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SUMMARY

On an infinitely-extensible plane {with uniform customer-density)
the socially-optimal configuration of firms is a regular hexagonal lattice.
WiTl the free market necessarily produce this configuration? We argue that
the currently-accepted, affirmative answer has been erroneously derived from
models in which equilibrium is undefined, and in which equilibrium conditions
are asserted rather than being derived from behavioural postulates. We answer
the question negatively, showing that in a standard location model: (a) many
configurations, including the hexagonal, satisfy the equilibrium conditions
(and in no case is zero profits a necessary condition for equilibrium); and (b)
if a hexagonal configuration is initially imposed, it is much less 1ikely to
persist through successive rounds of entry than is a square or a rectangular

configuration.




The great emphasis placed on regular hexagonal market networks
in Tocation theory indicates the existence of (1) a strong presumptdon that
this network represents the unique equilibrium configuration when the number
of firms in the market is given and/or (2) a strong presumption that free
entry will cause this network to prevail. A related presumption in free
entry models of Tocation is that (3) free entry will drive profits to zero.

Each of these presumptions is wrong. There is an infinite number
of possible equilibrium configurations. Free entry does not necessarily pro-
duce regular hexagons, nor does free entry drive profits to zero. The erroneous
presumptions have arisen because of methodological errors which seem to be
pervasive in the Loschian location literature. MethodoTogy is considered in

section I and is followed by a free entry model in section II.

I. Methodology

Condition T: "The location for an individual [firm] must be as advantageous
as possible."

Condition 2: "The Tocations must be so numerous that the entire space is
occupied."

Condition 3: "... in all activities that are open to everyone abnormal pro-

fits must disappear.” (Ldsch's own emphasis)

Condition 4: "... the areas of supply, production, and sales must be as
small as possible.”

Condition 5: "At the boundaries of economic areas it must be a matter of

indifference to which of two neighbouring locations they
[consumers] belong."

These are August LOsch's "general conditions of equilibrium that are valid




for independent producers and consumers, for agriculture as well as for
industry..." [ 7, pp. 94-97]. Losch's five "conditions" are a strange mix
of behavioural postulates and conditions which he asserts follow from them.
The two behavioural postulates in this 1ist are condition 1,that producers
maximize profits,and condition 5, that yieldsthe market boundary between two
firms. Losch reasons that, under "competitive" or free-entry conditions, the
equilibrium configuration of firms

"is determined by two fundamental tendencies: the tendency

as seen from the standpoint of the individual firm and hither-

to alone considered, to the maximization of advantages; and as

seen from the standpoint of the economy as a whole, the tendency

to maximization of the number of independent economic units.

- The latter is affected by competition from without, the former
by industrial struggle within™ [7 , p. 94]. (Emphasis added}.

He then asserts that the "number of independent economic units" is maximized
if conditions 2, 3 and 4 are met. OFf the three configurations of firms which
Losch considers, the regular hexagonal network alone fulfills these three con-
ditions.

It is well known that (subject to the condition that every point in the
space be served) the hexagonal network of market boundaries would be the planner's
solution, since it minimizes transport costs for any given size of each firm's
market.(])This result is not at issue here. The question that we consider is
whether or not free competition, with each firm seeking to maximize its own
private profits will bring about the socially-optimal configuration of firms.
If this question is to be answered satisfactorily it is important not to assume
the answer at the outset but rather to make behaviouréF/r |
assumptions suitable to the decisions of independent fifhéwénd households and
then to demonstrate whether or not the configuration of firms that results from

the assumed behaviour is socially-optimal.
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With the above question in mind, at least two major objections may
be raised against Losch's theory. First, the behavioural assumptions that he
does make are not sufficient to permit the definition of equilibrium in his
model. Second, the equilibrium conditions that he does give are merely
asserted; indeed they cannot be deduced from his behavioural assumptions (even
when these assumptions are completed in the manner that seems most in line
with the rest of his model). We take these objections in turn.

(a) With respect to a firm's locational decision Ldsch's behavioural
postulate is that "the Tocation ... must be as advantageous as possible",
How is this postulate to be interpreted? A new entrant, or an existing firm
considering relocation, must fit into an existing network of firms and hence
it will have neighbours. The firm's maximizing behaviour will be dependent
>upon the assumption it makes about its neighbours' reactions to its own entry
or relocation. L&sch does not, however, specify a conjectural variation. The

absence of an explicit assumption with respect to conjectural variation is

critical,for the concept of equilibrium has no meaning in its absence. We can-

not know what profits a firm expects to earn in alternative Tocations unless
we know what reactions it expects from its neighbours.

