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Abstract
We construct a simple firm-based automata model for global economic inter-dependence

of countries using modern notions of self-organized criticality and recently developed
dynamical-renormalization-group methods (e.g., L. Pietronero et al., Phys. Rev. Lett.,
72(11):1690 (1994); J. Hasty and K. Wiesenfeld, Phys. Rev. Lett., 81(8):1722, (1998)).
We demonstrate how extremely strong statistical correlations can naturally develop
between two countries even if the financial interconnections between those countries
remain very weak. Potential policy implications of this result are also discussed.

1 Introduction

The observed interdependence between countries poses a major puzzle. Even though trade

and capital flows linkages between countries are often quite weak, it is often the case that

many countries have recessions at the same time. The best recent example is the “Asian Fi-

nancial Crisis” of 1997-99, when a set of relatively unconnected emerging markets all suffered
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a severe economic downturn. The simplest explanations for this phenomenon assume there

exist correlated exogenous shocks across many countries; however, such exogenous shocks

are difficult to observe empirically (e.g., Corsetti et al. 1998, Radelet and Sachs 1998). A

second set of explanations comes out of a burgeoning body of literature on so-called con-

tagion theory, which studies connections between countries and the transference of crises

between them. (See Claessens and Forbes 2001 for a recent review and references.) One of

the most intriguing (and controversial) topics of the contagion literature is the claim that

correlations between countries become much stronger during periods of crisis (e.g., Rigobon

2001, Forbes and Rigobon 1999). In particular, the various forms of linkages between coun-

tries - e.g., trade links, financial channels, and channels based on beliefs - can undergo shifts,

so that links which are weak for small economic events may become stronger during larger

events, thereby enhancing correlations. These are sometimes dubbed multiplier effects. (See

Claessens, Dornbusch and Park 2001 for a discussion and references.) For example, one set

of models assume that there exist multiple equilibria within an economy, so that a shock in

one country (which, for instance, might take the form of a sudden change in beliefs, such as

pessimism) could cause a shift to a new equilibrium in another country (e.g.,Diamond and

Dybvig 1983, Masson 1998).

In this paper we suggest a simple model which naturally produces strong statistical

correlations between weakly linked countries, without relying on global exogenous shocks,

multiplier effects, or special channels. We illustrate this in the context of a model suggested

by Krugman (1996), in which each country is modeled as a “self-organized critical” (SOC)
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system of the type described by Bak, Chen, Sheinkman and Woodford (1993) and Sheinkman

and Woodford (1994), denoted throughout the paper as BCSW.1 To this basic model we add

some weak linkages between countries. Our study will focus on the case of two weakly

interacting countries. As noted by Krugman, the intuition behind our model is that since

economic events of all sizes are observed within each country (in isolation), it is possible

that with the introduction of linkages between countries, a large event in one country might

naturally trigger a simultaneous large event in the other country, even when the linkages

between countries are extremely weak.

Our analysis confirms this intuition, but surprisingly shows correlations that are much

stronger than this simple reasoning would suggest. In particular, we demonstrate that this

simple model displays the conditional correlations central to the contagion literature: for

“large enough” events, the two countries are nearly perfectly correlated. This results holds

irrespective of the strength of the linkages between the countries, and emerges naturally from

the model without any special tuning of parameters. In effect, what we show (utilizing math-

ematical techniques borrowed from physics, including a “dynamical renormalization-group”

analysis) is that when one considers economic events on larger and larger length scales, the

effective interaction strength between two weakly connected countries becomes increasingly

strong. Hence, two countries which are seemingly “nearly independent” (by virtue of the

weak linkages between them) can nonetheless begin to exhibit unexpectedly strong corre-

lations. This type of phenomenon was dubbed “large-scale synchrony” in Friedman and

1One characteristic such SOC systems is that economic events of all sizes are possible within the context
of the model, where an “event” can signify a financial crisis, a swing in GDP, etc.
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Landsberg (2001).

Our results are quite robust, and do not depend on the precise details of the model.

In fact, our results even arise for parameter values for which the models do not exhibit

“self-organized criticality”, the key aspect studied by BCSW. Our results only demand the

existence of local connections between the firms and nonlinearity in their behavior. Moreover,

the model we examine is extremely simple, allowing us to easily simulate economies with

tens of thousands of firms to numerically check our predictions.

We emphasize that our analysis does not depend on the actual channels by which con-

tagion flows. Rather, we show that with local connections and nonlinearities the signature

of contagion will arise independent of the precise details of the model. Our model displays

some similarities with those of Allen and Gale (2000) and Lagunoff and Schreft (1999) among

others, wherein nonlinearities and local interactions are used to model contagion. However,

the building blocks of our model are much simpler, allowing for easy numerical simulations

(although our model is far less analytically tractable) and may result in a more robust model.

