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Abstract

Sellers benefit on average from revealing information about their goods to buyers, but

the incentive to exaggerate undermines the credibility of seller statements. When multiple

goods are being auctioned, we show that ordinal cheap talk, which reveals a complete or

partial ordering of the different goods by value, can be credible. Ordinal statements are not

susceptible to exaggeration because they simultaneously reveal favorable information about

some goods and unfavorable information about other goods. Any informative ordering

increases revenues in accordance with the linkage principle, and the complete ordering

is asymptotically revenue-equivalent to full revelation as the number of goods becomes

large. These results provide a new explanation in addition to bundling, versioning, and

complementarities for how a seller benefits from the sale of multiple goods.
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1 Introduction

When can a seller credibly reveal information to buyers? The linkage principle (Milgrom and

Weber, 1982) shows that such revelation strengthens competition and, on average, increases

seller revenues by narrowing information differences among buyers. But the importance of the

linkage principle would seem limited by the seller’s incentive to only reveal good information or

even lie about bad information. It is usually assumed that the credibility of seller information,

and the applicability of the linkage principle, depends on the seller’s incentive to maintain a

trustworthy reputation over time.1

We show that the credibility problem is less severe than normally supposed when a seller has

multiple goods. Although the seller has an incentive to lie about the value of each individual

good, cheap talk about the comparative values of the goods is often credible. For instance, an

auction house can credibly rank the likely values of different goods even if absolute estimates

are not credible. Comparative statements can be part of an equilibrium strategy because they

simultaneously reveal favorable information about one good and unfavorable information about

another good. The incentive to lie is thereby diminished, and in many situations is completely

eliminated.

To investigate this issue formally we consider simultaneous, common value auctions of

stochastically equivalent and independently distributed goods by an informed seller. For each

of the goods there is a set of different buyers who each have a private signal about the value

of the good and are interested only in that good. Before the auctions the seller publicly makes

a cheap talk statement to all the buyers about the comparative values of the different goods.

This statement may disclose a complete ordering of the goods according to her own private

signal, or a partial ordering in which multiple goods are grouped into the same categories.

When the seller’s information is a complement to the buyers’ signals in determining buyer

valuations, the seller has an incentive to sell a better good precisely when the buyers are

expecting a better good. We show that this simple condition is necessary and sufficient to

make ordinal cheap talk by the seller credible. For a sufficiently large number of goods we

find that an ordinal cheap talk equilibrium involving a partial ordering always exists under

standard conditions. We then provide a simple and natural class of auctions where revealing

1Of course, legal restrictions or contractual obligations may also provide an incentive for truthfulness, but

the private nature of seller information makes verification inherently difficult. Moreover, common law has long

protected “puffery” — the right of sellers to boast about their goods.
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a complete ordering of the goods is always an equilibrium for any number of goods.

We find that the revenue gains from comparative cheap talk can be substantial and that,

consistent with the linkage principle, finer comparisons imply higher revenue. Moreover, as the

number of goods increases, revealing the seller’s complete ordering is asymptotically equivalent

to revealing all of the seller’s private information. In a common values auction with a perfectly

informed seller, buyer information rents therefore go to zero. This limit result is distinct from

other recent results in the auction literature. Bali and Jackson (2002) find that as the number

of bidders for a good increases, buyer information rents disappear in the limit for all standard

auction formats. Pesendorfer and Swinkels (2000) find that for a uniform price auction with

identical goods, the auction is efficient in the limit as the number of goods and buyers goes to

infinity in a bounded ratio with more buyers than goods. In both these models the competition

between buyers is the driving force in eliminating buyer information rents. In our model there

is a fixed number of buyers who bid for each good. Buyer information rents fall purely because

of credible revelation of the seller’s information.

Crawford and Sobel (1982) show that limited cheap talk statements are often credible when

sender and receiver interests are neither directly opposed nor directly aligned. While the sender

still has an incentive to lie about the absolute value of an unknown parameter, the sender can

reveal to the other party an interval in which the unknown parameter lies, provided sender and

receiver interests are sufficiently aligned. For instance, the seller can state that the parameter

is above or below some level. In our model the buyers for each good and the seller have directly

opposing interests so the seller always has an incentive to exaggerate the value of the good and

such interval cheap talk is not credible.2

While interval cheap talk in the sense of Crawford and Sobel is not possible, there still exist

informative equilibria that are partitional in the space of the common values of the goods, with

different elements of the partition differing only in the ordinal nature of the information they

convey. These equilibria are distinct from those in Crawford and Sobel because they are limited

to ordinal information and because each element of a partition must contain at least one good.

For instance, a seller cannot state that two goods are both above average but can state that

one good is better than another good.

The ability to make credible comparisons provides a new explanation in addition to bundling,

2Farrell and Gibbons (1989) show that cheap talk is possible with otherwise opposing interests when there

are costs to trading. For instance a potential buyer might reveal a strong interest in a good to a seller so as to

persuade the seller that it is worth the trouble of bargaining.
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complementarities, and versioning for how a single seller benefits from the sale of multiple

goods. The bundling literature shows that selling multiple goods as a package can be used to

reduce variation in buyer demands (McAffee, McMillan, and Whinston, 1989) or restrict entry

by sellers of single products (Nalebuff, 2000). The combinatorial auctions literature shows that

simultaneous auctions can be designed to take advantage of complementarities across goods

(Rassenti, Smith, and Bulfin, 1982). These factors are not present in our model because each

buyer demands only one good. More relatedly, the versioning literature shows how selling

multiple goods of varying quality allows a monopolist to discriminate among different buyers

(Varian, 1989). In our model there is no such advantage since buyers do not vary in their taste

for quality. The gains we identify are therefore entirely due to reductions in buyer information

rents via the linkage principle.