Similar omissions occur in almost all of the free entry models of
spatial competition. Mills and Lav [8 ], for example, fail to introduce a

conjectural variation. They note that

"we consider only static industry equilibriums in this
paper. We do not consider adjustment processes, and
we make no attempt to ascertain whether any adjustment
process will converge to industry equilibrium from any
particular arbitrary initial arrangement of firms and
market areas. One way to envisage the adjustment is
to assume a tdtonnement process in which no plants are
actually built until equilibrium is reached".

Because they fail to specify a conjectural variation, equilibrium is undefined and

thus their caveat that they "consider only static industry equilibriums"is without
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force. Although Beckmann [ 1] explicitly introduces a conjectural variation with
respect to price in his one-dimensional model, he does not do so with respect
to location in either his one or two-dimensional model. Telser's one-
dimensional model [ 9] is essentially similar to Beckmann's. He assumes
zero conjectural variation with respect to price but does not introduce a
conjectural variatibn with respect to location.
The assumption concerning conjectural variation that seems implicit

in the models referred to above is zero conjectural variation (ZCV): each firm
in seletting the Tocation that seems best to it takes the location of all
other firms as fixed. This is the assumption that we shall adopt.(z)

(b) LBsch's conditions (2), (3) and (4) are not basic assumptions about
the profit and utility-maximizing behaviour of firms and customers. Neither,
however, are they equilibrium conditions deducible from his behavioural assump-
tions. It is well known that the space-filling condition (2) is not deducible
(see Mills and Lav [ 8] and Beckmann [1 ]).(B)Aithough Beckmann [ 2, p.44] has
demonstrated that the zero-profit conditdion (3) is not a necessary condition
in Losch's model, this condition continues to be employed by many writers,
including Beckmann [ 1]. Finally, the densest packing condition (4) is not,
as we show below, a necessary equilibrium condition in the model. It seems to
us, therefore, that all three conditions are nothing more than arbitrary

assertions.(4)
In confining his attention to equilateral triangles, squares and regular

hexagons, Losch implicitly assumes that the network of market areas must be
made up of identicaly regular, spacesfilling polygons. We shall show below that
this assumption is also incorrect.

Losch's critical conditions (3) and (4) have been built into virtually
all the free entry models of spatial competition. Mills and Lav [8], for

example, impose densest packing and zero profits as equilibrium conditions, and
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the only space filling configurations that they consider are the three

regular poiygons.(S)The only space-filling configuration considered by
Beckmann in [ 1] is the hexagonal configuration, a procedure which implicitly
introduces densest packing. Furthermore, he determines the distance between
two firms in this configuration under free entry "by the condition that profits
are wiped out." [ 1, p. 16]. In his one-dimensional model, Telser [9 ]

imposes the conditionithat free entry drives profits to zero.

II. The Model

We now lay out a locational model, similar in general form to
Losch's model, and investigate its behaviour. We use the simplest model that
is consistent with revealing the relations in which we are interested.
(a) The infinité]y extensible plane is uniformly populated with customers
such that the density is 1 per unit area.

(b} Each firm is faced with the same cost function
C =K+ ¢

where K is fixed costs and ¢ 1is the constant marginal cost of production.
This cost function is commonly used in Tocation theory and we can take ¢ as
zero without loss of generality. One way of rationalizing the form of the

function is to assume that the only fixed costs are those associated with capital

3

. Ky 3 .

and that there is an indivisibility in plant size such that the smallest possible
plant is Targe enough to serve any of the markets that we consider. Thus
K=rI where r is the rate of return on capital elsewhere in the economy and
I is the investment associated with the minimum possible size of plant.

(c) A1l firms charge the same mill price and consumers bear the cost of
transport. The common mill price must exceed c¢ and it is taken to be unity.

(d} Transport costs per unit distance are t, a constant.
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(e) A11 customers buy one unit of the product per period of time. This
assumption greatly simplifies the numerical methods employed in.this paper.
The assumption is not, however, necessary for the results that we obtain
and the conseguences of dropping it are discussed later.

(f) Consumers buy from the firm whose delivered price is lowest; given
the common price, this means that consumers buy from the nearest firm.

(f) In selecting its location, each firm seeks to maximize its profits
and takes the Tocation of all other firms as given, j.e., it adopts the assump-
tion of zero conjectural variation (ZCV). Given assumptions (e) and (f), the
maximization of the firm's profits is the same thing as the maximization of its
market area.

First, consider the case in which firms are allowed neither to enter
nor to leave the market. The necessary and sufficient condition for all
existing firms to be in an equilibrium configuration {assuming ZCY) is:

(i) No firm can find a new locatdon that offers it a larger market area

than that obtained in its present location.

Second, consider the case in which firms are permitted to enter and to Teave
the market. Condition (i) remains an equilibrium condition, but there are now

two further conditions.

