View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Research Papers in Economics

ED

Queen’s Economics Department Working Paper No. 1235

Common Value Auctions with Return Policies

Ruqu Wang Jun Zhang
Queen’s University Queen’s University

Department of Economics
Queen’s University
94 University Avenue
Kingston, Ontario, Canada
K7L 3N6

4-2010


https://core.ac.uk/display/6494417?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Common Value Auctions with Return Policies

Ruqu Wang* Jun Zhang!

April 16, 2010

Abstract

This paper examines the role of return policies in common value auctions. We first
characterize the unique symmetric equilibrium in first-price and second-price auctions
with continuous signals and discrete common values when certain return policies are
provided. We then examine how the return policies affect a seller’s revenue. When the
lowest common value is zero, a more generous return policy generates a higher seller’s
revenue; the full refund policy extracts all the surplus and therefore implements the
optimal selling mechanism; given any return policy, a second-price auction generates a
higher revenue than a first-price auction. In a second-price auction where the lowest
common value is not zero but still smaller than the seller’s reservation value, then a
more generous return policy also generates a higher revenue; otherwise, the optimal
return policy could be a full refund, no refund or partial refund policy.
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1 Introduction

Auctions have been used for trading for thousands of years. Due to the rapid growth of
internet commerce, online auctions have become extremely popular. These auctions create
a problem for both the buyers and the sellers. As a buyer is unable to closely examine the
good being auctioned, he may find the good not exactly what he expects when he receives
it. Even though this could also happen in store purchases, it is inarguably a more common
problem in online auctions. Should sellers allow buyers to return the goods? Should sellers
charge a fee for the returns? How would the return policy affect buyers’ behavior? Would
sellers also benefit from such a return policy? These are the issues we will investigate in this
paper.

Each day, there are millions of objects being auctioned on the internet through many
online auction sites. We observe that many of the sellers provide very generous return
policies in the auctions.! The NHL (National Hockey League) online auctions, for example,
provide a 7-Day, 100% Money-Back Guarantee. Most sellers in Amazon.com and eBay.com
provide at least partial return policies; buyers may need to pay some fees (usually less than
15% of the transaction prices) if they would like to return the merchandises.

Traditionally, standardized consumption goods are categorized as having private values.
Non-standardized goods, especially those with uncertain quality, are categorized as having
interdependent values.? With private values, return policies do not affect a buyer’s bidding
strategy, since he never bids more than his valuation. As a result, they bid the same as if
there were no return policy.® In contrast, with interdependent values, return policies induce
bidders to bid more aggressively. Return happens with positive probability after the winning
bidder receives the good and learns more about its true value. We focus on the common
value setting in Wilson [17] since it is the simplest model accounting for interdependent and
correlated values. The common value auctions in Wilson [17] are also widely used to model
auctions for oil, gas and mineral rights.

The phenomenon, known as the winner’s curse, is well recognized in the common value
auctions.® The fact of winning actually conveys bad information that the winner may have
overestimated the object. If buyers do not take this effect into account, they get lower or
even negative expected surplus. However, when buyers are fully rational and they fully
anticipate the winner’s curse, they will adjust their bids downward accordingly, and will not

Return policies (or money back guarantees) are widely adopted in retailer stores as well. Most large
chain stores have some form of full return policy.

2Haile [4] examines auctions of goods which have common value components due to resale.

3Zhang [20] considers private values which are subject to idiosyncratic shocks after transaction, and
illustrates how return policies can be part of the optimal mechanism.

4Ideally, the most general model to use is Milgrom and Weber [14]. Unfortunately, with return policies,
it is hard to characterize the equilibria. Nevertheless, the insight should be more or less the same.

®The winner’s curse is first pointed out by Capen et al. [1]. Kagel and Levin [7] documents the winner’s
curse in experimental designs.



bid more than their estimates of the value conditional on winning. As the number of buyers
increases, the winner’s curse becomes more severe and buyers bid even less.

However, if a return policy is in place, buyers will bid more aggressively since the winner
can get a refund by returning the object if he discovers that he has overestimated its value.
As a result, the return policy overcomes some of the winner’s curse. In fact, a return policy
can do more than mitigating the winner’s curse. When the return policy is generous enough,
buyers may bid more than the unconditional estimates of the object value. If the seller
implements the full refund policy, then it is obvious that every bidder will bid very high in
the auction. Of course, returns would negatively impact the seller’s revenue as well as the
efficiency of trading, as the seller usually has a lower value for keeping the object unsold.
By selecting a proper return policy, the seller can achieve higher revenue by balancing the
trade-off between higher bids and efficiency loss.

In theory, there exist optimal mechanisms for sellers to maximize revenue.® However,
those optimal mechanisms are not commonly observed in reality, partly because too much
detail regarding the underlining environment is required for the seller to design an optimal
mechanism. The discrepancy between theory and common practice prompts the claim that a
set of simplicity and robustness criteria should be imposed on the trading mechanisms.” Our
auction model with return policies satisfies those simplicity criteria, and the return policies
do not depend on much of the detail of the environment. As we shall show in this paper,
return policies, while being “simple” instruments, are effective in revenue improving.

In our common value auction models with return policies, buyers receive independent
signals conditional upon the true common value of the object. While this common value
takes discrete values, signals are continuously distributed. A more generous return policy
has three effects. First, it induces buyers to bid more aggressively. This is a positive effect.
Second, the seller receives a smaller portion of the transaction price when the winning bidder
returns the object. This is a negative effect. We call the sum of these two effects as the
payment effect. It can be shown that the payment effect is usually positive. Third, returns
change the efficiency of the object allocation. This is called the efficiency effect, which could
be either positive or negative. How a return policy affects the seller’s revenue depends on
the magnitude of the payment effect and the efficiency effect.

Our analysis shows that a return policy can often improve a seller’s revenue. Under
certain conditions, the full refund policy extracts all the surplus and implements the op-
timal selling mechanism. Although return policies are commonly observed only in online
auctions, they should be an effective instrument to improve revenue in any auctions with

6The optimal auction with independent values has been established by Myerson [15]. Matthews [11] and
Maskin and Riley [10] characterize the optimal mechanism with risk averse buyers and independent values.
With correlated values, (almost) full surplus extraction can be achieved using the mechanism in Cremer and
Mclean [2] and McAfee and Reny [12].

"Hurwicz [6] illustrates the need for mechanisms that are independent of the parameters of the model.
Wilson [19] points out that a desirable property of a trading rule is that it “does not rely on features of the
agents”. Lopomo [8] [9] restricts to mechanisms with “simplicity” and “robustness”.



interdependent values.

There is a huge literature on auctions. The equilibria of common value auctions have
already been extensively examined (see Goeree and Offerman [3], Hausch [5], Milgrom and
Weber [13], Reece [16], and Wilson [18]). Milgrom and Weber [14] consider a very general
model which includes the private values and common values as special cases. However, none
of the above papers consider return policies. To the best of our knowledge, Zhang [20] and
this paper are the first ones to analyze return policies in auctions.

The rest of this paper is organized as follows. In Section 2, we set up the model. In Section
3, we characterize the bidders’ equilibrium strategies in second-price auctions. In Section 4,
we characterize the bidders’ equilibrium strategies in first-price auctions. In Section 5, we
establish the revenue rankings among different auction formats. In Section 6, we conclude.
All proofs are relegated to an appendix.

2 The model

Suppose that there are two bidders, bidders 1 and 2.8 The common value of the object,
V', can be either Vg or V;, with Vg > V;. Assume that V = Vg with probability ug,
and V = Vi with probability puy = 1 — puy. Bidders know the distribution of the common
value but not its true value before the auction. Bidder i receives a signal x;, ¢ = 1,2. This
signal is correlated to the common value, V', but independently distributed across bidders
conditional on V. If V' = Vg, then z; follows the distribution with p.d.f. fy(-) and c.d.f.
Fy(-). If V =V, then z; follows the distribution with p.d.f. f.(-) and c.d.f. Fr(-). Assume
that Fiy(-) and F7(-) have a common support, [z, Z|. To ensure that a higher signal implies
a higher probability of V' = Vj, we will assume that p(x) = ’;f—((j)) is increasing in z, i.e., Fy
dominates Fp, in likelihood ratio. The lemma below lists a few properties implied by this
assumption. The proof is standard and is thus omitted.