The seller in our model could be the actual owner of multiple goods, a separate evaluator

of the goods whose earnings are dependent on overall sales, or an auction house that sells

goods on behalf of different owners. In the last case the auction house’s private information

could be in the form of background information about the owners. For instance, on-line

auction houses have feedback mechanisms that accumulate information about the performance

of sellers, but the design of these mechanisms appears to induce overly positive reports (Resnick

and Zeckhauser, 2001). This paper shows that the relative performance scores of different sellers

can be credible even when the absolute scores are not.

In Section 2 we set up the model and in Section 3 we consider ordinal cheap talk equilibria.

In Section 3.1 we provide a result on the existence of one informative equilibria, while in Section

3.2 we characterize different ordinal cheap talk strategies in terms of their revenues. In Section

4 we provide two simple special cases of our general model. Section 5 concludes while the

Appendix contains some of the proofs.

2 The Model

A seller hasN ≥ 2 different goods indexed by k ∈ {1, ..., N}. For each good k the seller observes
the value of the good, Vk ∈ [0, 1]. Let V ∈ [0, 1]N represent the vector of values for the goods.

Let Vk:N denote the k—th lowest value (i.e., the kth order statistic) with V1:N ≤ ... ≤ VN :N .

We suppose that for each good k there are n ≥ 2 buyers, indexed by ik ∈ {1, ..., n}. The
utility for buyer ik from obtaining good k at a price p is equal to Vk − p and the sets of buyers

for any two goods are disjoint. Each buyer ik has a private signal about good k, Xik ∈ [0, 1]
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for ik ∈ {1, ..., n}. Denote by Xk = (Xik , ...,Xnk) the vector of buyer signals for good k.

We suppose that the random variables (Xk, Vk) are independently and identically distrib-

uted across k ∈ {1, ..., N}. Let F denote the joint distribution of (Xk, Vk). Following Milgrom

and Weber (1982), hereafter MW, we assume that F is symmetric in its first n arguments

and that it displays affiliation. Affiliation implies if one player (including the seller) observes

a high private signal of the value of a good, other players are also more likely to observe high

private signals of the value of that good. When F has a density f , affiliation implies that

f is log—supermodular in its arguments. In the appendix we provide a general definition of

affiliation.

Let FV denote the marginal distribution of Vk. We suppose that either FV admits a positive

density fV with compact support V = {v|fV (v) > 0} or that FV is a step function, i.e., Vk

takes finitely many values and fV (v) = Pr[Vk = v]. For each v ∈ V, let FX|V (·|v) denote
the distribution of Xk conditional on Vk = v. We suppose that either FX|V (·|v) admits a
positive density fX|V (.|v) for each v or that FX|V (·|v) is a step function for each v. In the

latter case, Xk takes a finite number of values with fX|V (x|v) = Pr[Xk = x|Vk = v]. For each

v ∈ V, let X(v) = {x|fX|V (x|v) > 0} denote the support of fX|V (·|v) (that may depend on
v). Finally, assume that fX|V (·|v) is a bounded function of v with at most a finite number of
discontinuities.

The seller sells the goods in the form of N simultaneous “English” or continuous ascending

clock auctions to the N different groups of buyers.3 Formally, such an auction consists of a

price p ∈ [0, 1] rising continuously from 0 to 1. At any price p, each buyer has to decide whether
to remain active or drop out after observing the number of previously active bidders and when

other bidders have dropped out. Drop outs are final. Let ι(p) ∈ {1, ..., n} be the number of
bidders who are active at p. Let pik be the price at which ik drops out (with pik set equal to

1 if ik never drops out). The winner of the auction is the bidder with the maximum pik , with

ties being decided uniformly. The price P that the winner pays is equal to inf{p|ι(p) ≤ 1} if it
exists, and is equal to 1 otherwise.

Since the auctions are simultaneously held, none of the buyers in any auction observe any

of the proceedings of any other auction. The only possible information transmission between

auctions takes the form of a public announcement sent by the seller before the auctions start.

The seller’s announcement strategy is represented as a function m(V ) choosing a message (or

3We do not consider the optimality of the English auction nor other mechanism design issues such as reserve

prices and entry fees.
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a probability distribution over messages) from a finite set M (with at least N ! elements), as

a function of her private information V. We ignore reputational considerations, so that the

seller’s announcement is pure cheap talk and the seller is only interested in maximizing her

total revenues from the N auctions.

Recall that we assume separate sets of buyers for each good. In practice, there will often be

some overlap between buyers in which case neither our assumption of disjoint buyer sets nor

the more common assumption of identical buyer sets will hold. Separation is most likely when

the goods are of different types, e.g., a government privatizes a number of firms in different

industries and buyers are industry-specific, or an on-line auction house sells a range of different

goods and buyers are interested in a specific good. Use of disjoint buyer sets greatly simplifies

the analysis of equilibrium bidding behavior and also highlights the fact that the gains we

identify from selling multiple goods are not due to increased competition from a corresponding

increase in buyers for each good, nor to strategies such as bundling that depend on each buyer

having an interest in multiple goods, but are exclusively due to cheap talk by the seller.

3 Ordinal Cheap Talk

3.1 Existence of Equilibrium

An equilibrium for our cheap talk and bidding game consists of an announcement strategy

m(V ) for the seller and bidding strategies for each buyer of each good such that: given the

message m, the bidding strategies constitute a symmetric Bayesian Nash equilibrium of the

auction for each good k; and, given the bidding strategies, the seller’s announcement strategy

maximizes her expected revenues for each possible realization of V .

