instrument for itself are equivalent to

the first-order condition of the Gamma with log link GLM.

Table 6. SMM estimation results of the effect of being overweight on hypertension
Additive OLS 2SLS GMM2 J-test

ψ0
0.2009

(0.0039)
0.2091

(0.0819)
0.2094

(0.0819)
0.2965

Multiplicative Gamma GMM1 GMM2 J-test

ψ0
0.2974

(0.0063)
0.3090

(0.1192)
0.3104

(0.1192)
0.3071

Logistic Logistic regression GMM1 GMM2 J-test

ψ0
0.9487

(0.0189)
1.0409

(0.4220)
1.0528

(0.4217)
0.2924

Notes: Sample size 55,523. Gamma regression uses log link;
Multiplicative SMM uses moments (9);
logistic SMM uses joint moments (14); Instruments, S = {1, Z1, Z2, Z3};
Standard errors in brackets; p-values are reported for the J -test.

Although the J-test results do not indicate that the NEM assumptions are not valid,

we present in Table 7 the local risk ratio estimation results as described in Section 6.
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The most precisely estimated risk ratio is eβ2,1 = LRR2,1 which gets the largest weight,

τ 2 = 0.81.

Table 7. Local Risk Ratio estimation results

eβ1,0 eβ2,1 eβ3,2 eβz τ 1 τ 2 τ 3
Coeff 2.2065 1.1086 2.6935 1.3621 0.1037 0.8082 0.0881
95% CI 0.548-8.884 0.791-1.553 0.588-12.336 1.078-1.720
Sample Size 34,896 40,552 20,627 55,523

7.1 Continuous Exposure

Following Vansteelandt and Goetghebeur (2003), we can use the same GMM format to

estimate the logistic SMM with a continuous exposure X. With a continuous exposure,

parametric modelling assumptions have to be made in order to identify causal parameters.

As in Vansteelandt and Goetghebeur (2003) and Vansteelandt et al. (2011), we impose

that the exposure effect is linear in the exposure on the odds ratio scale and independent

of the instrumental variable:

odds (Y = 1|X,Z)

odds(Y0 = 1|X,Z)
= exp (ξ0X) ,

where odds (Y = 1|X,Z) = P (Y = 1|X,Z)/P (Y = 0|X,Z). Further, we specify the

association model as

logit {P (Y = 1|X,Z)} = logit {mβ(X,Z1, Z2, Z3)}

= β0 + β1X + β2Z1 + β3Z2 + β4Z3 + β5XZ1 + β6XZ2 + β7XZ3,

and estimate the parameters using the joint moment conditions as in (14).

For the continuous exposure we use
(
BMI −BMI

)
, 10

(
lnBMI − lnBMI

)
and

10 (lnRELBMI), where lnBMI is the natural logarithm of BMI, and lnRELBMI

are the residuals of the regression of lnBMI on sex, age, age squared, ln(height) and
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an age-sex interaction, as used in Timpson et al. (2009) to represent relative BMI. We

subtract the mean from BMI and lnBMI to ensure that zero exposure is part of the

data range. We further multiply the lnBMI and lnRELBMI by a factor 10 so that the

estimated odds ratio is for an increase in exposure of aproximately 10%.

Table 8 presents the two-step estimation results for the three exposure measures.

Again, we find a strong positive effect of adiposity on hypertension, with the effects of

lnBMI and lnRELBMI virtually identical.

Table 8. Estimation results for double-logistic SMM with continuous exposure
Exposure BMI lnBMI lnRELBMI

ξ0
0.1122

(0.0384)
0.3035

(0.1069)
0.2879

(0.1016)

J -test 0.4714 0.4828 0.5004

Notes: Sample size 55,523. Two-step GMM estimtates, using joint moments
(14). Instruments, S= {1, Z1, Z2, Z3}. BMI and lnBMI taken in
deviation from the mean. lnBMI and lnRELBMI multiplied by a factor 10.
Standard errors in brackets; p-values are reported for the J -test.

8 Conclusions

We have shown how the moment conditions that identify additive, multiplicative and

logistic SMMs can be formulated such that the causal parameters can be estimated

by a standard GMM estimator of the type widely used in econometrics. The key to

this formulation is simply to treat E (Y0) as a parameter to be estimated directly, from

which estimators using multivalued and multiple instrumental variables can be straight-

forwardly derived. For discrete instrumental variables, these estimators are consistent

and fully effi cient without having to centre the instruments, as is commonly done us-

ing other estimating equation-based approaches such as G-estimation. Another major

advantage is that standard GMM routines are available in statistical software packages.
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We give example Stata and R syntax in the Appendix below, for easy use by applied

researchers. These estimation routines provide correct asymptotic inference, even for the

logistic SMM when the two sets of model parameters are estimated jointly.