(ii) A1l possible locations for a new entrant within the network of exist-

ing firms offer gross profits, w, of less than K. {Gross profits are

m=PQ-cQ=0Q, since ¢ =0 and P =1, Because there is one customer per
unit of market area and each customer buys one unit of the product per period

of time, m = Q = market area.)

(iii) No existing firm should earn gross profits of less than K.
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grqss profits reduced to Tess than K byrﬁhe entry of new firms. It is also

possible for new firms to enter expecting = > K but to find after entry
that 7 < K because of the simultaneous entry of other new firms. Taken
together (i), (ii) and (iii) are necessary and sufficient conditions for
equilibrium in our free entry model: (i) ensures that no existing firm

wishes to relocate elsewhere in the market; {ii) ensures that no new firm

wishes to enter; and (iii} ensures that no existing firm wishes to exit.

Equilibrium when the number of firms per unit of area is arbitrarily fixed.

We first consider condition (i) and begin by asking: which, if any, of the
three configurations of regular, space-filling polygons satisfy the condition?

It is interesting that (to our knowledge at least) no answer to this question
exists in the Titerature. The reason is probably that it is extremely difficult,
if not impossible, to answer it using conventional analytical methods.(s). We
employ computer simulation techniques. The core of the simulation model is

an algorithm, described in the appendix, which answers the following question:
Given that there are n-1 firms located at the points (Xi’ Yi)’ T=1, civy em 1,
what market can the nth firm expect ™ to control if it locates at an arbitrary

point (Xo’ Y )? Using this approach it is an easy matter to produce a map

0
which describes the market area that the nth firm could expect to have if it
Tocated at any one of a large number of alternative points, given the fixed
Tocations of the other n-1 firms. We refer to such maps as market area maps.(7)
The question may now be dealt with as follows. Let all the firms be
arranged so that the network of market boundaries is composed of equilateral
triangles. Select one firm, and make its location the origin. Allow the
firm to consider a large number of alternative locations and calculate the

market area that the firm would obtain in each location. The triangular




configuration iskan equilibrium one if and only if the best location for
the firm is at the origin; if the firm wishes to relocate the configuration
is not an equilibrium one. Repeat the experiment with the firms arranged
so that there is first a square network of market boundaries and second a
regular hexagonal network of boundaries.

Figure 1, 2 and 3 show the results. Intuition suggests and calculation
confirms that the firm is always better off remaining within the area defined
by its present neighbours rather than moving outside of that area to relocate
in an already complete portion of the lattice of firms, Our maps are thus
confined to this area. The firm's neighbours are shown by circled crossés.
The unbracketed numbers indicate the market area that would be obtained by
the firm in various alternative locations. (The bracketed numbers give
the scales on the X and Y axes.) The broken lines indicate the firm's
market boundaries wﬁen it locates at the origin, thus completing the regular
lattice of firms.

Figure 1 shows that the triangular configuratjon does not satisfy
condition 1: the firm at the origin and hence, any existing firm, wishes to
"relocate. Figures 2 and 3 show that both the square and hexagonal config-
urations do satisfy condition (i): the firm at the origin, and hence any
existing firm, does not wish to relocate. Thus two of the possible configur-
ations of regular, space-filling polygons satisfy condition (i), and
one does not. It is not possible, however, to deduce from our model the
necessity that the markets of all firms should be identical, regular, sp%ce-
filling polygons. We now demonstrate that other types of configurations
will fulfill equilibrium condition (i).

An infinite number of configurations of identical rectangles, for

example, will ful1fiTl the condition. We know from maps that we have produced
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'that the condition is fulfilled by any rectangular lattice in which the
ratio of the Tong to the short side of the rectangle is 26:10 or less.
Figure 4 provides an example in which the ratio of the sides is 9:5. The
figure shows the market areas for alternative ]ocations for a firm that is
surrounded by a rectangular lattice of other firms. The firm max1m12es 1tsr
“market area by Tocating at the origin thus completing the regu]ar rectangu?af

]att1ce

Arrangements of firms that give irregular hexagons as the network of

market boundaries also fulfill condition (1). In Figure 5 the farm that is
free to move chooses to locate at the er1gln thus comp]etTng the latticec ef 1rregu1a%

hexagons. When it does this each firm is separated from two of its neighbours

by .40 and from the remaining four neighbours by 45

The above results show that equ1]1br1um cond1t1on (1) can be fulfilled by

an 1nf1n1te number of confagurat1ons that give the firms 1dent1ca1 but non-

reguTar hexagonai market boundaries.

Our results suggest the further questions: "can condition (1) be fulfilled
{a) if firms have markets that are not identical in shape but which are equal
in area? and (b) can the condition be fulfilled if firms do not even have equal
markéet areas?" Although we have not been able to show that identical markets,
or even equal market areas, are required by our assumptions, neither have we
yet succeeded in finding a configuration of non-identical markets that satisfies
condition (i).