A full characterization of the symmetric Bayesian Nash equilibria for English auctions is

found in MW.4 In brief, the bidding proceeds in two stages. In stage 1, the n − 2 bidders
with the lowest signals successively drop out at points pik that depend on their private signals,

enabling the two remaining bidders to infer their signals. In stage 2, each of the two remaining

bidders drop out at the point p reaches the expected value of the good conditional on the

(inferred) values of the lowest n− 2 signals, the message m sent by the seller, and on the fact

4While the analysis in MW is carried out for the case where the buyer signals Xik are continuous random

variables admitting a density (so that ties are zero probability events), it is straightforward to check that their

analysis carries over to the case of discrete buyer signals when the seller employs an English auction in the sense

defined above.
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that the buyer is tied for the highest signal. Notice that when n = 2 this is equivalent to

equilibrium bidding behavior in a second price auction.

For ik = 1, ..., n, let Yik be the i—th highest signal among the n signals of the buyers of

good k and let Zik = (Yik , ..., Ynk). When the value of the second highest signal is y2 and the

value of the lowest n− 2 signals is equal to (the vector) z3, the bidder with the second highest
signal will drop out at the point bm(y2, z3) defined by:

bm(y2, z3) = E[Vk|Y1k = Y2k = y2, Z3k = z3,m]. (1)

It may seem that the expectation in (1) may not be well—defined if the seller’s message m is

inconsistent with the buyer signal(s) Xk.
5 However, for the set of cheap talk equilibria that

we focus on, where the seller only discloses ordinal information, such a possibility never arises,

as the distribution of Vk given any message m always enjoys the same support as the prior

distribution of Vk. Furthermore, for each ordinal message m, our assumptions imply that the

function bm is non—decreasing in each argument. Let Pm,k be the price that the seller receives

for good k given a message m. Since Z2k = (Y2k , Z3k), we can write

Pm,k = bm(Z2k). (2)

We now turn to considering the seller’s announcement strategies m(V ) that may constitute

a cheap talk equilibrium. As is usual in cheap talk games, there always exists one uninformative

or babbling equilibrium where the buyers ascribe no meaning to the seller’s announcement, so

that the seller does not send any informative message. For the babbling case we will denote

by bu(·) the function in (1) that defines the price at which the bidder with the second highest
signal drops out, regardless of the seller’s message m. Since bu does not depend on the seller’s

message,

bu(y2, z3) = E[Vk|Y1k = Y2k = y2, Z3k = z3]. (3)

Denote by Pu,k = bu(Z2,k) the price that the seller obtains for good k in a babbling equilibrium.

Regarding informative equilibria, note that since buyer and seller interests are directly

opposed on each good, there is no room for cheap talk that refers to the value of each good

independently of the value of other goods. We are interested in the possibility of cheap talk

equilibria where the seller’s message consists of disclosing a partial or complete order of the

5This may occur when, for example, the seller has announced that the value of the good is equal to 1 and

the buyer knows from his signal that the value of the good is less than 1 with probability 1.
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values V1, ..., VN of his N goods. Such a message contains information about each good that

is not independent of the information it contains about other goods. We call such strategies

ordinal cheap talk strategies and such equilibria, if they exist, ordinal cheap talk equilibria.

Formally, let CN = (c1, ..., cJ) denote an ordering of the N goods into J ∈ {1, ..., N}
elements or categories such that category j = 1, ..., J contains cj ∈ {1, ..., N} goods withP

j cj = N . For j = 1, ..., J, let ψj =
Pj

j0=1 cj0 be the number of goods in or below category j,

with ψ0 = 0.

The ordinal cheap talk strategy that corresponds to the orderingCN is described as follows.

For each realization of V , the seller announces that the c1 goods with the lowest values belong

to category 1, the next c2 goods belong to category 2, and so on. If there are ties between

some of the Vk’s, the seller uniformly randomizes when she sorts those goods into different

categories. Consequently, buyers know that goods in higher categories have a weakly higher

value and cannot distinguish between goods within a category based on the seller’s message.

In the rest of this paper we will denote an ordinal cheap talk strategy by the corresponding

ordering CN . Note that such a strategy consists of a partition of V
N . The partition has

N !/
Q

j(cj !) elements, each element corresponding to one way of sorting the N goods into the

categories specified by CN . We emphasize that the ordering CN itself is fixed and does not

depend on the realization of V. When buyers believe that the seller’s announcement strategy

is given by CN , we assume that to each message m ∈ M they ascribe a unique meaning

corresponding to one element of the partition of VN that is generated by CN , thus ruling out

the possibility of out—of—equilibrium messages.

Given N , we will say that an ordering CN is finer than an ordering C0N if it is a finer

partition of VN in the usual sense of partitions. The finest possible ordering, denoted by C∗N ,

is when the seller completely orders her N goods, i.e., J = N and cj = 1 for all j. On the

other hand, the coarsest possible ordering, denoted by Cu
N , has J = 1 and corresponds to

the uninformative babbling equilibrium discussed above. Note that every ordinal cheap talk

strategy CN 6= Cu
N is informative about Vk for all k.

For any ordering CN , when the seller announces that good k belongs to category j, the

buyers of good k know that the value of good k is equally likely to be one of the cj order statistics

{Vψj−1+1:N , ..., Vψj :N}. Let Fj:CN
be the distribution of good k when the seller announces that

good k belongs to category j. Due to our symmetry and independence assumptions Fj:CN
does

not depend on k. We will denote by Vj:CN
the random variable that has distribution Fj:CN

,

with V j:CN
= E[Vj:CN

]. Note from the definition of CN that V j:CN
is increasing in j.
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Similarly, using (1), (2) and our symmetry assumptions, we let Pj:CN
= bj:CN

(Z2,k) denote

the price that the seller obtains when her message m implies that good k belongs to category

j. By affiliation and the definition of CN , E[Pj:CN
|Vk = v] is non—decreasing in v and j. The

following lemma provides a necessary and sufficient condition for an ordinal cheap talk strategy

characterized by an ordering CN to be an equilibrium.

