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Abstract

We provide an empirical framework for assessing the distributional properties of daily speculative

returns within the context of the continuous-time jump di�usion models traditionally used in asset

pricing �nance. Our approach builds directly on recently developed realized variation measures

and non-parametric jump detection statistics constructed from high-frequency intraday data. A

sequence of simple-to-implement moment-based tests involving various transformations of the

daily returns speak directly to the importance of di�erent distributional features, and may serve

as useful diagnostic tools in the speci�cation of empirically more realistic continuous-time asset

pricing models. On applying the tests to the thirty individual stocks in the Dow Jones Industrial

Average index, we �nd that it is important to allow for both time-varying di�usive volatility,

jumps, and leverage e�ects to satisfactorily describe the daily stock price dynamics.

JEL Classi�cations: C1, G1.

Keywords: Return distributions, continuous-time models, mixture-of-distributions hypothesis,

�nancial-time sampling, high-frequency data, volatility signature plots, realized volatilities, jumps,

leverage and volatility feedback e�ects.



1 Introduction

The distributional properties of speculative prices, and stock returns in particular, rank among

the most studied empirical phenomena in all of economics. We add to this burgeoning literature

by showing how high-frequency intra-day data and realized variation measures may be used in

the construction of simple-to-implement tests for the importance of jumps and so-called leverage

e�ects. Our empirical results for the thirty individual stocks in the Dow Jones Industrial Average

(DJIA) index support the notion that daily stock prices may be viewed as discretely sampled

observations from an arbitrage-free jump-di�usive process, but that time-varying volatility, jumps

and leverage e�ects are all present and must be accommodated if the fundamental arbitrage-free

semimartingale characterization is to be sustained.

A long line of studies, dating back to the seminal work of Mandelbrot (1963) and Fama

(1965), documents that the unconditional distributions of day-to-day and longer horizon stock

returns exhibit fatter tails than the normal distribution. Correspondingly, a large literature seeks

to describe and explain this empirical regularity through alternative non-normal distributions,

often inspired by the Mixture-of-Distributions Hypothesis (MDH) originally proposed by Clark

(1973). The basic MDH stipulates that prices only move in response to new information, or

\news." While the basic MDH treats the mixing variable as latent, Clark (1973), Epps & Epps

(1976), and Tauchen & Pitts (1983) also relate it with trading volume.

Early studies focus on the unconditional distributional implications of the MDH. However, it

is now well-established that key features of the conditional return distribution, and the conditional

variance in particular, are highly predictable; e.g., Engle (2004). The pronounced predictability

in volatility motivated empirical studies exploring the relationship between return variability and

fundamental mixing variable(s) within the MDH context; e.g., Gallant, Rossi & Tauchen (1992),

Andersen (1996), Liesenfeld (1998), Bollerslev & Jubinski (1999), and Ane & Geman (2000).1

In spite of the presence of such structured MDH approaches, the more ad hoc (G)ARCH class

of models arguably ranks supreme for empirically characterizing conditional inter-daily return

distributions; see, e.g., Andersen, Bollerslev, Christo�ersen & Diebold (2006). Beyond providing

a parsimonious and tractable approach to the time-varying return volatility, this literature has

also uncovered a striking asymmetry between equity returns and volatility, i.e., large negative

returns tend to be associated with higher future volatility than positive returns of the same

magnitude. This asymmetry, forcefully documented by Nelson (1991), is generically labeled a

leverage e�ect, although it is widely agreed that the e�ect has little to do with �nancial leverage.2

In contrast to the discrete-time formulations employed in the empirical MDH and (G)ARCH

1The robustness of the empirical �ndings in Ane & Geman (2000) have recently been called into question by

Gillemot, Farmer & Lillo (2005) and Murphy & Izzeldin (2006).
2In fact, as discussed in more detail below, the asymmetry hitherto documented with daily and lower frequency

data tend to be much more pronounced for aggregate equity index returns as opposed to individual stock returns,

indirectly casting doubt on the �nancial leverage explanation.
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literatures, many important developments in theoretical asset pricing, and derivatives pricing in

particular, are based on continuous-time models. For instance, the Black-Scholes option pricing

formula assumes that prices evolve according to a homogeneous di�usion process. This assump-

tion is obviously at odds with the leptokurtic unconditional daily return distributions, the pro-

nounced volatility clustering, and the leverage e�ects discussed above, and much recent progress

has been made in terms developing more empirically realistic continuous-time formulations. In

particular, while the early contributions by Merton (1976) and Hull & White (1987) argue for

the need to incorporate jumps and time-varying di�usive volatility in the pricing of options, re-

spectively, recent studies document the need to simultaneously allow for both e�ects in order

to satisfactorily represent observed security prices; e.g., Andersen, Benzoni & Lund (2002) and

Chernov, Gallant, Ghysels & Tauchen (2003).