We have also found in some Monte Carlo analyses that the Hansen J -test has power to

detect violations of the CMI and NEM assumptions. Moreover, if the NEM assumption

fails and selection is monotonic, then we have shown that the one-step GMM estimator

for the multiplicative SMM is consistent for a weighted average of the instrument specific

local risk ratios.

Although we have concentrated on relatively simple SMMs in this paper, the class

of GMM estimators we propose enables effi cient estimation of a more general class of

SMMs where the treatment X is a random variable with a finite countable or compact

support, and pre-exposure covariates C are available. The GMM estimator can thus fit

generalised SMMs of the form

h{E(Y |X,Z,C)} − h{E(Y0|X,Z,C)} = ηψ(X,Z,C),

whereψ is the finite-dimensional SMMparameter, ηψ(X,Z,C) is subject to ηψ(0, Z,C) =

0; NEM for these models corresponds to the assumption that ηψ(X,Z,C) = ηψ(X,C).

Introducing further variables necessitates semi-parametric modelling assumptions to avoid

the curse of dimensionality. For example, introducing continuousX andC we may choose

the SMM ηψ(X,Z,C) = ψ0 +Xψ1 +X2ψ2 + I(X 6= 0)C′ψ3. For this model to hold, it

must be assumed that the covariates each have linear effects, and the exposure X has a

quadratic effect, on the scale of the link function h, and that the quadratic exposure effect

is the same given C. For double-logistic SMMs, this also necessitates semi-parametric

assumptions for the association model.

Tan (2010) notes that NEM is not crucial for identification in these more complex

scenarios, provided that alternative plausible semi-parametric assumptions are available

that identify the SMM parameters; see also Vansteelandt and Goetghebeur (2005). Tan
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(2010) also proposes alternative GMM estimators for generalised SMMs designed ex-

plicitly to address the problems posed by mis-specification of semi-parametric modelling

assumptions. Rather than using the standard GMM formulation from econometrics, he

constructs estimating equations that are doubly robust and applies classical results from

Hansen (1982). These GMM estimators are doubly robust in the sense of remaining

consistent if one but not both of the following user-specified models are mis-specified: a)

the instrument propensity score P (Z|C); and b) both the treatment propensity score

P (X|Z,C) and association model mβ(X,Z,C). The double robustness property is at-

tractive, but these estimators are not available in standard software, and further work is

required to explore fully, rather than locally, effi cient choices of weights for the estimating

equations.
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Appendix: Stata and R syntax

In this section we present example Stata (version 11) and R (version 2.13.1) syntax to

fit SMMs using generalised method of moments routines. Our example code uses the

notation of Y the outcome, X the exposure, and two instrumental variables, Z1, Z2, in

addition to the constant vector of 1s. Both syntaxes easily generalise to more instruments,

and allow different association models in the double logistic SMM.

In both Stata and R it is possible to specify analytic first derivatives, which we find

greatly reduces the time for the models to fit. Also both syntaxes allow the inclusion

of covariates. We have not included these extra syntaxes here but they are available on

request.

Stata syntax

The Stata syntax uses the gmm command; and {ey0} denotes E (Y0) the mean exposure

free potential outcome. After fitting each SMM using two-step estimation we perform the

Hansen over-identification test using the estat overid post-estimation command. The

gmm command automatically includes a vector of 1s as instruments to allow estimation of

the constant (E (Y0)) term, hence we just need to list z1 and z2 in the instruments()

option.

Additive SMM

Here {psi} denotes the causal effect (which is a risk difference for a binary outcome).

gmm (y - {ey0} - x*{psi}), instruments(z1 z2)
estat overid

This is equivalent to Stata’s built in ivregress command:

ivregress gmm y (x = z1 z2)
estat overid

Multiplicative SMM

Here {psi} denotes the log causal risk ratio, and hence we display the exponentiated

estimate using the lincom command with its eform option after fitting the model.

gmm (y*exp(-1*x*{psi}) - {ey0}), instruments(z1 z2)
lincom [psi]_cons, eform // causal risk ratio
estat overid
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We also give the Stata syntax for the alternative Multiplicative SMM moments. Here

{logey0} denotes log {E (Y0)} and so we additionally display the exponentiated form of

this parameter after fitting the model.

