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Abstract

This article investigates the consequences of population aging for

long-run economic growth perspectives. We introduce age specific het-

erogeneity of households into a model of research and development

(R&D) based technological change. We show that the framework in-

corporates two standard specifications as special cases: endogenous

growth models with scale effects and semi-endogenous growth models

without scale effects. The introduction of an age structured popula-

tion implies that aggregate laws of motion for capital and consump-

tion have to be obtained by integrating over different cohorts. It is

analytically shown that these laws of motion depend on the under-

lying demographic assumptions. Our results are that (i) increases in

longevity have positive effects on per capita output growth, (ii) de-

creases in fertility have negative effects on per capita output growth,

(iii) the longevity effect dominates the fertility effect in case of endoge-

nous growth models and (iv) population aging fosters long-run growth

in endogenous growth models, while the converse holds true in semi-

endogenous growth frameworks.

JEL classification: O41, J10, C61

Keywords: population aging, endogenous technological change, long-

run economic growth
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1 Introduction

Most recently, population aging in industrialized countries has been iden-

tified as one central issue regarding future economic development (see for

example Bloom et al., 2008; The Economist, 2009). While declining fertility

– even far below the replacement level – triggers increases in the mean age of

a certain population and slows down population growth, decreasing old age

mortality allows individuals to enjoy the benefits of retirement for longer

time periods (cf. United Nations, 2007; Eurostat, 2009). The consequences

of these developments are expected to be huge. To mention only the most

well known examples: support ratios will decline such that fewer and fewer

workers will have to carry the burden of financing more and more retirees

(see for example Gertler, 1999; Gruescu, 2007); overall productivity levels

will change because individual workers have age specific productivity profiles

and age decompositions of western societies will shift (see Skirbekk, 2008, for

an overview); the savings behavior of individuals will change because they

expect to live longer (see for example Heijdra and Ligthart, 2006; Heijdra

and Romp, 2008). However, as regards the implications of population aging

for per capita output growth in a setting with diminishing marginal prod-

ucts of capital, there are only transient effects of changing support ratios,

changing saving behavior of households and changing aggregate productiv-

ity profiles. The reason is that a shift from high to low fertility cannot

lead to a permanently changing age decomposition of a certain population

(cf. Preston et al., 2001) and the induced change in the savings behavior

of households has only level effects on per capita output (cf. Ramsey, 1928;

Solow, 1956).

In this paper we concentrate on the implications of population aging

for per capita output growth over a long time horizon. Since technological

progress has been identified as the main driving force behind economic pros-

perity (see for example Romer, 1990), we are particularly interested in the

effects of changing age decompositions on research and development (R&D)

intensity. Therefore the natural model class to examine our research ques-

tion are endogenous and semi-endogenous growth frameworks, where the

R&D effort is determined as the outcome of market forces within a general

equilibrium framework assuming utility maximizing households and profit

maximizing firms.
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Two other branches of the literature closely relate to our efforts. The

first one (see for example Reinhart, 1999; Futagami and Nakajima, 2001;

Petrucci, 2002) basically follows the Romer (1986) assumption that there

are knowledge spillovers in the production process and hence there are no

diminishing returns of capital in the aggregate production function. This as-

sumption allows them to even draw conclusions on the effects of demograph-

ically induced changes in individual savings behavior on long-run economic

growth performance. A very interesting recent contribution (Schneider and

Winkler, 2010) uses this framework to endogenize the rate of mortality and

and to analyze the welfare implications of individual health investments.

However, the knowledge spillover model of Romer (1986) has been criticized

because empirical evidence points towards diminishing marginal products

of capital (cf. Mankiw et al., 1992). Furthermore, one cannot analyze the

effects of aging on purposeful R&D within such a framework and, as we

will see later on, the transmission mechanism of the effects of aging on eco-

nomic growth differs to our approach because we allow for an age dependent

interest rate.

The second related branch to our work (see for example Kalemli-Ozcan

et al., 2000; Cervellati and Sunde, 2005; Hazan and Zoabi, 2006) focuses

on the implications of population aging on human capital accumulation and

basically states that an increase in the life expectancy of individuals renders

investments into human capital more profitable. Consequently, human capi-

tal accumulation increases which fosters economic growth via the particular

link these models establish between human capital accumulation and eco-

nomic development1. However, also these models do not consider the effects

of aging on purposeful R&D and therefore the transmission mechanism of

aging on economic growth is by its very nature different to ours.

Endogenous growth models with purposeful R&D investments (see for

example Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt,

1992) state that, aside from other influences, the population size of a certain

country is crucial for long-run economic development. Larger countries are

able to grow faster because there are more scientists to employ and these

countries have larger markets such that profit opportunities of firms engag-

ing in R&D are larger. The corresponding effect is called the scale effect

1There are various channels by which human capital accumulation can foster economic
growth (see for example Lucas, 1988; Galor and Weil, 2000).

3



which was questioned by Jones (1995) because it had not been supported by

empirical evidence. In setting up a scale-free model of technological change,

Jones (1995) paved the way for semi-endogenous growth models (see also for

example Kortum, 1997; Segerström, 1999), where long-run economic perfor-

mance is affected by population growth rather than population size. The

basic idea of semi-endogenous growth models is that developing a constant

share of new technologies becomes more and more complex with an expand-

ing technological frontier. Consequently, ever more resources have to be

devoted to R&D activities in order to sustain a certain pace of technological

progress.