It should be noted at this point that our assumption of a uniform
parametric mill price in no way affects our results with respect to the multi-
plicity of equilibrium configurations that we have so far established. As long
as firms have identical market areas they must be charging the same mill price.
Thus even if price is taken as a variable, the equilibrium situations would be
indistinguishable from the ones we have established in all cases in which firms

serve identical markets.
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Equilibrium configurations under freedom of entry and exit. We have seen that

the equilibrium configuration is not unique when the number of firms per unit
of market area is arbitrarily determined. We now allow free entry of firms into
the market and ask which of the configurations that satisfy condition (i) will
also satisfy (ii) and (iii). We restrict our attention to configurations that
give all firms identical market areas (since we have not yet established the
existence of any other configuration that satisfies condition (i)).

For any given configuration of firms (e.g., squares, rectangles,
hexagons) the market area, and hence the gross profits of each existing firm
(HXL is a monotonically decreasing function of the number of firms per unit of

market area (n). We write this

with the restrictions

drfl < 0, Tim 7(n) =« , and Tim 7*(H) =0 .
dn n+0 fi-co
Condition (ii) is fulfilled whenever the anticipated gross profits of new

entrants (7°) are less than K:
) < K .

Since tﬁe profits that a new firm can expect to eamcan be expressed as,a
fraction of the profits earned by existing firms which are in turn a function
of 0, we express 7% also as a function of nl. Condition (iii) is fulfilled
whenever existing firms are earning gross profits of at least K:

X
™ > K .

Any new entrant must fit into an already completed lattice of firms and must

expect to earn lower profits than those earned by existing firms before entry

occurs. Thus 7% < 7% and it follows immediately that we can find an n

that will allow conditions (ii) and (iii) to be fulfilled simultaneously.
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Thus the answer to our question is simply that any of the config-
urations that give identical market areas and that satisfy condition (i) can
be made to satisfy (ii) and (iii) by packing the firms closely enough together
$e that the expected gross profits of any new entrant is less than K and
far enough apart so that the gross profit of any existing firm is K or more.
Thus our free entry model has the same multiplicity of equilibrium configur-
ations as does our model where n is fixed.

It follows from the above that not only is there a range of
configurations that satisfy all the equilibrium conditions of our model but
also for each such configuration there is a range of density of packing {h),
and hence of profits of existing firms (wx), that is consistent with equil-
ibrium. Any 1 that satisfies the following inequalities is consistent with
equilibrium «

(i) > K> 1%(n) .
To illustrate we calculate the range of §{ and of ﬂx(ﬁ) compatiblie with
equilibrium when the firms are arranged in a square configuration. We first
determine the best point of entry for a new firm. In Figure 6 the existing
firms are shown by circled crosses and the figures show the market areas (we)
for a new entrant in various alternative locations. The market boundaries of
the existing firms coincide with the X and Y axes over the segment of the
market that is mapped. The four best points of entry for a new firm are
circled and they are the points that bisect each of the sides of the existing
firms' market boundaries. (Note that the best entry point is not the point
equi-distant between the four existing firms - i.e., the origin in Figure 6.)

A firm entering a square network at one of these "best-entry points"
expects to get the market boundaries illustrated by dot-dashed lines in Figure
10 (if no other firms are expected to enter the market). The market area it

expects is equal to 9/16 of the markets of the existing firms before the new

~
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firm enters. Now let X represent the side of the existing firm's square
market area. Then, if

(9/16) x> < K, or X < (4/3) K!/2
condition (ii) is satisfied. The existing firms need a side of a least K172

to satisfy condition (iii). Thus the range of possible X which is consistent

with free entry equilibrium is

K72 o x < (a3 K72 .

ihis implies that the maximum number of firms per unit of area that is con-
sistent with entry equilibrium in the square network is 16/9 (= 1.79) the
minimum number. If we take r (the normal rate of return on capital) as

10%, this implies that the maximum rate of profit consistent with a free

entry equilibrium is just less than 7/90 (= 6.17%) and the minimum is zero.(g)

| The same type of reasoning can be applied to any of the configurations
which satisfy condition (i) to determine the range of profits within which (i{)
and (iii) are satisfied.(g) We have now seen that equilibrium in a free entry
model is consistent with a wide range of configurations of firms (e.g., squares,
rectangles, regular and irregular hexagons) and with a wide range of density

of packing of firms (and hence of profits for each firm) in each of these con-
figurations. The reason for this latter result is simple: entry stops when
potential new entrants can only expect negative profits; but since a new
entrant must always expect Tower profits than existing firms the absence of
entry is consistent with a range of positive profits earned by the existing
firms.