Lemma 1 Suppose that Fy(x) dominates Fr(x) in likelihood ratio, i.e., p(x) is increasing
in x. Then

fu fr
1-Fg — 1-Fgy~

A

1. Fy dominates Fy, in hazard rate, i.e.

2. Fy dominates F, in reversed hazard rate, i.e. I{:—Z > I%

3. 7o 1S InCreasing.

Now we consider the return policy. Let p be the transaction price in an auction. Suppose
that the seller charges a fee ¢ = 7p if the winning bidder (winner) returns the object, where

8Generalization to the N-buyer case is straightforward and none of the main results will change. There
is no need to complicate the notations further.



v € [0,1]. Therefore, the winner receives a refund of (1 —~)p. Here, we assume that there is
no transaction cost for returns on both sides. We focus on the case where v > 0. If v =0,
there could be multiple equilibria with every bidder bidding higher than or equal to Vy.?

The timing of the game is as follows.

1. Nature moves first and selects V = Vg or V = V. Conditional on V', each bidder
draws a signal independently.

2. Either a first-price or second-price auction with return policy ~ is held, and the winner
is determined.

3. The winner learns the true value of the object and decides whether or not to return
the object for a refund.

We assume that the winner can learn about the true value of V' after the auction ends.
In online auctions, after a buyer receives the object, he would learn more about its value.
In auctions for oil, gas and mineral rights, uncertainties resolve over time and the winner
will learn the true value eventually. In the analysis, we will focus on the symmetric perfect
Bayesian equilibrium with strictly increasing bidding function in the auction. We will start
by analyzing the last stage of the game, where the winner makes the return decision. In
the following section, we will examine the second-price auctions. We will then examine the
first-price auctions in the subsequent section.

3 Second-price auctions

Let us first examine the second-price auctions. The transaction price is equal to the second
highest bid in the auction. We assume that both bidders adopt the same strictly increas-
ing bidding function B(-) in the auction stage. We can restrict our attention to bidding
functions taking values in [V, Vy]. This is because a buyer with the highest signal should
not bid more than Vj; bidding more than Vi would sometimes gives him a negative surplus
and is dominated by bidding Vj; if a bidder with the lowest signal bids less than V}, then
by increasing his bid to V; he may win with a positive probability and thus get a positive
surplus.

Now consider the return stage. Assume that buyer 1 is the winner and his signal is x.
Suppose that he bids B®(Z), wins the auction, and pays B®(z,). If the realization of the
value of the object is V' = Vj, he will not return it since his payment is less than V. If

1
V = Vp, he returns the object when Vi, < (1 —~)B%(x5), i.e., 29 > (BS) (1‘%), otherwise,

9As we shall show later, when ~ converges to zero, the equilibrium converges to the one where every
bidder bids V. Furthermore, bidding more than Vy is weakly dominated by bidding Vy. Therefore, when
v = 0, we pick the undominated equilibrium where every bidder bids V.



he keeps the object. As a result, there can only be three different situations in the return
~1
stage. Case 1: (BS) (1‘%) > 7, and thus the winner keeps the object all the time. Case

-1
2: (BS) (%) < z, and thus the winner returns the object whenever V' = V. Case 3:

-1
z < (BS> (1‘%) < 7, and the winner’s return decision is based on a cutoff rule when
V == VL.

Note that in a two-bidder second-price common-value auction without return policies,

from Milgrom and Weber [14], a bidder with signal x would bid the expected object value
conditional on the other bidder having the same signal x:

~ paVafa(@)? +pVefo(x)®  paVap(x)® + pcVe
E(Vl.x) = pafa()? +pfo(e)?  pap(e)? +p M)

Define

_ Vi (Vg = Vi) upp(z)?
P =1 B0 ™ Vimp@? + e )

as the winning bidder’s loss as a percentage to the bidder’s bid when the value of the object
turns out to be V. There are two cutoffs for v that are important in the characterization of
the bidders’ equilibrium bidding function. (Recall that - is the percentage of the transaction
price that is retained by the seller if the winning bidder returns the object.)

77 =T%a), (3)

7 =T%(@). (4)

The type of equilibrium we will obtain depends crucially on the value of . As shown
in the proof of Proposition 1, it turns out that if + is lower than 15 , the winning bidder
would always return the object whenever V = V.. If ~y is higher than 7°, the winning bidder
would never return the object when V' = V. If v is intermediate, the winning bidder would
sometimes return the object when V' = V. Furthermore, the intervals for v in the above
three cases do not overlap with each other and they cover the entire interval of (0, 1]. Thus
we can conclude that a unique symmetric perfect Bayesian Nash equilibrium exists for any
v € (0,1]. Define z°* as the solution to v = I'(2%*) for v € (v°,7°). Since I'*(z) is
strictly increasing, x°* is unique and belongs to (z,7). These results are characterized in
the following proposition.

Proposition 1 In the second-price common value auction with return policy v, the unique
symmetric equilibrium is characterized as follows in three cases.



Case 1: If v > 7%, each bidder adopts the following strictly increasing bidding function:

S(p) — BS(g) = oz) = peVap()® + puLV

The winning bidder never returns the object.
Case 2: Ifv < ls; each bidder adopts the following strictly increasing bidding function:

S(r) = BS2(z) — pr Vi p(z)?
Bi(@) = B"() pap(z)? 4+ ypr (6)

The winning bidder always returns the object whenever V.= V.

Case 3: If 15 < v < 7%, each bidder adopts the following strictly increasing bidding
function:

B3Y(x), ifx < 2%
B®(x) = (7)
B%(x), if x> x%*.

The winning bidder returns the object when V = Vi, if he pays more than BS(x°*).

In Case 1 of the above proposition, since the return policy is never executed, the bidding
function coincides with the one with no return policy. Obviously, providing a very strict
return policy is equivalent to no returns. The bidding function B°!(z) corresponds to the
one in Milgrom and Weber [14].

In Case 2, the function B%?(x) is in fact the equilibrium bidding function for the game
when the winner is forced to return the object if the realized value is V. It is equal to the
price that the bidder will break even if he pays that price (i.e., the other bidder also has signal
x) and gets Vg when V = Vj, and pays vy percent of that price and gets 0 when V = V.
That is, B%(x) is the solution to (Vg — B)pug fu(x)? + (=yB)pur fr(z)? = 0. When V;, = 0,
this bid is equivalent to the expected object value of a bidder with signal z conditional on
the other bidder having the same signal x and returning the object with probability 1 — ~
when V = V7.

In Case 3, whether the winning bidder returns the object or not depends on how much
he pays. It is easy to show that B%(x) > B%%(x) for x < 2% and B'(x) < B*?(x) for
x > %% with equality at the cutoff 2°*. Therefore, the bidding function is the maximum
of the two functions in Cases 1 and 2. However, as we shall show in the next section, this
pattern is not valid for first-price auctions.

Given any return policy v € (0, 1], there exists a unique symmetric equilibrium. When
v — 0, BS(z) — V. We know that when v = 0, there are many equilibria. First, bidding Vy
and the winner always returns the object when V' = V, and keeps the object when V' = Vj is



an equilibrium. Second, bidding any amount more than V and the winner returns the object
all the time is also an equilibrium. However, bidding more than Vy is weakly dominated by
bidding Vy. Thus, for simplicity and continuity, we select the equilibrium with B%(z) = Vg
and the winner always returns the object whenever V' =V} and keeps the object whenever
V' = Vg as the equilibrium for v = 0. This is captured in Case 2 with v = 0.

4 First-price auctions

Now we examine first-price auction with returns. Here, the transaction price is the winning
bid. Again, we focus on an equilibrium where every bidder adopts the same strictly increasing
bidding function B¥(-). Similarly to the second-price auctions, we can establish the range
of the bidding function to be a subset of [V, Vg].