Although the described models examine the effects of changes in demo-

graphic patterns as represented by population size and population growth,

they remain silent when it comes to the consequences of population aging

because they assume that economies are populated by representative in-

dividuals who live forever. We introduce age dependent heterogeneity of

individuals by generalizing these frameworks to account for finite individ-

ual planning horizons and overlapping generations in the spirit of Blanchard

(1985) in case of the endogenous growth paradigm and in the spirit of Buiter

(1988) in case of the semi-endogenous growth paradigm. In doing so we as-

sume that individuals do not live forever, instead they have to face a certain

probability of death at each instant. The standard endogenous and semi-

endogenous growth models are then special cases with the probability of

death being equal to zero.

Our results show that allowing for a more realistic demographic structure

in traditional endogenous and semi-endogenous growth models is desirable

because we can disentangle the growth effects of a changing population size

from those of a changing population age structure and thereby show that the

effects of population aging differ between the endogenous growth paradigm

and the semi-endogenous growth paradigm. Furthermore we can show that

the population age structure has a crucial impact on the interest rate and

therefore on the R&D intensity within the Romer (1990) framework.

The paper proceeds as follows: Section 2 describes a model that nests

the Romer (1990) and the Jones (1995) frameworks as special cases and

features a richer demographic structure. Section 3 examines the effects of

demographic change for long-run economic growth in both types of models.

Finally, section 4 draws conclusions and highlights scope for further research.
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2 The model

This section characterizes the basic model of endogenous R&D which relies

on horizontal innovations, i.e. on the development of new product varieties2.

It nests the Romer (1990) framework with strong spillovers in the research

sector and a constant population size as well as the Jones (1995) framework

with weaker spillovers in the research sector and a growing population size

as special cases (cf. Strulik, 2009).

2.1 Basic assumptions

The basic structure of our model economy is that there are three sectors: fi-

nal goods production, intermediate goods production and R&D. Altogether

the economy has two productive factors at its disposal: capital and labor.

Labor and machines are used to produce final goods in a perfectly competi-

tive market, capital and blueprints are used in the Dixit and Stiglitz (1977)

monopolistically competitive intermediate goods sector to produce machines

and labor is used to produce blueprints in the perfectly competitive R&D

sector.

In contrast to the representative agent assumption, we introduce over-

lapping generations in the spirit of Blanchard (1985) to the Romer (1990)

case, since there the population size has to stay constant, and in the spirit

of Buiter (1988) to the Jones (1995) case, since there the population size

has to grow. First of all we assume that the total population of an economy

consists of different cohorts that are distinguishable by their date of birth

denoted as t0. Each cohort consists of a measure N(t0, t) of individuals at a

certain point in time t > t0. In addition, we assume that individuals have to

face a constant risk of death at each instant which we denote as µ. Due to

the law of large numbers, this expression also denotes the fraction of indi-

viduals dying at each instant. In the Romer (1990) case the population does

not grow and therefore the period fertility rate3 is also equal to µ, whereas in

the Jones (1995) case the population grows at rate n = β − µ, where β > µ

denotes the period fertility rate. Note that demographic change can then be

analyzed by changing mortality and fertility separately in the Jones (1995)

2Using a model with vertical innovations would not change the results.
3In our demographic setting the period fertility rate is equivalent to the birth rate (cf.

Preston et al., 2001)
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case, while in the Romer (1990) case only the impacts of contemporaneous

proportional changes in both demographic parameters can be analyzed. In

the Jones (1995) framework decreases in fertility lead to both a slowdown

of population growth and to population aging, while decreases in mortality

only increase the population growth rate and have no effect on the aggregate

age decomposition (cf. Preston et al., 2001). In the Romer (1990) framework

contemporaneous proportional decreases in both mortality and fertility lead

to population aging, while leaving the population size constant.

2.2 Consumption side

Suppressing time subscripts, a certain individual maximizes its discounted

stream of lifetime utility

U =

∫ ∞
t0

e−(ρ+µ)(τ−t0) log(c)dτ, (1)

where ρ > 0 is the subjective time discount rate, the mortality rate µ > 0

augments the subjective time discount rate because individuals who face the

risk of death are less likely to postpone consumption into the future to the

same extent as in case of no lifetime uncertainty and c refers to individual

consumption of the final good. Note that we restrict our attention to the

case of logarithmic utility which simplifies the aggregation procedure con-

siderably and allows us to focus on the demographic aspects. Furthermore

we implement the assumption of Yaari (1965) that individuals insure them-

selves against the risk of dying with positive assets by using their whole

amount of savings to buy actuarial notes of a fair life-insurance company.

A fair life-insurance company basically redistributes wealth of individuals

who died among those who survived and therefore the real rate of return

on capital is augmented by the mortality rate. Consequently, the wealth

constraint of individuals reads

k̇ = (r + µ− δ)k + ŵ − c, (2)

where k refers to the individual capital stock, r is the rental rate of capital,

δ > 0 is the rate at which machines depreciate and ŵ represents non-interest

income consisting of wage payments and possible lump-sum redistributions.