In this paper we combine insights from these separate strands of the literature by providing a

framework for analyzing the distributional properties of discrete-time daily returns implied by a

broad class of jump-di�usive models. Our approach is distinctly nonparametric and relies criti-

cally on the availability of high-frequency data for the construction of realized volatility measures.

High-frequency, or tick-by-tick, prices have recently become available for a host of di�erent �nan-

cial instruments and markets, and the analysis of the corresponding realized variation measures

have already provided important new empirical insights concerning the distributional proper-

ties and dynamic dependencies in �nancial market volatilities; see, e.g., Andersen & Bollerslev

(1998a), Andersen, Bollerslev, Diebold & Labys (2001, 2003), and Barndor�-Nielsen & Shephard

(2002). Pushing this analysis one step further, we show how the realized volatility measures may

be used in the formulation of direct distributional tests for continuous-time models.

Our empirical analysis provides the �rst comprehensive documentation that a broad set of

individual equity return series may be converted into i.i.d. Gaussian series through a sequence

of simple, theoretically motivated, nonparametric transformations. It may be seen as a logical

extension of the earlier empirical investigations of Andersen, Bollerslev, Diebold & Ebens (2001)

who �nd the unconditional distributions of raw daily equity returns to have fat tails, but when

standardizing these daily returns by the corresponding realized volatilities, constructed from

the summation of high-frequency intra-day squared returns, the distributions appear close to

Gaussian. Nonetheless, it remains an approximate result as the null hypothesis of i.i.d. normality

is rejected decisively if subjected to powerful statistical tests. From a theoretical perspective, this

is not surprising. The (true) realized volatility standardized returns should be indistinguishable

from a Gaussian if the true price process belongs to a certain class of pure di�usive processes

and market microstructure frictions are negligible. However, various relevant market features

may invalidate this result. First, there are inevitable errors in realized volatility measures due

to discretization and noise. Second, it is likely there are discontinuities in the price path so the

returns are not generated from a pure di�usion. Third, price and volatility innovations may be

correlated, inducing asymmetry in the standardized return distribution.
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To potentially obtain normality, each source of error warrants careful attention. We introduce

a new set of diagnostics for guiding the choice of sampling frequency. These generalized volatility

signature plots are designed to display the e�ects of microstructure noise as well as price jumps.

Second, in addition to standard realized volatility measures we rely on the bipower variation

measures of Barndor�-Nielsen & Shephard (2004) for separately measuring the continuous sample

path variability and the variation due to jumps. Moreover, we extend the test for the occurrence

of at least one jump per day in Barndor�-Nielsen & Shephard (2006) and Huang & Tauchen

(2005) to a sequential jump detection scheme, directly identifying and estimating the within-

day times and sizes of price jumps.3 This allows us to construct jump-adjusted daily return

series, while the extracted jump characteristics enable us to more directly gauge the impact

and distributional implications of jumps.4 Third, to alleviate the impact of return-volatility

asymmetries, e.g., the leverage e�ect, we exploit a new �nancial-time sampling scheme in which

we measure returns in event time, as de�ned by equidistant increments to the realized volatility

of the jump-adjusted returns. In the di�usive semimartingale setting, this realized volatility

time-change should undo the impact of leverage style e�ects so that the �nancial-time return

distributions become Gaussian. Again, all involved measures are obtained nonparametrically

and the distributional implications are based strictly on probabilistic arguments, so that implied

tests are applicable across the full range of standard jump di�usive models for asset returns.

Our approach is related to Peters & de Vilder (2006) and Andersen, Bollerslev & Dobrev

(2007) as they rely on a similar �nancial-time sampling and also undertake normality tests for

the standardized return distributions.5 However, they explore only a return series generated from

futures contracts on the S&P500 equity index. These futures are near ideal in terms of having

minimal microstructure distortions and high liquidity. We focus on the much broader set of thirty

individual equity return series for the companies in the Dow-Jones index. As a result, our series

are subject to more noise, have more idiosyncratic return and volatility movements and have

much higher volatility in general. Hence, we are able to shed light on the question of whether

the �ndings from the benign setting studied previously carry over to a wider range of important

return series. Furthermore, we obtain important evidence regarding the robustness of the prior

studies. From a methodological point there are also a number of di�erences. Most strikingly,

Peters & de Vilder (2006) make no adjustments for jumps and rely on tests with much less power

than is the case in the current paper. Compared to Andersen, Bollerslev & Dobrev (2007) we

accommodate the issue of microstructure noise more directly through the generalized signature

plots and rely on the new sequential jump detection technique. In fact, our identi�cation of

jump days is justi�ed through the asymptotic distribution of the standard test statistic under a