The effect of the process of entry on the configuration of firms: We now ask

if the dynamic process of entry is more likely to produce one of the possible

equilibrium configurations (in particular regular hexagons) rather than any
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of the others. Many entry dynamics are possible. We shall investigate only
one. Following a dynamic suggested for one-dimensional space by Steven Grace
[6]3 we discerrthe set of points of entry offering the highest possible profits.
We then asgﬁme.that one firm enters simultaneously at each of these points.

We first consider the hexagonal network. Beckmann [ 2] conjectured
that a new entrant would wish to locate at the centroid of the equilateral
triangle defined by three contiguous firms. If we let a firm enter at each
such point the number of firms is tripled and all firms again have identical,
regular, hexagonal market areas. This is illustrated in Figure 7. The
original firms are shown by circled crosses and, as a visual aid, Tines are
drawn between the firms that form hexagons around other firms. The new entrants
are shown by dots. In part {B) a small segment of the market is enlarged and
the new firms are shown forming a regular hexagonal lattice around each of the
original firms.

When we applied our simulation model to the entry problem in a
hexagonal network we discovered that Beckmann's conjecture was wrong. Figure 8
shows the market areas for a new entrant in a number of alternative locations
when existing firms are located at the circled crosses. Beckmann's conjectured
entry péints.are shown by the six poinié mafked,with.triangfes. The market-
maximizing entry points turn out to be much closer to the exiéfihg firms fhan
Beckmann conjectured. The best entry points close to the firms Tocated at the
origin are marked by squares,(10)and there are six such points around each of
the existing firms. If we let a new firm enter at each of these points, we
obtain the configuration shown by the circled crosses and the dots in Figure 9.
This is not an equilibrium configuration since condition (i) is no longer
satisfied for the original firms who now find themselves surrounded by six
very near neighbours and who could substantially increase their market areas

by relocating outside of their present neighbours. (The best places to relocate




- 14 -

ave shown by the triangles in Figure 9.) Furthermore, since the
new entrants obtain a market smaller than they expected (due to the simul-
taneous entry of many firms) they will not satisfy condition (iii) unless they
entered in the expectation of gross profits sufficiently fn excess of K.
Since the market of existing firms is smaller than that for the new entrants,
it is even more Tikely that condition (iii) will not be satisfied for them.

In order to carry the analysis a stage further, however, let us
assume that the original hexagonal network was so loosely packed that condition
(i1) still does not obtain after one round of entry. We now consider the
effects of further rounds of entry that occur before existing firms are allowed
to relocate or exit. The second and third rounds of entry are shown in Figure 9 by-

r
i

!éhe triangles and the Squares.fespective1y. The sécond round still leaves a very

{rregu]af hétwo£k46f f}fﬁérbdfméztﬁ%fd round, if it occurs, re-establishes a

hexagonal network. The three rounds, however, require a 12 fold increase

in the number of firms and, furthermore, the new configuration is not even one

of regular hexagons. There are no less than four types of market areas. The

original firms have regular hexagonal markets, the firms that entered in the

three ‘rounds of entry all have irregular hexagonal markets.(11)The firms that

entered in the first and second rounds of entry are not even at the centroids

of their irregular market areas so that condition (i) is not satisfied for them.
~ Finally considercallowing those existing firms for which condition

(i) is not'fulfflled to relocate. We allow the firms that enteréd in the first

round to relocate to their market maximizing position‘and then do the Sﬁmé

for all the firms that entered in the second round of entrye

The first-round-entry firms are shown with a dot and the desired relocation

is shown for six of them by the arrowé in Figure 9. Calculation of the

market-maximizing locations for these firms shows that this one set of move-

ments establishes a regular hexagonal network of firms and no further

movement is desired by any of the firms in the market. The re-establishment of
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a regular hbxagonal lattice thus requires two sets of adjustments. (1) There
must be three rounds of entry coming one after the other before existing firms
have a chance to relocate. This means that the firms in the original hexagonal
lattice would need to have been earning profits of at least 12K before entry
occurred. If they had been earning less entry would stop after one or two
rounds and the network would break up as firms for whom condition (i) was not
satisfied relocated. (2) Once the irregular hexagonal network is estab11shed
by three rounds of entry there must be one set of relocations of all those :

f1rms that entered the market on the f1rst round of entry

Thus regu]ar hexagons beget 1rregu1ar hexagons after three rounds of

- entry and a twelve-fold increase in the number of firms and regular hexagons

onjy after a further round of relocations of - the existing firms. -
The transitional configuration after one round of entry does not satisfy condition
(1) for the original firms who, given a chance, would relocate outside of the

area defined by their present neighbours. Thus, if relocation of existing firms
is allowed, the whole configuration will break up as existing firms radically
shift their Tocations.