Note that we assume an inelastic labor supply, i.e. each individual supplies
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all her available labor disregarding the wage rate. The left hand side of

the constraint denotes the change in the individual’s capital stock, while

the right hand side comprises total individual savings, i.e. capital income

and non-interest income net of consumption expenditures. Note that this

formulation implies that we refer to final goods as numéraire. Carrying

out utility maximization subject to the wealth constraint yields the familiar

individual Euler equation

ċ

c
= r − δ − ρ, (3)

stating that consumption expenditure growth is positive if and only if the

interest rate, r−δ, exceeds the time discount rate, ρ.4 However, our economy

does not feature only one single representative individual in this setting and

we have to use certain aggregation rules to come up with expressions for

aggregate consumption expenditure growth as well as laws of motion for

aggregate capital. This is done in subsection 2.2.1 for the Romer (1990)

case of a constant population and in subsection 2.2.2 for the Jones (1995)

case of a growing population.

2.2.1 Aggregation in case of a constant population

In our framework, agents are heterogeneous with respect to age and therefore

also with respect to accumulated wealth because older agents have had more

time to build up positive assets. In order to get to the law of motion for

aggregate capital and to the economy-wide (“aggregate”) Euler equation,

we have to apply the following rules to integrate over all cohorts alive at

time t (cf. Heijdra and van der Ploeg, 2002):

K(t) ≡
∫ t

−∞
k(t0, t)N(t0, t)dt0, (4)

C(t) ≡
∫ t

−∞
c(t0, t)N(t0, t)dt0. (5)

4Note that this Euler equation applies to all individuals disregarding their age. There-
fore either all individuals borrow or all individuals save. If all individuals were to borrow,
the capital stock would decrease and therefore the capital rental rate would increase until
r − δ ≥ ρ.
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By applying our demographic assumptions for the Romer (1990) case, we

can rewrite these rules as

C(t) ≡ µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0, (6)

K(t) ≡ µN

∫ t

−∞
k(t0, t)e

µ(t0−t)dt0 (7)

because in case of a constant population size N , each cohort is of size

µNeµ(t0−t) at a certain point in time t > t0
5. After carrying out the calcu-

lations described in the appendix, we arrive at the following expressions for

the law of motion of aggregate capital and for the aggregate Euler equation

K̇ = (r − δ)K(t)− C(t) + Ŵ (t), (8)

Ċ(t)

C(t)
= r − ρ− δ − µ(ρ+ µ)

K(t)

C(t)
, (9)

where we have that (ρ+µ)K(t)/C(t) = (C(t)− c(t, t)N)/C(t) which we de-

note by Ω. Note that average consumption in an economy is always higher

than consumption of newborns because newborns do not have any accumu-

lated financial wealth yet. Therefore aggregate consumption, C(t), which

can be written as the product of average consumption and the population

size, is always higher than consumption of the newborns multiplied by the

population size, c(t, t)N , and hence Ω ∈ [0, 1]. Consequently, aggregate

consumption expenditure growth will always be lower than individual con-

sumption expenditure growth. The reason is that at each instant, a fraction

µ of older and therefore wealthier individuals die and they are replaced by

poorer newborns. Since the latter can afford less consumption than the for-

mer, the turnover of generations slows down aggregate consumption expen-

diture growth as compared to individual consumption expenditure growth

(cf. Heijdra and van der Ploeg, 2002). Regarding the law of motion for ag-

gregate capital, we see that the mortality rate does not show up. The reason

is that the life insurance company only redistributes capital between cohorts

and does not itself create or subtract capital from the whole economy.

5Consequently, we have that
∫ t
−∞ µNe

µ(t0−t)dt0 = N holds for the total population
size at time t and due to our assumption of inelastic labor supply also for the size of the
workforce L ≡ N .
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2.2.2 Aggregation in case of a growing population

In case of the Jones (1995) model, population growth is allowed for. The

aggregation rules in such a setting remain the same as in the previous sub-

section but the demographic assumptions change because the period fertility

rate, i.e. the birth rate β, has to exceed the mortality rate µ. Therefore

the population grows at rate n = β − µ and we normalize the initial popu-

lation size to N(0), which is again equivalent to the initial workforce L(0).

Altogether we can then write the size of a cohort born at t0 < t at a certain

point in time as

N(t0, t) = βL(0)eβt0e−µt. (10)

Integrating over all cohorts alive yields the population size, i.e. the available

amount of labor at time t as

L(t) = L(0)e(β−µ)t. (11)

Therefore we can define the aggregate capital stock and aggregate consump-

tion according to

C(t) ≡ βL(0)e−µt
∫ t

−∞
c(t0, t)e

βt0dt0, (12)

K(t) ≡ βL(0)e−µt
∫ t

−∞
k(t0, t)e

βt0dt0. (13)

After carrying out the calculations described in the appendix, we arrive at

the aggregate law of motion for capital and the aggregate Euler equation

K̇ = (r − δ)K(t)− C(t) + Ŵ (t), (14)

Ċ

C
= r − ρ− δ + β

H(t)

K(t) +H(t)
− µ, (15)

where H(t) refers to aggregate human wealth. If we denote H(t)/(K(t) +

H(t)) as Ω′, we can immediately conclude that Ω′ ∈ [0, 1] holds and economy-

wide consumption expenditure growth differs from individual consumption

expenditure growth. Now the argument still holds that an increase in mor-

tality means that older and richer individuals die more frequently and their

replacement by newborns without financial wealth leads to a slowdown of
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aggregate consumption expenditure growth as compared to individual con-

sumption expenditure growth. However, there is an additional effect arising

from changes in fertility: A higher fertility rate leads to faster population

growth which spurs aggregate consumption expenditure growth as compared

to individual consumption expenditure growth. Note that the law of motion

for aggregate capital is the same as in case of a constant population size (cf.