3Alternative non-parametric high-frequency data based tests for jumps have recently been developed by Jiang

& Oomen (2005), Mancini (2005), Christensen & Podolski (2007), and Lee & Mykland (2008).
4In concurrent and independent work, Fleming & Paye (2006) have studied the properties of daily returns scaled

by realized bipower variation, but without any adjustments for leverage e�ects.
5See also Zhou (1998) for more informal empirical evidence along these lines for exchange rates.
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general di�usive null hypothesis as developed in Barndor�-Nielsen & Shephard (2004, 2006) and

Huang & Tauchen (2005). The jump identi�cation approach in Andersen, Bollerslev & Dobrev

(2007) appears to fare well in simulation settings but it is formally justi�ed only under constant

volatility across the trading day and the jumps test turns more conservative under intraday

variation in volatility. Moreover, given the potential importance of microstructure frictions, we

explore whether the change of tick size for the Dow-Jones stocks around January 2001 impacts

the number of rejections of normality across the series. Such evidence is only meaningful on the

basis of a large number of return series and the issue was not explored previously in this context.

Finally, the empirical results related to the strength of the jump intensities and sizes, and the

signi�cance and magnitude of the leverage e�ects, for the individual stocks are of direct interest

in their own right for a range of issues within �nancial economics.

The plan for the rest of the paper is as follows. The theoretical arguments for Gaussianity

of the transformed return distributions are outlined in the next section. The realized variation

measures and jump detection tests used in the practical implementation of the distributional

tests are presented in Section 3. In Section 4 we discuss the data sources and issues related to the

construction of the high-frequency returns and realized volatility measures, including generalized

volatility signature plots designed to assess the adverse e�ects of market microstructure biases at

the very highest sampling frequencies. Section 5 discusses preliminary summary statistics related

to the importance of jumps and leverage e�ects. The outcomes of the distributional tests are

summarized in Section 6. Section 7 concludes. More detailed evidence for each individual stock

is available in a supplementary appendix on the Journal's website.

2 Theoretical Framework

Jump-di�usion models represent the asset price as a sum of a continuous sample path component

and occasional discontinuous jumps. The class encompasses the leading parametric models in

the asset pricing and, especially, the derivatives pricing literature.6

In particular, let p (t) denote the continuous-time log-price process. The generic jump-

di�usion model may then be expressed in stochastic di�erential equation form as,

dp (t) = � (t) dw (t) + � (t) dq (t) ; t � 0; (1)

where the instantaneous volatility process � (�) > 0 is c�adl�ag, w (�) denotes a standard Brownian
motion independent of the drift, the counting process q (t) is normalized so that dq (t) = 1

represents a jump at time t, and dq (t) = 0 otherwise, and � (t) denotes the jump size if a jump

6Although this formulation, as given by equation (1) below, allows for both time-varying jump sizes and intensi-

ties, it rules out in�nite activity L�evy processes; see, e.g., Cont & Tankov (2004) for a discussion of such processes,

Todorov (2007) for an application involving jump-driven stochastic volatility models, and Barndor�-Nielsen, Shep-

hard & Winkel (2006) on using realized variation measures for certain in�nite activity jump processes.

4



occurs at time t. For notational simplicity we exclude a drift term, � (t) dt, in equation (1), but

the theoretical results can readily be extended to allow for a drift, � (�) 6= 0.7

While asset pricing arguments often are cast in continuous time, empirical investigations

are invariably based on discretely sampled prices. We denote the one-period continuously com-

pounded discrete-time returns implied by the jump-di�usion in (1) as,

rt � p(t)� p(t� 1); t = 1; 2; :::; (2)

and we refer to the unit time interval as a \day." The distributional characteristics of the discrete-

time returns obviously depend directly on the underlying continuous-time model. We next con-

sider three sets of increasingly general modeling assumptions, and discuss how appropriately

standardized and adjusted returns should be i.i.d. standard normal under each, thus providing

theoretical guidance for empirical analysis into the importance of di�erent model features.