We first examine the winning bidder’s return decision. Suppose that a bidder has signal
x but bids B¥(Z). If he wins, he pays B (Z) for the object. When the realization of the
object value is V' = Vg, he will keep the object, since he pays less than V. When V =V,
he will return the object if V;, < (1 —)B¥ (), i.e., 7 > (BF)*l(l‘i—Lv). As result, there can
only be three different situations in the return stage. Case 1: (BY )*1(%) > 7, and thus

the winner keeps the object all the time. Case 2: (BF)*l(l‘i—Lw) < z, and thus the winner

returns the object all the time when V' = V. Case 3: z < (BF)*l(%) < 7, and thus the
winner’s return decision is a cutoff rule when V' = V.

Define two functions:

[ ppfg ) tupfr()? o
Li(a|z) = e Jo mafa O Fp+aL i GFLE (8)

7‘[”5 wp FE ()2 +yup fr(9)? ds
Lz(a|x7fy) =e a pgfr($)F(s)+yur fr(s)Fr (s)

(9)
Lemma 2 Li(«|x) and Ly(al|x;7y) are both proper c.d.f.’s of o with support [z, x].

Note that in a two-bidder second-price common-value auction without return policies,
according to Milgrom and Weber [14], all bidders would bid according to the same strictly
increasing function:

z x V 2 V
[ EWla,a)dLi(alz) = [ 22 () b Vi o
£ e pup(a)?+
Define
z (Vg—Vr5) )?
'z)=1 Vi _ Je %dljl(‘ﬂ@

— = 11
Jy BV, a)dLy(oo|z) o wnVapletmVe g (o|z) (11)

z  pmp(a)+ur




as the winning bidder’s loss as a percentage to the bidder’s bid when the value of the object
turns out to be V. Since the bidding function (10) is strictly increasing, I''(x) is strictly
increasing. As in the second-price auctions, there are two cutoffs for v that are important
in the characterization of the bidders’ equilibrium bidding function.

7" =T"(2), (12)

¥ =T (7). (13)

Note that I'f'(z) = I'¥(z).

As in the second-price auctions, v plays an important role in the return decision. Define
z"* as the solution to v = ¥ (2*) for v € (vF,7F). Since I'f(z) is strictly increasing, =™

is unique and belongs to (z, 7). Also define

MHVHP a)? P
— = dLs(alx™™; 7). 14
T1- / pap()? +ypur, 2(ale™7) (14)

Similar to the second-price auctions, we have the following proposition.

Proposition 2 In a first-price common value auction with return policy v, the unique sym-
metric equilibrium can be characterized as follows in three cases.
Case 1: When v > 7, each bidder adopts the following strictly increasing bidding function:

v
BF(z) = B"\( / prVep(a) +/LLVLdL1<Oé|x)' (15)
prp(a)? + [

The winning bidder never returns the object.

Case 2: When v < lF, each bidder adopts the following strictly increasing bidding function:

BF(z) = BP(x) = / ’ “;/pH(/;I;zpiaiﬂLdLg(am;y). (16)

The winning bidder always returns the object when V = V7.

Case 3: When v" < v < 7%, each bidder adopts the following strictly increasing bidding
function:

i B (x), if v <™,
B (x) = (17)
B2 (z) + ALy(x"*|x; ), if v > 2t



The winning bidder returns the object if he pays more than BY (x™*) when V = V.

In Case 1 of the above proposition, since the return policy is never executed, the bidding
function coincides with the one with no return policy. A very strict return policy is equivalent
to not allowing returns. The bidding function B¥!(x) corresponds to the one in Milgrom
and Weber [14]. In Case 2, the function B*?(z) is in fact the equilibrium bidding function
for the auction when the winner is forced to return the object if the realized value is V. In
Case 3, however, the bidding function is no long the maximum of the two individual bidding
functions in Cases 1 and 2 as in the second-price auctions.

For the same reason as in the second-price auctions, we choose the equilibrium with
B¥(z) = Vg and the winner always returns the object whenever V' = V; and keeps the
object whenever V' = Vj as the equilibrium for v = 0. This is captured in Case 2 with v =0
in the above proposition.

5 Revenue ranking

In this section, we shall make several comparisons in revenue. Suppose that the seller’s
reservation value of the object is V.19 Consider a return policy with percentage fee of v for
returns. Suppose that the seller implements a more generous return policy (i.e., a lower 7).
There are three effects. First, buyers bid more aggressively. This is a positive effect. Second,
when the winner returns the object, the seller gets a smaller portion of the transaction price.
This is a negative effect. Third, because the cost for returning is lower, the probability of
the object being returned to the seller is higher. The effect on the efficiency of the object
allocation could be positive or negative, depending on whether the seller’s reservation value
is higher or lower than the object value. We call the sum of the first two effects the payment
effect, and the third effect the efficiency effect. The seller can improve her revenue by
balancing the trade-off between the payment effect and the efficiency effect.

In what follows, we shall first examine the special case of V, = 0, and then the general
case. We denote the case of V, = 0 the benchmark. In this case, the object is either in
perfect condition (high common value), or totally useless (zero common value). The winner
always keeps the object when the realized common value is high, and always returns it when
the realized common value is zero, regardless of the return policy. Because the return policy
does not alter the allocation of the object, there is no efficiency variation among different
return policies. This allows us to focus on the role of return policy on the payment effect.
Analytically, we can make use of the linkage principle and show how the return policy affects
the revenue in this case.!!

10Tt is reasonable to assume that V < Vi; otherwise, the seller will not have any incentive trying to sell
the object.

UUnfortunately, when V7, # 0, the allocation of the object is affected by the return policy and the linkage
principle does not apply.

10



5.1 The linkage principle in the benchmark

Let M(Z,z) be the expected payment by a bidder with signal x but reported z. We have
the following proposition.

Proposition 3 Let A and B be two auctions with return policies. In both auctions, the
bidder with the highest bid wins. Furthermore, the winner always keeps the object if V =
Vi, and always returns it if V.= Vi. Suppose that in each auction, there is a symmetric
and strictly increasing equilibrium bidding function with the properties that (i) for all x,
MMz, 2) > MB(x,2); (ii) MA(x,2) = MPB(z,2) = 0. Then the seller’s expected revenue
from A is at least as large as the expected revenue from B.

In the benchmark, V;, = 0. Given any return policy and auction format, the winner
with the highest bid wins; and the winner always returns the object when V' = V; and
always keeps the object when V' = V. Thus, both first-price and second-price auctions with
any return policy can be regarded as a mechanism in the above proposition. Note that the
equilibrium strategy for a second-price auction is characterized by Case 2 in Proposition 1,
and the equilibrium strategy for a first-price auction is characterized by Case 2 in Proposition
2.

We can rank the expected revenues in the second-price auctions with different s as
follows.

Proposition 4 Suppose that Vi, = 0. Then the seller’s revenue is decreasing in vy in the
second-price auctions. That is, the more generous the return policy is, the more revenue a
second-price auction generates.

The intuition behind this proposition is as follows. Bidders take into consideration of the
possible V7, = 0 when they calculate their bids. The only situation that ~ affects the seller’s
revenue is when there is some probability that the winning bidder will return the object.
Denote a bidder’s bid in this case as B?(z,~), it is the solution to

_ pSs2 fir fu () RS2 prfr(z)? _
[VH b (%7)} o fr(x) + prfr(z) * [ P (35,7)] o fr () + ppfr(x) =0 1)
or equivalently,
fu(@) [B%(x, v)pa fur(2)p(x) + vB (2, 7)pr fr(@)] = Viapn fr(@)?, (19)
where p(z) = J}’Z((i))

When v decreases, B%?(z, ) needs to increase to keep the equation binding. Furthermore,
because BY%(z,~) has increased, 7B?(x,v) needs to decrease to keep the equation binding.