Buiter, 1988).

2.3 Production side

Now we turn to the production side of our model economies. The final goods

sector produces the consumption aggregate with labor and intermediates as

inputs. To have a sensible economic interpretation, we refer to intermediate

varieties as differentiated machines. The production function of the final

goods sector can be written as

Y = L1−α
Y

∫ A

0
xαi di, (16)

where Y represents output of the consumption aggregate, i.e. the gross

domestic product (GDP) of a country, LY refers to labor used in final

goods production, A is the technological frontier, i.e. loosely speaking the

“number” of differentiated machines available, xi is the amount of a cer-

tain specific machine i used in final goods production and α ∈ [0, 1] is the

intermediate input share. Profit maximization and the assumption of per-

fect competition in the final goods sector imply that factors are paid their

marginal products

wY = (1− α)
Y

LY
, (17)

pi = αL1−α
Y xα−1

i , (18)

where wY refers to the wage rate paid in the final goods sector and pi to

prices paid for intermediate inputs.

The intermediate goods sector is monopolistically competitive in the

spirit of Dixit and Stiglitz (1977) such that each firm produces one of the

differentiated machines. In doing so, it has to purchase one blueprint from

the R&D sector and afterwards employ capital as variable input in produc-

tion. The costs of blueprints represent fixed costs to each firm. Free entry
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ensures that operating profits equal fixed costs such that overall profits are

zero6. After an intermediate goods producer has purchased a blueprint, it

can transform one unit of capital into one unit of the intermediate good, i.e.

we have that ki = xi. Thus operating profits can be written as

πi = piki − rki
= αL1−α

y kαi − rki. (19)

Profit maximization of firms yields prices of machines

pi =
r

α
, (20)

where 1/α is the markup over marginal cost (cf. Dixit and Stiglitz, 1977).

Note that this holds for all firms, so we can drop the index i from now on

due to symmetry. The aggregate capital stock is equal to the amount of all

intermediates produced, i.e. K = Ax, such that equation (16) becomes

Y = (ALY )1−αKα (21)

and we immediately see that technological progress is labor augmenting.

The R&D sector employs scientists to discover new blueprints. Depend-

ing on the productivity of scientists, λ, and the size of technology spillovers,

φ, the number of blueprints evolves according to

Ȧ = λAφLA, (22)

where LA denotes the amount of scientists employed. Consequently, the

technological frontier expands faster if scientists are more productive or

technological spillovers are higher7. If φ = 1, spillovers are strong enough

such that developing a constant fraction of new blueprints does not become

ever more difficult as the technological frontier expands. If, in contrast,

φ < 1, the spillovers are insufficiently low and developing a constant frac-

tion of new blueprints becomes more and more difficult with an expanding

6If positive overall profits were present, new firms would enter the market until these
profits had vanished.

7Note that we do not allow for the possibility of duplication in the research process for
the sake of comparability between the Romer (1990) model and the Jones (1995) model.
However, allowing different researchers to develop the same blueprint would not change
our results.
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technological frontier8. In the former case our economy behaves like in the

Romer (1990) scenario, whereas in the latter case our economy behaves like

in the Jones (1995) scenario. Furthermore, there is perfect competition in

the research sector such that firms maximize

max
LA

πA = pAλA
φLA − wALA, (23)

with πA being the profit of a firm in the R&D sector and pA representing

the price of a blueprint. The first order condition pins down wages in the

research sector to

wA = pAλA
φ. (24)

The interpretation of this equation is straightforward: wages of scientists

increase in their productivity as well as in the prices of blueprints. If φ = 1,

an expanding technological frontier gradually increases wages of scientists,

whereas φ < 1 means that the increases in scientist’s wages caused by tech-

nological progress become smaller and smaller. Since the wages of workers

in the final goods sector linearly increase in A, this implies that being a

scientist would become less and less attractive.

2.4 Market clearing

There is perfect labor mobility between sectors, therefore wages of final

goods producers and wages of scientists equalize. The reason is that workers

in the final goods sector and scientists do not differ with respect to education

nor with respect to productivity. Consequently, if wages were higher in one

of these two sectors, it would attract workers from the other sector until

wages are equal again. Therefore we can insert (17) into (24) to get to

following equilibrium condition

pAλA
φ = (1− α)

Y

LY
. (25)

Firms in the R&D sector can charge prices of blueprints that are equal to the

present value of operating profits in the intermediate goods sector because

there is always a potential entrant who is willing to pay that price due to

8This can easily be shown by dividing equation (22) by the technological frontier A.
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free entry. Therefore we have

pA =

∫ ∞
t0

e−(R(τ)−R(t0))π dτ, (26)

where R(t0) =
∫ t0

0 (r(s)− δ) ds, i.e. the discount rate is the market interest

rate paid for household’s savings. Via the Leibniz rule and the fact that

prices of blueprints do not change along a balanced growth path (BGP), we

can obtain

pA =
π

r − δ
(27)

such that these prices are equal to operating profits of intermediate goods

producers divided by the market interest rate9. Next, we obtain profits by

using equation (19) as

π = (1− α)α
Y

A
(28)

such that equation (27) becomes

pA =
(1− α)αY

(r − δ)A
. (29)

