
QED
Queen’s Economics Department Working Paper No. 1050

Optimal Dynamic Risk Sharing when Enforcement is a
Decision Variable

Thorsten Koeppl
Department of Economics, Queen’s University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

1-2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6494419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Optimal Dynamic Risk Sharing when Enforcement is

a Decision Variable

Thorsten V. Koeppl ∗

Queen’s University

Department of Economics

Dunning Hall 210

94 University Ave.

Kingston, Ontario K7L 3N6

thor@qed.econ.queensu.ca

Phone: (613) 533 2271, Fax: (613) 533 6668

∗I would like to thank Beth Allen, Narayana Kocherlakota and Jan Werner for their encouragement

and many discussions on the subject. I have benefitted from discussions with James MacGee, Cyril

Monnet, Erwan Quintin, Aldo Rustichini and Andrew Winton. I thank seminar participants at the

SED meetings in Stockholm, the NBER Decentralization Conference at Georgetown University, the

European Meetings of the Econometric Society in Venice, the Universities of Minnesota, Texas-Austin,

Iowa, Toronto, Bocconi, ITAM and Vienna, and the Federal Reserve Banks of Minneapolis and Atlanta

for their comments. I acknowledge financial support through the Walter W. Heller Memorial Dissertation

Fellowship.

1



Abstract

Societies provide institutions that are costly to set up, but able to enforce long-

run relationships. We study the optimal decision problem of using self-governance

for risk sharing or governance through enforcement provided by these institutions.

Third-party enforcement is modelled as a costly technology that consumes re-

sources, but permits the punishment of agents who deviate from ex-ante specified

allocations. We show that it is optimal to employ the technology whenever com-

mitment problems prevent first-best risk sharing, but never optimal to provide

incentives exclusively via this technology. Commitment problems then persist and

the optimal incentive structure changes dynamically over time with third-party

enforcement monotonically increasing in the relative inequality between agents.

Keywords: Limited Commitment, Risk Sharing, Third-party Enforcement.

JEL Classifications: C73, D60, D91, K49.
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1 Introduction

Modern societies have developed institutions such as official legal systems or private

arbitration systems that are costly to set up, but able to enforce contracts or agreements

between people. In many situations, these enforcement institutions play a central role in

governing contractual relationships. This is despite the fact that the contracting parties

have the choice of self-governance directly through the structure of their contract. Our

objective is here to study the problem of choosing self-governance vs. governance through

a third party.

Economic transactions within long-term relationships are carried out by self-interested

parties only if there is mutual interest in continuing the relationship. All transactions

must, therefore, incorporate proper incentives to ensure that all parties continue to par-

ticipate over time. These incentives are usually costly in the sense that they make

it necessary to deviate from transactions that are optimal for both agents from an ex

ante point of view. It is here that institutions can improve upon welfare by providing

third-party enforcement: Agents involved in a long-run relationship are free to choose

whether to rely on such institutions rather than on incentives through the structure of

their agreement.

To govern relationships, third-party institutions (such as the legal system) are costly

to set up as well. In essence, these institutions offer a threat of punishment in the form

of fines or physical harm (e.g., imprisonment) in response to contractual violations, but

cannot force performance of the contract itself. Their efficacy is based upon the ability

to credibly commit to inflicting punishment in an objective manner if necessary. Ob-

jectivity arises from equal access as well as equal treatment of the parties involved in

a relationship, while enforcement is achieved through the threat rather then the appli-

cation of punishment. In fact, a strong presence of third-party enforcement manifests

itself mainly in the performance of contracts and the absence of actual employment of

punishment. Third-party enforcement can then be interpreted as a costly technology
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that threatens to inflict punishment in case of contract violations, even though this view

is abstracting from other important factors such as limited effectiveness, information

problems or the incentives for these institutions.

Given that these institutions are available but costly to set up, the question then

arises as to what extent it is optimal for people to base incentive structures on these

institutions. Are commitment problems persistent in the sense that the parties of a

relationship do not want to rely exclusively on these institutions? Does the importance

of outside (i.e., third-party) enforcement change dynamically over time? If so, what are

the fundamentals that shape the dynamic evolution? Our contribution is to provide

answers to these questions by analyzing the optimal use of costly outside enforcement in

a long-run relationship.

We study a dynamic risk sharing problem between two risk averse agents where

commitment is a priori limited in the spirit of Kehoe and Levine [6] and Kocherlakota

[7]. Each period the agents face idiosyncratic income shocks. From an ex ante point

of view, it is then optimal to transfer income ex post from an agent with high income

realization to an agent with low income realization. We assume, however, that both

agents cannot commit to make transfers they have agreed upon ex ante: At any point

in time, each agent can choose to renege on the transfer and leave the risk sharing

arrangement. In our set-up, incentives for the agents to honor transfers can be provided

in two ways. First, agents can use the structure of the risk sharing arrangement itself

to provide these incentives. Specifically, an agent can be induced to make a transfer of

resources today if she is promised more expected utility in the future. Second, agents

can rely on a “punishment” technology: Each period they can invest part of the overall

resources in this technology. If investment occurs, the technology allows one to punish

any agent who decides not to honor the transfer. This threat of punishment yields - for

a resource cost - enforcement of transfers.

We show that - as long as the technology has convex costs and no fixed costs - it is op-

timal to employ the technology whenever the transfers necessary to support first-best risk
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sharing are not incentive compatible. It is never optimal, however, to provide incentives

exclusively via this technology: The agents will always rely upon varying future promised

utility - or, equivalently, the consumption profile - over time. Commitment problems are

then only partially mitigated by using the technology and, thus, are persistent in this

sense.

This implies that the enforcement choice (as represented by the investment decision)

depends on the sequence of income shocks. Therefore, the optimal choice of punishment

is history-dependent and inherently a dynamic one. For the case of two possible income

realizations, we show analytically and numerically that more resources are spent on

punishment as the difference in promised utility for the agents increases. Hence, we

exhibit a positive relationship between inequality in future promised utility - or the

relative position of the agents - and the use of third-party enforcement. In the long

run, when no first-best allocation is incentive compatible, promised future utility is then

equalized irrespective of the initial level of inequality between agents.

Existing work on dynamic risk sharing with limited commitment1 takes the lack of

commitment as exogenously given and focuses exclusively on the effects of optimally

designed incentives that arise within the risk sharing relationship. The structure of

these incentives is well understood. Kocherlakota [7] characterizes efficient risk sharing by

relying on reversion to autarky as the appropriate punishment if an agent reneges on a risk

sharing arrangement: Autarky is a credible punishment in the sense that it characterizes

the set of subgame-perfect allocations in bilateral risk sharing environments.2 More

recently, Genicot and Ray [5] extend these results to a framework of risk sharing within

coalitions of agents. This paper goes further than this existing literature by studying

how agents choose optimally between internal incentives or incentives provided through

1See for example Phelan [12], Kocherlakota [7], Alvarez and Jermann [1] and Ligon et al. [11] among

others.
2Gauthier et al. [4] show that optimally designed ex ante payments between agents can help reduce

commitment problems. Ligon et al. [10] investigate the role of self-insurance in form of storage on the

incentives to share risk over time.
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enforcement by a third party from outside the relationship. Hence, we study per se the

optimal degree of commitment within a risk sharing relationship.

Our research is related to the just emerging literature on contractual intermediaries.

Parallel to our approach, Dixit [3] outlines a theory of enforcement intermediaries. He

focuses on the role of third party enforcement in achieving cooperative outcomes in a

prisoner’s dilemma framework with random matching. The intermediary is modelled

close to our approach as a player that can inflict punishments on other players for some

positive fee. Ramey and Watson [13] investigate the optimal form of contractual inter-

mediation or conflict resolution in a repeated prisoner’s dilemma. Whereas we take the

outside enforcement as given and investigate its optimal use by the contracting parties,

these authors concentrate on understanding the existing design of such intermediation.3

The paper proceeds as follows: Section 2 presents the environment. In Section 3, we

describe the optimal contracting problem and derive its recursive formulation. Section 4

characterizes the optimal contract and contains the main results. In Section 5, we present

numerical examples concerning the optimal use of the punishment technology. Finally,

Section 6 concludes by discussing our modelling choices and puts our contribution into

a wider research context. All proofs appear in Appendix A, while Appendix B contains

a formal analysis of a result discussed in Section 4.