11



Now consider the seller’s revenue. The seller receives either B2(x,v) when V = Vj or
vB%%(z,7) when V = V;, = 0, if the other bidder’s signal (denoted by y) is higher. In this
case, the other bidder wins and pays B%%(x,7). The relevant expression entering the seller’s
expected revenue becomes

prfo(y) fo(z)
o fr (@) + pofr(x)
B (@, ) fu(@)ply) + B (Vs fr(@)], (20)

2 pr fu(y) fu()
B )MHfH(fL’) + prfr(x)
fL(y)

o fu(x) + pr fr(r)

+B%*(z,7)

where y > z. Note our previous assumption that p(z) is an increasing function, implying
p(y) > p(x). Therefore, when + decreases, the increase in B°? together with the decrease
in vB%? keeping the left-hand side of (19) constant will increase the value of (20), and thus
will increase the seller’s revenue. In other words, because the seller receives the bid of a first
bidder only when the second bidder has a higher signal, and this higher signal makes V' = Vy
more likely to occur than the probability used in the first bidder’s calculation. Therefore,
the total expected revenue for the seller is higher.

Similar ranking in the first-price auctions with different s can be obtained as well. We
have the following proposition.

Proposition 5 Suppose that Vi, = 0. Then the seller’s revenue is decreasing in vy in the
first-price auctions. That is, the more generous the return policy is, the more revenue a
first-price auction generates.

The above two propositions illustrate that the payment effect is positive in both auctions
when V;, = 0. Since the efficiency effect vanishes when V;, = 0, a more generous return policy
increases the seller’s revenue. This implies that the full refund policy (v = 0) is the best
return policy. With the full refund policy, in both auctions, all buyers bid up to Vg; and the
winner keeps the object when V' = Vi and returns it when V' = V; = 0. Thus, the seller
extracts all possible surplus and the buyers earn zero surplus. As a result, both auctions
with full refund policy implement the optimal mechanism which extracts all surplus. This
is summarized in the following corollary.

Corollary 1 Suppose that Vi, = 0. Then either the first-price or second-price auction with
full refund policy implements the optimal mechanism.

In what follows, we compare the revenues in the first-price and the second-price auctions
given the same . We have the following proposition.

Proposition 6 Suppose that Vy, = 0. Given the same return policy v, a second-price auction
generates at least as much revenue as a first-price auction.

12



This proposition shows that the result in Milgrom and Weber [14] that second-price auc-
tions generates weakly more revenue than first-price auctions can be generalized to auctions
with return policies. In Milgrom and Weber [14], the result can be derived directly from the
linkage principle. In contrast, the linkage principle cannot be applied to auctions with return
policies. This is because for the linkage principle to work, the difference between the two
expected payment functions must be increasing in a bidder’s reported type. This property is
satisfied among second-price auctions with different s, as well as among first-price auctions
with different vs. But when we compare a first-price auction with a second-price auction
with the same ~, the property is no longer valid. (See the proof of this proposition for de-
tails.) Nevertheless, revenue ranking is still possible here. This is because in a second-price
auction, the seller receives the bid of a bidder only when the other bidder has a higher signal,
and this higher signal makes V' = Vg more likely to happen than the first bidder originally
thought. That is, the object gets returned less often in the seller’s revenue calculation than
in a bidder’s surplus calculation. However, this effect is absent in the first-price auction.
Therefore, the total expected revenue for the seller is higher in the second-price auction.

5.2 The general case

Now we consider the general case, where V; # 0. In this case, the linkage principle does
not apply, since different return policies generate different allocations of the object being
auctioned. As the equilibrium bidding function in first-price auctions is very complex, we
focus on the second-price auctions here. First-price auctions should have qualitatively similar
results. We have the following proposition which is similar to Proposition 4.

Proposition 7 Suppose that Vi, < Vi. Then the seller’s revenue is decreasing in 7y in the
second-price auctions. That is, the more generous the return policy is, the more revenue
the auction will generate. Furthermore, the second-price auction with the full refund policy
implements the optimal mechanism.

As is shown in the proof, the payment effect is always positive in the second-price auctions.
When V7, # 0 but Vi, < Vg, the efficiency effect is positive since the return policy improves
efficiency. Therefore, the total effect is positive, which implies that a more generous return
policy again increases the seller’s revenue and the full refund policy is optimal. The intuition
for this proposition is exactly the same as Proposition 4.

When V; > V4, the efficiency effect is negative. In this case, the net effect of a more
generous return policy depends on which of the two effects (the payment effect and the ef-
ficiency effect) dominates. The following example shows that the optimal return policy can
be a full refund, no refund or partial refund policy.

Example: Suppose that V) = 0, Vg = 1, Vi, to be specified, with uy = pr = 0.5. For
z €0,1], Fg(x) =22, Fi(z) = 2z — 2%, Then fy(z) = 2z, fr(z) =2 — 2z, and p(x) = %

11—z

13



Note that p(x) is indeed strictly increasing as we previously assumed. We will vary the value
of V;, and let Vi, take the values of 0.02, 0.25, 0.28, and 0.5, respectively. Figure 1 puts all
values of V7, in one figure, while the rest of the figures each illustrate one value of V. When
Vi = 0.02, the seller’s revenue is decreasing and then increasing in v with the minimum
reached at v = 0.97; the optimal return policy is the full refund policy. When V;, = 0.25, the
seller’s revenue first increases, then decreases, and then increases in v; the optimal return
policy is a partial refund policy with v = 0.82%. When V;, = 0.28, the seller’s revenue first
increases, then decreases, and then increases in ; the optimal return policy is the no refund
policy. When V;, = 0.5, the seller’s revenue is increasing in ~; the no refund policy is optimal
again.

14



Revenue
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o
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0.45
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Figure 1: The seller’s revenue as function of v for different V,
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Revenue

0.5
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0.42
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0.38
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Figure 2: The seller’s revenue as function of v when V7, = 0.02
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Revenue
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0.508

0.506

0.504

0.502

0.5
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0.496
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Figure 3: The seller’s revenue as function of v when V; = 0.25
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Revenue
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0.512
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0.508
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0
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Figure 4: The seller’s revenue as function of v when V, = 0.28
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Revenue

0.68

0.66

0.64

0.62

0.6

0.58

0.56

0.54
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0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 5: The seller’s revenue as function of v when V;, = 0.5
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6 Conclusion

This paper investigates how return policies affect buyers’ bidding strategies in first-price
and second-price auctions and the respective seller’s revenue. Providing a return policy
undoubtedly induces buyers to bid more aggressively. When the lowest value of the object is
zero, the more generous a return policy is, the more expected revenue the auction generates.
This is true for both the first-price and the second-price auctions. The standard results in
Milgrom and Weber [14] that second-price auction generate more revenue than first-price
auctions in common value auctions can be extended to the case of return policies. When the
lowest value of the object is non-zero but still lower than the seller’s reservation value, the
revenue is again higher when the return policy is more generous in the second-price auctions.

Auctions with return policies are more complicated to analyze than standard auctions,
as the winning bidder may return the object when he discovers the object’s true values.
Therefore, a higher bid induced by a more generous return policy may not be beneficial
to the sellers. This paper shows that when the efficiency losses from the returns are not
significant, a more generous return policy helps the sellers. Since a seller can also use return
policies to signal the quality of the object, we should expect to see return policies in many
auctions as we have witnessed in online auctions, where buyers have less confidence in the
quality of the objects.