Lemma 1 The ordering CN = (c1, ..., cJ) is an equilibrium if and only if for all v, v0 with

v > v0

E[Pj:CN
|Vk = v]−E[Pj:CN

|Vk = v0] is non—decreasing in j ∈ {1, ..., J}. (4)

Proof. Necessity is immediate: if there existed j, j0 with j > j0 such that

E[Pj:CN
|Vk = v]−E[Pj:CN

|Vk = v0] < E[Pj0:CN
|Vk = v]−E[Pj0:CN

|Vk = v0] (5)

for some v, v0 with v > v0, then for a realization of V such that Vk = v > Vk0 = v0 and such

that good k should be in category j and good k0 in category j0, the seller would do better to

announce that k is in category j0 and k0 in j, keeping the rest of her announcement unchanged.

To show sufficiency, consider any subset of L ≤ N goods, indexed by kl, l = 1, ..., L, such

that Vk1 ≤ ... ≤ VkL . Fixing the categories announced for the other N − L goods, suppose

that {jl}Ll=1 are the categories the seller has available to announce for the L remaining goods,
with j1 ≤ ... ≤ jL. We show by induction on L that she would want to announce the highest

possible category jL for good kL, and so on, announcing category j1 for good k1. For L = 2,

this is identical to (4).

Suppose as the inductive hypothesis that the claim is true for L− 1 and observe that the
expected revenues from the L goods, from announcing a category other than jl∗ 6= jL for good

k and category jL announced for good kl0 , is equal to

E[Pjl∗ :CN
|VkL ] +E[PjL:CN

|Vkl0 ] +
X

jl 6=jl∗ ,jL
kl 6=kL,kl0

E[Pjl:CN
|Vkl ]

≤ E[Pjl∗ :CN
|Vkl0 ] +E[PjL:CN

|VkL ] +
X

jl 6=jl∗ ,jL
kl 6=kL,kl0

E[Pjl:CN
|Vkl ]

by (4). Thus, it is weakly optimal for the seller to announce category jL for good kL. By the

inductive hypothesis, it is weakly optimal to put good kL−1 in category jL−1, and so on, so

that the sufficiency of (4) follows.
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The ‘increasing difference’ condition in Lemma 1 for the existence of an ordinal cheap talk

equilibrium captures an information complementarity between buyer valuations and the seller’s

information. It says that the gain in expected revenue from selling a higher-valued good in any

auction must be non-decreasing in how optimistic the buyers are in that auction, given the

seller’s message. Such a condition is necessary and sufficient for the seller to announce higher

categories for her better goods and lower categories for her worse goods.

In general, whether or not an informative ordinal cheap talk equilibrium exists depends on

the structure of information held by the buyers and the seller.6 The next result shows that one

such equilibrium always exists for a large enough number of goods provided that the monotone

likelihood ratio property implied by affiliation holds strictly rather than just weakly, that the

support of the buyer signals is the same for all values of the goods, and that either the set of

possible buyer signals or the set of possible values of the goods has a finite number of elements.

Theorem 1 Suppose that for all v, v0 ∈ V with v > v0, X(v) = X(v0) = X and further
fX|V (x|v)
fX|V (x|v0) is strictly increasing in x ∈ X. Then if either V is finite or X is finite, there exists

N such that for each N > N the set of informative equilibrium orderings is non—empty.

Proof. See the Appendix.

The proof of Theorem 1 is constructive and proceeds by considering, for eachN , an ordering

CN = (1,N − 1) so that the goods are divided into two categories with 1 good in the lower
category and N − 1 goods in the higher category. For such an ordering, as N becomes large,

buyers become more and more certain that the good in the lower category is likely to be of

the lowest possible value and bid accordingly, regardless of their signals and the actual value

of the good. However, as N becomes large, buyers do not have such strong beliefs about

a good in the higher category since almost all of the goods are in that category and the

probability distribution for the value of a good in the higher category therefore approaches the

prior distribution. As a result, buyers pay more attention to their own private signals and on

average bid more for a good that is better. Since the impact on prices from selling a better

good is greater for the higher category, the increasing difference condition (4) is satisfied.7

6It also depends on other factors such as the auction format and on the number of bidders for each auction,

but the necessary and sufficient condition (4) remains unchanged.
7In the proof of Theorem 1, the finiteness of V is used to guarantee a lower bound on the left—hand side and

an upper bound on the right—hand side of (4) that are both independent of v and v0, guaranteeing that for N

large enough (4) holds for all v, v0. When V is a continuous random variable, one can achieve the same end if

X is finite.
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The argument underlying Theorem 1 also applies when the lower category has any fixed

number c1 of goods and N becomes large. More generally, the existence of an equilibrium does

not require that there be only two categories or that N is large. In Section 4 we consider two

examples of our general model where the set of informative ordinal cheap talk equilibria is

quite large even for small N . But first we investigate the expected revenues from informative

ordinal cheap talk strategies.

3.2 Revenues

Informative cheap talk equilibria are especially interesting because of their beneficial effect on

ex—ante expected revenues via the linkage principle. Consider an ordering CN = (c1, ..., cJ)

and let R(CN) be the seller’s per—good ex—ante expected revenue when she uses the ordering

CN and when the buyers believe that the seller is doing so. Then,

R(CN ) =
1

N

JX
j=1

cjE[Pj:CN
]. (6)

Note that when CN is an equilibrium ordering, R(CN) is the seller’s equilibrium expected

revenue.

The next result states that finer orderings lead to higher expected revenues. It implies

that the expected revenues from any informative ordinal cheap talk equilibrium is higher than

R(Cu
N ), the expected revenue from the uninformative babbling equilibrium. The result follows

from a direct application of Theorem 13 in MW.8

Theorem 2 If CN is finer than C0N then R(CN ) ≥ R(C0N).