Assuming that labor markets clear, i.e. L = LA+LY , we can determine the

amount of labor employed in the final goods sector and in the R&D sector

by using equation (25):

LY =
(r − δ)A1−φ

αλ
,

LA = L− (r − δ)A1−φ

αλ
. (30)

The interpretation of these two equations is straightforward: the higher the

market interest rate on capital, r − δ, the higher are the opportunity costs

of R&D investments and consequently, the lower is the number of scientists

in the R&D sector and the higher is the number of workers employed in the

final goods sector; the higher the productivity of researchers, λ, the more

scientists in the R&D sector and the less workers in the final goods sector are

employed; if knowledge spillovers φ are insufficiently low to prevent R&D

9Note that we cannot analyze transitional dynamics in this framework. Instead, as
in Romer (1990), the capital stock is assumed to be on its BGP level right from the
beginning.
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from becoming ever more complex, an expanding technological frontier A re-

duces employment of scientists in the R&D sector and increases employment

of workers in the final goods sector; finally, an increase in the intermediate

share of final output, α, increases the number of scientists in the R&D sec-

tor and decreases the number of workers in the final goods sector because

production of final output becomes less labor intensive. Inserting (30) into

(22) leads to the evolution of technology:

Ȧ = λAφL− (r − δ)A
α

, (31)

where we see that the technological frontier expends faster, the larger the

population size is. All factors identified above to reduce the amount of sci-

entists employed in the R&D sector also reduce the pace of technological

progress. From now on we have to distinguish between the Romer (1990)

case, where technological spillovers are strong and the population size is con-

stant, and the Jones (1995) case, where technological spillovers are weaker

and the population grows at rate n10.

3 Effects of demographic change on economic

growth

This section is devoted to deriving the per capita growth rates of output

along a BGP in the Romer (1990) and the Jones (1995) case and to analyze

the effects of demographic change in these different frameworks.

3.1 The BGP growth rate in the Romer (1990) case

After implementing the central assumption φ = 1 of the Romer (1990)

model, the growth rate of the economy can be written as

g = λL− r − δ
α

(32)

because we know that along a BGP we have Ȧ/A = Ċ/C = K̇/K = g.

To eliminate the endogenous market rate of return on capital we use the

10Note that our assumption ṗA = 0 implies a constant interest rate r along the BGP.
Therefore we cannot analyze the equilibrium growth rate in the Jones (1995) case by using
equation (31). Instead, we use a slightly different approach to calculate the BGP growth
rate in the Jones (1995) case which is outlined in the appendix.
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aggregate Euler equation for a constant population size to get the following

expression

r = g + ρ+ δ + µ(ρ+ µ)
K

C
. (33)

However, in contrast to a setting with a representative infinitely lived agent,

there is still an unknown expression to account for, namely K/C. Therefore

we rewrite the law of motion of aggregate capital as K̇ = Y −C − δK such

that we get the additional equation

g =
r

α2
− C

K
− δ, (34)

where we used that Y/K = r/α2. Altogether we therefore have three equa-

tions to solve for the three unknowns g, r and ξ = C/K.11 Since we are

interested in analyzing the BGP growth rate of the economy, we focus our

attention on its solution which is

gBGPR =
α(Lλ(1 + α)− ρ− δα) + δ

2α(α+ 1)

−
√

4µ(µ+ ρ)α3 + ((α− 1)(αδ + δ + Lαλ)− αρ)2

2α(α+ 1)
, (35)

where the subscript refers to the Romer (1990) case. Now we can state the

first central result:

Proposition 1. In case of endogenous growth in the spirit of Romer (1990),

increasing longevity has a positive effect on the BGP growth rate of an econ-

omy.

Proof. The derivative of equation (35) with respect to mortality is equal to

∂gBGPR

∂µ
= − α2(2µ+ ρ)

(α+ 1)
√

4µ(µ+ ρ)α3 + ((α− 1)(αδ + δ + Lαλ)− αρ)2

We know that α, µ and ρ are positive and the second term under the square

root in the denominator is always nonnegative. Therefore the whole ex-

11We solved the system using Mathematica. The corresponding file is available upon
request. Note that there are two solution triples for g, r, and ξ. However, as one of them
features a negative ξ, it can be ruled out by economic arguments because neither the
aggregate capital stock nor aggregate consumption can become negative. We therefore
restrict our attention to the economically meaningful solution triple.
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pression is negative and due to the fact that an increase in longevity is

represented by a decrease in mortality µ, the proposition holds.

The intuition for this finding is that a decrease in mortality slows down

the turnover of generations and so a lower market interest rate is required to

sustain a given growth rate of aggregate consumption expenditures. Due to

the fact that future profits of R&D investments are discounted with this mar-

ket interest rate, the profitability of R&D investments rises. Consequently,

R&D efforts increase which fosters long-run growth because intertemporal

knowledge spillovers in the Romer (1990) case are high enough for the effect

to be sustainable.