2.1 No Jumps, Leverage, or Volatility Feedback E�ects

The simplest and most commonly used continuous-time models are based on the dual assumptions

of no jumps, or q(t) � 0, along with no leverage and volatility feedback e�ects, or �(t) and w(�)
independent for all t � 0 and � � 0. In this situation it follows by standard arguments that,

rt

�Z t

t�1
�2(�)d�

��1=2
� N (0; 1) ; t = 1; 2; ::: : (3)

The integrated volatility normalizing the returns has the interpretation of the ex-post return

variability conditional on the sample path realization of the �(�) process over the corresponding

discrete-time return interval, (t�1; t].8 Of course, the integrated volatility is not directly observ-
able. However, starting with the work of Andersen & Bollerslev (1998a), Andersen, Bollerslev,

Diebold & Labys (2001), and Barndor�-Nielsen & Shephard (2002), ways in which to accurately

measure the integrated volatility on the basis of high-frequency data have received increasing

attention in the literature. We provide a more in-depth discussion of these ideas in the context

of our empirical implementation of equation (3) in Section 3.

Meanwhile, the popular GARCH and discrete-time stochastic volatility models in essence

provide particular parametric approximations to the expectation of the integrated volatility con-

ditional on the time t� 1 information set,

�2tjt�1 = Et�1

�Z t

t�1
�2(�)d�

�
:

7The inclusion of a drift term simply requires subtraction of a mean from the daily returns. In the empirical

analysis we consider both raw and mean-adjusted returns. The results, reported below, are virtually identical.
8The integrated volatility also plays a central role in option pricing models allowing for time-varying volatility;

see, e.g., the aforementioned paper by Hull & White (1987).
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Hence, from equation (3), only if the integrated volatility process is perfectly predictable, will

the GARCH standardized returns, rt�
�1
tjt�1, be normally distributed. In general, of course, the

di�usive volatility process varies non-trivially over the (t � 1; t] interval, resulting in a mixture-
of-normals distribution for the corresponding GARCH standardized returns, with the mixture

dictated by the distribution of the integrated volatility forecast errors; see also the reasoning

behind the use of conditional fat-tailed GARCH error distributions in Bollerslev (1987).

2.2 Jumps

A number of recent studies have argued for the importance of explicitly allowing for jumps, or

q(t) 6= 0, when modeling speculative rates of return; see, e.g., Andersen et al. (2002), Bates (1996,
2000), Chernov et al. (2003), Eraker, Johannes & Polson (2003), Eraker (2004), and Johannes

(2004). This adds an additional component to the ex-post price variation process, and also

invalidates the Gaussianity of the standardized returns in (3). Suppose the jumps were known,

and let the corresponding jump-adjusted returns be denoted by,

~rt � p(t)� p(t� 1) �
q(t)X

s=q(t�1)
�(s) ; t = 1; 2; :::; (4)

where the sum comprises all of the non-zero jumps over the (t � 1; t] time-interval, and we
assume that the jump process is independent of the Brownian process w(t) in equation (1). All

of the variation in the jump-adjusted returns now originates from the di�usion component, so

standardizing by the integrated volatility should again result in a normal distribution,

~rt

�Z t

t�1
�2(�)d�

��1=2
� N (0; 1) ; t = 1; 2; ::: : (5)

In practice, of course, the timing and magnitude of jumps are not known for sure, so the result in

(5) is not directly testable. To circumvent this, we rely on two new non-parametric jump-detection

procedures for disentangling the continuous and discontinuous sample path components, in turn

providing an operational approximation to (5).

2.3 Leverage and Volatility Feedback E�ects

The distributional results of the preceding sections rule out so-called leverage and volatility

feedback e�ects by assuming the Brownian motion driving the di�usive price innovations, w(�),

and the volatility process, �(t), are independent for all �; t � 0. A number of studies argue in

contrast that the return-volatility relation is conditionally asymmetric as large negative returns

are associated with larger volatilities than are positive returns of the same magnitude; e.g., Black

(1976), Christie (1982), and Bollerslev, Litvinova & Tauchen (2006). Here, leverage e�ect is

de�ned as correlation between volatility and past returns and volatility feedback as correlation
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between volatility and future returns.9 The leverage e�ect may be induced by contemporaneous

negative correlation between the di�usive price innovations and the volatility innovations in

the underlying continuous time model. Likewise, the feedback e�ect will arise from a positive

correlation between volatility innovations and the drift in the price process. This feature involves

compensation via the mean return for an increase in return volatility. Often, this e�ect is seen

initiated through a negative price reaction to a volatility shock, thus also involving negative

correlation between volatility and price movements. From discretely observed data, this latter

e�ect is hard to separate from the leverage e�ect. In either case, these interactions imply that

the ex-post integrated volatility in the denominator on the left-hand-side of (3) and (5) are

informative about both the sign and magnitude of the corresponding returns, so the standardized

distributions are no longer Gaussian, let alone mean zero. However, by measuring returns over

equal increments of integrated volatility instead of calendar-time, the resulting time-changed

returns remain Gaussian, even in the presence of leverage and volatility feedback e�ects.