Our analysis points to a simple prediction: the size of events over which countries become

highly correlated should be larger for weakly linked countries (or regions) than for strongly

linked ones. It also has an interesting implication: if policy makers are mainly interested in

large economic events, then reducing the strength of connections between countries is not as

important as might be thought. This suggests that it might be more effective to stabilize

individual countries through local reforms, such as strengthened legal systems and more

efficient markets. These are discussed more fully in Section 5.
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This paper is organized as follows. In Section 2 we review the single-country model of

BCSW and then present our two-country model. In Section 3 we present an overview of our

main results, while in Section 4 we provide proofs and a detailed analysis. We conclude with

a discussion of the results in Section 5.

2 A Simple Automaton Model

We are interested in how correlations develop between two countries containing networks of

firms that are all responding to a series of small, local exogenous shocks. For illustrative

purposes, we will consider the case where these shocks take the form of random exogenous

orders which reduce a firm’s inventory and subsequently spur production runs. We then

demonstrate that large production runs in one country are highly correlated with productions

runs in the other even when the two countries are only weakly linked with one another.

We start by briefly reviewing the basic features of a single-country, inventory/production

model studied by BCSW, and then describe our main two-country model.

2.1 A Single-Country Model

For a single country we consider a slight generalization of the model studied by BCSW. We

assume that a country is made up of a two-dimensional array of firms labeled by (i, j) with

i, j ∈ {0, 1, 2, . . . , L− 1}, and denote the inventory level of a firm by Iij. The firms operate

according to the following rule: A randomly chosen firm receives an (exogenous) order for

one unit of a good. Provided its current inventory will not drop below some minimum value

(taken here to be zero), the firm simply fills the order and its inventory is reduced by one
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(Iij → Iij − 1). If, however, the firm’s inventory is too low (i.e., if Iij < 1), then to fill

the order the firm first undertakes a production run: It orders one unit from each of its

two “upstream” neighbors (sites (i + 1, j) and (i + 1, j + 1)) (see Figure 1), and uses those

two units it receives to produce 2 + α units of inventory. (α may be regarded as the “value

added in production.”) The firm then fills the original order. Observe that if one of the two

upstream neighbors is itself unable to immediately fill the order due to insufficient inventory,

then it initiates its own production run and places orders with its two upstream neighbors,

and so on. In this manner, it is possible for a chain reaction to propagate through the

network, until it eventually dies out. We refer to the chain reaction of orders that results

from a single initial exogenous order as an “event.” Once an event has exhausted itself, a

new exogenous order is placed with a randomly selected firm, and the process repeats.

We note that this model is easily modifiable and has broader applicability: For instance,

instead of treating small exogenous shocks as ‘orders’ and the subsequent chain reactions as

‘production runs’, one could equally well model an economy whose firms are subject to small

‘crises’ which result in ‘chains of collapse’, where the links between firms could be either

goods or financial interdependencies.

The behavior of this model is quite complex. For example, when α = 0, this model is

an example of a self-organized critical (SOC) system. SOC systems were first introduced

by Bak, Chen and Weisenfeld (1987), and have been used to explain several fundamental

problems in physics, geology and biology.2 In models of this type (see, e.g., BCSW, Dhar and

Ramaswamy (1989)) it is well established that small shocks, such as a single exogenous order,

2A nice introduction to SOC may be found in Bak (1996).
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can generate events of all sizes, including large events with global economic implications.

When α > 0, the system is no longer SOC, but it nonetheless still exhibits events of different

sizes.3

We emphasize that the results to follow in this paper do not depend strongly upon the

specific details of the above model. For instance, one can allow multiple exogenous orders

to be placed simultaneously, as in BCSW, or even change the production-run rules: e.g.,

during a production run, a firm can place orders with one or both of its upstream neighbors

according to some probability distribution (see Friedman and Landsberg 2001, Hasty and

Wiesenfeld 1998, and Pietronero, Vespignani and Zapperi 1994 for related examples). In

fact, the two principal features of this model which are relevant for our purposes are (i) the

existence of many local connections, and (ii) the presence of nonlinearity.4

2.2 A Two-Country Model

While single-country models like that in the above example are themselves of interest, the

purpose of this paper is to describe a surprising effect which arises when two such countries

are allowed to weakly interact with one another. We illustrate this with a simple model,

constructed as follows: Start with two (independent) countries, A and B, each evolving

according to the rules described above. Inventories will be denoted by Ic,i,j, where c specifies

the country (c ∈ {A,B} and i, j the lattice site, with i, j ∈ {0, 1, 2, . . . , L−1}. For simplicity

3For SOC systems, the probability of events (e.g., production runs) of different sizes obeys a power-law
distribution – the probability that an event involves s firms is proportional to s−γ for some 1 < γ < 2 when
s is large. For finite-size systems, this distribution has a cut-off at some smax. For infinite-size

systems (to be described later), there is no such cut-off; we observe in this case that the expected size of
an event is infinite. For infinite but non-SOC systems (α > 0), the expected size of an event is finite and
related results suggest that the probability that an event involves s firms falls exponentially when s is large.

