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MOVING-AVERAGE TRANSFORMATIONS IN THE CLASSICAL LINEAR MODEL

Economists are frequently compelled to use data which take inap-
propriate forms. One particular deficiency is discussed below; namely, the
prior adjustment of economic time-series by moving-average transformations.
This discussion is restricted to regression analyses and data which satisfy

the conditions for the classical linear model.

Let y denote a vector which contains n observations for the
dependent variable in a particular study and let X represent a matrix,
of order n by k, which contains observations for k explanatory variables.
Both y and X are assumed to be unavailable. Instead, they have been
subjected to a prior moving-average transformation with known non-stochastic
weights, This'transformation can be represented by a non-stochastic matrix
G, say, which has order {n-q) by n where q 9s the length of the moving-
average, If '{dij} is a collection of known weights, G will have the

following form.

diq 0
2:4-1 dzq
(1) G =
d ces
L n-g,1 dn'QsQ_

Then the elements of Gy and GX represent the data in the form in which
they are available for use. G and GX are assumed to have ranks (n-q)

and k vrespectively.




A "micro-equation" (2) and a "macro-equation" (3) must be distin-
guished. The former is the specification which would be used if data were
available in an appropriate form whereas the latter is the specification

which is actually used.1
(2) y = X8+u ,

where g 1is a vector of k parameters and u 1is a vector of random errors.
(3) Gy = GXg + Gu.

If X 1is a non-stochastic matrix, u has a zero mean vector and u has a
scalar matrix for its dispersion matrix, then (2) satisfies the conditions
for the classical linear model and (3) satisfies the conditions for Aitken's
genera}ization2 of this model. These assumptions are maintained throughout
the discussion which follows. They are supplemented by the requirement that

the distribution of errors be gaussian.

The presence of zeros in the transformation G is 1nessential3
and this matrix can represent any matrix of appropriate order and rank. We
shall require that the transpose of G is not equal to the Moore-Penrose
inverse4 of G. In this excluded case, the macro-equation would satisfy
the conditions for the classical 1inear model. One popular collection of

transformations is affected by this exclusion; namely, the I"g]r'oupings“‘r’ for

which & 1is quasidiagonal with non-zero blocks provided by row vectors having

unit euclidean norms. Exclusion permits attention to be focused on the
problems of autocorrelation and heteroscedasticity which are introduced by

the prior transformation of data.

Let E(e) and D(s) represent the mean vector and dispersion

matrix of an arbitrary stochastic vector 6. Let é represent the least-




squares estimator of B from the macro-equation.

(X'HX) ™ X'Hy if H

(4) B G'G.
(5) E(g)

(6) D(8)

8 if E(u) =0,

o2(X'HX) "I HHX (X tHX) "

if D(u) = o2 for some finite scalar o2,

The Gauss-Markov theorem6 indicates that the diagonal elements
of D(B) cannot be less than the corresponding ones of the dispersion
matrix for the Teast-squares estimators which are based on the micro-equation
(2). Orcutt has discussed this potential loss of efficiency and it will not
be reviewed here as the more efficient estimator cannot be calculated if the
micro-data is unavailable. Both estimators are unbiased. Our primary
concern is with the influence of non-spherical errors, which are directly
attributable to the prior transformation, upon conventional test statistics

that are calculated on the false presumtion that the errors are spherical.

Let § represent the residual sum of squares for the least-squares

fit obtained from the macro-equation.

(7) S = (Gy - GXB)'(Gy - GXB)

yHH - HX(XHX) ™ X'HYy

W' iH - HX(X'HX)™Y X'H1u

(7 ]
I

(8)

The gram matrix H is idempotent if and only if the transpose of G is

7

equal to its Moore-Penrose inverse.” If H 1is idempotent, then § s

proportional to a chi-square variate with (n - g - k) degrees of freedom.8

If the explanatory variables are partitioned into two categories,

observations for these categories might be assembled in the matrices X, and




X, respectively when available. The parameters can be partitioned similarly.
(1)7 y = X8+ u = X8, + X,B, +u
(2) Gy = GX;8, + GX,B, + Gu.

Consider the linear hypothesis ¥ that the k2 elements of B8, are zero.9

The least-squares estimator which is constrained by this hypothesis is given
by
Y ' ‘1‘ ' n -
(9) B, = (XIHXI) X Hy and 8, = 0,

and the constrained sum of squared residuals for this fit is
(10) 'S = (Gy - GXlsl)'(Gy - GXlﬁl).
— 1 -1 i
= y'{H - HXl(X;Hxl) X Hly

(11) s

. . -1
u'{H - HXE(XIHXI) XiH}u under x.