2 Environment

Consider the following environment where time is discrete and indexed by t = 0, 1, . . . .

There are two infinitely lived agents i = 1, 2, who receive each period a stochastic

3It is useful to distinguish our paper from Krasa and Villamil [9] who study a static investment

problem with differential information, where enforcement of the financial contract is a decision problem

for the lender. Enforcement of the contract is costly and the contracting parties will try to avoid it via

renegotiating the original contract whenever the lender cannot commit to seek enforcement of its terms.

While studying the optimal form of the financial contract, the authors take the lack of commitment to

be exogenous (i.e., not to be a choice variable).
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endowment of a single good. Let ω = {ω1, ω2, . . . } be a sequence of independently and

identically distributed random variables each having finite support Ω = {1, 2, . . . , S}
and denote the probability of ωt equaling s by πs > 0 for all s ∈ Ω. Define a t-history

of ω by ωt = {ω1, ω2, . . . , ωt} and let Ωt be the set of all possible t-histories of ω.

The endowment for agent i = 1, 2 in period t is determined by the realization of ωt and

denoted by yit,s ∈ {y1, y2, . . . , yS} when ωt = s for t = 0, 1, . . . . We assume that y1
t,s 6= y2

t,s,∑2
i=1 y

i
t,s = Y > 0 for all s ∈ Ω and t = 0, 1, . . . and that the joint distribution of the

endowment is symmetric; i.e., for every s ∈ S there exists s′ ∈ S such that yit,s = yjt,s′

and πs = πs′ .

Preferences for both agents are described over ωt-measurable consumption processes

ci ∈ C = {{cit}∞t=0|cit : Ωt −→ [0, Y ]} and represented by the utility function

Et

[ ∞∑
τ=0

βτu(cit+τ )

]
, (1)

where β ∈ (0, 1) and Et expresses the expectation conditional on a history of shocks

at date t. We assume that u is increasing, concave and twice continuously differentiable.

Furthermore, u is bounded from below with normalization u(0) = 0 and limc→0 u
′(c) =

∞.

Since the agents are risk averse and face idiosyncratic income shocks, there is an

incentive to share income risk. We assume, however, that enforcement of arrangements

to share risk is limited in the following sense: Each period, after uncertainty in period

t is resolved and the current endowment (y1
t,s, y

2
t,s) is known, an agent i can choose to

remain in autarky forever. In this case, the agent will consume her endowment forever

and will be excluded from future trade, thereby obtaining a utility of

u(yit,s) + Et

[ ∞∑
τ=1

βτu(yit+τ )

]
≡ u(yit,s) + βVaut, (2)

where Vaut expresses the future expected utility from autarky which is independent
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of the realized history of shocks.

When sharing income risk, the agents also have access to a “punishment” technology

that reduces an agent’s current and future utility in case this agent decides to remain

in autarky. Specifically, if this technology is operated at a level dt ∈ [0, 1] in period t,

the agent loses a fraction dt of her current and future autarkic utility if she decides in

period t to remain in autarky forever.4 Operating this technology in period t at a level

dt requires an investment of resources equal to ψ(dt) in period t which depreciates fully

after one period. We assume that the cost function ψ(·) is increasing, strictly convex

and does not include any fixed costs:

Assumption 2.1. 1. ψ′ ≥ 0 and ψ′′ > 0.

2. ψ(0) = 0 and ψ′(0) = 0.

We assume further that the level of the punishment technology in any period t, dt,

is set before the current shock ωt is realized. Therefore, the level of punishment in

period t is independent of the current realization ωt but can depend on the past history

of realizations ωt−1.5 Formally, we denote the ωt−1-measurable process of punishment

levels by d ∈ D = {{dt}∞t=0|dt : Ωt−1 −→ [0, 1]}, where Ω−1 is defined to contain a single

element.

4Note that the severity of current and future punishment depends only on the level of dt, i.e., on

the level of punishment in the period when an agent decides to switch to autarky. Hence, a level of

punishment chosen in future periods has no influence on punishments for switching to autarky in earlier

periods.
5Third-party enforcement does then condition only on the fact whether contract violations occur or

not. In the formulation chosen here neither the identity of the violator nor her particular situation -

such as current income - matters for outside enforcement.
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3 Describing Optimal Allocations

Before formulating the problem that describes optimal risk sharing between the agents

we introduce some terminology. An allocation (c1, c2, d) ∈ C × C × D is given by a

consumption process for each agent and a process of punishment levels. An allocation is

feasible if

c1(ωt−1, s) + c2(ωt−1, s) + ψ(dt(ω
t−1)) ≤ Y for all t, (ωt−1, s). (3)

An agent will switch to autarky for a given state s at time t if the continuation

utility offered by an allocation is less than the value of autarky given the current level

of punishment. Specifically, an agent i will honor the allocation if and only if

u(ci(ωt−1, s)) + Et

[ ∞∑
τ=1

βτu(cit+τ )

]
≥ (1− dt(ωt−1))

[
u(yit,s) + βVaut

]
(4)

for all t, (ωt−1, s).

Definition 3.1. An allocation (c1, c2, d) ∈ C × C ×D is ex post incentive compatible if

it satisfies inequality (4) for i = 1, 2 for all t, s. An allocation is incentive feasible if it

is feasible for all t, s and ex post incentive compatible for i = 1, 2 for all t, s.

We denote the set of incentive feasible allocations by Γ ⊂ C × C × D. Then, by

Assumption 2.1, Γ is convex6 and compact in the product topology. Next, let U be the

set of joint utility levels that can be attained by an allocation in Γ and denote by Ui the

range of utility levels of consumer i that is consistent with some allocation in Γ. The

following lemma establishes properties of the set of attainable utility levels. All proofs

are relegated to the appendix.

Lemma 3.2. 1. U ⊂ IR2 is compact.

6Convexity follows from the concavity of u, the convexity of ψ and the fact that the ex post incentive

compatibility constraints at t are linear in dt.
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2. Ui ⊂ IR is compact and U1 = U2.

Proof. See Appendix.

A short remark concerning incentive feasibility is in place. The ex-post incentive

compatibility constraint (4) compares the expected utility of an allocation with the

utility obtain by choosing autarky forever and being punished by losing a fraction dt of

current and future utility. Remarkably, it is neither specified who pays the costs ψ(dt)

if nobody reverts to autarky nor who pays the costs if some agent does.

As long as neither of the agents chooses autarky, the distribution of costs is irrelevant

since for the utility attained by an allocation only the distribution of resources net of costs

ψ(dt) matters. This implies that it is always possible to recover the costs for operating

the punishment technology as long as the agents are participating. Of concern is then

that, given an agent chooses autarky, it might be optimal for the other agent to choose

autarky as well with the result that nobody would pay for the technology and it would

not be feasible to operate the technology. When describing incentive feasible allocations

this strategic interaction is, however, implicitly taken into account here since dt = 0 is

always feasible.7

The concept of incentive feasibility allows us to define optimal allocations. An alloca-

tion (c1, c2, d) ∈ C×C×D is optimal if there exists no other incentive feasible allocation

that provides both agents with at least as much expected utility at period 0 and at least

one of them with strictly more expected utility at period 0.

7Indeed it is possible to make these arguments analytically precise at considerable costs of compli-

cation: one can motivate constraint (4) by identifying the set of incentive feasible allocations with the

outcomes of a class of games formalizing repeated bargaining with voluntary participation where the

distribution of costs among the agents is specified and non-participating agents do not have to bear any

of the costs ex-post. This is achieved by establishing pay-off equivalence between the set of equilibria of

all possible games and U , i.e. the set of utility levels attainable through incentive feasible allocations.

