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Abstract. In this paper we show how theorems of Borsuk-Ulam and Tucker

can be used to construct a consensus-halving: a division of an object into
two portions so that each of n people believe the portions are equally split.

Moreover, the division takes at most n cuts, which is best possible. This
extends prior work using methods from combinatorial topology to solve fair

division problems. Several applications of consensus-halving are discussed.

1. Introduction

The study of fair division problems is concerned with finding ways to divide
an object among several parties according to some notion of fairness. The cake-
cutting problem of Steinhaus [13] is perhaps the best known example. Aside from
the division of goods, other fair-division problems address the division of burdens
(e.g., the chore-division problem [7, 10]) and the division of mixtures of goods
and burdens (e.g., the rent-partitioning problem: how to split the rent so that
housemates are satisfied by different rooms).

Recently, ideas from combinatorial topology have provided new and constructive
methods for obtaining solutions to fair-division problems. In [14], Su discusses
a cake-cutting procedure of Simmons that can be extended to obtain envy-free
solutions for chore division and rent-partitioning using variants of a result known
as Sperner’s lemma, which is the combinatorial equivalent of the Brouwer fixed
point theorem of topology.

In this paper, we demonstrate how a result known as Tucker’s lemma, which is
the combinatorial equivalent of the Borsuk-Ulam theorem of topology, can be used
to solve a different kind of fair-division problem: is it possible to divide a mixture
into 2 portions so that each of n people believes both portions are the same size
(a consensus-halving)? Moreover, a constructive proof of Tucker’s lemma yields
an efficient procedure for constructing an approximate solution using a minimal
number of cuts.

As an application, a consensus-halving procedure could allow two families to
split a piece of land into two regions such that every member of both families
believes the land is nearly equally divided. We discuss potential applications to the
Law of the Sea Treaty [5] and the necklace-splitting problem of Alon [1]. Another
application solves a team-splitting problem: given a territory and a pair each of
zoologists, botanists, and archaeologists, is it possible to divide the territory into
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two portions in such a way that members of any given pair will prefer to explore
different portions? Thus the group could be split in an envy-free fashion— into
two teams with one member of each specialty among them. We explain how a
consensus-halving method can be adapted for this purpose near the end of this
article.

2. Consensus-Halving

To be precise, we assume that any object A to be divided is a measurable bounded
set in R2 or R3, infinitely divisible, and that each player i has a bounded continuous
measure µi on (measurable) subsets of A which describes the (positive or negative)
value that she assigns to that subset. The (absolute) continuity of the measures
(with respect to Lebesgue measure) forbids the existence of “point masses” — zero
volume subsets with non-zero worth.

Although we model player preferences with measures, we remark that none of
our proofs will require the µi to be additive over subsets. (The µi may as well
be continuous set functions defined on the Borel σ-algebra and satisfying all the
properties of measures except countable additivity.) Thus we do not need to require
that player valuations over subsets of A be additively separable.

We show the following theorem.

Theorem 1 (Consensus Halving). Given an object A and n persons whose prefer-
ences are modeled by continuous measures {µ1, ..., µn}, there exists a partition of A
into two portions A1 and A2 such that each of n persons thinks that A1 and A2 are
exactly equal, i.e., µi(A1) = µi(A2) for all i ∈ {1, 2, . . . , n}. Using cuts by parallel
planes, n cuts are sufficient to achieve the division, and in some cases best possible.
An algorithm exists for locating an arbitrarily close approximation to a solution.

Note that the object can be a mixture of desirable and undesirable parts (the
players may in fact disagree on which parts are desirable and undesirable).

Non-constructive versions of this result have already been obtained; for instance,
see Goldberg and West [8] and Alon and West [2]. The latter uses the Borsuk-Ulam
theorem but in a fashion that requires additivity of the measures µi. Alon [1] proves
a generalization that produces k equal portions according n probability measures;
it yields our result when k = 2, but it is also non-constructive and based on a
topological result of Bárány-Shlosman-Szücs [3]. Another approach to produce the
existence of the sets A1 and A2 is to use Lyapunov’s theorem (see Barbanel [4]);
however, it is even less constructive because it does not even say how many cuts
are required or what the sets A1 and A2 might look like.