gmm (y*exp(-x*{psi} - {logey0}) - 1), instruments(z1 z2)
lincom [psi]_cons, eform // causal risk ratio
lincom [logey0]_cons, eform // E[Y(0)]
estat overid

Logistic SMM

Here {psi} denotes the log causal odds ratio. In the joint estimation we use the gmm

command’s linear predictor substitution syntax (we denote the linear predictor for the

association model by {xb:}). We collect the association and causal model parameter

estimates in a matrix called from, we then use these estimates as initial values in the

joint estimation. Also in the joint estimation we specify the winitial(unadjusted,

independent) option so that the moments are assumed to independent in the first step

of estimation. Note in Stata: invlogit(x) = expit(x) = ex/(1 + ex).

* generate interactions
gen xz1 = x*z1
gen xz2 = x*z2

* association model
logit y x z1 z2 xz1 xz2
matrix from = e(b)
predict xblog, xb

* causal model with incorrect SEs
gmm (invlogit(xblog - x*{psi}) - {ey0}), instruments(z1 z2)
matrix from = (from,e(b))

* joint estimation of association and causal models
gmm (y - invlogit({xb:x z1 z2 xz1 xz2} + {b0})) ///
(invlogit({xb:} + {b0} - x*{psi}) - {ey0}), ///
instruments(1:x z1 z2 xz1 xz2) ///
instruments(2:z1 z2) ///
winitial(unadjusted, independent) from(from)

lincom [psi]_cons, eform // causal odds ratio
estat overid

R syntax

The R syntax uses the gmm() function in the GMM package (Chaussé, 2010), which we

first load using library(gmm). After fitting each SMM using two-step estimation we

perform the Hansen over-identification test using the specTest() function. The R code
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assumes our data is in a matrix called data whose columns contain the values of the

variables Y , X, Z1, and Z2 in this order with column names "y", "x", "z1", "z2".

In this code we have specified the vcov="iid" option which assumes the moment

conditions are independent. We find specifying this option is necessary for the models

to converge on reasonably sized datasets. We also find that changing the optimization

algorithm used in the estimation through the method option can reduce the time it takes

the models to fit (we find the BFGS and L-BFGS-B methods are the fastest).

Additive SMM

Firstly we fit the Additive SMM using the gmm() function’s formula syntax for linear

models.

asmm <- gmm(data[,"y"] ~ data[,"x"], x=data[,c("z1","z2")], vcov="iid")
print(summary(asmm))
print(cbind(coef(asmm),confint(asmm))) # estimates and 95% CI
print(specTest(asmm))

We can also pass the moment conditions to gmm() using its function syntax. In order

to do this we first define a function asmmMoments() which returns the ASMM moments.

This function must have two arguments; the first of which theta denotes the vector of

parameters to be estimated, where theta[1] is E (Y0) and theta[2] is the causal risk

difference. The second argument x is the data matrix, the user must avoid confusion

here with the single variable X. In the gmm() function the t0 option specifies the initial

values of the parameter estimates. After we have fitted the model with the call to gmm()

we print out the model summary, then the estimates and their 95% CIs, and finally the

over-identification test using specTest().

asmmMoments <- function(theta,x){
# extract variables from x
Y <- x[,"y"]
X <- x[,"x"]
Z1 <- x[,"z1"]
Z2 <- x[,"z2"]
# moments
m1 <- (Y - theta[1] - theta[2]*X)
m2 <- (Y - theta[1] - theta[2]*X)*Z1
m3 <- (Y - theta[1] - theta[2]*X)*Z2
return(cbind(m1,m2,m3))

}

asmm2 <- gmm(asmmMoments, x=data, t0=c(0,0), vcov="iid")
print(summary(asmm2))
print(cbind(coef(asmm2),confint(asmm2))) # estimates and 95% CI
print(specTest(asmm2))
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Multiplicative SMM

We again use the gmm() function syntax to fit the Multiplicative SMM. Firstly we define

the function msmmMoments() to return the moments. After fitting the model we print

the model summary. Here theta[2] is the log causal risk ratio, and so we print the

exponentiated form of this parameter.

msmmMoments <- function(theta,x){
# extract variables from x
Y <- x[,"y"]
X <- x[,"x"]
Z1 <- x[,"z1"]
Z2 <- x[,"z2"]
# moments
m1 <- (Y*exp(- X*theta[2]) - theta[1])
m2 <- (Y*exp(- X*theta[2]) - theta[1])*Z1
m3 <- (Y*exp(- X*theta[2]) - theta[1])*Z2
return(cbind(m1,m2,m3))