For details see Koeppl [8].
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Define Vmin ≡ minUi and Vmax ≡ maxUi. We can then set up a modified Pareto-

problem that describes optimal allocations taking into account incentive feasibility. De-

fine the function V : [Vmin, Vmax] −→ [Vmin, Vmax] as the solution to the problem (SP):

V (u0) = max
(c1,c2,d)

E0

[ ∞∑
t=0

βtu(c1
t )

]

subject to

(c1, c2, d) ∈ Γ

E0

[ ∞∑
t=0

βtu(c2
t )

]
≥ u0.

The function V refers then to the maximum level of expected utility agent 1 can

obtain for any incentive feasible utility level u0 ∈ [Vmin, Vmax] that must be guaranteed

for agent 2. Provided V is well defined it is clearly decreasing, since any incentive

feasible allocation at ˆ̂u0 > û0 is also incentive feasible at û0. Concavity of this function

follows immediately from the convexity of ψ, the concavity of u and the fact that V (u0)

is the maximum utility given u0. V is then also continuous and differentiable almost

everywhere. The next proposition shows that V is indeed well defined and strengthens

some of these immediate results.

Proposition 3.3. 1. For all u0 ∈ [Vmin, Vmax], a solution to problem (SP) exists.

2. There is an interval [V , V ] ⊆ U2, where V < Vaut < V = Vmax, such that V is

strictly decreasing and strictly concave.

Proof. See Appendix.

We now restrict V to the subset [V , V ] of its domain where it is strictly decreasing. By

symmetry, V : [V , V ] −→ [V , V ] and V describes the Pareto-frontier. Hence, any solution

of the problem (SP) for given u0 ∈ [V , V ] is an optimal allocation. Since u is strictly

concave, for every u0 ∈ [V , V ] there exists a unique optimal allocation. Furthermore, for

any solution of problem (SP) the promise keeping constraint is strictly binding; i.e.,
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E0

[ ∞∑
t=0

βtu(c2
t )

]
= u0 (5)

for all u0 ∈ [V , V ].

These facts allow us to use the methods introduced by Spear and Srivastava [15] and

Thomas and Worrall [17] to formulate the problem (SP) recursively. The state variable

for this approach is given by the level u0 of promised utility for agent 2.

Definition 3.4. A contract is given by a collection of functions ({cs, us}Ss=1, d), where

d : [V , V ] −→ [0, 1], cs : [V , V ] −→ [0, Y ] for all s ∈ S and us : [V , V ] −→ [V , V ] for all

s ∈ S.

A contract consists of functions that determine the current level of consumption and

the future expected promised utility for agent 2 for each state s, denoted by cs and

us respectively, as well as the level of punishment, denoted by d, in terms of the state

variable u0. The Pareto-frontier can then be determined recursively with the optimal

allocation being described by a contract.

Proposition 3.5. V satisfies the following functional equation (FE):

V (u0) = max
({cs,us}Ss=1,d)

S∑
s=1

πs [u(Y − cs − ψ(d)) + βV (us)]

subject to
S∑
s=1

πs [u(cs) + βus] = u0

u(Y − cs − ψ(d)) + βV (us) ≥ (1− d)[u(y1
s) + βVaut] ∀s

u(cs) + βus ≥ (1− d)[u(y2
s) + βVaut] ∀s

us ∈ [V , V ] ∀s.

Proof. See Appendix.

Since the value function V is strictly concave and the constraint set describing the

functional equation (FE) is convex, the solution to the above maximization problem is

12



unique for any state u0. Applying the Theorem of the Maximum, the optimal contract

can then be described by continuous functions for d, cs and us.

Proposition 3.6. There exists a unique optimal contract ({c∗s, u∗s}Ss=1, d
∗). Furthermore,

the functions d∗, c∗s and u∗s are continuous on [V , V ].

Proof. See Appendix.

4 Optimal Contracts

4.1 Persistence of Limited Commitment

We can now use the problem (FE) to characterize the optimal contract and, in particular,

the decision concerning the use of the punishment technology. Let λ be the multiplier

on the promise-keeping constraint and µis the multiplier on the ex post incentive com-

patibility constraint for agent i in state s. Assuming that the function V is differentiable

everywhere with respect to u0, we obtain the following set of first order conditions which

are necessary and sufficient for the optimal contract on (V , V ):

−(πs + µ1
s)u
′(Y − ψ(d)− cs) + (λπs + µ2

s)u
′(cs) = 0 (6)

(πs + µ1
s)βV

′(us) + (λπs + µ2
s)β = 0 (7)

∑
s∈S

µ1
s[u(y1

s) + βVaut] + µ2
s[u(y2

s) + βVaut]− (πs + µ1
s)u
′(Y − ψ(d)− cs)ψ′(d) ≤ 0 (8)
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d ≥ 0

and (9)

d · [∑s∈S µ
1
s[u(y1

s) + βVaut] + µ2
s[u(y2

s) + βVaut]− (πs + µ1
s)u
′(Y − ψ(d)− cs)ψ′(d)

]
= 0.

A brief comment about equations (6)-(9) is in order as we omit some of the corresponding

Kuhn-Tucker conditions on the decision variables. For u0 ∈ (V , V ) it is optimal to make

current consumption strictly positive for both consumers for all states (i.e., Y − ψ(d) >

cs > 0), and hence boundary conditions will never bind for cs. Hence, it is never optimal

to set d = 1 and we can restrict attention to d ∈ [0, 1). Finally, rearrange equation

(8) to obtain an expression for ψ′(d) which shows that this expression will always be

non-negative. Hence, even if d = 0, equation (8) will hold with equality. With respect

to us the Kuhn-Tucker conditions are standard and, hence, omitted here.

We can reduce equations (6) and (7) to a single equation in the three decision variables

given by

−V ′(us) =
u′(Y − ψ(d)− cs)

u′(cs)
. (10)

It is immediate that given d, us > us′ if and only if cs > cs′ . Hence, u∗s is an increas-

ing function of c∗s, or, equivalently, current consumption and future utility are varying

together across states. A major complication arises from the fact that this equation

depends also on the choice variable d. If d were constant over the state space [V , V ],

this equation (together with the ex post incentive compatibility constraints for state s)

would determine the dynamic evolution independently for each state s ∈ S. If d varies,

however, the system of equations becomes genuinely dependent in the sense that one

cannot conduct the analysis for each state separately.

The evolution of the state variable u0 depends on which ex post incentive compatibil-

ity constraints are binding for a given state s. The following lemma summarizes results
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concerning the law of motion of u0.

Lemma 4.1. Let u0 ∈ (V , V ) and suppose that V is differentiable at u0. Then the

following hold:

1. If µis(u0) = 0 for all i, then u∗s(u0)=u0.

2. If µ1
s(u0) > 0 and µ2

s(u0) = 0, then u∗s(u0) < u0.

3. If µ2
s(u0) > 0 and µ1

s(u0) = 0, then u∗s(u0) > u0.

4. Suppose −V ′(u0) ≤ 1 and µ1
s(u0)µ2

s(u0) > 0. If y2
s > y1

s , then u∗s(u0) > u0.

5. Suppose −V ′(u0) ≥ 1 and µ1
s(u0)µ2

s(u0) > 0. If y1
s > y2

s , then u∗s(u0) < u0.

Proof. See Appendix.

This determines the optimal variation of future promised utility except for cases where

the ex post incentive compatibility constraints are binding for both agents simultaneously

in some state s. In this case, the direction of the movements for u0 can be ambiguous.

Based on Lemma 4.1 it is possible to describe at least partially which agent’s ex post

incentive compatibility constraint is binding: If only one of the agents faces a binding

constraint at some income level, he receives more future utility than he was promised

initially. Since u∗s is increasing in c∗s, this agent must receive even more future utility at

higher income levels. This is compatible with the first order conditions only if the agent

is constrained at higher income levels. Hence, agents tend to be constrained when their

income is high and, thus, have a strong reason to choose autarky over staying with the

contract. This intuition is formally summarized in the lemma below.