7 Appendix

Proof for Proposition 1
Case 1: Never return

We first characterize the symmetric equilibrium bidding function in the case where the
winning bidder never returns the object after winning. Let BS!(-) denote the bidding function
in this case. Consider buyer 1. Suppose that buyer 1’s signal is  and he pretends to have
signal  and bids B1(¥). Given that when the realization of the value is V7, bidder 1 will
keep the object if he wins, his expected surplus in the auction is given by:

Yz, 2) = Pr(V =Vylr, = 2)E{[V — B (2)][{zy < &}z, =2,V = Vy}  (21)
+Pr(V = Vi|ay = ) E{[V — B (2)][{zy < T}ay =2,V =V} (22)
— n(@) [ Vi = B @)ldFu(w2) + (@) [ Vi = B (@)}dFy(a2), (23)

where

Pr(V = Vyl|z, = x) (24)
B Pr(zy = x|V = Vy) Pr(V = Vy) (25)
 Pr(zy = x|V = Vy)Pr(V = Vi) + Pr(z; = 2|V = V) Pr(V = V1)

por ()
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fu(@)pm
fa(x)pa + fo(o)u’

(26)

and where py(z) = Pr(V = Vi|xy = 2) =1 — pg(x). It is important to note that py(x) is
increasing in « and pr(z) is decreasing in z. Therefore,

o1t (z, 7)
0z
= pu(@)[Vir — B¥(2)]fu(2) +_NL<(J7>)[“;LJC_ ﬁ‘;l(ff)]f(L(;z“)/ o
o . = () f, (G P (Z) Vi Ja(T) + po(2)Vefo(r) S1(5
= () o) )| AT D )
pr [ (2)Vi fa (%) + po fe) Ve fo(T) B 351@)1
pr fu (0) fu(Z) + pr fr() fo(T)

B . o [ Virp(@)p(&) + Vi 1/~
— Dan) (@) + ) 0) [P ITL  p) @)

= |pu(x)fu(T) + po(r) frL(7)]

The first order condition (FOC) for this bidder’s surplus maximization problem gives:

M =0. (28)

Solving for B(x), we have

B (x) = por Virp(a)? + ,ULVL'

prp(T)? + pr (29)

The FOC is usually only a necessary condition. We shall show below that the FOC
is also a sufficient condition for the above maximization problem. It is easy to check that
puVip@)p(@)+uL Ve g increasing in x. Therefore, given the bidding function defined in equation

pap()p(2)+1L
(29), the surplus function IT°!(x, ¥) is a unimodal function with the maximum at ¥ = x; i.e.,

increasing for < x and decreasing for & > x. To see this, for = < x,

(91‘[5;5:, 7) (30)
_ 2 For (i D (5 puVap(@)p(@) + pVe  puaVap(@)p(@) + pVe
= nalne) a0 | P2 R e
. v | peVep@)p@) + Ve paVep(@)p(@) + pVe
> o) @) + ) | M2 S - R 1(32)
= 0, 33
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and for £ > x,

OI® (z, ) (34)
oz
o Aty
- o [paVap(@)p(@) + pVe  paVep(@)p(@) + pcVi
< o))+ o) 8] | = 1(32)
= 0. 3

Therefore, £ = x is indeed optimal and the sufficiency of FOC for the maximization is
confirmed. Of course, for the above bidding function to be an equilibrium, we need to
guarantee that the winner never wants to return the object. Note that the bidding function
is increasing. The condition of no return is equivalent to

VL > (1—7)B%(z) (38)
o (Ve — Vi)pup(T)?® g
" Vapap(®)? +pVe

=

Case 2: Always return when V =1V,

In this case, the winning bidder always returns the object when V' = V. Given this,
buyer 1’s surplus when he pretends to have signal Z is given by

I°%(x,2) = Pr(V =Vy|z, = 2)E{[V — B%(x)|I{xy < i}z =2,V = Vy} (40)
+Pr(V = Vil = ) | = E{yB*(x2)[{zy < i}xy =2,V = Vi }| (41)

= (o) [ Wi = B @dF () — po(a) [ 4B @)dEy (). (42)

Taking the derivative with respect to Z, we have

Vi~ B (@) — a1 B0

= (@) ) | - B

- ) 00N e e 7

= on) (@) + ) (0] | LA | (43
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The first order condition for bidder 1’s surplus maximization problem is

oI>?(x, 7)
o |,

Solving for B%2(x), we have

B%(z) — MJLJVH;/)(@2 _
prp(z)? + ypL

(45)

t paVap@)p() o
prp(z)p(E)+ypL
increasing in z. Similar to the argument in Case 1, the surplus function I1°%(z,7) is a

unimodal function with maximum at ¥ = x when using the bidding function defined in
equation (45). As a result, the sufficiency of FOC for the maximization is confirmed.

The FOC is usually only a necessary condition. It is easy to check tha

Again, for this bidding function to be in equilibrium, the condition for “always returning”
has to be satisfied. Given that the bidding function is increasing, this condition is equivalent
to

VL < (1—7)B>(z) ) (46)
< Vi =Vi)pnp(z) > (47)

&
~ Vapmp(z)? +pLV

Case 3: Cutoff rule when V =V}

In this case, there is an endogenously determined cutoff in the winning bidder’s return
decision. We denote this cutoff as 2°*. Buyer 1’s surplus by pretending to be have signal &
is given by

HSl(xvj)a if <
1%z, %) = (i (2) {fg[VH _ BS(xQ)]dFH(xQ)} (48)
tun(@) {7 Ve = B (e)|dFy(w2) = [loo v B (@2)dFy(an) ) i &2 2

Note that the above function is continuous. Taking the derivative of the above with respect
to &, we have

OIS (2,3) e ~ . Sk
TS (2, 7) 5z =2
e (19)
€T ~
Med) - if § > 25,
Although I1%(z, 7) # 11°%(z, %) when & > 2%, we have 8H2(;’i) = (rms(;;z’j). From the first
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order condition, we can derive the bidding function as follows:

BS(v) = el Ve g < Sy
B () = (50)
X 2 . *
B z) = bl o> at

Note that z%* is determined by
(1—7)B¥ (™) = Vi, (51)
ie.,

Vo — V, S*\2
y = \Z Lﬁf;fﬂ(l’ ) . (52)
Vapap(x®)? + pLVi

Note that functions B%%(z) and BS!(z) cross each other at z°*.

Now consider the sufficient condition. Given the bidding function (50), from the proof in
Cases 1 and 2, we know that II°(z, ) is a unimodal function with the maximum at 7 = x
when 7 < 2% ; and 11°%(z, %) is a unimodal function with the maximum at ¥ = z when
T > x%*. We shall show that I1%(z, %) is also a unimodal function with maximum at 7 = z.
Consider x < 2%, for example. For z < # < x, the payoff is increasing in # from the first
formula of (49). For x < # < 2°*, the payoff is decreasing in # from the first formula of (49).
For x5 < 7 < 7, the payoff is decreasing in # from the second formula of (49). Therefore,
I15(x, Z) achieves its maximal value at Z = x. Similar arguments can be applied to the case
of x > %%, Thus, the sufficient condition for the maximization is thus satisfied.

In this equilibrium, when V' = V;, the winning bidder returns the object if he pays too
much, and keeps the object otherwise. For this to happen, 7 has to satisfy the following
condition:

(1—7)B% (=) >V, > (1—-7)B* () (53)
& 9>y >77 (54)

Q.E.D.

Proof for Lemma 2

We only need to examine Lo(c|z;7) since Ly (a|z) = La(a|x;y = 1). Note that the function
o fu (@) fr(8)+ypr (@) fL(s)
o fu (@) Fr (s)+ypn fr (@) Fr(s)

is increasing in x. To see this,

pr fr (@) fu(s)typp fr(x) fr(s)
v fu (@) Py (s)+ypL fr(@) Fr(s)

ox
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pr fu(s)+ypn fi(s )[j{?(z)]

P (3)+ v i (5) 45

ox
fL(Z>

Ypopr[fo(s)Fu(s) — fu(s)Fr(s)]—4 fH(ac)

{nmFu(s )+7MLFL( )[ ((i))]}Q
fr(x)
v Fu(s) () [u(5)/ Fils) = fin(s)/ Fu() 42 -0 (55)
{a Fu(s) + v Fr(s) £ 312 -

The inequality follows from the second and third parts of Lemma 1. Therefore,

/m MHfH(S)z + ’V,U/LfL(S)2 (56)
e prfr(s)F (5>+7MLJCL<5)FL(5>

* py fu(x)fu(s) +yurfr(x) fu(s) ds (57)
~ Je pafu(@)Fu(s) +yurfo(z)Fr(s)
_ / din [pm fu(z )FH(S;S+ ’Y/ULLfL<f>FL(3)]dS (58)
= Infunfo(z)Fu(z) + ypofo(@) Fo(o)] — nlpg fr(z) Fu(z) + ypr fr(z) Fr(z)) 259;
= 00 60

Thus Lo(z|x;y) = 0. Moreover Lo(z|z;y) = 1 and Lo(alx;~y) is nondecreasing. As a result,
Ly(ax;7y) is a distribution function. Q.E.D.