We now consider the complete ordering C∗N and show that as the number of goods N

becomes large, the per—good expected revenues converge to V , the ex—ante expected value of

each good. In other words, in the limit, the seller obtains the same revenue as she would from

being able to fully disclose her information.

Theorem 3 For the complete ordering C∗N , limN→∞R(C∗N ) = V .

Proof. See the Appendix.

8See also footnote 4.
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For example, suppose that Vk is uniformly distributed in [0, 1]. When buyers know the

complete ordering of the goods, for a large number of goods it is almost sure that the value of

the highest ranked good is close to 1, and that the value of the lowest ranked good is close to 0.

Because of this increased certainty, buyers will be willing to bid close to 1 and 0 respectively for

the two goods, regardless of their private signals, so that the prices will also be close to 1 and

0, respectively. Theorem 3 uses the Glivenko—Cantelli Theorem and shows that this same logic

applies along the entire distribution– for any p ∈ (0, 1), if there are N goods, then the value of

the pN—th good is likely to be very close to p as N becomes large, and buyers will pay close to

that value. As the number of goods increases, buyers become more and more certain that the

ranking of the good narrowly constrains the good’s likely value so that per—good information

rents converge to zero.

Our last result of this section considers partial orderings CN that asymptotically yield

expected revenue equal to V as the number of goods becomes large when V is finite, i.e.,

Vk ∈ {v1, ..., vH} with Pr[Vk = vh] = λh ∈ (0, 1) for h = 1, ...,H. (7)

For each N consider the ordering CN = (c
N
1 , ..., c

N
H) with the asymptotic property that

lim
N→∞

cNh
N
= λh for h = 1, ...,H. (8)

In other words, CN orders the goods into H categories, with the number of goods in each

category h ≥ 1 being in proportion (asymptotically) to the probability that Vk take its hth
value. As N becomes large, the probability that a good in the h—th category takes the value

vh becomes arbitrarily close to 1. This implies that information rents vanish for each good and

asymptotic revenues equal V .

Theorem 4 Assume (7). For any sequence of orderings {CN}N satisfying (8), limN→∞R(CN) =

V .

Proof. See the Appendix.

4 Two Special Cases

In view of Theorems 3 and 4, it is of interest to identify models where the set of ordinal

cheap talk equilibria is large and includes, in particular, the complete ordering C∗N or the
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asymptotically revenue-equivalent partial orderings characterized by (8). In this section, we

develop two simple special cases of our general model above with these properties. In the first

case, we impose restrictions on the nature of signals that the buyers for each good can possess

while keeping the seller’s information unrestricted. In the second case, we do the opposite.

4.1 Informed/Uninformed Buyers

Let FV be as before but suppose that each buyer ik knows Vk with probability β ∈ (0, 1)
and has no information with probability 1− β. The probability that any buyer is informed is

independent across buyers. It is straightforward to check that such a structure satisfies all the

assumptions of the model.

For any candidate equilibrium ordering CN , recall that V j:CN is the expected value of

a good that belongs to category j. The following bidding behavior constitutes a symmetric

Bayesian Nash Equilibrium of the auction for any good k that belongs to category j according

to the seller’s announcement, as can be easily checked.

Any informed bidder ik who knows Vk = v drops out with probability 1 when the price

p ≥ v and remains active with probability 1 for all p < v regardless of how many other

bidders are or have been active. Any bidder ik who is uninformed drops out with probability

1 whenever the number of active bidders ι(p) is less than n, or whenever the price p ≥ V j:CN
,

and stays active with probability 1 otherwise.

As a result, when Vk ≥ V j:CN the seller obtains a price equal to V j:CN when at most 1

out of n bidders are informed, and obtains a price equal to Vk otherwise. On the other hand,

when Vk < V j:CN
, the seller obtains a price equal to V j:CN

when no bidder is informed, and

obtains a price equal to Vk otherwise. Thus,

E[Pj:CN
|Vk] =

(
(1−Π)Vk +ΠV j:CN

if Vk ≥ V j:CN

(1− π)Vk + πV j:CN
if Vk < V j:CN

(9)

where π = (1 − β)n is the probability that none of the n bidders is informed and Π = π +

nβ(1− β)n−1 is the probability that at most 1 of the n bidders is informed.

Proposition 1 In the informed/uninformed buyer model, for each N, any ordering CN is an

equilibrium.

12



Figure 1: Informed/uninformed buyer model, n = 2, Vk ∼ U [0, 1], β = 1/2.

Proof. Pick an orderingCN and categories j, j
0 with j > j0. Since V j:CN

> V j0:CN
, we observe

from (9) that for any v,

E[Pj:CN
−Pj0:CN

|Vk = v] =


π(V j:CN

− V j0:CN
) if v < V j0:CN

(Π− π)v + πV j:CN
−ΠV j0:CN

if V j0:CN
≤ v < V j:CN

Π(V j:CN
− V j0:CN

) if V j:CN
≤ v

(10)

Since Π > π the expression above is non—decreasing in v. But this is equivalent to (4) so that

CN is an equilibrium ordering.

Proposition 1 implies that the full ordering C∗N is an equilibrium for every N . Thus the

asymptotic revenue result from Theorem 3 is relevant. Figure 1 shows the per—good ex—ante

expected revenues as a function of the number of goods N when there are two bidders for each

good (n = 2), FV is the uniform distribution on [0, 1], and the probability β that a bidder

is informed is equal to 1
2 . For the uniform distribution, V k:C∗N = k

N+1 for k = 1, ..., N . The

average price under full revelation for any number of goods is the expected value of the good,
1
2 . Of course, such revelation is not credible in this example nor more generally. If the seller

does not make any credible statements then the per—good expected revenue is just .4375 for

13



any number of goods. Under ordinal cheap talk with a complete ordering the price rises to

.4506 for 2 goods and continues to rise with the number of goods. Buyer information rents, as

represented by the difference in the expected value and the expected price, fall by over 50%

for six goods and by over 80% for 100 goods.