4This is discussed in detail in BCSW.
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we will assume that the countries are identical in size. Visually, it is helpful to picture the

two countries, one atop the other, so that for each firm in Country A, there is a corresponding

firm on the site below in Country B. (Notationally, if (c, i, j) represents a firm in one country,

then (c, i, j) will denote the corresponding firm in the other country.) The countries behave

as follows. An exogenous order is placed on a randomly selected firm (c, i, j). If the current

inventory is sufficient, then the order is immediately filled and Ic,i,j → Ic,i,j − 1. If not, a

production run is initiated, wherein the firm orders 1 unit from each of its two upstream

firms in its own country (sites (c, i + 1, j), (c, i + 1, j + 1)), and ε units from each of the

two corresponding upstream firms in the other country (sites (c, i + 1, j), (c, i + 1, j + 1)).

The firm then takes the 2 + 2ε units and produces 2 + 2ε + α units of inventory. It then

fills the order. As before, if one of the upstream neighbors is unable to immediately fill an

order, then it in turn places orders with its upstream neighbors, and so forth. (For technical

reasons, it will prove convenient to assume that ε ≥ 0, α ≥ 0 are rational numbers, and

to impose “periodic boundary conditions” in the horizontal direction, i.e. the firm to the

“right” of (c, i, L− 1) is firm (c, i, 0). This last assumption is only relevant for reducing the

computational requirements in simulations.)

We refer to the above model as the “ε-linked economies model.” Two special subcases

are worthy of note: When ε = 0, there is no linkage between the two countries; hence their

behaviors are completely independent. The other extreme is the ε = 1 case (which we refer

to as the “fully-linked-economies” case). Here, the two countries are so completely linked

that it no longer is even meaningful to say that a particular firm belongs to one country or

8



the other. Our central interest will be in the weak-coupling case, where 0 < ε ¿ 1. Our

goal is to demonstrate how weak links between countries can naturally produce extremely

strong correlations. In particular, we will demonstrate that for large economic events, the

behavior of weakly coupled economies becomes virtually indistinguishable from that of fully

linked economies case. We refer to this effect as “large-scale synchrony.”

3 Large-Scale Synchrony: Overview

The potential relevance of the type of two-country model we study here was first suggested by

Krugman (1996), who conjectured that linked SOC models might serve as good candidates

for understanding how a large economic event in one country could potentially lead to a large

event in another country. In such SOC models, one would intuitively expect to find some

degree of correlation between events in the two countries, even when the linkages are fairly

weak. However, the actual correlations that emerge turn out to be surprisingly stronger than

one would expect from this basic intuition. In particular, our analysis indicates that when

viewed from a “sufficient distance,” any ε-linked economies model (with 0 < ε < 1) is nearly

indistinguishable from a fully linked economies model (ε = 1). Thus, large economic events

will be very strongly correlated between two countries even when the linkages between those

countries are extremely weak (ε ¿ 1). We dub this phenomenon “large-scale synchrony.” In

this section, we summarize the central results of this paper; extended discussions and proofs

follow in Sect. 4. Note that all results presented below are for the limiting case of infinite

country size ÃL →∞; details of the limiting procedure are described in Section 4.
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3.1 Summary of analytical results

We begin with a key result that describes how an exogenous order placed at one firm influ-

ences production runs at other firms. This in turn will provide some basic intuition for even

stronger results which follow. Let ρcij(c
′, i′, j′) be the probability that an exogenous order

placed at firm (c, i, j) induces a production run at firm (c′, i′, j′). (We refer to ρcij(c
′, i′, j′)

as the two-firm correlation function.) Consider the following question: If an order is placed

at a firm (i, j) in country c, what is the probability that this will lead to a production run at

a given firm (i′, j′) in country c versus at the corresponding firm (i′, j′) in the other country

c ? Our finding is as follows:

Theorem 1 For any ε-linked economies model, for any j′ ≥ j, i′ > i where j′ − j ≤ i′ − i,

ρcij(c, i
′, j′)

ρcij(c, i′, j′)
=

1−
(

1−ε
1+ε

)i′−i

1 +
(

1−ε
1+ε

)i′−i
.