3.2 The BGP growth rate in the Jones (1995) case

To come up with the BGP growth rate in the Jones (1995) case denoted

as gBGPJ , we search for an expression where the growth rate of technology

is constant and carry out the associated calculations in the appendix. This

leads us to

gBGPJ =
β − µ
1− φ

(36)

and therefore we can state the second central result:

Proposition 2. In case of semi-endogenous growth in the spirit of Jones

(1995), increasing longevity raises the BGP growth rate of an economy.

Proof. The derivative of equation (36) with respect to mortality is equal to

∂gBGPJ

∂µ
= − 1

1− φ

which is unambiguously negative because φ < 1 is a central assumption

in the Jones (1995) case. As an increase in longevity is represented by a

decrease in mortality µ, the proposition holds.

The interpretation for this finding is that a decrease in mortality, while

holding fertility constant, leads to an increase in the population growth

rate. This represents a permanent increase in the flow of scientists devoted

to R&D and therefore a faster growth rate of the number of patents can be

sustained. Of course, the same holds true for increasing fertility:
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Proposition 3. In case of semi-endogenous growth in the spirit of Jones

(1995), increasing fertility raises the BGP growth rate of an economy.

Proof. The derivative of equation (36) with respect to fertility is equal to

∂gBGPJ

∂µ
=

1

1− φ

which is unambiguously positive because φ < 1 is a central assumption in

the Jones (1995) case.

The interpretation for this finding is analogous to the interpretation of

proposition 2. Increasing fertility, while holding mortality constant, leads to

an increase in the population growth rate and therefore to a growing number

of scientists devoted to R&D activities.

The interesting fact is that in the Romer (1990) model a decrease in mor-

tality is accompanied by a decrease in fertility. Both effects offset each other

with regards to population growth such that the population size stays con-

stant as in the standard Romer (1990) framework. This allows us to conclude

that the benefits of decreasing mortality for economic growth overcompen-

sate the drawbacks of decreasing fertility. The reason is that decreasing

mortality not only changes the population growth rate but also decreases

the market interest rate by which future profits of R&D investments are

discounted. This leads to a shift of resources into R&D and consequently

fosters per capita output growth. We summarize this finding in the following

remark:

Remark 1. In case of endogenous growth in the spirit of Romer (1990),

the benefits of decreasing mortality overcompensate the drawbacks of similar

decreases in fertility for long-run economic growth perspectives.

Furthermore, we know that population aging is described by contem-

poraneous proportional decreases in fertility and mortality in the Romer

(1990) case, whereas population aging is described by decreases in fertility

only in the Jones (1995) case. Therefore we have that population aging has

a positive impact on long-run economic growth if endogenous growth mod-

els are the accurate description of underlying growth processes, whereas the

converse holds true for semi-endogenous growth models. We summarize this

finding in the following proposition:
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Proposition 4. In case of endogenous growth in the spirit of Romer (1990),

population aging has positive impacts on the long-run economic growth rate,

while in in case of semi-endogenous growth in the spirit of Jones (1995),

population aging has negative impacts on the long-run economic growth rate.

Proof. The proof follows immediately from propositions 1 and 3 and the

fact that population aging is represented by a decrease in µ in the Romer

(1990) model and by a decrease in β in the Jones (1995) model.

Altogether, we have been able to describe some important impacts of

demographic change on economic development. In general, decreases in fer-

tility negatively impact upon long-run growth, whereas decreasing mortality

fosters long-run growth. The effects of population aging depend on the un-

derlying model used to describe the growth process. While population aging

is beneficial in the Romer (1990) case, the converse holds true in a Jones

(1995) environment.

4 Conclusions

We set up a model of endogenous technological change that nests the Romer

(1990) and the Jones (1995) frameworks. We generalized this model by in-

troducing finite individual planning horizons and thereby allowing for over-

lapping generations and heterogeneous individuals. Altogether we showed

that the underlying demographic assumptions play a crucial role in describ-

ing the research and development (R&D) intensity and thereby the long-run

growth rates of industrialized economies.

Our results regarding the impacts of demographic change on long-run

economic growth perspectives have been the following: (i) decreasing mor-

tality positively affects long-run growth, (ii) decreasing fertility negatively

affects long-run growth, (iii) the negative effects of decreases in fertility are

overcompensated by the positive effects of decreases in mortality in case

of the Romer (1990) model, (iv) population aging is beneficial for long-run

economic growth in the Romer (1990) case, whereas it hampers economic

growth in the Jones (1995) case.

From an applied perspective, our conclusion is that currently ongoing

demographic changes do not necessarily hamper technological progress and

therefore economic prosperity. If both demographic parameters fertility and
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mortality decrease simultaneously, there might only be modest effects on

long-run growth. There are some studies that support such a finding (cf.

Bloom et al., 2008, 2010). If we believe that the Romer (1990) model is

an accurate description of the growth process of western economies, demo-

graphic change induced by contemporaneous decreases in fertility and mor-

tality could even be associated with increasing investments into knowledge

creation and therefore faster economic growth.

Finally, we can state that there is scope for further research because

a constant mortality rate is still at odds with reality so one could try to

introduce age dependent mortality rates. Another promising field for addi-

tional investigations could be to introduce heterogeneity of researchers with

respect to age. These issues are on top of our research agenda.
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Appendix

The individual Euler equation with aging: The current value Hamil-

tonian is

H = log(c) + λ [(r + µ− δ)k + ŵ − c] .