Lemma 4.2. 1. Suppose u∗s(u0) > u0 for some s. If y2
s′ > y2

s , then µ∗2s′ (u0) > 0.

2. Suppose u∗s(u0) < u0 for some s. If y1
s′ > y1

s , then µ∗1s′ (u0) > 0.

Proof. See Appendix.
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Two main questions arise concerning the use of the punishment technology within the

optimal contract. First, under what circumstances and to what extent is it optimal to use

the punishment technology to achieve better risk sharing among the agents? Second, how

does the decision concerning the use of the punishment technology vary endogenously

over time?

From Lemma 4.1 it is clear that the state variable remains unchanged for some state

s ∈ S as long as none of the incentive constraints in this state is binding. We can

distinguish two cases depending on whether the first-best allocation at u0 is incentive

feasible or not. For the first case, µis = 0 for all i and s and, hence, from equation (8),

d∗ = 0. Turning to the case where the first best allocation at u0 is not incentive feasible,

at least some ex post incentive feasibility constraint is binding. Again by equation

(8), it follows that d∗ > 0 as long as µis > 0 for some i and some s.8 Beyond these

straightforward observations it is possible to give a stronger result on the use of the

punishment technology.

Theorem 4.3. Let u0 ∈ (V , V ) and suppose that V is differentiable at u0. Then there

exists s ∈ S such that u∗s(u0) 6= u0 if and only if d∗(u0) > 0.

Proof. See Appendix.

This theorem makes several important points. First, the agents will never rely exclusively

on the technology that provides punishment to deal with limited commitment. Enforce-

ment problems are always mitigated by a combination of using the explicit threat of pun-

ishment (d∗ > 0) and implicit incentives provided through variations in future promised

utility (u∗s 6= u0). Hence, any optimal contract will retain the commitment problem to a

certain degree and counteract it by the intertemporal allocation of consumption between

the agents. In this sense, commitment problems are persistent.

8Note that assuming ψ′(0) = 0 is essential for this result. In the case that ψ′(0) > 0, one might not

want to use the punishment technology when a first-best allocation is not incentive feasible, but rather

rely exclusively on internal incentives by setting u∗s 6= u0.
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Second, the state variable u0 will change with the realization of income shocks even

though the punishment technology is employed. Thus, the distribution of wealth as

summarized by u0 varies over time and does not remain fixed. This implies that decisions

concerning the use of the punishment technology are path dependent and vary over

time due to changes in the wealth distribution. Therefore, the choice of enforcement is

inherently a dynamic problem and cannot be treated as an ex ante static problem.

4.2 Punishment and Inequality

We turn now to the second question of how the level of punishment changes over time

as the state variable u0 evolves endogenously. Since the environment is symmetric with

respect to the characteristics of the two agents, it is possible to restrict attention to

the case where u0 ≤ u or V (u0) ≥ u0, where u ∈ [V , V ] such that u = V (u). If the

first-best allocation for u0 is incentive feasible, the contract is completely characterized

by Theorem 4.3. We therefore turn to the case where the first-best allocation at u0 is

not incentive feasible.9

As inequality increases - i.e., as |u0 − u| increases - it is more difficult to sustain

efficient risk sharing since the outside option of leaving the arrangement becomes more

attractive on average. Risk sharing has then to be supported by stronger incentives.

These can be provided in two different ways: One can either increase |us − u0| (i.e.,

provide more indirect incentives via future promised utility) or one can invest more in

the punishment technology. However, using more indirect incentives decreases future

risk sharing on average. One should therefore expect that investment in the punishment

technology would rise to at least partially counteract the negative effects on risk sharing.

In other words, punishment should behave like a “normal” good in terms of inequality

(in symbols, |u0 − u|) and substitution between the ways to provide incentives should

not take place.

9It is straightforward to show that - independent of income shocks - for all β ∈ (0, 1), there exists

some level u0 for which the first-best allocation is not incentive feasible.
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Unfortunately, this question is too complex to be analyzed in full generality. We

therefore assume for the reminder of the analysis in this section that there are only two

states - i.e., S = 2 with S = {H,L} - representing the current level of income for agent

2, where y2
H > y2

L. Before characterizing the optimal choice of punishment as a function

of the state variable u0, we derive the following lemma:10

Lemma 4.4. Suppose S = {H,L} and u0 < u. If at u0 the first-best allocation is not

incentive feasible, then for any optimal contract µ∗1s = 0 and µ∗2H > 0.

Proof. See Appendix.

Whenever agent 2 is promised less utility than agent 1, at least one of her incentive

compatibility constraints must be binding. Since there are only two states, Lemma 4.2

implies that her constraint when she has high income must necessarily bind. This fact

allows us to prove the following monotonicity result for d∗ which confirms the intuition

outlined above for the case in which for some u0 the first-best allocation is incentive

feasible.

Theorem 4.5. If S = 2, the policy function d∗(u0) is monotone on [V , u].

Proof. See Appendix.

Corollary 4.6. Suppose that for some u0 the first-best allocation is incentive feasible. If

S = 2, the policy function d∗(u0) is monotonically decreasing on [V , u] and monotonically

increasing on [u, V ].

Proof. See Appendix.

When inequality increases, it is optimal to decrease overall consumption and devote

more resources to ensure enforcement of the risk sharing arrangement. Even though

10Even though the value function is not differentiable at u0 = u if S = 2, none of the results in

this section is affected by this non-differentiability. Moreover, if S = 2, u∗s(u) = u, which shows that

differentiability is necessary for the validity of Theorem 4.3.
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Corollary 4.6 establishes this result only for the case when some first-best allocation is

incentive feasible, numerical solutions described in more detail below confirm this result

for the general case.

This result can be interpreted in a slightly different way. Suppose that one of the

agents has higher bargaining power than the other. Then this agent has an interest in

maintaining her position and is willing to spend more resources on outside enforcement.

This enables her to at least partially lock in the relative position by keeping us “closer” to

u0. When the difference between the relative positions (i.e., |u0−u|) increases, it is harder

to maintain the current position, and more resources are spent on outside enforcement.

Interestingly, however, Theorem 4.3 shows that outside enforcement is always too costly

for the agents to maintain a current advantage in their bargaining power over time.

4.3 Long-run Implications of Optimal Contracts

After characterizing properties of the optimal contract, the question arises how the re-

lationship between the agents develops in the long run. Of particular interest is how the

relative position of the two agents adjusts in the long run and whether convergence to an

invariant distribution over the state space occurs. We focus first on the two-state case.

Later, we discuss what assumptions are necessary to derive a slightly weaker result for

the case of an arbitrary finite number of states.

Before stating the main result of this section, it is necessary to introduce some

notation. The stochastic process {ωt}∞t=0 can be defined over the probability space

(Ω∞,F∞,Π∞), where an event is a particular sample path of the process, the σ-algebra

F∞ is generated by the cylinder sets of the process, and Π∞ is the product measure

based on the probabilities {π1, π2, . . . , πS}.

Given the optimal contract and an initial condition u0, for every sample path ω ∈ Ω∞

it is possible to construct a sequence {ut(ω;u0)}∞t=0 of promised future utility levels for

agent 2. Set u1(ω;u0) = u∗s(u0) if s ∈ S is realized in period 0. Define ut(ω;u0) recursively
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by setting ut(ω;u0) = u∗s(ut−1) if s ∈ S is realized in period t for all t > 0. Moreover,

denote the set of promised utility levels for which some first-best allocations is incentive

feasible by [uFB, u
FB] ⊂ [V , V ]. Suppressing the arguments of ut, we can then prove the

following result on the long-run behavior of the optimal contract.

Theorem 4.7. Let S = 2 and suppose that u∗s is non-decreasing.

1. If there exists a first-best allocation that is incentive feasible, then for any optimal

contract, limt→∞ ut = uFB Π∞-a.s. whenever u0 < uFB and limt→∞ ut = uFB

Π∞-a.s. whenever u0 > uFB.