By constrast, our proof is constructive and based on a combinatorial result of
Tucker. It does not require additivity nor positivity of the measures, nor must
the measures satisfy µi(A) = 1 (but they should be bounded for the conclusion
to make sense). A constructive proof yields a simplicial algorithm that guarantees
approximate solutions up to a pre-specified tolerance for error. In some sense this is
the best one can hope for; Robertson and Webb [11, p.104] have shown that there
is no finite discrete procedure that will produce an exact equal division. Robertson
and Webb also propose an procedure for approximate division into ratios (see [11,
p.128]); however, it involves a large number of cuts which grows as ε decreases,
whereas our approach uses at most n cuts (hence does not decimate the object).
In addition, our procedure handles mixtures easily.
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3. Tucker’s Combinatorial Lemma and the Borsuk-Ulam Theorem

Recall that an n-simplex in Rm is the convex hull of n+ 1 affinely independent
points (vertices) in Rm. A k-face of an n-simplex is the k-simplex spanned by any
subset of k + 1 vertices. A triangulation of a set X is a collection of (distinct)
n-simplices whose union is X, with the property that any two of them intersect in
a face common to both, or not at all.

Represent the n-ball Bn by the set of all points x = (xi) ∈ Rn such that
|x1|+ . . .+ |xn| ≤ 1. The boundary of this “octahedral” ball is the set of all points
in Rn satisfying |x1|+ . . .+ |xn| = 1 and may be thought of an (n−1)-sphere Sn−1.
A centrally symmetric triangulation of Sn−1 is one such that if σ is any face of the
triangulation, then −σ also is.

The following combinatorial theorem of Tucker [16] was proved in 1945 for the
case n = 2. The proof for general n may be found in Lefschetz [9].

Tucker’s Lemma. Let T be a centrally symmetric triangulation of Sn whose ver-
tices are assigned labels from {±1,±2, . . . ,±n} such that labels of antipodal vertices
sum to zero, i.e., the labelling function l satisfies l(−x) = −l(x) for any vertex x.
Then there exist adjacent vertices in the triangulation whose labels sum to zero.

This result is often stated for a triangulation of a ball, but for our purposes later,
we have cast it for a triangulation of a sphere (obtained by gluing two n-balls along
their boundaries.) Tucker’s lemma is equivalent (see [6]) to the following famous
theorem from topology:

The Borsuk-Ulam Theorem. For any continuous function f : Sn → Rn, there
exist antipodal points x,−x ∈ Sn such that f(x) = f(−x).

The equivalence is valuable because Tucker’s lemma has a constructive proof,
while the Borsuk-Ulam theorem can be used to prove fair division theorems. For
instance, the Ham Sandwich Theorem, which says that that there exists a hyper-
plane that perfectly bisects n sets of positive measure in Rn, is well-known to be a
consequence of the Borsuk-Ulam theorem [12, p. 413] and therefore Tucker’s lemma
can be used to find such a hyperplane. However, as a fair-division theorem, the
Ham Sandwich Theorem is of little practical value when the dimension of the sets
is greater than 3, and even in dimension 3, it is unneeded if one allows several cuts.

We seek somewhat more practical applications of the Borsuk-Ulam theorem,
such as the consensus-halving result of Theorem 1. In fact, a constructive proof of
Tucker’s lemma yields an algorithm for finding a consensus-halving to any desired
accuracy. The dimension of our set A is immaterial because we achieve our division
by parallel planes.

Proof of Theorem 1. For ease of expression, we refer to the object A to be divided
as “cake” even though players may find certain subsets undesirable.

Place A in a coordinate system aligned with the cardinal directions of the com-
pass. Assume without loss of generality that the (east/west) width of A is one unit.
Suppose further that A is to be divided by vertical, parallel north-south planes.