Proof for Proposition 2

Case 1: Never return

Consider a bidder who has signal = and pretends to have 2. Given that he always keeps the
object if he wins, his expected surplus is given by

Yz, 7) = Pr(V =Vy|r, =2)E{[V — B (&)|I{zy < &}z =2,V = Vi} (61
+Pr(V = V|, = 2)E{[V — BFY (@) [{zy < 3}|z1 =2,V =V} (62)
= (@) [Vir — B (%) Fy (2) + po (2)[Vi, — B"H(&)] Fr.(2)- (63)

Taking the derivative of the above with respect to 2, we have
O (z, )
oz
= pn(@) Vi fr(7) — (B™) (8)Fu(3) — BT (3) fu (7))
+pn (0) Ve fr (@) — (BT (3)Fu(7) — BT (@) f1.(7)
= [pr(2)Fu(Z) + pr(z) F(T)] X
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—

i

" { pr () fa () + pr(v)
o (@) Fi(2) + p ()
) ) meFa®) [Visala)o@) +
wap(x) fa(T) + prft HIEP(Z)p(T) + Vg Fia | (gPY (s
. {qu(x)FH(f)JruLFL(i“) [ -7 (@] (7)1 >}' (64

L(Z) |Vapu (@) fu(@) + Vopr(z) fo(@) rua| (Y (z
@[ () @) i@ @) ”1 (5 )“}

~—

X

The first order condition for this optimization problem is

O™ (z, )

= 0. (65)

Therefore,

(BFl)’ (z) = () fu(@) + po () fr(z) [VH“Hp(xy +Vepr BFl(:E)] . (66)

pa (2) B (2) + p (@) Fp(z) | pap(e)? + o

The above differential equation (66) is just one of the necessary conditions for the equilib-

Vapap()?+Vipr BF1
prp(T)?+pr ,

zero would be better. Furthermore, [% — B¥ l(g)} must also be nonpositive;

otherwise, the bidder with the lowest signal would be better to bid a little bit more. These

last two restrictions determine the boundary condition: Bf!(x) = %W. With this

boundary condition and the above differential equation (66), we can obtain the following
bidding function:

rium. It is also necessary that { (m)} is nonnegative; otherwise, bidding

BFl(ic) _ v MHVHp(a>2 + NLVL

e pap(a)? +prp dL(afe), (67)

The bidding function is indeed increasing. Note that this bidding function can also be
formulated in the format of Milgrom and Weber [14], i.e., B"!(z) = [} E(V]a, a)dLy(clz).

In what follows, we shall show that & = z indeed maximizes the bidder’s surplus given

thg above bidding function. In equation (64), 5 ” 5 ((;“"))gg Egiz EQLL((?) is increasing in z. To see
this:
pup(@)fu (E)+pr fr () ~ ~ - ~
D (e For (3) 1. Fa (3) _ ppnlfa(E)FL(T) — fo(2)Fu (7)) (z) (68)
Oz [wmp(x) F(Z) + pFL(2)]?
i Fu(E) Fa (8)[ 55 — L8]y () )
[ p(x) Fu () + prFiL(z)]?
> 0, (70)
. e . s Vapup()p(@)+Vipr
where the last inequality is implied from the second part of Lemma 1. Similarly, R ORGE
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is increasing in x. Also note that

a) +,MLVL
a)? +pr

v ugVap(x)® + pLVe
e pup(T)? + p
~ paVap(@)® + Ve

prp()® + pr

BFI(I) _ w/‘HVHp

dL;(alx
A 1(alz)

AA/—\A

< dLi(alx)

Therefore, for & < x, from equation (64),

O (x, )

0T
= [pn(@)Fu(2) + po(x) FL(2)] x

{qu( ) fu () + prfo(®) —VHqu(x)p(?) +Vinn g (j)' B

prp(r)F(Z) + poFr(7) |
> [pn(2)Fu(2) + pr(z) FL(2)] %

{,UHP( 2 (T) + pfu(®) [Vipap@p() + Vi pren ]

pap(x)Fg(T) + pFr(T) | pap(@)p(T) + pr
> [pm () Fu(Z) + pr(2) FrL(2)] x

{MHP( ) fu (@) + pofo(@) [Vapap(@)p(@) + Vipr B BF1(9E)- B

pap() Fp(T) + poFr() | pup(@)p() + pr
-0

Similarly, for & > z, from equation (64),
O (x, 7)

oz
= (@) Fu (%) + po () FL(7)] X

" { prp(x) fu () + pofo(@) [Vapap@)p(@) + Vopr BF1(:%)_

(e p(x) Fer(2) + pp Fr(2) |
< [pg(x)Fg(T) + pr(o) Fr(T)] x

{ prp(@) fu(2) + po fr(@) [Vapap@)p(@) + Vopr BF1@)_

pap(@) Py (2) + p (@) [ pup(E)p(2) + pr
< [pr(@)Fu(T) + pr(x) FrL(2)] x

{ pup(@) fu(2) + prfr(Z) _VHMHP(@P(SZ’) + Vipr _ BFl(j)-

pp(E)Fu(2) + poFr(@) [ pup(E)p(2) + pr
-0
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As a result, the payoff function 17 (z, Z) is a unimodal function of # with its maximum at
T = x, i.e., it is increasing when T < x and decreasing when = > x. Thus, = x indeed

maximizes the bidder’s surplus.
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Note that for the bidding function to form an equilibrium, the condition of “Never return”
must be satisfied. Because the bidding function is increasing, “Never return” is equivalent
to

(=B S (90)
B %43
< 72 BF1(—) (91)
o s AL ol) - Vi -
= T paVap(@)?+pL Vi dL,(a|z
f£ prp(a)?+pr, (OJ|I)
T [ paVap(@)’+uLVe =
o 4> Jx { Ijugp(a)%ruf W }dLl(oz|x) (93)
T e dL (o)
T (Vu— VL)qu(a) dL, (a|f)
& > T Vyppp(a)?+ :WF- (94)

T Vi p(a)? V _
I ”Hm’i,f(‘a))ziﬁf LdLy(al7)

Case 2: Always return when V =1V},

In this case, the winning bidder always returns the object when V = V. A bidder’s
surplus when having signal x but pretending to be ¥ is given by

7%z, %) = Pr(V =Vylz, = 2)E{(V — BY (@) I{xy < 2}|z1 =2,V =V} (95)
—Pr(V =Vl = 2)E{yBY () [{xy < 3}|z; = 2,V =V} (96)
= (@) [V — BY(2)]Fr() — pur(2)yB" (2) Fr.(2). (97)

Taking the derivative of the above with respect to Z, we have

O (x, )
ox
= pn(@) [V fu(@) — B™'(
+pug(z)[—y B (2)F (93"

= [ug(2)Fg (%) +ypo(z)FL
" { o (%) fu (2) + ypr (@

o (@) Fu () + ypr(z) F
I T ) T Viple)o@
pap(x) fu(z) +ypnfo(z ahap(r)p(r) F2a | _ (gF2Y (3

. {qu( VFu (%) + yprFr(T) [MHP(JI)P(CEHWL B )] (B ) ( )}' (58)

T)| X
f(@) Vigpr (v) fu(7) _BF2(#» | — (BF2) (&
>luﬂ<x>fH<az>+m<x>fL<az> b ”1 (5 >”}

A
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The first order condition for this optimization problem is

O (x, )

Therefore,

(BFQ),(x) _ 5H(x)fH x) + ypur(x) fr(z) [ Vapnp(x)? B (2)]. (100)

< _
() Fir(2) + 41z (2) Fu(2) [ prap()® + e

This differential equation (100) is just one necessary condition for the equilibrium. It must

also be that [% — B2 (x)] be nonnegative; otherwise, bidding zero would be better.