4.2 Binary Seller Information

Suppose that Vk ∈ {0, 1} where Pr[Vk = 1] = λ ∈ (0, 1) for k ∈ {1, ..., N}. Suppose also that
X(v) = X for all v ∈ {0, 1} and that the likelihood ratio of buyer signals conditional on Vk is

bounded:

l = sup
x∈X

fX|V (x|1)
fX|V (x|0)

<∞. (11)

Consider the ordering

CN = (c1, c2) such that c2 ≥ λN. (12)

Let λj:CN = Pr[Vj:CN = 1] for j = 1, 2. Note that λ1:CN = E[max{0, Y−c2c1
}] and λ2:CN =

E[min{1, Yc2 }] where Y is a binomial random variable with parameters λ and N . We have the

following result.

Proposition 2 Consider the binary seller information model with (11) and suppose that λ ≤
1

1+l
2 . Then for all N such that λN is an integer, any ordering CN satisfying (12) is an

equilibrium. Further, there exists N such that for all N > N any ordering CN satisfying (12)

is an equilibrium.

Proof. See the Appendix.

The orderings given by (12) contain those covered by Theorem 4, e.g., the ordering with

c2 = dλNe. Consequently, in the binary signal model with (11) and λ low enough, there

exists an ordinal cheap talk equilibrium with the property that per—good expected revenues

are approximately equal to V , the ex—ante expected value, when the seller has a large number

of goods.

In the rest of this section we consider an example of this model where we can explicitly solve

for equilibrium bids and where we can strengthen the conclusions of Proposition 2. Suppose

that there are two buyers for each good, and each buyer gets a binary signal Xik ∈ {0, 1}, with

Pr[Xik = 1|Vk = 1] = Pr[Xik = 0|Vk = 0] = β ∈ (1
2
, 1). (13)
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The buyers’ signals are independent conditional on the value of the good. Note that condition

(11) holds for this signal structure with l = β
1−β > 1

2 .

With two bidders, in the symmetric equilibrium of the English (equivalently, second price)

auction, each bidder bids the probability that the good has value 1 conditional on his own

signal Xik = x, on the other bidder having the same signal, and on the announced category for

the good. Consider an ordering CN = (c1, c2) that divides the goods into two categories with

λj:CN
being the probability that Vk = 1 given that it is in category j ∈ {1, 2}. Let bj:CN

(x) =

Pr[Vk = 1|X1k = x = X2k] be the equilibrium bid of a buyer with signal x ∈ {0, 1},when the
seller has announced that the good is in category j :

bj:CN
(1) =

β2λj:CN

β2λj:CN
+ (1− β)2(1− λj:CN

)
(14)

and

bj:CN
(0) =

(1− β)2λj:CN

(1− β)2λj:CN
+ β2(1− λj:CN

)
(15)

Note that the high bid is received only when both buyers have a high signal. Therefore,

E[Pj:CN
|Vk = 1] = β2bj:CN

(1) + (1− β2)bj:CN
(0)

E[Pj:CN
|Vk = 0] = (1− β)2bj:CN

(1) + (1− (1− β)2)bj:CN
(0).

It is straightforward to check that in this model the necessary and sufficient condition (4) for

the existence of equilibrium reduces to the simple condition

λ1:CN
+ λ2:CN

≤ 1 (16)

that is independent of β. Furthermore, since both λ1:CN and λ2:CN are decreasing in c2, there

exists a cutoff value c2 (depending on λ and N) such that the ordering CN = (c1, c2) is an

equilibrium if and only if c2 ≥ c2. The following result shows that for this example Proposition

2 can be considerably strengthened.

Proposition 3 Consider the binary seller information model with n = 2 and buyer signals

satisfying (13). There exists an equilibrium sequence of orderings CN = (cN1 , c
N
2 ) such that

limN→∞
cN2
N = λ.

Proof. For this case λ1:CN +λ2:CN ≤ 1 (equivalently,
1−λ2:CN
λ1:CN

≥ 1) is necessary and sufficient
for an ordering CN = (cN1 , c

N
2 ) to be an equilibrium. For λ ≤ 1

2 , let c
N
2 = dλNe (i.e., the
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smallest integer at least as high as λN) and note that since λ1:CN
≤ λ2:CN

, by symmetry and

the definition of conditional probabilities

λ =
cN1
N

λ1:CN +
cN2
N

λ2:CN =
N − dλNe

N
λ1:CN +

dλNe
N

λ2:CN ≥ (1− λ)λ1:CN + λλ2:CN (17)

so that
1− λ2:CN

λ1:CN

≥ 1− λ

λ
≥ 1. (18)

This proves the result for λ ≤ 1
2 .

Now consider λ > 1
2 . From Theorem 1, we are guaranteed the existence of a two category

informative ordering CN = (1, N −1) for N large enough. For each such N, let CN = (c
N
1 , c

N
2 )

be the informative ordering with the lowest value of cN2 . Using arguments similar to those used

for establishing (18), we see that cN2 > λN . We want to show that limN→∞
cN2
N = λ.

Suppose not. Since
cN2
N ∈ [0, 1] for each N , there exists ε > 0 and a convergent subsequence

{Nr} such that limr→∞
cNr2
Nr

> λ+ε. For eachNr, consider the ordering eCNr = (c
Nr
1 +1, c

Nr
2 −1).

Since limr→∞
cNr1 +1
Nr

< 1−λ, by the Law of Large Numbers it follows that limr→∞ λ
1:eCNr

= 0.