Each point (x1, ..., xn+1) of Sn corresponds to a set of cuts of the cake (called a
cut-set) obtained by making north/south cuts so that (from west to east) the pieces
have widths of |x1|, |x2|, . . . , |xn+1|. Use the respective signs of x1, x2, . . . xn+1 to
determine which portion of the division gets the corresponding piece: collect all the



CONSENSUS-HALVING VIA THEOREMS OF BORSUK-ULAM AND TUCKER 4

pieces for which xi is positive, lump them together, and call this the portion A1.
The other pieces will be lumped together to create portion A2.

The existence of a division such that A1 and A2 are deemed exactly equal by
all players follows easily from the Borsuk-Ulam theorem; consider the function
f : Sn → Rn such that the i-th coordinate function fi(x) = µi(A1), player i’s
measure of the “value” of A1. This is a continuous function of x (because of the
continuity assumption on the measures), hence by the Borsuk-Ulam theorem there
exists a point x such that f(x) = f(−x). But since antipodal points on Sn−1

correspond to the same division with the roles of A1 and A2 interchanged, the
Borsuk-Ulam point x corresponds to a set of (at most) n cuts (and fewer if the
components of Ai are adjacent) such that µi(A1) = µi(A2) for all i, i.e., the pieces
are deemed equal by all players. One may see that n cuts are also necessary in
the case in which A is a line segment and the player measures have support in n
disjoint subintervals of A. This shows the existence of a solution to the consensus
halving problem.

To construct an approximate solution (to any pre-specified error tolerance ε),
use Tucker’s lemma. Recall that every point in Sn corresponds to a cut-set. Given
ε > 0, choose a triangulation of Sn with mesh size so small that the in the cut-sets
corresponding to any two adjacent vertices, the portions A1 and A2 differ by no
more than ε in any of the player measures.

We now assign to every vertex a label in the set {+1,−1, . . . ,+n,−n} which
consists of a number and a sign. The number assigned to a vertex will be the
number of the player who is believes the difference between A1 and A2 is greatest
for the cut-set corresponding to that vertex. (In there are players equally distressed
about the difference, choose the smallest-numbered player.) The sign assigned to
a vertex will signify the piece that the “most distressed” player prefers in cut-set
corresponding to that vertex: if piece A1 (resp. A2) is preferred, the sign assigned
is + (resp. −). (In case that player prefers both pieces equally, choose the portion
containing the west edge of the cake).

Note that this gives an anti-symmetric labelling l in which l(−x) = −l(x) at
every vertex, because when the roles of A1 and A2 are reversed, the same player
is most distressed but her preference is reversed. (Thus moving to the antipodal
vertex leaves the label number the same but flips the sign.)

Applying Tucker’s lemma, there exists a pair of adjacent vertices in the trian-
gulation with the same label number but opposite signs. Either of these vertices
corresponds to a cut-set that is an approximate consensus-halving, since at these
two nearby cut-sets, the maximally distressed player prefers different portions. For
this player, both portions are within ε of each other in value, and since this player’s
distress was maximal, no other player will dispute this assessment by more than ε.

These adjacent vertices may be found efficiently using the algorithm of Freund
and Todd [6], or more recent methods found in [17]. These are simplicial algorithms
that follow paths of simplices in the triangulation; we do not review them here for
lack of space. However, we do emphasize the important feature of such algorithms
is the fact that they use vertex labels to determine a path that finds the desired
adjacent vertices. In our setting, each vertex corresponds to a cut-set, so the
vertex labels can be determined on the fly by moving from vertex to vertex and
interactively polling the players for their preferences at the cut-sets along the path.
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We remark that the proof of Theorem 1 can be modified to address preference
measures on a measurable set of any dimension as long as it can be mapped onto a
bounded real interval such that the image measures (of the players’ measures) are
absolutely continuous. In this case, the inverse images of the cut sets of the interval
yield the cut sets of the object.

4. Remarks on Implementation

In an actual implementation, the algorithm for consensus-halving can be coded
so that a computer could proceed through the algorithm and interactively ask
players at each step which portion they would prefer and their perceived difference
in size between the portions. (See [14] for a similar fair division procedure based on
Sperner’s lemma.) Convergence to a solution can be enhanced by existent homotopy
algorithms in which ε need not be specified in advance and generally decreases with
the run time. See Todd [15] or Yang [17] for a survey of such methods applied to
fixed point problems.