Formally, let the event-time, or �nancial-time, sampling scheme be de�ned by t0 � 0 and,

tk � inf
t>tk�1

 Z t

tk�1

�2(�)d� > ��

!
; k = 1; 2; ::: ; (6)

where �� denotes the �xed �nancial-time unit spanned by each return.10 For ease of comparison

with the daily return distributions discussed above, we focus on the case in which �� equals the

unconditionally expected one-period integrated variance,

�� � E

�Z t

t�1
�2(�)d�

�
: (7)

Denote the corresponding jump-adjusted �nancial-time sampled returns by,

~r�k � p(tk)� p(tk�1) �
q(tk)X

s=q(tk�1)

�(s) ; k = 1; 2; ::: : (8)

It follows then by the Time-Change for Martingales Theorem (Dambis (1965) and Dubins &

Schwartz (1965)), that
~r�k �

��1=2 � N (0; 1) ; k = 1; 2; ::: : (9)

Importantly, this result establishes normality of the appropriately adjusted and standardized

returns for any jump-di�usion model.11

9A similar leverage or volatility feedback e�ect could in principle work through the jump component. However,

the related empirical evidence in Bollerslev, Kretschmer, Pigorsch & Tauchen (2008) suggests that the asymmetry

works almost exclusively through the di�usive component.
10A corresponding "business-time" sampling scheme for pure jump processes has previously is used by Oomen

(2006), while Zhou (1998) refers to similarly sampled returns as de-volatized. It is also reminiscent of the #-time

sampling scheme advocated by Dacorogna, Gencay, M�uller, Pictet & Olsen (2001) although they employ a di�erent

realized power variation scale.
11This is also related to the earlier work of Lai & Siegmund (1983), and the idea of sampling autoregressive

processes in equal increments of Fisher information.
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We next discuss the nonparametric high-frequency data based procedures used in imple-

menting and testing each of the distributional results presented above. Our approach does not

depend upon the validity of any particular parametric model. Nonetheless, the approach pro-

vides guidance for the speci�cation of more realistic parametric models within the general class

of jump-di�usions de�ned by (1).

3 Empirical Return and Variation Measures

Our empirical analysis of transformed daily return distributions relies on the availability of intra-

day data. If such data are available for T trading days, the return series is given by the increment

of the observed log-price over each trading day, i.e.,

Rt = pt;M � pt;0; t = 1; :::; T; (10)

where pt;0 denotes the opening, or �rst, log-price on day t, and pt;M refers to the closing, or

last, price on day t. This de�nition excludes the part of the daily variation associated with the

overnight return, as the closing price on day t � 1, pt�1;M , typically di�ers from the opening

price on the following day t, pt;0.
12 However, the overnight returns may naturally be labeled

deterministically occurring jumps. We treat them accordingly, so our trading day returns simply

equal the daily returns adjusted for the (observed) overnight jump. Of course, this implies

that applications of the current results for predicting the distribution of future returns must

incorporate explicit corrections, not only for jumps within the trading periods but also for the

price variability associated with market closures. These additional issues fall outside the scope

of the present study, but the concurrent work by Andersen, Bollerslev & Huang (2006) exemplify

how this may be implemented in practice.

To avoid the problem of irregularly spaced high-frequency return observations, an imputation

scheme (see, e.g., Dacorogna et al. (2001)) is usually applied to construct evenly spaced prices,

say M + 1 per day, where preferably many more observations are available each day. Denote

the j'th intra-daily log-price for day t by pt;j , where j = 0; 1; :::;M and t = 1; :::; T . The M

continuously compounded intra-daily returns for day t are similarly denoted,

rt;j = pt;j � pt;j�1; j = 1; :::;M; t = 1; :::; T: (11)

The precision of the resulting nonparametric realized volatility and jump measures depends on

the value of M . In theory, the larger the number of intra-day returns the higher the precision

of the estimators. At the same time, from an empirical perspective, the larger the value of

M , the more sensitive the estimates are to the inuences of market microstructure \noise" not

contemplated within the theoretical model in equation (1), including price discreteness, bid-ask

12The estimates reported in Hansen & Lunde (2005) suggest that about twenty percent of the total daily return

variation is attributable to the overnight period.

8



spreads, and non-synchronous trading e�ects. How to best account for these frictions and the

practical choice of M in the construction of realized volatility measures have recently been the

subject of intensive research e�orts; e.g., Nielsen & Frederiksen (2008), Ait-Sahalia, Mykland &

Zhang (2005), Bandi & Russell (2007), Barndor�-Nielsen, Hansen, Lunde & Shephard (2008),

and Hansen & Lunde (2006), among many others. In the empirical results reported below, we

instead follow much of the early literature in the use of a relatively sparse �xed 5-minute, or

M = 78, sampling frequency. However, we explicitly justify this particular choice of M for each

of the stocks through the use of volatility signature type plots, as detailed in Section 4.