We next considerentry into a square network. Figure 6 shows that the
most profitable position for a new entrant is at the midpoint of each of the
market boundary segments. Letting a firm enter at each of these points produces
the configuration shown by the circled crosses and the dots in Figure 10A.
Condition (i) is no ]onger satisfied for the or1g1na1 firms. (The diamond in-
the top Teft hand corner of FTgure 10A shows one of the best possible points for
relocation of the original firms,such points recur throughout the market in
similar locations.) Furthermore, for exactly the same reasons as w1th the
hexagona] network cond1t10n (i11) may not be satisfied for both the new entrants

and the original firms. The new entrants are all making profits of 3/8n" while

s,
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the original firms are making profits of 1/47% (where ™ stands for each

firm's profits before entry). If profits after entry were high enough to
encourage a second round of entry and if this entry occurred before any relocation
or exit, the square network would then be re-established. The second round of
entry is shown by the triangles in Figure 10B. Condition (i) would now be
satisfied for all firms and they would have gross profits of 1/4 of those earned
when the firms were in the original square network. Conditions (ii) and (iii)

may or may not be satisfied in this configuration. Thus, squares,begetssquares but.

only after two generations of entry.
The same experiment can also be conducted in a network of

rectangular markets (in whi;h the lengths of the Tong and short sides of

the market boundaries are X and Y). A new entrant's most profitable
location is at the midpoint of the short side of an existing firm's market’
boundary. When firms enter at each such point the number of firms is
doubled, and a new configuration of identical rectangular market areas (with
sides of lengths X/2 and Y) is established. Thus the ratio of the long

to the short side is changed by entry(]z)but a new configuration of identical
rectangular market areas js established. If the configuration satisfied

(]S)HS in previous

condition (i) before entry it must satisfy it after entry.
cases, the new firms obtain a smaller market than expected so that condition
{4i1) will not always be satisfied after entry. This process is illustrated in

Figure 11 for a rectangular configuration in which the ratio of market sides is

9:5. Fach firm entéfs on the first_round expecting the hexagonal

market area shown by the dot-dashed lines in the Figure, but, due to the
simultaneous entry of other new firms, all firms new and old end up with
identical rectangular markets whose sides are in the ratio 10:9 (one such

market is shown by’the broken Tines in the Figure}. Thus rectangles beget
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rectangles (which may or may not satisfy conditions (ii) or (iii)) after each

round of entry.

There ;;éwafNEQQfggnﬁéhy”assumptions that can be made about the
behaviour of new firms entering the market. Our analysis so far, however, does
not seem to establish any strong presumptdion that the process of entry, motivated
by the maximization of private profits, will tend to produce hexagons rather than
any of the other possible equilibrium configurations.

Entry into a square or a rectangular lattice does not tend to turn
it into a hexagonal lattice. Entry into a hexagonal (or a square) lattice pro-
duces disequilibrium which will destroy the lattice unless further rounds of
entry occur before existing firms relocate. To re-establish hexagons (albeit
irregular ones) the number of firms must be increased by twelve fold. Of the
three lattices, squares, rectangles and hexagons, the rectangular lattice seems
to be the most robust in the face of the type of entry that we have considered
since a rectangular configuration that satisfied condition {i) is re-established
after each round of entry-(and the number of firms is only doubled).

If one wishes to argue a general presumption that the free market
would produce a hexagonal configuration the only other obvious remaining
possibility would be to hold that if the firms were initially placed haphazardly
in the market and allowed to go through a dynamic adjustment process they would
end up in a hexagonal configuration rather than in any of the other possible
configurations. We see no reason for such a presumption, and to study it would
be a very difficult task - if for no other reason than that it is impossibTe
to simulate numerically a dynamic adjustment process where there is an infinite

number of firms.(14)

III. Conclusions

The simulation model we have used in this paper was developed for

analysis of Tocation problems in a bounded space. We have adapted that model
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to analyze Tocation in infinite two-dimensional space. The model has the
apparently unfortunate property that, because demand is perfectly inelastic

and the customer bears the costs of transport, the firm cares only about the

size and not the shape of its market. Thus a firm would be indifferent between

a hexagonal market and, for example, a square market of equal area. If, however,
individual demand is anything but éomp]ete]y inelastic, the hexagonal market
would be preferred. It is, therefore, critical that we show that our results
hold for at least some non-zero elasticities. With respect to the static
equilibrium results we must show that for some non-zero elasticities, condition
(1) is satisfied when all firms are placed in a square, rectangular, or irregular
hexagonal network. With respect to our dynamic results we must show that for
some non-zero elasticities, a new entrant would choose the Tocations that we
have determined for zero elasticities. Both of these results can be established
by the following general argument.

Assume that firms continue to sell at a parametric mill price and
that the customers bear the transport costs. Now, however, drop the assumption
of a zero elasticity of demand and assume that all customers have the same
downward-sloping, Tinear demand curve in which quantity is a function of delivered
price.