The first order conditions are:

∂H

∂c
=

1

c
− λ !

= 0

⇒ 1

c
= λ (A.1)

∂H

∂k
= (r + µ− δ)λ !

= (ρ+ µ)λ− λ̇

⇒ λ̇ = (ρ+ δ − r)λ. (A.2)

Taking the time derivative of equation (A.1) and plugging it into equation

(A.2) yields

ċ

c
= r − ρ− δ

which is the individual Euler equation.

Aggregate capital and aggregate consumption in the Romer (1990)

case: Following Heijdra and van der Ploeg (2002) and differentiating equa-

tions (6) and (7) with respect to time yields

Ċ(t) = µN

[∫ t

−∞
ċ(t0, t)e

µ(t0−t)dt0 − µ
∫ t

−∞
c(t0, t)e

µ(t0−t)dt0

]
+ µNc(t, t)− 0

= µNc(t, t)− µC(t) + µN

∫ t

−∞
ċ(t0, t)e

−µ(t−t0)dt0 (A.3)

K̇(t) = µN

[∫ t

−∞
k̇(t0, t)e

µ(t0−t)dt0 − µ
∫ t

−∞
k(t0, t)e

µ(t0−t)dt0

]
+ µNk(t, t)− 0

= µN k(t, t)︸ ︷︷ ︸
=0

−µK(t) + µN

∫ t

−∞
k̇(t0, t)e

−µ(t−t0)dt0. (A.4)
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From equation (2) it follows that

K̇(t) = −µK(t) + µN

∫ t

−∞
[(r + µ− δ)k(t0, t) + ŵ(t)− c(t0, t)] e−µ(t−t0)dt0

= −µK(t) + (r + µ− δ)µN
∫ t

−∞
k(t0, t)e

−µ(t−t0)dt0

−µN
∫ t

−∞
c(t0, t)e

−µ(t−t0)dt0 +N

(
µŵe−µ(t−t0)

µ

)t
−∞

= −µK(t) + (r + µ− δ)K(t)− C(t) + Ŵ (t)

= (r − δ)K(t)− C(t) + Ŵ (t)

which is the aggregate law of motion for capital. Reformulating an agent’s

optimization problem subject to its lifetime budget restriction, stating that

the present value of lifetime consumption expenditures have to be equal to

the present value of lifetime non-interest income plus initial assets, yields

the optimization problem

max
c(t0,τ)

U =

∫ ∞
t

e(ρ+µ)(t−τ) log(c(t0, τ))dτ

s.t. k(t0, t) +

∫ ∞
t

ŵ(τ)e−R
A(t,τ)dτ =

∫ ∞
t

c(t0, τ)e−R
A(t,τ)dτ,

(A.5)

where RA(τ, t) =
∫ τ
t (r(s)+µ−δ)ds. The FOC to this optimization problem

is
1

c(t0, τ)
e(ρ+µ)(t−τ) = λ(t)e−R

A(t,τ).

In period (τ = t) we have

c(t0, t) =
1

λ(t)
.

Therefore we can write

1

c(t0, τ)
e(ρ+µ)(t−τ) =

1

c(t0, t)
e−R

A(t,τ)

c(t0, t)e
(ρ+µ)(t−τ) = c(t0, τ)e−R

A(t,τ).
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Integrating and using equation (A.5) yields∫ ∞
t

c(t0, t)e
(ρ+µ)(t−τ)dτ =

∫ ∞
t

c(t0, τ)e−R
A(t,τ)dτ

c(t0, t)

ρ+ µ

[
−e(ρ+µ)(t−τ)

]∞
t

= k(t0, t) +

∫ ∞
t

ŵ(τ)e−R
A(t,τ)dτ︸ ︷︷ ︸

h(t)

⇒ c(t0, t) = (ρ+ µ) [k(t0, t) + h(t)] , (A.6)

where h refers to human wealth, i.e. non-interest wealth, of individuals. Hu-

man wealth does not depend on the date of birth because productivity and

lump-sum transfers are age independent. The above calculations show that

optimal consumption in the planning period is proportional to total wealth

with a marginal propensity to consume of ρ + µ. Aggregate consumption

evolves according to

C(t) ≡ µN

∫ t

−∞
c(t0, t)e

µ(t0−t)dt0

= µN

∫ t

−∞
eµ(t0−t)(ρ+ µ) [k(t0, t) + h(t)] dt0

= (ρ+ µ) [K(t) +H(t)] . (A.7)

Note that newborns do not own capital because there are no bequests.

Therefore

c(t, t) = (ρ+ µ)h(t) (A.8)
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holds for each newborn individual. Putting equations (3), (A.3), (A.7) and

(A.8) together yields

Ċ(t) = µ(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)] +

µN

∫ t

−∞
(r − ρ− δ)c(t0, t)e−µ(t−t0)dt0

= µ(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)] + (r − ρ− δ)C(t)

⇒ Ċ(t)

C(t)
= r − ρ− δ +

µ(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)]

C(t)

= r − ρ− δ − µ(ρ+ µ)
K(t)

C(t)

= r − ρ− δ − µ C(t)− c(t, t)N
C(t)︸ ︷︷ ︸
∈(0,1)

which is the aggregate Euler equation that differs from the individual Euler

equation by the term −µC(t)−c(t,t)N
C(t) .