[Note that when j′ − j > i′ − i both probabilities are 0.]

Observe that this ratio approaches unity as i′− i becomes large for any 0 < ε < 1. Hence,

Theorem 1 shows that an exogenous order placed on a firm in one country is equally likely

to cause a production run at a distant firm in the other country as it is (at the corresponding

firm) in the same country - even if the two countries are only very weakly linked. Thus, on

a large enough scale, an ε-linked economies model with 0 < ε ¿ 1 begins to behave like the

fully-linked model in certain respects.

In fact, this correspondence which emerges between a weakly-linked economies model

and the fully linked case for large spatial scales is even stronger than the above theorem
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would suggest, for not only do the two-firm correlation probabilities converge, but all multi-

firm correlations do as well. In particular, consider an “agglomeration” of our model, where

instead of focusing on the behavior of individual firms in each country, we group large

numbers of neighboring firms together within each country and treat each such “meta-firm”

as a single entity. Hence, in this new view, we regard each country as composed of a network

of meta-firms. The rules governing the interactions between the meta-firms can be directly

deduced from the underlying rules of the original model. (The details of this agglomeration

process are described in Sect. 4.) By consideration of such meta-firms, a hidden connection

between the weakly linked economies model and the fully linked economies model is revealed.

This is encapsulated in Result 1 below (a more formal treatment and analysis of the results

of this section are reserved for Sect. 4.)

Result 1 For any ε ≥ 0 and any level of accuracy, there exists an agglomeration size for

which the agglomerated version of the ε-linked model and the agglomerated version of the

fully-linked model are approximately equivalent.

By “approximate equivalence,” we mean that the large-scale behaviors of an ε-linked

model (with ε ¿ 1) and a fully linked economies model are indistinguishable, i.e. weakly

linked economies begin to behave like strongly linked economies on large spatial scales. The

precise nature and meaning of this correspondence will be described more fully later. (In

the language of renormalization analyses we would say that the two models fall into the

same “universality class.”) However, we must note that Result 1 is based on a technique

from modern physics known as renormalization, which although well-established as one of
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the main tools used in the study of a wide variety of physical problems from magnetism to

particle theory to chaos theory, has never been formally proven in general. The particular

version of renormalization theory which we use has been studied in detail in Hasty and

Wiesenfeld (1998), and Pietronero, Vespignani and Zapperi (1994) and has been applied

with great success in models closely related to ours. Nonetheless, the reader may prefer

to view the renormalization calculations as heuristics to guide intuition and rely upon the

numerical simulations (described below) to confirm the validity of Result 1.

Result 1 describes the general convergence between a weakly linked economies model

and the fully linked case for large-scale events. Result 2 below describes an important

quantitative consequence of convergence. Specifically, given a single exogenous shock in

country c (i.e., an external order for one unit of goods), let SA be the size of the resulting

event in country A and SB the size in country B, where size here refers to the number of

firms involved in the production run. (The total size of a given event is thus SA + SB). This

event occurs with some probability Pr(SA, SB|c), and we let RM denote the random variable

(|SA−SB|)/(SA +SB) conditional on SA +SB > M . RM represents the fractional difference

of the number of firms affected in each country during a given production run of size > M .

Letting E[RM ], V ar[RM ] denote the expectation value and variance of RM respectively, we

then have the following:

Result 2 For any ε-linked model (0 < ε ≤ 1), limM→∞ E[RM ] = 0 and limM→∞ V ar[RM ] =

0.
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In other words, for large events, SA will be close (in percentage terms) to SB even if the

two countries are weakly linked. This result demonstrates that it is possible for an economic

event in one country to directly induce a similar magnitude event in another country even

when the linkages between those countries are extremely weak.

Corollary 1 For any ε linked model, the correlation coefficient between SA and SB condi-

tionally on SA + SB > M converges to 1 as M →∞.

3.2 Numerical results

We have run a series of direct numerical simulations of the two-country model of Sect. 2.2 to

verify the above analytical results and to garner further insight into the model’s dynamical

behavior. We illustrate the results in a series of figures. Figure 2a shows a plot of SA vs.