2. If there does not exist a first-best allocation that is incentive feasible, then for any

optimal contract, limt→∞ ut = ū Π∞-a.s. for every u0 ∈ [V , V ], where ū satisfies

ū = V (ū).

Proof. See Appendix.

Provided that there are only two states, for any initial condition u0 the stochastic process

for ut converges with probability 1 to a unique point distribution. Hence, the availability

of outside enforcement does not prevent the equalization of wealth between the agents

over time or, for the case that the set of incentive feasible first-best allocations is non-

empty, convergence to the “closest” element of this set.11

It is possible to give a slightly weaker result for the case that there are more than

two states and no first-best allocation is incentive feasible. The optimal contract and

the exogenous process of shocks define a Markov transition function. Continuity of the

policy functions u∗s establishes the Feller Property for this transition function. Moreover,

the transition function will satisfy a mixing condition whenever the value function V

11It is straightforward to show that d∗ being monotonically increasing in wealth inequality is a nec-

essary condition for u∗s to be increasing. Moreover, the monotonicity assumption on u∗s seems rather

weak since numerical solutions given below indicate that these functions are indeed increasing for a wide

range of parameterizations.
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is differentiable everywhere. Then standard results on weak convergence of Markov

processes (e.g., Stokey, Lucas with Prescott [16, Theorem 12.12] yield convergence to a

long-run stationary distribution of wealth independent of initial conditions, provided u∗s

is an increasing function of the state variable u0. We defer details of this argument to

the appendix.

To summarize our contribution, we have established three important theoretical re-

sults. First, commitment problems are persistent and not completely resolved by the use

of costly third-party enforcement. Second, more unequally distributed bargaining power

leads to greater reliance upon third-party enforcement. Last, the presence of third-party

enforcement never prevents adjustments to a long-run, possibly equal, distribution of

wealth across agents.

5 Numerical Solutions

The main analytical results of this section are derived under certain restrictions. We now

provide further support for the generality of these results by presenting some numerical

solutions for optimal contracts. Before presenting these results, we outline the algorithm

used to solve for the Pareto frontier and the optimal contract, and describe how this

algorithm can be implemented computationally.

The algorithm is based upon dynamic programming techniques. These methods are

generally not applicable when solving incentive constrained problems, since the value

function of the problem itself will influence the constraint set directly as can easily be

observed from problem (FE). Hence, the constraint set will change with every iteration

of the value function when solving the functional equation (FE). More importantly, the

domain of the state variables for which the maximization problem is well defined will

change with each iteration as well. Rustichini [14] demonstrates that one can modify

standard dynamic programming methods in a straightforward way to handle these prob-

lems. He shows analytically that one can iterate directly on a guess for the value function
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in order to obtain convergence to the true value function of the incentive constrained

problem. Conditions for this result are that the value function iteration starts with the

value function of the unconstrained problem as an initial guess and that one adjusts the

domain of the state variables in an appropriate way. Given these conditions, convergence

is then monotonic from above to the true solution of the functional equation (FE). The

details of the algorithm we employ are as follows:

Step 1: Calculate the initial guess J0 for the value function V .

Step 2: Adjust the domain Dn of the state variable u0 given the guess Jn for the value

function V .

Step 3: Solve the static maximization problem for each realization of the state variable

u0 given Jn. Use this result to update the guess to Jn+1.

Step 4: If supu0∈Dn(Jn(u0)− Jn+1(u0)) > ε > 0, go back to Step 2.

Step 5: Use Jn+1 to calculate policy functions and find the law of motion on Dn.

To calculate the initial guess start with the Pareto frontier (which can be calculated

analytically in a straightforward manner for any given utility function u) describing the

first best solution of the risk sharing problem. Then define a new maximization problem

(PRE) by deleting the ex post incentive compatibility constraints for consumer 1 that

contain the value function V from problem (FE). Solve (PRE) by iterating over the value

function of this problem with the Pareto frontier as the initial guess to obtain the initial

guess for Step 1 of the algorithm above.12

12By using Blackwell’s sufficient conditions (e.g., Stockey, Lucas with Prescott [16, Theorem 3.3]) it is
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To implement the algorithm described above, we discretize the state space for u0

and, hence, solve the functional equation for a finite number of values for u0 in each

iteration. The static maximization routine uses a linear quadratic approximation of the

maximization problem with a cubic spline interpolation of the value function to guarantee

twice continuous differentiability of the objective function. Finally, when computing the

optimal contract, we perform a grid search over the decision variables of the maximization

problem taking the solution of the value function as given.

Below we present the output of two examples that show the value function and the

optimal decision with respect to the level of punishment d∗ as functions of the state

variable u0. The utility function chosen is CES, u(c) = θc1−σ/(1 − σ), where σ ∈ (0, 1)

and θ > 0, to satisfy the assumptions of Section 2. Costs are described by ψ = χ · dζ ,
where ζ > 1 and χ > 0.

The first example exhibits a situation where some first-best allocation is incentive

feasible. The cost function is given by ψ = 4d2 and the Bernoulli utility function is

u(c) =
√
c. Other parameters are given by β = 0.8 and ys ∈ {1.8, 0.2}. Figure 1

compares the frontier of first-best allocations with the value function of problem (FE).

Whereas both functions coincide for first-best allocations that are incentive feasible, the

Pareto-frontier for the incentive constrained problem is bent inward and does not extend

to the axes. Nevertheless, it extends beyond the value of autarky which is given by

Vaut ≈ 4.4721 units of utility.

The enforcement choice is depicted in Figure 2. Note that d∗ = 0 for the region where

the first-best allocation is incentive compatible. The graph also depicts a lower and an

upper bound for the optimal decision d∗ on the interval [V , u]. Figures 3 and 4 show the

levels of future promised utility u∗s and the current consumption levels c∗s as a function

of the state variable u0.

The second example has the same cost function as above. The other parameters are

straightforward to show that iteration over value functions of problem (PRE) is a contraction operator.

This ensures convergence to the “right” guess to apply the method of Rustichini [14].
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changed to β = 0.6, θ = 1, σ = 0.4 and ys ∈ {1.5, 0.5}. For these values, there does

not exist a first-best allocation that is incentive feasible. The Pareto-frontier, therefore,

shifts inward relative to the value of first-best allocations as shown in Figure 5.

The enforcement choice depicted in Figure 6 is strictly positive. Furthermore, the

policy function d∗ is increasing in wealth inequality, a result we obtained in our numerical

solutions for any parameterization. The non-differentiability of the value function at ū

for S = 2 causes some numerical error which is reflected in the small difference between

the law of motion of both states at u0 = ū (cf. Figure 7).

Last, we stress that Figures 3 and 7 show that u∗s is an increasing function of the

state u0, a result that can be confirmed in numerical experiments for a wide range of

parameters. This gives us confidence that the results concerning the long-run properties

of the optimal contract are true quite generally as the assumptions of Theorem 4.7 seem

to be satisfied with wide generality.

6 Concluding Remarks

Our analysis demonstrates that commitment problems persist even though the parties

sharing risk have access to costly third-party enforcement. This result is strong in the

sense that we impose rather weak restrictions on the cost structure, thereby giving the

use of enforcement the best possible chance. More importantly, even though the pres-

ence of fixed costs will introduce a barrier to using third-party enforcement, persistence

depends only on the fact that costs are increasing in the use of punishments. As long as

this is the case, there are always incentives to avoid part of these costs by relying also

on intertemporal features of the contract. Since commitment problems become more

severe with increasing differences in the relative position of the agents, the monotonicity

property of optimal enforcement is not too surprising. However, it is striking that the

costs of keeping fixed a specific positive level of inequality always outweigh the exist-

ing incentives to do so; the technology is never “abused” to lock in a specific level of
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inequality.

We have assumed that enforcement cannot depend on the current realization of the

income shock. This can be justified along two lines. First, impartial punishment is

based on the violation of the contract (i.e., leaving the arrangement) disregarding other

circumstances like differences in current income. Second, if punishment depends on the

current realization of the shock, the incentives of the two agents are not properly aligned.