Aggregate capital and aggregate consumption in the Jones (1995)

case: Using our demographic assumptions we can write the size of a cohort

born at t0 < t at time t as

N(t0, t) = βL(t0)e−µ(t−t0)

= βL(0)ent0e−µ(t−t0)

= βL(0)eβt0e−µt.

Integrating over all cohorts yields the population size as

L(t) =

∫ t

−∞
βL(0)eβt0e−µtdt0

= L(0)e(β−µ)t.
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Following Buiter (1988) and differentiating equations (12) and (13) with

respect to time yields:

Ċ(t) =

[∫ t

−∞
βL(0)e−µtċ(t0, t)e

β(t0) − µβL(0)e−µtc(t0, t)e
βt0dt0

]
+ βL(0)e−µtc(t, t)eβt − 0

= βL(0)e−µtc(t, t)eβt − µC(t) + βL(0)e−µt
∫ t

−∞
ċ(t0, t)e

βt0dt0

(A.9)

K̇(t) =

[∫ t

−∞
βL(0)e−µtk̇(t0, t)e

β(t0) − µβL(0)e−µtk(t0, t)e
βt0dt0

]
+ βL(0)e−µtk(t, t)eβt − 0

= βL(0)e−µt k(t, t)︸ ︷︷ ︸
=0

eβt − µK(t) + βL(0)e−µt
∫ t

−∞
k̇(t0, t)e

βt0dt0.

(A.10)

From equation (2) it follows that

K̇(t) = −µK(t) + βL(0)e−µt
∫ t

−∞
[(r + µ− δ)k(t0, t) + ŵ(t)− c(t0, t)] eβt0dt0

= −µK(t) + (r + µ− δ)βL(0)e−µt
∫ t

−∞
k(t0, t)e

βt0dt0

−βL(0)e−µt
∫ t

−∞
c(t0, t)e

βt0dt0 + L(0)e−µt
(
βŵ(t)eβt0

β

)t
−∞

= −µK(t) + (r + µ− δ)K(t)− C(t) + Ŵ (t)

= (r − δ)K(t)− C(t) + Ŵ (t)

which is the aggregate law of motion for capital. Note that the definition of

aggregate non-interest income is Ŵ (t) = L(0)ŵ(t)eβ−µ. By making use of

equation (A.6), we can write aggregate consumption as

C(t) ≡ βL(0)e−µt
∫ t

−∞
c(t0, t)e

βt0dt0

= βL(0)e−µt
∫ t

−∞
eβt0(ρ+ µ) [k(t0, t) + h(t)] dt0

= (ρ+ µ)K(t) + βL(0)e−µt(ρ+ µ)

∫ t

−∞
eβt0h(t)dt0

= (ρ+ µ) [K(t) +H(t)] . (A.11)
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Note that the following definitions apply: K(t) = βL(0)e−µt
∫ t
−∞ e

βt0k(t0, t)dt0

and H(t) = L(0)e(β−µ)th(t). Newborns do not own capital because there

are no bequests, therefore

c(t, t) = (ρ+ µ)h(t) (A.12)

holds for each newborn individual. Putting equations (3), (A.9), (A.11) and

(A.12) together yields

Ċ(t) = β(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)] +

βL(0)e−µt
∫ t

−∞
(r − ρ− δ)c(t0, t)eβt0dt0

= β(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)] + (r − ρ− δ)C(t)

⇒ Ċ(t)

C(t)
= r − ρ− δ +

β(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)]

C(t)

= r − ρ− δ +
β(ρ+ µ)H(t)− µ(ρ+ µ) [K(t) +H(t)]

(ρ+ µ) [K(t) +H(t)]

= r − ρ− δ + β
H(t)

K(t) +H(t)︸ ︷︷ ︸
Ω′∈(0,1)

−µ

which is the aggregate Euler equation that differs from the individual Euler

equation by the term β H(t)
K(t)+H(t) − µ.

Operating profits for intermediate goods producers: Profits of in-

termediate goods producers can be obtained via equation (19) as

π =
r

α
x− rx

= (1− α)α
Y

A
.

Labor input in both sectors: We determine the fraction of workers

employed in the final goods sector and in the R&D sector by making use of
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equation (25)

pAλAφ = (1− α)
Y

LY

LY =
(r − δ)A1−φ

αλ

⇒ LA = L− (r − δ)A1−φ

αλ
,

where the last line follows from labor market clearing, i.e. L = LA + LY .

Rewriting production per capital unit: Production per capital unit

can be written as a function of the interest rate and the intermediate share

in final goods production

r = αp = α2 Y

K
,

⇒ Y

K
=

r

α2
(A.13)

The BGP growth rate in the Jones (1995) case with demography:

The growth rate of the economy is

g =
Ȧ

A
=

λLA
A1−φ .

Taking logarithms yields

log g = log(λ) + log(LA)− (1− φ) log(A).

Taking the derivative of this expression with respect to time and noting that

along the BGP the growth rate is constant yields

∂g

∂t
= n− (1− φ)g = 0

⇒ g =
n

1− φ

=
β − µ
1− φ

.
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