SB for the fully linked model (ε = 1). Note that, as expected, SA and SB are extremely

correlated (SA ≈ SB). Figures 2b and 2c show the corresponding graph of SA versus SB

for a weakly linked model with ε = 0.1. In Fig. 2b, we plot only small production runs

involving fewer than 50 firms in each country, while in Fig. 2c we include all production runs

up to size 1000. Observe that in the former case (Fig. 2b), the numbers of firms affected in

each country during a given event are essentially uncorrelated. This is as it should be since

the linkages between the countries are weak, and hence small-scale behavior in each country

is essentially independent. However, in the latter case involving large events (Fig. 2c), a

new trend is clearly seen. Here, very strong correlations similar to that of the fully linked

case (Figure 2a) are observed, indicating the onset of large-scale statistical synchrony in the

system. Note that the degree to which the two countries are correlated increases with spatial
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scale, as is clear from a plot of the root-mean-square fractional deviation
√

E[(RM)2] versus

SA + SB (Figure 3). Thus, the numerical simulations confirm the analytical predictions

of Results 1 and 2, demonstrating that the behavior of a weakly linked economies model

approaches that of the fully linked case for large events. We note moreover that if the

linkage between two countries is further decreased (e.g. ε = 0.02), then the characteristic

size at which strong correlations first begin to appear will increase (see Figure 2d).

4 Detailed Results and Analysis

In this section we provide a more formal discussion of our model and the proofs of the

preceding claims (Theorem 1, Results 1 and 2).

To begin, first recall that we have assumed for technical reasons that both ε (which

describes the strength of inter-country connections) and α (“the value added in production”)

are rational numbers; hence we may write them as ε = e/n and α = a/n, where a, e

are integers and n is their least common multiple. Let xt
cij denote the inventory value

at site (c, i, j) following the t’th event; the allowable inventory values at a given site are

Xf = {0, 1/n, . . . , (2n + 2e + a − 1)/n} The state space for the model is thus given by

X = X2L2

f (L is the lattice size). The initial configuration of the system will be denoted by

x0, and xt will denote the configuration that arises once the model has settled down following

the t’th exogenous shock. (Note that since shocks are constrained to propagate down the

supply chain and can never double back, the configuration must settle down eventually,

so this is well-defined.) The intrinsic dynamics of the system, combined with the random
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exogenous shocks, give a probabilistic dynamics on the state space X, and thus this model

is a Markov Chain.

By construction (i.e. from the assumption that n is the least common multiple of a, e),

it is easy to see that all states are recurrent5, and it follows from standard arguments that

asymptotically the dynamics has a unique invariant measure on X. (See, e.g., Stokey, Lucas

and Prescott, (1989).) Moreover, Dhar (1990) has shown that for a large class of models –

of which our model is a member – the invariant measure is flat, i.e., all states are equally

likely.

This in turn allows us to extend our model to the limit L → ∞. The properties of

the model for L = ∞ will be computed from the invariant measure for which all states are

equally likely. Formally, we assume that each xcij is i.i.d. uniformly distributed on Xf and

require that all sites are independent. From this we can compute all the relevant statistics.6

4.1 Two-point correlation functions

We begin by examining the so-called “two-point correlation function”, ρcij(c
′, i′, j′), defined

as the probability that an exogenous order at firm (c, i, j) induces a production run at firm

(c′, i′, j′) (this probability is computed with respect to the invariant distribution on the

state space X). Using a result proven by Dhar (1990), we will show that this two-point

correlation function obeys a certain recursion relation. We will then solve this recursion

5Note that this is not true in the model of BCSW since they only allow orders to be placed at firms with
i = 1, whereas we allow for exogenous orders to arise at any firm. Nonetheless, the asymptotic results are
the same in either case.

6Note that if we truncate the random variables for the infinite model to be less than L, then we get precisely
the random variables which arise for finite L. For example, let (SA, SB) be the random variables for the
infinite model and (SL

A, SL
B) be the random variables for the model of size L. Then (min[SA, L],min[SB , L]) ≡

(SL
A, SL

B).
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relation exactly (by relating it to a random walk problem), which in turn leads directly to a

proof of Theorem 1 of the preceding section.

Towards this end, let −∆cij(c
′, i′, j′) be the “local production matrix,” which specifies

the number of orders of inventory that site (c, i, j) places directly with site (c′, i′, j′) in the

event that site (c, i, j) receives an order that it cannot fill initially. (Note that we consider

here only orders that one site directly places with another site, not orders that are induced

via a chain of events involving intermediate sites.) For our model, ∆cij(c, i, j) = 2(1+ ε)+α,

∆cij(c, i + 1, j) = −1, ∆cij(c, i, j + 1) = −1 , ∆cij(c, i + 1, j) = −ε, ∆cij(c, i, j + 1) = −ε and

∆cij(c
′, i′, j′) = 0 otherwise. (For clarity, we note that ∆ is not the transition matrix for the

Markov chain, nor does it define the transition during an event.) The following lemma was

proven by Dhar (1990) for a large class of automaton models (to which ours belongs):

Lemma 1 (Dhar)

∑

c′′,i′′,j′′
ρcij(c

′′, i′′, j′′)∆c′′i′′j′′(c
′, i′, j′) = δcij(c

′′, i′′, j′′)

where δcij(c
′, i′, j′) is the Dirac δ-function, defined by δcij(c

′, i′, j′) = 1 if (c, i, j) = (c′, i′, j′)

and 0 otherwise.