Whoever has a high income realization prefers a strictly lower punishment level than the

other agent. Hence, communicating the current income distribution to the outside would

be difficult if not impossible. This problem does not occur if punishment next period

depends only on the new level of promised utility set endogenously by the agents in the

previous period. Future work should concentrate on modelling a non-cooperative game

between the agents and a third agent providing enforcement. It is then possible to study

not only the incentives of the third party, but also difficulties in the communication

between agents and the outside party.

By using a dynamic contracting approach for our analysis we are silent about any

initial condition that would pin down the dynamic evolution of the long-run relationship.

Since our description of the optimal contract is independent of any initial conditions, the

outcome of any ex ante bargaining procedure would simply consist of the optimal contract

described here evaluated at an initial condition reflecting the relative bargaining power

of the agents. By construction, there would be no incentives for the agents to violate

this contract at any later time.

A final remark concerns decentralizing the environment. Optimal contracts could

be decentralized as a financial markets equilibrium with complete markets and portfo-

lio constraints. These constraints mimic how stringent the incentive compatibility or

participation constraints for the optimal contract are. Since the agents choose the set

of feasible allocations in our problem, the value of the portfolio constraints must vary

dynamically over time as uncertainty is resolved. The decentralization should reflect

the optimal choice of enforcement and, hence, offers a conceptually genuine theory of

25



endogenous portfolio constraints.13 The main difficulty clearly arises from the problem

of distributing the enforcement costs among the agents. The requirement here is to

construct either a market mechanism or a direct mechanism that distributes the costs

without disturbing the properly decentralized financial decisions of the agents.

Appendix A

Proof of Lemma 3.2:

1. Since U ∈ IR2, U is compact if and only if U is closed and bounded. Obviously,

U ⊂ [0, 1/(1 − β)u(Y )]2 is bounded. Let un be a convergent sequence such that

un ∈ U for all n and denote its limit by û. Then, there is a sequence of allocations

(c1
n, c

2
n, dn) in Γ such that the n-th allocation generates the utility levels un for all n.

Since Γ is compact in the product topology, there exists a subsequence that converges

to an allocation (ĉ1, ĉ2, d̂) ∈ Γ. Since un converges to û, every subsequence of un also

converges to û. We can restrict the function u(·) in (1) to the interval [0, Y ]; the

utility function defined by (1) is then continuous in the product topology. Hence, û

is generated by the allocation (ĉ1, ĉ2, d̂) ∈ Γ. Thus, û ∈ U and U is closed.

2. For i = 1, 2, Ui is the projection of U into IR. Hence, Ui is compact. By symmetry,

U1 = U2.

¤

Proof of Proposition 3.3:

13Alvarez and Jermann [1] suggest a decentralization of an economy with exogenously given partici-

pation constraints. Their borrowing constraint are “endogenous” only to the extent that they are not

completely arbitrary, but rather determined by the fundamentals of the economy.
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1. Let u0 ∈ [Vmin, Vmax] and consider the following maximization problem (UP):

maxu1

subject to

(u1, u2) ∈ U
u2 ≥ u0.

Since U ⊂ IR2 is compact, the constraint set of (UP) is compact and by continuity

of the objective function, this problem has a solution in U . Thus, there exists an

incentive feasible allocation that attains these utility levels. Hence, the problem (SP)

has a solution for all u0 ∈ [Vmin, Vmax].

2. Suppose V is not strictly decreasing over [Vmin, Vmax]. Since V is concave and con-

tinuous, V is either constant over [Vmin, Vmax] or constant over a subinterval starting

from Vmin and strictly decreasing over the remainder of the interval. It is therefore

sufficient to show that V is strictly decreasing at Vaut, which is clearly an element of

U2.

Let u0 = Vaut. Suppose first that at the optimal allocation some ex post incentive

constraint for agent 2 is not binding in period t = 0. Then, for some s ∈ S,

u(c2
0,s) + E1

[ ∞∑
t=1

βtu(c2
t )

]
> (1− d0)

[
u(y2

s) + βVaut
]

.

Hence, we can decrease c2
0,s and increase c1

0,s slightly without violating incentive fea-

sibility. Thus, there exists ũ0 < Vaut such that V (ũ0) > V (Vaut).

Suppose now that for the solution to (SP) given Vaut, all ex post incentive compatibility

constraints bind for agent 2 at t = 0. Since u0 = Vaut, we have

u0 =
∑
s∈S

πs(1− d0)[u(y2
t,s) + βVaut] = (1− d0)Vaut,

which implies that d0 = 0. We construct an allocation for some u0 < Vaut that

gives agent 1 a utility which is strictly higher than V (Vaut). Define the following two
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functions for a given s ∈ S and given the optimal allocation:

f1(ε) = u(c2
0,s − ψ(ε)) + E1

[ ∞∑
t=1

βtu(c2
t )

]

and

f2(ε) = (1− ε) [
u(y2

t,s) + βVaut
]

.

Then, f ′1(ε) = −ψ′(ε)u′(c2
0,s − ψ(ε)) and f ′2(ε) = − [

u(y2
t,s) + βVaut

]
. Define B ≡

u′(1
2
c2

0,s). Optimality of the allocation and limc→0 u
′(c) =∞ yields c2

0,s > 0 and hence

B <∞. Since ψ′(0) = 0, for ε close to 0, we obtain

f ′1(ε) < −Bψ′(ε) < f ′2(ε) < 0.

Hence, there exists an incentive feasible allocation that gives u0 < Vaut to agent 2 and

V (Vaut) to agent 1 such that some ex post incentive compatibility constraint for agent

2 is not binding at t = 0. Thus, we can construct an allocation where agent 2 obtains

ũ0 < Vaut and V (ũ0) > V (Vaut). By concavity, V must then be strictly decreasing on

[ũ0, Vmax].

Let û, ˆ̂u ∈ [V , V ] and û < ˆ̂u. Let (ĉ1, ĉ2, d̂) and (ˆ̂c1, ˆ̂c2,
ˆ̂
d) be the corresponding

solutions to problem (SP). Since V is strictly decreasing on [V , V ], after some history

ωt, ĉ1
t+1,s <

ˆ̂c1
t+1,s. Strict concavity of u implies strict concavity of V .

¤

Proof of Proposition 3.5:

Let u0 ∈ [V , V ] be given and let (ĉ1, ĉ2, d̂) be an optimal allocation. Define (ĉ1
1,s, ĉ

2
1,s, d̂1,s)

as the continuation allocation from t = 1 onwards when state s ∈ S occurred in period

t = 0.

Claim: The continuation allocation (ĉ1
1,s, ĉ

2
1,s, d̂1,s) from period t = 1 onwards given s ∈ S

occurred in period t = 0 is an optimal allocation.
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Suppose not. Then after s ∈ S occurs in period t = 0, there exists a continuation

allocation (c̃1
1,s, c̃

2
1,s, d̃1,s) from period t = 1 that is feasible and yields at least as much

utility for both agents and strictly more utility for one agent than (ĉ1
1,s, ĉ

2
1,s, d̂1,s), the

one specified in the optimal allocation. Define a new allocation by replacing the part

of the old allocation after the event s occurs in the first period by (c̃1
1,s, c̃

2
1,s, d̃1,s). This

allocation is clearly incentive feasible. Furthermore, it delivers at least as much utility

to both agents as the optimal allocation and strictly more expected utility for one agent.

Hence, (ĉ1, ĉ2, d̂) is not optimal, which is a contradiction.

Define Ṽ (u0) to be the value of the solution to the right hand side of the objective

function in (FE).

Claim: V (u0) ≤ Ṽ (u0).