The importance of making this change is that the firm now does care
how far away its customers are. Faced with a choice between a hexagonal and,
say, a square market of equal area, the firm would choose the hexagonal market.
Firms are not usually presented with such choices, however, and we wish to know
whether or not their individual behaviour will give rise to a hexagonal config-
uration.

Let the individual demand function be 1inear

g=a-~-b {1+ td)
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where 1 + td is delivered price - the parametric price of 1 plus transport
costs of t times the distance d. For any shape of the market area we can

write the firms' total demand curve as
Q=N[a -b (1+1tD)] =0q(D)

where N is the number of customers served and D is the average distance
from firm to customer. Let P% denote the most profitable location under zero
elasticity of demand and let Pz be any other point. We wish to demonstrate that

in some circumstances
s D),
N Q(D ) N QD )
where subscripts refer to points P1 and Pz. Since the number of customers is

maximized at P1 we have N1> N%. 02 may or may not be larger than Dl,w

but for the purpose at hand 1e£ Dz< Di. Then Q(D ) > Q(D ). Rewrite the
2 1

inequality as

N, QD)+ (N - N ) > N Q) + N Q (D) - Q(D)]

or
(N, = N) Q) >N[g () -a®)) ]
or N - N Q(b ) - q(p )
1 2 > 2 1
Iy am)
and finally,
N -N bt(D - D )
1 2 > 2 1
v, 2]

In our model b = 0 and the inequality necessarily holds. For any vaiue of
t > 0, there exists a range of positive b for which the inequality holds.
Similarly, for any b > 0, there exists a range of positive t for which the

inequality holds.
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Thus for any t, there is a range of b over which our resuits

hold exactly. In particular, condition (i) can be satisfied by a wide range
of configurations which includes squares, regularsand irregular hexagons, and
rectangles. Further, all of these configurations can be made to satisfy con-

| ditions (ii) and (iii) for a range of spacing between the firms and hence a
range of non-zero profits. If condition (ii) is not satisfied entry will occur.
For b in the relevant ranges: a rectangular configuratdon prevails after each
round of entry; a square configuration is re-established on every other round of
entry providing intervening relocation or exit is not allowed; a hexagonal pattern
requires three rounds and a twelve fold increase in the number of firms (with no
intervening relocations of existing firms) beforerit is re-established and then
only in a non-regular form. Condition (i) does not hold in the configuration
established after one round of entry when the original configuration had been
square or hexagonal, but condition (i) does hold after one round of entry when
the original configuration had been rectangular. If entry occurs in rounds,
as it does in our model, the potential oversupply of firms due to excess entry
is greatest with hexagons, less with squares and least with rectangles.

These results have obvious but nonetheless interesting applications

to markets in which the demand is 1ncreasingrover time (because, e.g., customer
density is everywhere increasing). One round of entry into a hexagonal or a
square market configuration produces a situation in which condition (i) is
not fulfilled for the firms originally in the market. This is not the case in
a rectangular configuration. Thus it seems that even if it were imposed initially,
a hexagonal pattern would not long persist in a gradually growing market where
existing firms were able to relocate. Furthermore, simultaneous entry of firms
at the points offering highest expected profit aTways resu]ts in some d1sappo1nt—

ment of expectations. Thus, if firms enter a market that is grow1ng as soon

as they expect gross profits of K, condition (iii) will necessarily be
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unfylfilled for all firms after entry whatever the initial configuration.
Actual exit may or may not occur depending on how fast the market is growing

and upon the durability of the fixed capita].(15)




APPENDIX

The Algorithm is described in Appendix A to our paper "The
Principle of Minimum Differentiation Reconsidered: Some New Developments
in the Theory of Spacial Competition", Queen's Discussion Paper No. 87 and

so is not repeated here.




(1)
(2)

(3)

(4)

(5)

FOOTNOTES - Pg. 1

See [3 ] for a careful and rigorous demonstration of this proposition.
ZCV 1is probably an appropriate assumption either when a stable equilibrium
is approached very rapidly so that firms do not have time to Jearn the
opponent's reactions or when relocation occurs only with a very long time
lag as in many locatdonal prob]emé. Other conjectural variations can be
analysed but in each case the conditdons of equilibrium will have to be
suitably amended.

Mills and Lav [ 8] demonstrate the existence of non-space filling config-
urations that are consistent with the maximization of the number of firms.
They unfortunately commit a serious error with respect to the types of
market areas which are consistent with the maximization of the number of
firms. They assert that any regular polygon with number of sides, s,
which is an integer multiple of 6 is a possible market area which is non-
space filling and, under certain conditions, yields the largest possibie
number of firms. Simple inspection of their Figure 2, however, reveals
that any firm in the configuration they are considering can have only 6
Tinear boundary segments since it has only 6 neighbours [ 8, p. 285]. Beckmann
has resolved the "space filling controversy" by demonstrating that ”thé
general shape of the optimal sales region is thus a hexagon with its corners

possiblyyrounded off" ... [ 1, p. 13].