For our model, Dhar’s formula leads to the equation

ρcij(c
′, i′−1, j′)+ρcij(c

′, i′−1, j′−1)+ερcij(c′, i′−1, j′)+ερcij(c′, i′−1, j′−1) = (2+2ε+α)ρcij(c
′, i′, j′)

(1)

together with the constraint

ρcij(c, i, j) = 1/(2 + 2ε + α) (2)

16



(which follows from setting (c′, i′, j′) = (c, i, j)).

Our goal is to solve the recursion relation (??) together with (??) for the two-point

correlation function ρcij(c
′, i′, j′). This can be done directly. However, we provide a more

intuitive proof that is easily generalized to more complex models, by relating the above

recursion relation to the properties of a random walk. The proof of Theorem 1 will follow

directly from this analysis.

To proceed, consider a random walk on the lattice {(c, i, j), (c, i, j)} defined as follows: If

the walker is currently at site (c, i, j), then the probability that the walker will step directly

to neighboring site (c, i + 1, j) is 1/(2 + 2ε), to site (c, i + 1, j + 1) is 1/(2 + 2ε), to site

(c, i + 1, j) is ε/(2 + 2ε), and to site (c, i + 1, j + 1) is ε/(2 + 2ε). We then have the following:

Lemma 2 The random walk process defined above and the production-run recursion relation

(??),(??) are equivalent.

Proof: Let wcij(c
′, i′, j′) be the probability that a walker starting at (c, i, j) is at position

(c′, i′, j′) after i′− i steps (for i′ ≥ i). Then it is straightforward to see that, by construction,

the random-walk process obeys the following relation:

1

2 + 2ε
[wcij(c

′, i′−1, j′)+wcij(c
′, i′−1, j′−1)+εwcij(c′, i′−1, j′)+εwcij(c′, i′−1, j′−1)] = wcij(c

′, i′, j′).

(3)

(Note that, by definition, wcij(c, i, j)=1.) Consider now the transformation

ρcij(c
′, i′, j′) = wcij(c

′, i′, j′)
(

2 + 2ε

2 + 2ε + α

)i′−i

(2 + 2ε + α)−1. (4)
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By direct substitution of transformation (??) into (??), one recovers precisely the recur-

sion relation (??) along with the constraint (??), as may be readily verified ¦

Thus, the probability that a shock at site (c, i, j) causes a production run at site (c′, i′, j′)

is directly related to the probability that the random walk defined above starting at (c, i, j)

will hit (c′, i′, j′). Note that the random walk is essentially the reverse of the path followed by

a good supplied by firm (c′, i′, j′). The proof of Theorem 1 now follows from the observation

that for a long enough path, a unit of goods (i.e., the random walker) will alternate countries

enough times that it “forgets” its country of origin. This insight is quite general and should

apply to many different models in which there are many local interactions.

Proof of Theorem 1: Consider a path followed by the random walk. We can project

this path into two components: a walk on (i, j) space and the walk back and forth between

countries, (c) space. These two walks are independent (by the defining rules of this walk,

as described above), and thus we can write wcij(c
′, i′, j′) as the product wcij(c

′, i′, j′) =

γc(c
′; i′ − i)ψij(i

′, j′), where γc(c
′; i′ − i) is the probability that a random walker starting in

country c will be in country c′ after precisely i′− i steps, and ψij(i
′, j′) is the probability the

walker starting at (i, j) will be arrive at site (i′, j′) after i′ − i steps. We now can compute

γc(c
′; i′−i) by constructing the Markov chain describing this random walk between countries,

as follows. Let vt denote a two-component vector whose first (resp. second) component is

the probability that the walker is in country A (resp. country B) after t steps. Then

vt+1 = Mvt where M =

(
1

1+ε
ε

1+ε
ε

1+ε
1

1+ε

)
.
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Assuming a starting configuration v0 = (1, 0)T , we solve to find

vt =
1

2

(
1 + (1−ε

1+ε
)t

1− (1−ε
1+ε

)t

)
.

From the definition of γc(c
′; i′ − i) above and transformation (??), Theorem 1 follows. 2

Note that this shows that when viewed on a large enough scale, the ε-linked model (for

any ε > 0) is symmetric, in the sense that if an order is placed at country A, the effect on

firms (c, i′, j′) and (c, i′, j′) is the same, which is also true of the fully connected model.7

If we were able to rigorously prove this about all higher-order correlation functions as well,

then our analysis would be complete; however, the analogous formulas (to Dhar’s) for higher-

order correlations are extremely complex. Thus, in the next section, we use a different line

of attack to argue for the same result, using a so-called “renormalization-group analysis.”