If H is idempotent, then S is proportional to a chi-squared variate

with (n - q - kz) degrees of freedom under the null hypothesis,

~ ~ : ' =1y, 1 =1y,
g2y S8 YIKOCROTIR - K OHc) Ky
§ y'{H - HX(X'HX) " XH3y
- L with implicit definitions

| of A and B derived from (12). The numerator and denominator of this
ratio are independent if and only if the product of A and B ds a null

matrix by Craig's theorem.10

The ratio is an appropriate basis for a significance test of the
null hypothesis if it is distributed as Fisher's F when adjusted for degrees
of freedom. Necessary and sufficient conditions for appropriateness are,
»therefore,_given by the symmetry and idempotency of A and B and the

mutual orthogonality of these two matrices. These three conditions hold




if the gram matrix H is idempotent; that is, if the transpose of G is
equal to 1ts Moore-Penrose inverse which is denoted G~. We have excluded
this case and all three conditions will usually be violated by an arbitrary
choice of G. Three equivalent approaches might be taken to overcome this

problem,

APPROACH ONE.

11 which is

Aitken suggested a generalized least-squares estimator
weighted by the inverse of the dispersion matrix for the macro-errors Gu.
The test statistic is based on the residual sums of squares for this gener-
alized least-squares fit in unconstrained and constrained cases. These
sums are weighted by the same matrix as the Aitken estimators, which can be
chosen as the inverse of GG' since the scale of this matrix leaves both
estimators and residual sums of squares unaffected. Let ég and élg
represent the Aitken estimators and let §g and ’§g represent the two

weighted sums of squared residuals.

(13) B, = (x'ng)'lx'Hgy where H = 6'(66') "6
(14) élg = (x;ngl)‘lxngy
(1) § = (Gy - 6xd )'(66") ™ (oy - GXG)
= Y - HgX(X'HgX)'IX'Hg}y
(16) 8, = u'd - ng(x'ng)‘lx*Hg}u
(17) §g = y'{Hg - ngl(X;HgXI)'IX;Hg}u
(18)  §, = wiH - ngl(xiﬂgxl)'lxiﬂg}” under X.




(19) Eﬂ—;—fﬂ- = ‘E;_fg_f_ under % ,
Sg u Bg u
where Ag and Bg are defined impiicitiy by reference to (16) and (17).
This new ratio is distributed as Fisher's F, when adjusted for degrees of
freedom, under tﬁe null hypothesis, It can be read%]y‘confirmed that A

and Bg are symmetric and idempotent and the'product AB is a null

gg
matrix.

APPROACH TWO.

12

The Cholesky™™ technique can be used-to find a nonsingular matrix

N such that N(GG')N' 4s a scalar matrix. This matrix is used to transform

the macro-equation into a form with spherical errors:
(20) NGy = NGX8 + NGu .
(21) D(NGu) = o2NGG'N' = o2I , say.

The least-squares theory can be appiied to this revised specification.

APPROACH THREE.
Since G has rank (n-q) and order (n-q) by n, its Moore-Penrose

13

inverse G s given by 6'(GG') . The macro-equation is transformed

by this inverse into another form with non-spherical errors:

(22) GGy = GTGXB + G Gu

(23) D{G Gu) 026 G(GG)"

026G

14

since G G is symmetric and idempotent. The least-squares theory can be

applied to this further specification even though the errors do not satisfy




classical conditions. The unweighted sums of squared residuals are an
appropriate basis for the test statistic. Equivalence between the second
and third approaches is established by the equality of (G°G) and (G'N'NG),

which follows directly from the definitions of G~ and N.

Approach Gne is seldom used because of the numerical difficulty
associated with the inversion of a large matrix (GG'). This difficulty is
reduced in severity by the use of the Cholesky technique in Approach Two,
which permits the symmetry and other characteristics (e.g. "bandedness")
of the matrix to be utilized for efficient calculation, and this approach
has enjoyed popular support. Approach Three is novel and might be used
increasingly as new algorithms for the Moore-Penrose inverse become avail-
able and as the properties of less restrictive generalized inverses are

investigated.




10.
11.
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13.
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FOOTNOTES

Rowley and Wilton provide an ample list of studies of wage-determination

which implicitly contain this distinction.
Rowley, ch. 2.

Qur primary interest in moving-averages stems from a concomitant
investigation of their use in-earlier empirical studies of wage-
determination.

Graybill provides an excellent account of this inverse and other
generalized inverses which are less restrictive. Various theorems
are cited from Graybill's book in later footnotes and no attempt is
made here to attribute these theorems to earlier authors. More
advanced expositions are supplied by Pringle and Rayner and contri-
butions to the report edited by Boullion and Odell.

Rowley, ch. 7.

Rowley, ch. 1.

Graybill, th, 6.4.10.

Graybill, th. 6.2.7 corollary, and Hogg and Craig, p. 387.

This hypothesis is chosen on grounds of simplicity. There is little

difficulty in expanding this discussion to a more general linear
hypothesis.

Hogg and Craig, p. 391.

Rowley, ch. 2.
Wilkinson, pp. 553-556.
Graybill, th. 6.2.16.
Graybill, th, 6.2.17,
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