Also, [% — B"2(z)| must be nonpositive; otherwise, the bidder with the lowest sig-
nal would be better bidding a little bit more. These two conditions determine the boundary
condition: B?(x) = %. With this boundary condition, we obtain the following
bidding function from the differential equation (100):

F r VHMHP(OC)Q
BI? = dLsy(alx;7y), 101
(=) /:r prp(a)? +ypur 2(0fa7) (10)

The bidding function is indeed increasing.

In what follows, we shall show that £ = x indeed maximizes the bidder’s surplus given

C g . . ., pap(E) [ (F)
the above bidding function. In equation (98), it is easy to see that e L and
Vapap(@)p(E)+Vipr

ot Are both increasing in x. Following a similar argument as in Case 1, we
can show that the payoff function I1¥%(z, Z) is a unimodal function of Z with its maximum
at T = x given the bidding function, i.e., it is increasing when # < x and decreasing when
Z > x. Therefore, £ = x indeed maximizes the bidder’s payoff.

This equilibrium bidding function is based on the condition that the winning bidder
always returns the object if V' =V}, which is equivalent to

(-DB7@ 2V, (102)

L Vepap(O .
& (1= )t AT 2 Vi (108)
o (11— Yarra) (104)

prp(z)? + T

<~
~ Vupup(z)? + prVe

Case 3: Cutoff rule when V =V},

In this case, there is an endogenously determined cutoff in the winning bidder’s return
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decision. We denote this cutoff as x*. A bidder 1’s surplus by pretending to be have signal
Z is given by

- 0 (z,7), if &<
F _ 3 ) ~
(@, 7) —{ 72(z,7), if &>

Taking the derivative with respect to z, we have

- (106)

Fl(,. ~ L
OII* ! (z,) if $<CCF*'

aHF o~ 0% ) = )
a(f”’x) = (107)
€T ~
BHF;JSZQC7$), lf {Z, Z ZUF*

Note that the above payoff function is continuous.

If # < 2™, the necessary condition for the optimization implies that B (z) = B¥l(x).
This bidding function also pins down the cutoff *, which is determined by B! (z*) = 1‘%
For z > 2™, the first order condition is again given by equation (98), but the initial condition
is different and is replaced by BF?(z*) = ‘% Solving (98) with this initial condition, we

1
have

v Vapnp(a)® F
Bf(z) = / dLs(alz;y) + ALy(z7 ™| x; 108
= B"(x) + ALy(z""|z;7), (109)
where
“HVH” Vi (alz™; ). (110)
T1- prp(a)? +ypr

To summarize, the equilibrium bidding function in this case is characterized by the fol-
lowing;:

BfY(z), if v < 2f™;
B (x) = (111)
Bf?(x) + ALy (2™ |z; ),  if @ > 2f™.

In what follows, we shall show that & = z indeed maximizes the bidder’s surplus given
the above bidding function. Given the bidding function (111), from the proof in Cases 1 and
2, we know that IT¥'!(z, Z) is a unimodal function with its maximum at Z = z when & < z*
and T1¥?(x, #) is a unimodal function with its maximum at # =  when & > z™*. Consider
r < zf™. For x < 7 < z, the payoff function is increasing in Z from the first part of (107).
For # < & < z*, the payoff function is decreasing in # from the first part of (107). For
rf* < & <7, the payoff is decreasing in & from the second part of (107). Similar arguments
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can be made for x > ™

In this equilibrium, the winning bidder returns the object if he pays too much, and keeps
the object otherwise. For this to happen, v has to satisfy the following condition:

(1-=7B" (@) >V, > > (1= 7)B" (z) (112)
T gV V) z gV 2 Vi
2 pap(e)’ +pr z /uﬁga)-+uL
A% Vi Vi Vi
= ) [ 1Vie(a)” *‘“L L 1«nf)>>v1:>(1-7)“H HPCDZ*‘“L L (113)
e papla)® + prp(z)? + pr
e <y <Fh (114)
The proposition summarizes the equilibrium characterization. Q.E.D.
Proof for Proposition 3
The expected payoff of a bidder with signal = but pretending to be 7 is
Vapg(z)Fy(z) — M(Z, x). (115)

In equilibrium, it is optimal to choose £ = = and the resulting first-order condition implies
that

My(z,x) = Vipu(z) fu(z). (116)

The seller’s expected revenue from this buyer is given by
R(z) = M(z,z) + Vopur(x)Fr(z). (117)
Denote
A(z) = RYx) — RB(z) = MP(2,2) — MP(x,2), (118)

and make use of (116). We obtain

Allx) = M{(z,2) = MP(x,2) + M3 (z, ) — My’ (2, z) (119)
= Vpn(r)fo(z) = Vapn(x) fa(z) + M{‘(x,x) - MQB<:C7$) (120)
= M (x,x) — MP(x,2) > 0. (121)

The inequality above is by assumption. Since A(x) = 0, we conclude that for all z, A(x) > 0.
Q.E.D.

Proof for Proposition 4
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When V;, = 0, in the second-price auctions,

M2, 2;7) = pg () /: B5%(19)dFy () + pur () /: YB%(29)dFy(x2) (122)

Note that pg(z) + pr(z) = 0. Then py(x) = —p) (x) and phy(x) > 0. Therefore,

MP(ra7) = pig(a) [ B ea)dFy(wa) + pi(a) [ 4B @a)dFy(a2)  (123)

= ip(@) [ finlea) =11 2)) B (a2

/ pr Vip(x ) fr(x2) — v fr(x2)]
prp(T2)? + YHe

OME(@,w50) _ oy | piaVipla2P = fulaunpl@s) = pufu@)l g o 15

0y [nwp(x2)? + ypr)?

Thus, from Proposition 3, the seller’s revenue is decreasing in v. Q.E.D.

Proof for Proposition 5
When V;, = 0, in the first-price auctions,

MP2(%,2;7) = p (v) BT (2) Fu () + pu (2)y BT (%) Fi. (7). (126)
M52 (x, ;) = u};(ﬂf)B”(w)gH(Eﬁ))J;[;'L((x))vB”( ()1*;]( z) (127)
— T paVEp Q)T g (T x olz:

= z pap(Q)? +ypr dLa(alz;7) (128)

denote as K(a,z,y)

It is obvious that K(«,z,7) is decreasing in 7.

S)QNLfL( )EL(s)
IR

OLa(ar]x;7y) ~Lo(alz: vy / prfo(s)’ e fu(s)Fu(s) — pufu
Oy ? (e fu(s)Fa(s )‘i;'WLLfL
- e fo(s) fu(s)P LA ml

= ~halols) [ S e T TR P

From Lemma 2, we know that Lo(«|z;) is a distribution. This means that, for v < 7,

Lo(a|x; 1) first order stochastic dominates Lo(alx;v2). Define v* = FH(( )) For v, < o < 7%,

ds > 0. (129)

€T

Mf(wwsm) = pil@) [ K(a,e,m)dLs(alz; )

T
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> piy(@) [ K(o,x)dLa(ofr ) (130)
> () / K(a, 7, 72)dLs(a]; 75) (131)
= M (z,7;7). (132)

The first inequality holds because K(«,x,7) is decreasing in . The second inequality
holds because K («,z,7) is increasing in o and Ls(a|z, ;) first order stochastic dominates
Ly(a|z, ). Thus MI?(z,z;7)) is decreasing in v for v < ~*.

For v >~
My (x, ;) 2 (133)
A “HVHZSHEZ Q%LZFL“” Mﬂf;zﬂf“(fiz‘;i’}zix el
denote as Q(a,z,y)
3M§i§:,x;'y) () /j GQ(g:ywm) Lz(Ojf’VHQ(ajﬁ) 8Lz(§7!x;v) dov < 0. (135)

Hence, MI?(x,x;v) is decreasing in v for v > v*. As a result, MI?(x, x;v) is decreasing in
~ all the time. Therefore, from Proposition 3, the seller’s revenue is decreasing in v. Q.E.D.