4.2 Renormalization

The theory behind Result 1 of Sect. 3 is based on a renormalization result from Friedman

and Landsberg (2001) for a related class of models. In that study, a probabilistic version of

two-country automaton model was analyzed using an ‘agglomeration’ procedure (alluded to

in the previous section), and it was shown that for such systems:

Result 3 (Friedman and Landsberg, 2001) The dynamics of an agglomerated ε-linked

model (0 < ε < 1) and the corresponding dynamics for a fully-linked agglomerated model

(ε = 1) converge as the agglomeration size is increased.

7This also implies that in the model with finite L, for SA + SB sufficiently large the expectation of
(SA−SB)/(SA +SB) will be close to zero, even if we condition the premise that the initial order was placed
at a firm in country A.
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This result implies that the ε-linked model and the fully-linked model fall into the same

universality class, and hence will exhibit the same large-scale behaviors. It can be shown

that our deterministic model shares the same behavior as this probabilistic model of Friedman

and Landsberg (2001), and hence Result 1 directly follows. We provide below a basic sketch

of this result as it applies to our model (and refer the reader to Friedman and Landsberg

(2001) for additional details). Once again we note that Result 1 cannot be considered a

formal mathematical theorem since it relies on a renormalization-group analysis for which

few systematic, analytical theorems exist. Nonetheless, renormalization represents a very

well-established, standard tool in mathematical physics and has been successful in analyzing

a wide variety of problems. Friedman and Landsberg (2001) used a generalization of a

procedure developed by Hasty and Wiesenfeld (1998), which was extensively tested in that

paper on a generalized single country model.

The basic idea of renormalization is to repeatedly group together individual firms into

larger and larger “meta-firms.” For our model we consider meta-firms of size 2k×2k (for some

positive integer k). See Fig. 4. Formally, the set of individual sites making up a particular

meta-firm (in a given country) can be expressed as

MF 2k

c,a,b = {(c, i, j) | i ∈ [a2k, a2k + 2k)], j ∈ [b2k, b2k + 2k], i− j ∈ [a− b, a− b + 2k]}

for all integer vectors (a, b). The dynamical rules governing the interaction of such meta-firms

(i.e., the “meta-dynamics”) can be computed using the procedure described in Friedman

and Landsberg (2000).8 One finds that the meta-dynamics of an ε-linked economies model

8Analytically, the process works by first computing the meta-dynamics for groups of 4 firms (k = 1)
based on the original (microscopic) rules governing individual firms. The rules governing these meta-firms
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becomes indistinguishable from that of a fully-integrated economies model as k approaches

infinity (Result 3). Thus, the large-scale behaviors of the two models become approximately

equivalent.

We next prove Result 2 of the preceding section, showing that approximately equal

numbers of firms are affected in each country during a given large event, irrespective of

which country the event started in. As described below, this is done by using Result 1 in

conjunction with the following lemma:

Lemma 3 For any fully-linked model, given α > 0, β < 1, there exists some M > 0 such

that Pr[|SA − SB|/(SA + SB) < α(SA + SB)| SA + SB > M ] > β.

Proof: Note that in the fully linked model there is no difference between firm (c, i, j) and

firm (c, i, j) in its relationship to other firms. Letting F = {(c, i, j)} denote the set of all

firms in both countries, with c ∈ {A,B} and i, j ∈ {0, 1, 2, . . . , L − 1}, we can define a

permutation γ of this set by interchanging a firm (c, i, j) with its opposite-country partner

(c, i, j) at selected sites in the lattice. Let Γ denote the set of all such permutations.

Consider an event. Let R denote the set of all sites which had production runs during

that event. From this we construct a new set P (R), a projection of R, by ignoring which

country each firm belongs to, as follows: P (R) = {(i, j; n)}, where (i, j) specifies a firm’s

location (irrespective of its country affiliation). Note that if some site (c, i, j) along with its

opposite-country counterpart (c, i, j) both belong to the set R, then they both get projected

onto the same site (i, j; 2) in P (R). We refer to such a pair as a “doublet,” and distinguish it

then provide the basis for computing the meta-dynamics of the new (k = 2) meta-firms created in the
re-agglomeration process, and so on. See Friedman and Landsberg (2000) for the details.
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by the integer label n = 2; if only one member of a pair belongs to R (i.e. (c, i, j) ∈ R but not

(c, i, j)), then the projection of this “singlet” state is (i, j; 1) ∈ P (R). For example, if R =

{(A, 1, 1), (A, 2, 1), (B, 2, 1)} then P (R) = {(1, 1; 1), (2, 1; 2)}. Note that any permutation of

an event, γ(R) for γ ∈ Γ, will have the same projection, i.e. P (γ(R)) = P (R). Moreover,

since the model in invariant under Γ, then all permutations of an event have the same

probability of occurrence. From this we can compute the expected value of f = |SA −

SB|/(SA + SB) over the set of permutations of a particular event RN , as follows:

Consider f conditioned on a particular projection p = P (R) for some R with SA+SB = N .