3.1 Realized Volatility and Jumps

Following Andersen & Bollerslev (1998a), Andersen, Bollerslev, Diebold & Labys (2001) and

Barndor�-Nielsen & Shephard (2002), we de�ne the realized volatility for day t by,13

RVt �
MX
j=1

r2t;j ; t = 1; :::; T: (12)

From the theory of quadratic variation, RVt generally provides a consistent (in probability and

uniformly in t) estimator of the daily increment to the quadratic variation for the underlying

log-price process p (�) de�ned in (1). Speci�cally, for M !1,

RVt !p

Z t

t�1
�2 (s) ds +

q(t)X
s=q(t�1)+1

�2 (s) ; t = 1; :::; T: (13)

Absent jumps, the second term vanishes and the realized volatility consistently estimates the

integrated volatility which provides the contemporaneous standardization factor for the daily

returns in the previous section. In general, however, the realized volatility measure includes the

contribution to the total variation stemming from the squared jumps, and as such will not a�ord

a consistent estimator of the requisite continuous sample path variation.

Meanwhile, Barndor�-Nielsen & Shephard (2004, 2006) show that separate nonparametric

identi�cation of the terms on the right-hand-side of equation (13) is possible through the use of

so-called bipower variation measures. Speci�cally, the realized bipower variation is de�ned by,

BVt � ��21

MX
j=2

jrt;j j jrt;j�1j ; t = 1; :::; T; (14)

where �1 =
p
2=�. It can be shown that, even in the presence of jumps, for M !1,

BVt !p

Z t

t�1
�2 (s) ds ; t = 1; :::; T: (15)

13We will refer interchangeably to this estimator as the realized volatility, the realized variation, or simply the

variance. The exact meaning will be clear from the context.
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Intuitively, for very large values of M , there is at most one jump in any two adjacent intervals of

length 1=M . Since the contribution of each absolute return associated with the di�usion compo-

nent in the limit is negligible, any product involving a jump return will also be vanishingly small

asymptotically. Moreover, the scaling factor for bipower variation ensures that it is consistent

for the di�usive return variation. Hence, combining equations (13) and (15), the contribution to

the total return variation stemming from the jump component is consistently estimated by the

di�erence between the two. That is, for M !1,

RVt �BVt !p

q(t)X
s=q(t�1)

�2 (s) ; t = 1; :::; T: (16)

Although formally consistent for the squared jumps, nothing prevents RVt�BVt from becoming

negative for �nite values of M , especially when no jumps occur on day t. Similarly, part of

the continuous price movements will invariably be attributed to the jump component due to

sampling variation, resulting in small positive values of RVt �BVt for �nite M , even if there are
no jumps, or q(t) = q(t � 1). Hence, following the empirical analysis in Andersen, Bollerslev &
Diebold (2007), we re�ne our empirical analysis by considering the notion of signi�cant jumps,

only associating the most extreme price moves with the discontinuous jump component.

In particular, based on the asymptotic distribution theory in Barndor�-Nielsen & Shephard

(2004, 2006) and the extensive simulation evidence in Huang & Tauchen (2005), we assess the

signi�cance of the daily jump component via the feasible logarithmic test statistic,

Zt �
p
M

lnRVt � lnBVt��
��41 + 2��21 � 5

�
TQtBV

�2
t

�1=2 !d N (0; 1) ; (17)

where the realized tripower quarticity measure in the denominator is de�ned by,

TQt �
1

M
��34=3

MX
j=3

jrt;j j4=3 jrt;j�1j4=3 jrt;j�2j4=3 ; t = 1; :::; T; (18)

and �4=3 = 2
2=3� (7=6) =� (1=2) with � (�) denoting the gamma function. Thus, only (statistically)

extreme positive values of RVt �BVt are attributed to the jump component, i.e.,

JVt � IfZt>�1��g (RVt �BVt) ; t = 1; :::; T; (19)

where If�g denotes the indicator function, �1�� refers to the (1 � �) fractile of the standard
normal distribution, and � denotes the chosen signi�cance level.

Given our estimator for the squared jumps, an estimator for the continuous sample path

variability, or integrated volatility, component is naturally obtained by the residual variation,

CVt � RVt � JVt = IfZt��1��gRVt + IfZt>�1��gBVt ; t = 1; :::; T: (20)
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That is, we estimate the continuous volatility component by realized volatility on days with

no signi�cant jumps and by realized bipower variation on days with signi�cant jump(s). The

empirical results reported below rely on a signi�cance level of � = 1%, but we also experimented

with � = 5% and 0:1%, resulting in qualitatively similar conclusions.14

The procedure discussed above provides a practical approach for identifying the jump con-

tribution to the daily return variation. It does not, however, identify the individual jumps

themselves. We next discuss two di�erent methods for doing so.