}

msmm <- gmm(msmmMoments, x=data, t0=c(0,0), vcov="iid")
print(summary(msmm))
print(exp(cbind(coef(msmm), confint(msmm))[2,])) # causal risk ratio
print(cbind(coef(msmm), confint(msmm))[1,]) # E[Y(0)]
print(specTest(msmm))

We can also fit the alternative MSMM moments in the same way. Here theta[1]

denotes log {E (Y0)} and so we print out the exponentiated form of both estimates.

msmmAltMoments <- function(theta,x){
# extract variables from x
Y <- x[,"y"]
X <- x[,"x"]
Z1 <- x[,"z1"]
Z2 <- x[,"z2"]
# moments
m1 <- (Y*exp(-theta[1] - X*theta[2]) - 1)
m2 <- (Y*exp(-theta[1] - X*theta[2]) - 1)*Z1
m3 <- (Y*exp(-theta[1] - X*theta[2]) - 1)*Z2
return(cbind(m1,m2,m3))

}

msmm2 <- gmm(msmmAltMoments, x=data, t0=c(0,0), vcov="iid")
print(exp(cbind(coef(msmm2), confint(msmm2)))) # exponentiate estimates & 95% CI
print(specTest(msmm2))

Logistic SMM

In estimation of the logistic SMM, especially with the joint moments, it is important

to check that convergence has been reached, either by inspecting the model summary
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or checking that the model algoInfo$convergence attribute is equal to 0. If conver-

gence has not been reached a higher iteration limit (say 5000) can be specified in gmm()

through the option control=list(maxit=5000). Note in R qlogis(p) = log(p/(1 − p))
and plogis(x) = expit(x) = ex/(1 + ex).

First we fit the association model using the glm() function to fit the logistic regression.

Again we collect the parameter estimates and predicted values. We then fit the causal

model using the function cmMoments() to return its moment conditions. In this function

theta[1] denotes E (Y0) and theta[2] denotes the log causal odds ratio.

In the joint estimation the function lsmmMoments() returns the moment conditions.

In this function theta[1:6] are the coeffi cients in the association model, theta[7]

denotes E (Y0) and theta[8] denotes the log causal odds ratio.

# association model
am <- glm(y ~ x + z1 + z2 + x*z1 + x*z2, as.data.frame(data), fam=binomial)
print(summary(am))
amfit <- coef(am)
xblog <- qlogis(fitted.values(am))

# causal model with incorrect SEs
cmMoments <- function(theta,x){
# extract variables from x
X <- x[,"x"]
Z1 <- x[,"z1"]
Z2 <- x[,"z2"]
# moments
c1 <- (plogis(xblog - theta[2]*X) - theta[1])
c2 <- (plogis(xblog - theta[2]*X) - theta[1])*Z1
c3 <- (plogis(xblog - theta[2]*X) - theta[1])*Z2
return(cbind(c1,c2,c3))

}

cm <- gmm(cmMoments, x=data, t0=c(0,0), vcov="iid")
cmfit <- coef(cm)

lsmmMoments <- function(theta,x){
# extract variables from x
Y <- x[,"y"]
X <- x[,"x"]
Z1 <- x[,"z1"]
Z2 <- x[,"z2"]
XZ1 <- X*Z1
XZ2 <- X*Z2
# association model moments
xb <- theta[1] + theta[2]*X + theta[3]*Z1 + theta[4]*Z2 + theta[5]*XZ1 + theta[6]*XZ2
a1 <- (Y - plogis(xb))
a2 <- (Y - plogis(xb))*X
a3 <- (Y - plogis(xb))*Z1
a4 <- (Y - plogis(xb))*Z2
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a5 <- (Y - plogis(xb))*XZ1
a6 <- (Y - plogis(xb))*XZ2
# causal model moments
c1 <- (plogis(xb - theta[8]*X) - theta[7])
c2 <- (plogis(xb - theta[8]*X) - theta[7])*Z1
c3 <- (plogis(xb - theta[8]*X) - theta[7])*Z2
return(cbind(a1,a2,a3,a4,a5,a6,c1,c2,c3))

}

lsmm <- gmm(lsmmMoments, x=data, t0=c(amfit,cmfit), vcov="iid")
print(summary(lsmm))
print(cbind(coef(lsmm), confint(lsmm))[8]) # E[Y(0)]
print(exp(cbind(coef(lsmm), confint(lsmm))[-7,])) # exponentiate other estimates
print(specTest(lsmm))
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