For this projection let Nd denote the number of doublets in the set and Ns = N − 2Nd the

number of singlets. Note that while all permutations of R have the same Nd and Ns, they

differ in how the singlets are distributed among the two countries A and B. In particular,

if we consider the set of all permutations of R, since all permutations are equally probable

it follows that the singlets will be binomially distributed among the two countries. Letting

SA, SB denote the total number of toppling sites in countries A, B (respectively), the random

variable (SA, SB) conditional on SA + SB = N with fixed Nd, Ns will be distributed as

Nd + Binomial(Ns, 1/2). Note that this distribution is for all events with projection P (R).

Other events of size N will have different values of Nd, Ns (with 2Nd + Ns = N). For a

fixed N , the potential values of Ns lie in the interval [0, N ], and it is straightforward to

show that the expected fractional deviation above will be maximum for the choice Ns = N .

Lemma 3 directly follows by setting Ns = N and letting N become large, and noting that

the asymptotic properties of the binomial distribution are such that it converges to a normal
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distribution with mean 0 and variance proportional to N−1/2. Thus, as N →∞ the fractional

difference between SA and SB approaches 0. 2

The above lemma, taking in combination with Result 1 showing that the ε-linked and

fully linked models behave similarly on large scales, proves Result 2, as desired9.

5 Discussion

We have constructed a simple model of intercountry links in which even weak links can

lead to high correlations for large economic events. This model displays the hallmark of the

contagion literature – weakly linked countries are highly correlated for large events but not

for small ones – without the use of any ad-hoc channels or multiplier effects. In particular,

our results only depend on local interactions and nonlinearities and not on the detailed

structure of the interactions, nor on the precise nature of the channels that mediate the

shocks. Moreover, our results do not depend upon the notion of self-organized criticality as

does the analysis in BCSW, but neither does it rule it out. (Only when α = 0 does our

model display self-organized criticality.)

In addition, in our model the size at which correlations arise is directly related to a natural

parameter, the strength of the intercountry links. This leads to the prediction that weakly

linked countries will exhibit strong correlations only for large economic events, while similar

correlations between strongly linked countries will set in earlier (i.e., for smaller economic

events). Thus, our model has in interesting policy implication: reducing the strength of

9As stated previously, however, the renormalization-group methodology employed in the derivation of
Result 1 has not, to date, succumbed to formal mathematical proof, though it is a widely used mathematical
tool that has been supported by extensive numerical simulations. Extensive numerical testing of our model
strongly supports the validity of Result 1.
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linkages between countries will not significantly reduce the probability of large events being

correlated across multiple countries.

We (tentatively) suggest that perhaps the more important policy issue is the strength of

the markets within the country, which we believe is highly correlated with the strength of

the legal system (see e.g., Johnson et. al. (1998) and La Porta et. al (1997) and (1998)).

Our argument is based on the idea that large-scale synchronization arises in our model due

to the local connections between firms. Such local connections are crucial in countries with

weak legal systems, as firms often rely on long-term relationships with suppliers to guarantee

quality. In countries with strong legal systems firms can more often purchase goods on the

open market. (Even in the case of special-order goods, it is much easier to find a new

supplier, since issues of trust are reduced due to the enforceability of contracts.) Thus, we

think that our model, and with its emphasis on fundamental instabilities, is much more

applicable to countries with weak legal systems and nascent markets than countries with

stronger legal systems and established markets, the settings which recently have been most

prone to economic crises.
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Figure 2: Scatter plots of SA vs. Sb. (a) fully linked model (ε=1).  (b) a weakly 
linked model (ε=0.1) showing only small events. (c) same as (b) except large
Events are also shown. (d) A log-log plot of an extremely weakly 
Linked model (ε=0.02). 
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Figure 1: A lattice of firms. Circles indicate firms and the arrows
indicate the direction of order flows. Note that only a small section 
of the lattice is shown.
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Figure 3: Graph of root mean squared deviation  vs. total event size
for a weakly linked model (ε=0.1).

Figure 4: Agglomeration process, k=1.  Circles represent firms.
Lines connect firms into meta-firms.