3.2 Jump-Adjusted Returns

In the absence of jumps and leverage e�ects, the daily returns should be approximately nor-

mally distributed when standardized by the corresponding integrated volatility, or an empirical

estimate thereof. In general, however, the daily returns de�ned by the model in (1) may be com-

prised of both continuous price movements and discontinuous jumps. Building on the realized

volatility measures de�ned above, we consider two di�erent nonparametric procedures for directly

identifying and estimating the intra-day jumps and the corresponding jump-adjusted returns.

3.2.1 Simple Jump Adjustments

Our �rst estimation scheme is based on the premise that jumps are relatively rare events. In

particular, assume that there is at most one jump each day. It then follows from the arguments

above that JVt !p �
2
t . Of course, this still leaves the sign of the jump undetermined. Appealing

to the intuitive idea of signing the single day t jump on the basis of the largest (absolute) intra-day

return, this estimation scheme de�nes the daily time series of jumps by,15

~�t � sgn

��
rt;k : jrt;kj = max

j2f1;:::;Mg
jrt;j j

��p
JVt; t = 1; :::; T; (21)

where sgn (�) is equal to 1 or �1 depending upon the sign of the argument. Accordingly, we
denote the corresponding jump-adjusted daily returns by,

~Rt � Rt � ~�t; t = 1; :::; T; (22)

where Rt = pt;M � pt;0 denotes the daily return. As we move from sampling returns in calendar

time to �nancial time, as de�ned by equal increments of integrated variance, knowing the exact

14The use of standard signi�cance levels automatically ensures that both JVt and CVt are non-negative, as

�1�� > 0 for � < 1=2, while consistent estimation of the continuous and jump components would formally require

that the signi�cance level approaches zero with the sample size; see Barndor�-Nielsen & Shephard (2006). Our

choice of a low � = 1% for each stage of the sequential testing scheme reects our desire for a conservative

approach to jump detection so that only highly signi�cant returns are removed from the continuous part of the

return variation which is the critical component for the subsequent distributional tests.
15We also experimented with signing the jumps on the basis of the total daily returns, resulting in very similar

�ndings to the ones reported below.
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jump times becomes essential in de�ning the new time scale. Of course, it is also possible that

multiple jumps occur on certain days, violating the assumption underlying the simple procedure

in (21). Hence, we next introduce a sequential jump identi�cation scheme designed to facilitate

inference regarding all signi�cant jumps along with their timing within the trading day.

3.2.2 Sequential Jump Adjustments

A signi�cant Zt statistic, as de�ned in (17), only indicates the presence of one or more jumps.

Our more detailed jump detection scheme applies this same statistic sequentially to identify

potentially multiple signi�cant jumps over the same day.

Intuitively, in the absence of any jumps, so that RVt�BVt !p 0, the average contribution of

each squared intra-day return to the continuous sample path component is simplyM�1PM
k=1 r

2
t;k.

Now assuming only a single jump on day t, this suggests the following alternative estimator for

the day t contribution to the volatility coming from that jump,

IfZt>�1��g

0@ max
j2f1;:::;Mg

r2t;j �
1

M � 1

MX
k 6=j

r2t;k

1A ; t = 1; :::; T:

This, of course, also directly identi�es the time of the jump by the value of j that achieves the

maximum. Now, eliminating this particular intra-day return in the calculation of a new jump-

corrected realized volatility measure allows for the construction of a modi�ed jump statistic to

test for the presence of additional (smaller) jumps.

More precisely, in identifying the �rst jump, RVt is based on the summation of all the squared

intra-day returns. If the corresponding test in (17) rejects, we conclude that there is at least one

jump during day t, and in turn identify its contribution to the total daily variation as the di�erence

between the largest squared intra-day return and the average of the remaining M � 1 squared
returns. Then, in identifying a possible second jump we de�ne the day t realized volatility

corrected for one jump as the summation of the squared returns, where the squared return

containing the �rst jump is replaced by the average of the remaining M � 1 squared returns. If
the new test statistic obtained by replacing RVt in (17) with this jump-corrected realized volatility

measure does not reject, we conclude that there is exactly one jump on day t, and we stop the

sequential procedure. If on the other hand, the test still rejects, we conclude that there are at

least two jumps, and associate the contribution to the total variation coming from the second

jump with the second largest squared intra-day return less the average of the remaining squared

returns. More generally, after having identi�ed i jumps, we calculate the jump-corrected realized

volatility using the remaining M � i returns scaled by M= (M � i), continuing this sequential
procedure until the corresponding test in (17) no longer rejects.16