Let (ĉ1, ĉ2, d̂) be the optimal allocation given u0. Similarly, let (ĉ1
1,s, ĉ

2
1,s, d̂1,s) be the

continuation allocation of the optimal allocation at t = 1 after s ∈ S occurred in period

t = 0. Define

ûs = E1

[ ∞∑
t=1

βt−1u(ĉ2
1,s)

]

for all s ∈ S. By the previous claim, for all s ∈ S the continuation allocation is optimal

lies; i.e.,

V (ûs) = E1

[ ∞∑
t=1

βt−1u(ĉ1
1,s)

]
.

Consider now the contract ({ĉ2
0,s, ûs}Ss=1, d̂0). This contract is clearly feasible and ex post

incentive compatible for (FE). Furthermore, by the definition of ûs,

∑
s∈S

πs[u(ĉ0,s) + βûs] = u0.

Since {ĉ1, ĉ2, d̂} attains a utility of V (u0) for agent 1, it follows that Ṽ (u0) ≥ V (u0).

Claim: V (u0) ≥ Ṽ (u0).

Let ({ĉs, ûs}Ss=1, d̂0) be the solution to the right hand side of the objective function in

(FE) yielding Ṽ (u0). Since ûs ∈ [V , V ] for all s ∈ S, there exists an optimal allocation
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that yields ûs for agent 2 and V (ûs) for agent 1 for every s ∈ S. Call this allocation

(ĉ1
1,s, ĉ

2
1,s, d̂1,s).

Consider the allocation ({Y − ψ(d̂) − ĉs}Ss=1, ĉ
1
1,s, {ĉs}Ss=1, ĉ

2
1,s, d̂, d̂1,s). The allocation is

incentive feasible for the problem (SP) and, since
∑

s∈S πs[u(ĉs) + βûs] = u0, agent 2

receives utility u0. Since agent 1 receives
∑

s∈S πs[u(ĉs) + βV (ûs)] = Ṽ (u0) from the

allocation, V (u0) ≥ Ṽ (u0).

¤

Proof of Proposition 3.6:

Since the constraint correspondence is compact-valued and continuous, the Theorem

of the Maximum (Debreu [2, Theorem 1.8 (4)]) applies. As V is strictly concave and

the constraint set is convex, the solution of the maximization problem is unique and,

therefore, given by unique policy functions d and cs, us for all s ∈ S.

¤

Proof of Lemma 4.1:

1. Using equation (7), µis = 0 for all i implies that −V ′(us) = λ. By the envelope

theorem, λ = −V ′(u0) and the result follows from the fact that V is strictly decreasing.

2. Using the envelope theorem, equation (7) reduces to

−V ′(us) = −V ′(u0)
πs

πs + µ1
s

.

Hence, −V ′(us) < −V ′(u0). Since V is strictly decreasing and strictly concave, us <

u0.

3. The proof is analogous to the one given above.

4. If both ex post incentive compatibility constraints are binding in some state s, they

must also be binding in the state s′ where the income of both agents is reversed.

Otherwise, at least one of the agents can be made better off by replicating the contract

for state s′ in state s. Hence the original contract cannot be optimal.
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Thus, the allocations for the pair of states (s, s′) must be symmetric in the sense that

agent 1 receives agent 2’s allocation of state s in state s′. Without loss of generality

assume that y2
s′ > y1

s′ . Since us is increasing in cs for given d, we obtain

us′ = V (us) > us = V (us′)

and

cs′ = Y − ψ(d)− cs > cs = Y − ψ(d)− cs′ .

Strict concavity of V and symmetry of the problem imply −V ′(us) = 1 if and only

if V (us) = us. Since us′ > V (us′) and V is strictly concave, −V ′(us′) > 1. By

hypothesis, −V ′(u0) ≤ 1. Hence, us′ > u0.

5. The proof is analogous to the one given above.

¤

Proof of Lemma 4.2:

Let us > u0 for some s ∈ S. By Lemma 4.1, µ2
s > 0 and the ex post incentive compat-

ibility constraint binds for agent 2 in state s. Let s′ be any state such that y2
s′ > y2

s .

Then, since us is increasing in cs, it must be the case that us′ > us > u0. Hence, µ2
s′ > 0.

The second statement is proved by an analogous argument.

¤

Proof of Theorem 4.3:

Suppose d = 0. Then by equation (8), µis = 0 for all i = 1, 2 and all s ∈ S. By Lemma

4.1, us = u0 for all s ∈ S.

Suppose d > 0. Suppose further that us = u0 for all s ∈ S. By the envelope theorem

we have λ = −V ′(u0). From equation (7) we obtain −µ1
sV
′(u0) = µ2

s. If µ1
s = µ2

s = 0

for all s, then d = 0 by equation (8), which is impossible. Hence, for some s, µis > 0 for

i = 1, 2.
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Since Y −ψ(d) and us are constant across states, it follows from equation (10) that cs is

also constant across states. Thus, the utility levels for both agents are constant across

states. This implies that for each agent the ex post incentive compatibility constraint

can be binding for at most one income level. Since for all s ∈ S, y1
s 6= y2

s , we have µis = 0

for some i = 1, 2 in all states s. A contradiction is therefore obtained.

¤

Proof of Lemma 4.4:

Since at u0 the first-best allocation is not incentive feasible, at least some incentive

constraint must be binding and, by Theorem 4.3, d > 0. It is also clear that all the

incentive constraints cannot be binding; otherwise u0 = V (u0) < Vaut and the contract

cannot be optimal.

Claim: µ1
sµ

2
s = 0 for all s ∈ {H,L}.

Suppose not. Then there exists s ∈ {H,L} such that µis > 0 for i = 1, 2. Then, since

not all incentive constraints can be binding, µis′ = 0 for some i and s′ 6= s. Without loss

of generality, assume s′ = L and µ1
L = 0. Then,

u(Y − ψ(d)− cL) + βV (uL) > u(cH) + βuH = (1− d)[u(yH) + βVaut]

and

u(cL) + βuL ≥ u(Y − ψ(d)− cH) + βV (uH) = (1− d)[u(yL) + βVaut].

Therefore, both agents receive higher or equal utility in state s′ = L than in state s = H.

This cannot be optimal since one can replicate the contract for state s′ = L in state s = H

and make at least some agent better off without making the other worse off.

Claim: µ1
s = 0 for all s ∈ {H,L}.

Suppose first that µ1
H > 0 (i.e., agent 1’s incentive constraint binds when his income is

low). Hence uH < u0. By Lemma 4.2, µ1
L > 0. By the previous claim, µ2

s = 0 for all s.

Thus, V (u0) < u0, a contradiction.
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Suppose now that µ1
L > 0 (i.e., agent 1’s incentive constraint binds when his income is

high). Then, by the previous claim, µ2
L = 0. Furthermore, µ1

H = 0, since otherwise

V (u0) = E
[
(1− d)

(
u(y1

s) + βVaut
)]
< Vaut,

which contradicts u0 < ū.

By incentive feasibility,

u(cH) + βuH ≥ u(Y − ψ(d)− cL) + βV (uL) = (1− d)[u(yH) + βVaut].

Since u0 < ū, V (u0) > u0. Hence, u(Y −ψ(d)− cH)+βV (uH) > u(cL)+βuL. Therefore,

both agents receive higher or equal utility in state s = H than in state s = L. This

cannot be optimal since one can replicate the contract for state s = H in state s = L

and make at least some agent better off without making the other one worse off.

Claim: µ2
H > 0.

The previous claim implies that µ2
s > 0 for some s ∈ S. If µ2

L > 0, uL > u0. By Lemma

4.2, µ2
H > 0 which completes the proof.

¤

Proof of Theorem 4.5:

We show that the policy function for d must be monotone on [V , ū]. Symmetry implies

that it must be monotone - with the sign of the slope reversed - on the other part of

its domain. Without loss of generality, we assume throughout the proof that d(u0) > 0

(i.e., that at u0 the first-best allocation is not incentive feasible). We proceed first with

an intermediate result.

Claim: If µ2
s > 0 for all s ∈ S = {H,L} at û0, then

ˆ̂
d > d̂ for all ˆ̂u0 < û0.