Proof for Proposition 6
From equation (124) and equation (128),

M% 77) - M”(w 737) (136)
- [ . "
v NHp :E2> (‘F)’Y,UL - ( )]
paVip(a ~Ey, '

/ ,UHP ) +wLV ( )jLQ(‘;'xév)) . (138)

= T ) — " (x T pVEPO (o) —vFr(«
= @) F(@) —Fu@){ [ V) +deFH<x>_7FL<x> 39)

_ 1291 Hp ala

/ pp(a +7u dLx(al ’7)} (140)
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Fy(a) —vFr(a) i Vi p(a)? }
Fy(x) —vFp(x) | pap(a)* +ypr

denote as P(a,z,y)

= (@) F(w) = F@){ [

[M(Oélw;v) -

8

The last equality makes use of integration by parts. Since Ls(c|z;y) is increasing in v and
Fr(a)=vFp (o)
Fy(z)—vFL(z) \
always positive. % is increasing in . Therefore, the integration is always positive.
As a result, sign[M5?%(z, v;v) — MI?(x, x, )] =sign|[Fy(z) — vF1(x)], which could be either
positive or negative. Hence, the linkage principle cannot be applied here to rank the revenues.
However, we can make a direct comparison. From equations (122) and (126), we obtain

is decreasing in v, P(a, x, ) is increasing in 7. Since P(a, x,0) =0, P(«, z,7) is

M52(z, ;) = /w pr fa () fr(ze) + yurfr(x) fr(ze)  paVap(zs)?

pr fr(x) + pofo(x) prp(r2)? + yur dzs, (141)

F2 pom fu () Fy () + ypo fo(@)Fr(z) = paVap(a)? ,
M7 z7) = pr fr(v) + pr fr(x) /m NHP(OZ)2+7MLdL2(a|xW)' (142)

Thus,
Ms2(xfx ;Y) — M;2<I x,}y)( e e (143)
poaa f (2 +ypurfr(@)fole)  paVapla)?
/ ,quH( )+ prfr(x) ,UH/)(Oé)2+7,uLda (144)

pafu()Fa(z) + ypofo(e) Fr (o) /‘T paVeup()? dLsy(a|z;7) (145)

o frr (@) + pur fr() e prp(a)? +ypur
p [ (2) Fr (¢) + v fr (@) Fi(z)
bt (o) () + s ) P
e g Vip(a)? pafa(x +yprfo(T «
X{/w MHP(@)Q"‘”YMLCZ[MHfH(x) Fy(x) +yprfo(o)F, (x)} (147)
denote as W(o,z,7v)

prVap(a
— dLs(alz;y) ¢ 148
[ (o)) (148)

(146)

It is straightforward to show that W («, x,v) can be regarded as a distribution for « on [z, x].

po fu(@)fu(s)+yur fo (@) fL(s)
pr fu (@) Fa(s)+ypr fr (@) FL(s)

Furthermore, since is increasing in x from (55), we have

fﬂ” wp FE ()2 4vng ()2
LQ(Oz|ZL“;’y) = e Ja pgfag&)Fy(s)+vurnfr(s )FL(s) (149)
z pprfpg (@) fg(s)+yup fg (=) fr(s )d
> e Ja vpfa@FgE e IL@FL() (150)
@ dinfpy fy (@) Fy () +yeg L (@) FrL(s)]
— EE ds (151)
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—  elen fu(@) Fa(a)typs fr (@) Fr(e)]=lnlpw fr (@) Fu (@) +ypr fr (@) Fr (z)] (152)

pa fr(2) Fr(x) + ypr fr(z) Fu(z)
= W(a,z,7). (154)
paVap(a)?

Thus, W (a, z,) first order stochastic dominates Lo(ax; ). Since oy 18 an increas-

ing function of a, we can conclude that M*?(z, z;v) > M*?(z, ;7). Q.E.D.

Proof for Proposition 7

Since the linkage principle cannot be applied for revenue ranking, we will do a direct com-
parison. Below, we examine the seller’s revenue in the second-price auctions in three cases.
Let R%() denote the seller’s expected revenue as a function of ~.

Case 1: v > 7°.

In this case, the seller’s revenue does not depend on ~:

;RS(’Y) (155)

L /: EBSl(96‘2)fH(96‘1)fH(962)619616&2 + L /: /zBSl($2)fL(I1)fL($2)d$1dI2

x2 T2

_ /x MHVH,O(:L?)Z +uLVi [ (1 — Fr(w2)) fr(z2) + pp(1 — Fr()) fr(22)]dzs. (156)
o prp(2)’ +

Case 2: 7 <°.
“RS() (157)
2 T [T T [T
= | /x B**(x3) fr(a1) fr (x2)dw1das +/LL/$ /x VB (23) fr(21) f1(22)dardy
g / : / Vo fu(@n) fu(xs)dzrdas (158)
= u ;352(5152)[1 — F(22)| fu(22)dzs + pur /: VB (x2)[1 — Fi(22)] f1(x2)d (159)
+/LL2V0 . (160)
Therefore,
SR () (161)
z 0 S2 To z 0 S2 To
— o [0 my e et + [P F e e,
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= [l Fia) () (162

e Vap(s)? pap(as)?
" [mp(2)? + yup)? poll — FL(@)]fL(xg)}dasz (163)

T Vap(xe) pmpr )
— / @Hp(gz(f}%#;]? {p)(;rz)l [1;1;%(;52)]?(3:;)—([1>—FH(:E2)] fH(xg)}da:Q (164)
T UHRLVEP(T2)" [H (T2 — Fi(ry) 1= Fy( .

[mp(w2)? + ypur]? { fr(z2) fr(x2) }d =0 (165)

The inequality follows the first part of Lemma 1. Thus, R'(y) < 0; the seller’s revenue is
decreasing in 7.
Case 3: 7% <y <7°.

|8

In this case,

—_

*RS(’Y) (166)

. { [ B @)l — Fulefuw)dns + [ B2 (@)1~ Fu(e) fH(g;Q)dxg}

\)

THL { . B (x2)[1 — Fp(a2)] fr(x2)des + /; yB5%(25)[1 — FL(@)UL(@)d@}

8| IS

i [ Vol = Filw) () e, (167)

Note that 2% is also a function of ~.
1
5 (B)()
dlL‘S*

= [B7(2%) = B2 (@)1 — Fy(2°)]) fu (=) -

- . T 52 T2
—I—MH/ 5 i ( )[1 = F(w2) fu(w2)dzs + pr /xs* W

oy [1 — Fp(z2)] fr(22)dx:

e (B0 B - Fule) e E Vol - Fu(e™) fule™) B
dy dy
" Oy BS2(ay)]

M1 Futan)) futa)das + [ 2 1~ Fu(o)fulea)da

_ /x 1

pr (Vg — Vo)[l — Fr(a™)] fr (=) 2

_ [T pEpViap(w2)* i (22)° {1 — Fr(zy) 1- FH(xQ)}de
25+ [pmrp(r2)? 4+ ypr)? fr(w2) fr(z2)

oy
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Sx o Vapap(a®) + pVi)? 1
+,LLL(VL - %)[(1 _)FL<(x ))]fL(:L’S ) (VH . VL),UH,ELLVL 2p(x5*)p’5*)
T Vap(ee)? fu(xe)? (1 — Fir(zs) 1= Fpy(x)
T T R A I O (16%)
payment ef fect<0
n (Vi = Vo)[1 = Fp(«™)] fo (e [Vapap(z™) + p Vi ]?
2V (Vi — Vi) fu (25%) p (x5%)

ef fciency ef fect<0 if VL, <Vh and >0 if V>V

(169)

Therefore, the seller’s revenue is decreasing in v if V, < V5. It is easy to verify that the

revenue function is continuous for the entire domain of v and thus is decreasing for v € [0, 1].
Q.E.D.
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