We state some features of our approach:

1. It gives an constructive algorithm to locate an approximate solution for a
problem where it is impossible to use a finite exact procedure.

2. Previous methods (e.g., [11, p.128]) decimate the object by cutting it into a
very large number of pieces and reassembling them.

3. Because the algorithm is interactive, players do not have to reveal their a
priori preferences (which may in general be very hard to describe). Moreover,
during the procedure they do not need to reveal their preferences over all
possible cut-sets, but only for cut-sets near a path followed by the simplicial
algorithm.

4. On the other hand, if players are able to fully describe their preferences be-
forehand, the algorithm can be run from the initial data alone. This may
possible with sufficiently nice preferences, or if the measures are describing
some objective data, such as in the “necklace-splitting” problem below.

5. Mixtures are treated by this method exactly the same as goods or burdens.

We remark that issues such as strategic manipulability of the algorithm and
Pareto-efficiency of the outcome are not meaningful in the context of the consensus-
halving problem if players are not assigned either of the pieces that result. In this
case all players desire the same goal: to get agreement by all n people that two
portions of the cake are nearly equal in size. For example, if the players are parents
wishing to halve their estate between two children, the parents desire that both
portions be equal. (Efficiency and manipulability are only important issues when
each player seeks different goals, such as maximizing different pieces.)

Even in applications where players (or groups of players) are assigned to one of
the pieces, we can specify that the assignment be made only after the halving has
already been decided. Thus, no player would have any assurance that she would be
assigned to a piece that she tried to fatten up, and strategic play might backfire.
On the other hand, stating her true intentions will guarantee her an approximate
consensus-halving.
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5. The Law of the Sea Treaty and Necklace Splitting

We remarked earlier that a consensus-halving procedure could help families to
split a piece of land into two regions in such a way that every member of both
families believes the land is nearly equally divided.

An analogous situation arises in the 1994 Convention of the Law of the Sea [5,
p.10], which uses a divide-and-choose procedure to protect the interests of develop-
ing countries when an industrialized nation wants to mine a portion of the seabed
in international waters. An agency representing the developing countries chooses
one of the two halves to reserve it for future mining by less-developed nations. If a
consensus-halving procedure were used instead of divide-and-choose, it would yield
a division into two portions such that every nation agreeed both portions were
almost equally valuable.

Our algorithm also provides a constructive solution to the discrete problem of
“splitting necklaces” [1]. Imagine a necklace of jewels of n different colors but an
even number of identical jewels of each color. (The position of each jewel is fixed
relative to the other jewels.) Using a minimal number of cuts, we desire a division
of the necklace into two portions such that for any color, both portions have the
same number of jewels of that color. (We imagine the necklace laid out along a
straight line, with cuts made perpendicular to this line.) Theorem 1 can be applied
in this context by assigning each player a jewel color, and replacing each player’s
subjective measure by a precise count of the number of jewels of her assigned color
in each portion. In this case, since the measures are completely known from initial
data, a simplicial algorithm can be adapted to compute an exact solution: if ε
is chosen to be 1 jewel, then the simplicial algorithm will find adjacent vertices
possessing opposite labels, and a little thought reveals that one of these vertices
must represent cuts that divide all the jewel colors in half. (Otherwise the same
player could not be “most distressed” at both vertices and still change preferences.)

6. team-splitting

Each consensus-halving result corresponds to a related envy-free division problem
for twice the number of people, by averaging measures. For instance, our consensus-
halving result can be used to address the following “team-splitting” problem.

Suppose among the 2n explorers on an expedition there are two of each specialty:
two zoologists, two botanists, two archeologists, etc. They want to know the fairest
way to split both their team and their territory. In other words, they want to split
into two teams in such a way that each specialty is represented on each team, and
such that each team member is satisfied that she is on the team with the best half
of the territory to explore.

Theorem 2 (Team-Splitting). Given a territory and such a collection of 2n ex-
plorers, there exists a way to divide the territory and the people into two teams
of n explorers (one of each type) such that each explorer is satisfied with his/her
territory.