Michael Webber [10] interprets Losch's condition 2, 3, and 4 to mean that

"society maximizes the number of firms" [10, p. 24]. Our reading of

Losch is that Losch intended them as equilibrium conditions.

It is interesting that Mills and Lav [ §]‘note that the space-filling
condition does not follow from L&sch's behavioural postulates but they
seemingly do not apply the same methodological standards to the zero- profit

and densest-packing conditions.




FOOTNOTES - Pg. 2

(6) Proper analysis of location problems in even one-dimension is very
difficult owing to the large number of simultaneous equations involved.
“Simplifying“’assumbtions are usually used to reduce the problem to
manageable proportions. These "simplifying assumptions can lead to wrong
conclusions. (See Eaton [ 4 j.) In two dfmensions, the énajytica?
problems become quite intractable with conventional technigues.

(7) The maps'can'be producéd”fn as much detail as is desired. Those drawn
here give only a fraction of the actual points for which market areas were
calculated. When a first set of calculations leaves too much uncertainty
about the exact location of the market-maximizing point, a second set of |

calculations can be made for a very large number of points placed in the

vicinity of the suspected location.

gross profits - fixed costs .
I

(8) Rate of net profit =

But K = rI, and r is assumed to be 0.10. Thus the maximum rate of net
profit is
16/9 K - K
- K= 7/90
0
JIf the firm knows that other firms will enter at the same time then it expects
to obtain the market area shown by the broken lines in Figure 10, and to earn

profits of only 6/16 of those earned by the existing firms before entry. The

~maximum rate of profit that can be earned without encouraging entry is then
16.66%.
(9) Beckmann [2 , p. 44] has produced a demonstration showing the range of

indeterminacy in the hexagonal lattice. Unfortunately, he conjectured
the wrong point of entry for a neﬁ firm within the lattice, (See our
discussion of Figures 7, 8 and 9 below.) and the range that he calculated
thus overstates the true range of indeterminacy.

(10) The exact location of the six points required the two rounds of calculations

referred to in footnote 7. The Tocation of one of the points was checked




(11)

{12)

FOOTNOTES - Pg. 3

analytically for variations parallel to the X and Y axes and the

location of the other five followed from considerations of symmetry.
Beckmann's conjectured entry points Tocated the new firms one third of

the distance from the base to the apex of the equilateral triangle join-
ing three neighbouring firms. If the entry point were two thirds of this
distance regular hexagons could be re=established by three rounds of entry.
As it turns out the firms go less than this distance and a regular hexagonal

network can never be established unless some existing firms are reibcafed.
The original ratio of the long to the short side of the market is

X:Y. There are several cases. (a) Y < X < 2Y. After entry, Y

becomes the long side and the new ratio becomes 2Y:X. After a second
round of entry the ratio becomes 2X:2Y which is, of course, the original
ratio. In the special case in which X:Y = v/ 2 the ratio is unchanged
after each roﬁnd of entry since if X/Y = vV 2 then 2Y/X = V' 2.

(b) X = 2Y. One round of entry creates a square configuration and after
this the analysis of entry into square markets is appropriate. This is
the special case in which rectangles do not beget rectangles. (c) 2Y < X.
In this case the short side remains the short side after entry, and the
ratio of the Tong to the short side becomes X:2Y. Entry proceeds through

r rounds until X < 2"y and after this the analysis of case (a) applies.

{a) If X < 2Y the ratio of the long to the short sides alternates between

iwo values X:Y and 2Y:X which must both 1ie between the bounds of 1

and 2. (b) if X > 2Y the ratio declines through successive rounds of
entry until it reaches a-value of Tess than 2 after which it aiternates

as in (a) above. Thus if the ratio of the sides is small enough so that
condition (i) is satisfied in the initial configuration, entry can never
cause it to increase to the point at which condition (i) is not subsequently

satisfied.




FOOTNOTES - Pg. 4

(14) We have argued elsewhere [5] that there may be no equitibrium configur-

(15)

ation when the model is transferred to a disc. The problem of disequil-
ibrium in infinitely extensible space cannot be studied by putting a
boundary around one part of the space because the imposition of such

a boundary appears to remove the possibf]ity of the existence of an
equilibrium configuration.

We have demonstrated some conditions under which our results hold exactly.
If these conditions are not met we see no reason to believe that there
would cease to be multiple equilibria, or that entry into an imposed

hexagonal lattice would recreate such a network.