Furthermore, since for each Nr, eCNr is not an equilibrium ordering we must have

λ
1:eCNr

+ λ2:eCNr
> 1 (19)

so that limr→∞ λ2:eCNr
= 1. Since for each Nr,

λ =
ecNr
1

Nr
λ1:CNr

+
ecNr
2

Nr
λ2:CNr

(20)

it follows that limr→∞
ecNr2
Nr

= λ. But since limr→∞
cNr2
Nr

= limr→∞
ecNr2
Nr
, this establishes a

contradiction, completing the proof.

Proposition 3 shows that we are guaranteed the existence of a sequence of equilibrium

orderings for which Theorem 4 applies. Figure 2 plots the expected per—good revenue from the

ordering CN = (N − dλNe , dλNe) when λ = 1
2 and β = 3

4 as N varies. In the no information

or “babbling” case buyers are very unsure whether a good is high or low value, and so each

bidder reduces their bid out of fear of the winner’s curse. The expected price of .35 is therefore

substantially below the expected value of λ = 1
2 . Categorizing the goods based on their relative

values increases revenues. As the number of goods increases, the probability that a good in

the low category has value 0 rises as does the probability that a good in the high category has

value 1. Buyers are therefore more and more confident of the likely value of each good, so

competition intensifies and buyer information rents fall.
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Figure 2: Binary seller information model, n = 2, Vk ∈ {0, 1}, λ = 1/2, β = 1/2.

5 Conclusion

Sellers often make comparative statements about the values of their goods. In a multi-object

auction, we show that such statements can be credible even though full revelation of the

seller’s information is not. As a result, buyer information rents fall and seller revenues rise

in accordance with the linkage principle. Moreover, seller revenues asymptotically approach

revenues under full revelation as the number of goods increases.

Ordinal cheap talk also has applications to related non-auction selling environments. For

instance, a salesperson might have information regarding what good is better for a particular

buyer. The buyer might be suspicious of the salesperson’s claims about the value of each good,

but might still believe claims that one good is likely to be preferred over another. Similarly, in

financial markets, an analyst’s claims about the likely returns to a stock might not be credible,

but the statement that one stock is a better bet than another might be.
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6 Appendix

Definition of Affiliation

A subset S of Rn is a sub—lattice if, whenever x, x0 ∈ S, so are their component—wise

maximum (meet) and component—wise minimum (join). The indicator function 1A(x) of any

subset A of Rn is defined to be equal to 1 if x ∈ A and equal to 0 otherwise. A set A is increasing

if its indicator function is non—decreasing. Let X = (X1, ...,Xn) be a random n—vector with

probability distribution P (i.e., P (A) = Pr[X ∈ A]).

Definition 1 X1, ....,Xn are affiliated if for all increasing sets A and B and every sub—lattice

S, P [A ∩B|S] ≥ P [A|S]P [B|S].

Proof of Theorem 1

For each N, consider the ordering CN = (1,N − 1). Let vmin = minV. Note that as

N becomes large V1:CN
converges almost surely to vmin and V2:CN

converges in distribution

to Vk. Given that X(v) = X for each v ∈ V, as well as the assumed properties of FV and

FX|V , it follows that for each z2 = (y2, z3), b1:CN
(z2) converges to vmin and b2:CN

(z2) converges

to bu(z2), where bu(z2) is defined in (3). Furthermore, the strict monotone likelihood ratio

condition assumed in the statement of the theorem implies that bu(z2) is strictly increasing in

its arguments and that E[bu(Z2,k)|Vk = v] is strictly increasing in v.

Suppose first that V is finite. Since Pj:CN
= bj:CN

(Z2,k) for j = 1, 2 it follows that there

exists ε ≥ 0 and N such that for all N > N ,

max
v>v0

{E[P1:CN
|Vk = v]−E[P1:CN

|Vk = v0]} ≤ min
v>v0

{E[bu(Z2,k)|Vk = v]−E[bu(Z2,k)|Vk = v0]}−ε
(21)

and

min
v>v0

{E[bu(Z2,k)|Vk = v]−E[bu(Z2,k)|Vk = v0]}−ε ≤ min
v>v0

{E[P2:CN |Vk = v]−E[P2:CN |Vk = v0]}.
(22)

But then (4) holds.

Suppose next that X is finite. Since bu is strictly increasing, there exists ε > 0 such that
9

min
z2>z02

{bu(z2)− bu(z
0
2)} > ε. (23)

9Following usual convention, the inequality z2 > z02 allows the vectors z2 and z02 to be identical in some but

not all components.
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Observe that since Pj:CN
= bj:CN

(Z2,k) for j = 1, 2, condition (4) can be rewritten as

E[b2:CN
(Z2,k)− b1:CN

(Z2,k)|Vk = v] is non—decreasing in v. (24)

To establish (4), by affiliation of Vk and Xk it suffices to show that there exists N such that

for all N > N , the function b2:CN
(z2) − b1:CN

(z2) is non—decreasing in its arguments. But

since b1:CN
(z2) converges to vmin and b2:CN

(z2) converges to bu(z2) for each z2, there exists N

such that for all N > N,

max
z2>z02

{b1:CN
(z2)− b1:CN

(z02)} < min
z2>z02

{bu(z2)− bu(z
0
2)}− ε (25)

and

min
z2>z02

{bu(z2)− bu(z
0
2)}− ε ≤ min

z2>z02
{b2:CN

(z2)− b2:CN
(z02)}. (26)

But this implies that for N > N, b2:CN
(z2) − b1:CN

(z2) is non—decreasing in its arguments,

establishing (24).

Proof of Theorem 3

Observe first that when FV is a step function (so that Vk takes a finite number of values),

the result follows from Theorem 4, via Theorem 2, as C∗N is the finest possible ordering.

Accordingly, we provide here a proof for the case where FV has a positive density fV , so that

FV is invertible.

Note that
R 1
0 F

−1
V (q)dq = V and let dxe denote the smallest integer at least as large as x.