This result assumes there are no coalitions (sets of people who desire to be on the
same team) and that the players have continuous (though not necessarily additive)
measures over the territory.

Proof. The territory is the object A that will be divided by consensus-halving.
Consider the i-th pair of scientists by specialty, with measures λi and λ′i. Let
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µi = λi+λ′i. These form a collection of n measures with which to apply consensus-
halving, obtaining two portions A1 and A2 for which

λi(A1) + λ′i(A1) = λi(A2) + λ′i(A2)

for all i. If λi(A1) = λi(A2) and λ′i(A1) = λ′i(A2) then both scientists of the i-th
pair are indifferent between the portions; we can flip a coin to make assignments.
Otherwise we conclude that one member of the i-th pair believes A1 is more valuable
than A2, and the other believes the opposite. In this case assign each scientist of
the i-th pair the portion of the territory that she prefers.

From the consensus-halving theorem, we see that the team-splitting solution
is even reasonably practical— it would never involve more than n straight cuts
through the territory.

7. Open problems

We close with some open problems.
1. Consensus-splitting in an arbitrary ratio. Suppose we desired a division of

cake into two portions so that each of n people agreed the split was some
other ratio, say two-to-one? Under what conditions can this be achieved
constructively using a minimal number of cuts?

2. Consensus-1/k-division. Is there a constructive method for obtaining a di-
vision into k portions such that each of n people believe all k portions are
equal in size? Such a method could be used to divide an estate among k chil-
dren such that each of n people (parents, children, and others) agreed that
all children received equal portions.

3. A generalized Tucker’s lemma. It seems quite likely that the above problem
could be addressed by proving some generalization of Tucker’s lemma. What
is the appropriate combinatorial generalization, and is there a constructive
proof?
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[3] Bárány, I., Shlosman, S.B., Szücs, A., 1981. On a topological generalization of a theorem of

Tverberg, Journal of the London Mathematical Society (2) 23, 158-164.
[4] Barbanel, J.B., 1996. Super envy-free cake division and independence of measures. Journal

of Mathematical Analysis and its Applications 197, 54-60.
[5] Brams, S.J., Taylor, A.D., 1996. Fair Division: from Cake-Cutting to Dispute Resolution,

Cambridge University Press, Cambridge.

[6] Freund, R.M., Todd, M.J., 1981. A constructive proof of Tucker’s combinatorial lemma,
Journal of Combinatorial Theory Series A 30, 321-325.

[7] Gardner, M., 1978. aha! Insight. W.F. Freeman and Co., New York.
[8] Goldberg, C.H., West, D.B., 1985. Bisection of circle colorings, SIAM Journal on Algebraic

and Discrete Methods 6, 93-106.

[9] Lefschetz, S., 1949. Introduction to Topology, Princeton Univ. Press, Princeton, New Jersey.
[10] Peterson, E., Su, F.E., Exact procedures for envy-free chore division, preprint.

[11] Robertson, J.M., Webb, W.A., 1998. Cake-Cutting Algorithms: Be Fair If You Can, A K
Peters Ltd., Natick, Massachusetts.

[12] Rotman, J.J., 1988. An Introduction to Algebraic Topology, Springer-Verlag, New York.

[13] Steinhaus, H., 1948. The problem of fair division, Econometrica 16, 101-104.



CONSENSUS-HALVING VIA THEOREMS OF BORSUK-ULAM AND TUCKER 8

[14] Su, F.E., 1999. Rental harmony: Sperner’s lemma in fair division, American Mathematical

Monthly 106, 930-942.

[15] Todd, M.J., 1976. The Computation of Fixed Points and Applications, Lecture Notes in
Economics and Mathematical Systems, Springer-Verlag, New York.

[16] Tucker, A.W., 1945. Some topological properties of the disk and sphere, in Proceedings of
the First Canad. Math. Congress, Montreal, 1945, 285-309.

[17] Yang, Z., 1999. Computing Equilibria and Fixed Points, Kluwer Academic Publishers,

Boston.

Department of Mathematics, Portland Community College, Portland, OR 97229

E-mail address: fsimmons@pcc.edu

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711

E-mail address: su@math.hmc.edu