Suppose not. Then, there exists ˆ̂u0 < û0 such that
ˆ̂
d < d̂. By incentive feasibility,

u(ˆ̂cs) + β ˆ̂us ≥ (1− ˆ̂
d)

[
u(y2

s) + βVaut
]

.
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Since µ2
s > 0 for all s ∈ S = {H;L} at û0, we have

u(ĉs) + βûs = (1− d̂)
[
u(y2

s) + βVaut
]

.

and

ˆ̂u0 ≥ (1− ˆ̂
d)Vaut > (1− d̂)Vaut = û0.

This is a contradiction.

Suppose now that the policy function is not monotone on a subinterval of [V , ū]. Conti-

nuity implies that there exists û0 < ũ0 such that d̂ = d̃ > 0. Since d is the same, strict

concavity of V and u imply that ûH = ũH and ĉH = c̃H . Using equation (8) and the

claim above, we obtain
∑

s∈S[V ′(û0)− V ′(ûs)]γs∑
s∈S u

′(Y − ψ(d̂)− ĉs)
= ψ′(d̂) =

= ψ′(d̃) =
[V ′(ũ0)− V ′(ûH)]γH

u′(Y − ψ(d̂)− ĉH) + u′(Y − ψ(d̂)− c̃L)
,

where γs denotes the value of the outside option if income is given by ys. Since û0 < ũ0,

ûL ≥ û0 and V is strictly concave,

∑
s∈S

[V ′(û0)− V ′(ûs)]γs > [V ′(ũ0)− V ′(ûH)]γH .

To satisfy ψ′(d̂) = ψ′(d̃), we need ĉL > c̃L. Since us is an increasing function of cs, we

have ûL > ũL = ũ0. Since the allocation for state s = H is the same for û0 and ũ0, it

follows that û0 > ũ0, which is a contradiction.

¤

Proof of Corollary 4.6:

If there exists a first-best allocation that is incentive feasible, d = 0 for some interval

[uFB, u] and d > 0 for [V , uFB). The result then follows.

¤

Proof of Theorem 4.7:
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1. Let u0 ∈ [V , uFB). Define A ≡ {ω ∈ Ω∞|ωt = H for finitely many t}. Clearly,

Π∞(Ac) = 1. Hence, limt→∞ ut = uFB Π∞-a.s. if limt→∞ ut = uFB for all ω ∈ Ac.

Let ω ∈ Ac. By Lemma 4.4 and the assumption that us is non-decreasing in u0,

{ut}∞t=0 is monotonically non-decreasing. Since us(uFB) = uFB for all s ∈ {H,L} (cf.

Theorem 4.3), the sequence is bounded from above and, hence, must converge to a

limit.

Define m(u0) = maxsus(u0). Since ω ∈ Ac, for all T ∈ IN there exists t > T such

that ut > m(uT ). For T → ∞, u∗ ≥ m(u∗). From the definition of m(·) and Lemma

4.1, we have u0 < m(u0) for all u0 ∈ [V, uFB). Hence, limt→∞ ut = uFB for ω ∈ Ac.

The argument for u0 ∈ (uFB, V ] is analogous.

2. If us(ū) = ū for all s ∈ {H,L}, the result follows by an argument analogous to the one

given above. By Lemma 4.4, for all u0 < ū, uH(u0) > u0 and uL(u0) = u0. Conversely,

for all u0 > ū, uH(u0) = u0 and uL(u0) < u0. Continuity of us implies then us(ū) = ū

for all s.

¤

Appendix B

We give now a more rigorous analysis of the discussion following Theorem 4.7 in Section

4.3. We assume throughout that there is no incentive feasible first-best allocation and

show that the distribution of wealth converges weakly to a unique long-run distribution

provided that u∗s is non-decreasing.

Given an optimal contract, the state variable u0 follows an endogenous Markov process

that reflects the policy functions ({c∗s, u∗s}Ss=1, d) as well as the exogenous Markov chain

of shocks wt. Formally, we can express this Markov process by a transition function Q∗.

Let B be the Borel σ-algebra on the interval [V , V ]. Define Q∗ : [V , V ]×B −→ [0, 1] by

Q∗(u∗t−1, B) = Prob(B|u∗t−1(u0), . . . , u∗1(u0), u0) = Prob(B|ut−1) (B.11)
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for all B ∈ B. Associated with the Markov transition function is the operator TQ∗ that

maps the space of all bounded, B-measurable, real-valued functions into itself. This

operator is formally given by

TQ∗f =

∫
f(u∗t )Q

∗(u∗t−1, du
∗
t ) =

S∑
s=1

f(u∗s(u
∗
t−1))πs, (B.12)

where the function f is any bounded, B-measurable, real-valued function. To prove our

result we use the following mixing condition:

Condition B.1. There exists ε > 0 and T ∈ IN such that Prob(uT (V ) ≥ ū) ≥ ε and

Prob(uT (V ) ≤ ū) ≥ ε.

This condition can be interpreted in our context as follows. Suppose that u0 ∈ {V , V };
i.e., in period t = 0 we have the highest possible degree of inequality. Given Condition

B.1, there is a positive probability that the initial inequality between agents is reversed

within in a finite number of periods.

Let F0 be any distribution function over [V , V ]. Furthermore, denote by Ft the distribu-

tion function for ut given F0. We say that the sequence of distribution functions {Ft}∞t=0

converges weakly to F (or Ft ⇒ F ) if and only if limt→∞ Ft(u0) = F (u0) at every conti-

nuity point u0 of F . The next result formally establishes weak convergence of the wealth

distribution to a unique invariant distribution by adopting an argument of Kocherlakota

[7].

Lemma B.2. If V is differentiable everywhere, for all u0 ∈ [V , ū] there exists s ∈ S

such that us(u0) > u0 .

Proof. For u0 ∈ [V , ū] some ex post incentive feasibility constraint for agent 2 must be

binding. Otherwise, by Lemma 4.1 agent 2 would have an expected utility strictly lower

than u0.

If µ1
s(u0) = 0 and µ2

s(u0) > 0 the result follows. If µ1
s(u0)µ2

s(u0) > 0 there exists a state

s′ such that µ1
s′(u0)µ2

s′(u0) > 0. Otherwise, one could replicate the allocation in s′ for

s making one of the agents strictly better off. Since −V ′(u0) ≤ 1 for all u0 ∈ [V , ū],
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the result follows then from the symmetry assumption on the endowment process and

Lemma 4.1.

Theorem B.3. If u∗s is non-decreasing and V is differentiable everywhere, there exists

a unique distribution F such that Ft ⇒ F for any initial distribution F0.

Proof. By Proposition 3.6, u∗s is continuous and, hence, the operator TQ∗ satisfies the

Feller Property. Furthermore, TQ∗ is monotone as u∗s is assumed to be non-decreasing.

Since [V , V ] is compact and TQ∗ preserves continuity, by Theorem 12.10 of Stokey, Lucas

with Prescott [16] there exists an invariant distribution over [V , V ] under the transition

function Q∗. Furthermore, by Theorem 12.12 of Stokey, Lucas with Prescott [16], the

invariant distribution is unique and weak convergence from any initial distribution occurs

if TQ∗ is monotone and if Condition B.1 for the Markov transition function Q∗ is fulfilled.

To show that Condition B.1 is satisfied, define m(u0) = maxsus(u0). Define further a

sequence {wn}∞n=1 recursively by setting wn = m(wn−1) where w0 = V .

Suppose there does not exist N ∈ IN such that wN ≥ ū. Since the sequence is non-

decreasing and bounded from above by ū, it must converge to a limit w̄ ≤ ū. Since

m is a continuous function, m(w̄) = w̄. By Lemma B.2, we have m(u0) > u0 for all

u0 ∈ [V , ū]. A contradiction.
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Figure 1: Value Function
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Figure 2: Level of Punishment
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Figure 3: Law of Motion for u0
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Figure 4: Consumption Levels
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Figure 6: Level of Punishment
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Figure 7: Law of Motion for u0
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