By the Glivenko—Cantelli Theorem, for each q ∈ (0, 1),

lim
N→∞

VdqNe:N = F−1V (q) a.s. (27)

Since Vk is bounded in [0, 1], it follows from (1) and (2), via the dominated convergence theorem

for conditional expectations, that for each such q:

lim
N→∞

E[PdqNe:C∗N ] = F−1V (q). (28)

Pick ε > 0 and let {ql}Ll=0 be a collection such that 0 = q0 < .... < qL = 1, for all l = 1, ..., L,

and, furthermore,

L−1X
l=0

(ql+1 − ql)F
−1
V (ql) >

Z 1

0
F−1V (q)dq − ε = V − ε. (29)
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Since we can write

R(C∗N ) =
1

N

NX
k=1

E[Pk:C∗N ], (30)

and, by affiliation, for k, l such that qlN ≤ k < ql+1N E[Pk:C∗N ] ≥ E[PdqlNe:C∗N ], it follows

that

lim
N→∞

R(C∗N ) = lim
N→∞

1

N

NX
k=1

E[Pk:C∗N ]

≥ lim
N→∞

1

N

L−1X
l=0

(dql+1Ne− dqlNe)E[PdqlNe:C∗N ]

≥ lim
N→∞

L−1X
l=0

(ql+1 − ql)E[PdqlNe:C∗N ] − lim
N→∞

L

N

=
L−1X
l=0

(ql+1 − ql)F
−1
V (ql) > V − ε.

Since ε was arbitrary, this completes the proof.

Proof of Theorem 4

For the ordering CN defined by (8) let ψN
h =

Ph
h0=1 c

N
h with ψN

0 = 0. For any h = 1, ...,H,

notice that the value of a good given that it is in category h is equally likely to be one of the

order statistics {VψNh−1+1:N , ..., VψNh :N}, so that

Pr[Vh:CN
= vh] =

1

cNh

cNhX
kN=1

Pr[VψNh−1+kN :N
= vh]. (31)

Fix h and pick an ε ∈ (0, λh). Pick δ ∈ (0, ελh2 ) and let N be large enough so that 2dδNeN <
cNh
N .

Observe that

Pr[Vh:CN
= vh] ≥ 1

cNh

cNh −dδNeX
kN=dδNe

Pr[VψNh−1+kN :N
= vh]. (32)

Now, for each kN ∈ {dδNe , ..., cNh − dδNe},
h−1X
h0=1

λh0 < lim
N→∞

ψN
h−1 + kN

N
<

hX
h0=1

λh0 (33)

so that by the Law of Large Numbers, limN→∞ Pr[VψNh−1+kN :N = vh] = 1. Thus,

lim
N→∞

Pr[Vh:CN
= vh] ≥ lim

N→∞
cNh − 2 dδNe

cNh
= 1− 2δ

λh
> 1− ε (34)
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and we conclude that Vh:CN
converges to vh in probability for all h = 1, ...,H.

Consequently, from (1), for all y2, z3 such that fX|V (y2, y2, z3|vh) > 0, the winning bid

bh:CN
(y2, z3) must converge to vh, so that limN→∞E[Ph:CN

|Vh:CN
= vh] = vh. Furthermore,

as Vk ∈ [0, 1], we must have

Pr[Vh:CN
= vh]E[Ph:CN

|Vh:CN
= vh] + (1− Pr[Vh:CN

= vh]) ≥ E[Ph:CN
] (35)

and

E[Ph:CN
] ≥ Pr[Vh:CN

= vh]E[Ph:CN
|Vh:CN

= vh]. (36)

Taking limits on both sides of (35) and (36) we conclude that limN→∞E[Ph:CN
] = vh for all

h = 1, ...,H and the result follows.

Proof of Proposition 2

Recall from (24), that it is sufficient to prove that b2:CN (z2)− b1:CN (z2) is non—decreasing

in each argument. With z2 = (y2, z3), let l(z2) =
fX|V (y2,y2,z3|1)
fX|V (y2,y2,z3|0) and observe that this is

non—decreasing in each argument, by affiliation. From (1) observe also that

b2:CN
(z2)− b1:CN

(z2) =
l(z2)λ2:CN

l(z2)λ2:CN
+ (1− λ2:CN

)
− l(z2)λ1:CN

l(z2)λ1:CN
+ (1− λ1:CN

)
(37)

which is non—decreasing in z2 iff

l
2 ≤ 1− λ2:CN

λ1:CN

1− λ1:CN

λ2:CN

. (38)

Since λ2:CN
> λ1:CN

, for the ordering with c2 ≥ λN we must have

λ =
c1
N
λ1:CN

+
c2
N
λ2:CN

≥ (1− λ)λ1:CN
+ λλ2:CN

(39)

so that
1−λ2:CN
λ1:CN

≥ 1−λ
λ . Furthermore, note that for λ < 1

2 and any ordering with c2 = dλNe we
have c1 ≥ c2, at least for N large. Since λ1:CN = E[max{0, Y−c2c1

}] and λ2:CN = E[min{1, Yc2 }],
where E[Y ] = λN, by Jensen’s inequality we obtain

λ1:CN
+ λ2:CN

= E[max{0, Y − c2
c1

}+min{1, Y
c2
}]

≤ max{0, λN − c2
c1

}+min{1, λN
c2
}

≤ 1

so that
1−λ1:CN
λ2:CN

≥ 1. Since λ1:CN and λ2:CN are both decreasing in c2, we obtain the same

inequality for c2 > dλNe.

21



We conclude that for all orderings satisfying (12), the right—hand side of (38) is greater

than or equal to 1−λ
λ for λ ≤ 1

2 , for all N such that λN is an integer, and for N large enough

otherwise. Thus, for λ ≤ min[12 , 1

1+l
2 ] =

1

1+l
2 , (38) holds and the result follows.
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