16We do not remove any returns in the computation of the bipower variation statistics. First, this has obvious

asymptotic justi�cation as the bipower variation statistic is consistent for the integrated variance in the presence
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Thus, having identi�ed the total number of jumps, say J , during day t, as well as the magni-

tude of each of the jumps by the corresponding high-frequency returns,

�̂t;i � rt;ji ; i = 1; :::; J; t = 1; :::; T; (23)

where ji denotes the exact time-interval of the intra-day return associated with the i'th jump,

we calculate the jump-adjusted daily return as,17

R̂t � Rt �
JX
i=1

�̂t;i; t = 1; :::; T: (24)

Similarly, we de�ne the total variation on day t due to jumps as,

JV St �
JX
i=1

JV St;i; t = 1; :::; T; (25)

where JV St;i gives the contribution from the i'th jump, de�ned as the di�erence between the

i'th largest intra-day squared return and the average of the M � J squared returns that are not
associated with jump(s). That is,

JV St;i � IfZt;i>�1��g

0@ max
ji2f1;:::;Mgnfj1;:::;ji�1g

r2t;ji �
1

M � J
X

k2f1;:::;Mgnfj1;:::;jJg
r2t;k

1A ; (26)

where Zt;i denotes the i'th sequential jump statistic, as discussed above. Lastly, the corresponding

continuous volatility component is simply de�ned by,

CV St � RVt � JV St; t = 1; :::; T; (27)

which, in line with the earlier de�nition in (20), guarantees that each of the two daily time series

are non-negative, and add up to the total daily realized variation.

The de�nition of ~�t in (21) provides a rough estimate of
PJ
i=1 �̂t;i. This suggests that the two

procedures should produce similar jump-adjustments for days in which there is only one jump.

However, the ability of the sequential procedure to identify multiple (signi�cant) jumps as well

as their timing is important for the construction of jump-adjusted intra-day return series and

these, in turn, constitute a critical input to the empirical analysis below.

of jumps. Second, removing one intraday return from the realized volatility computation does not alter the

contribution from the remaining terms. In contrast, the realized bipower variation is not immune to this operation

as it alters the two adjacent terms, often signi�cantly. In view of this feature, the conservative nature of our jump

detection scheme is best preserved by not sequentially adjusting the bipower variation statistic.
17This de�nition e�ectively assigns zero di�usive returns to the jump intervals. A natural alternative is to de�ne

the jump returns as the mean of the non-jump returns over the trading day. Our results are not materially a�ected

by this choice.
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4 Data Description

4.1 Data Sources and Construction

Our data is extracted from the Trade And Quotation (TAQ) database, and consist of all recorded

trades and quotes for the Dow Jones Industrial Average (DJIA) stocks for the �ve-year period

spanning January 2, 1998 through December 31, 2002. The ticker symbols and names of the

stocks are listed in Table A1 of the supplementary appendix.18 We only use the prices from the

New York Stock Exchange (NYSE), with the exception of Intel and Microsoft, both of which

are more actively traded on the National Association of Security Dealers Automated Quotation

(NASDAQ) system. Mirroring the data cleaning procedures of Hansen & Lunde (2006), we �lter

the series to remove price observations equal to zero, prices occurring outside the 9:30 AM to

4:00 PM o�cial trading day, as well as extreme outliers or mis-recorded price observations. This

leaves us with 2-4 million prices for each stock, except for Intel and Microsoft which both have

around 26 million prices recorded over the sample. Finally, we delete days of early closing or late

opening of the exchange and days in which trading in a particular stock was suspended for an

extended period, resulting in approximately 1; 255 \intact" days for each stock.

To minimize market microstructure e�ects, we rely exclusively on mid-quotes and an imputa-

tion scheme involving the last quote preceding each 5-minute mark, in the construction of equally

spaced 5-minute returns; i.e., M = 78 observations per day.19 The choice of a 5-minute return

interval is in line with the existing empirical literature and, as argued in Bandi & Russell (2007),

it is also generally close to (mean-squared-error) \optimal" for the standard realized variation

measure and the TAQ data analyzed here. Importantly, however, our use of a 5-minute sam-

pling scheme in the present context, explicitly allowing for jumps, is further corroborated by the

volatility signature plots discussed next.

4.2 Volatility Signature Plots

The conventional realized volatility signature plot popularized by Andersen, Bollerslev, Diebold

& Labys (2000b) provides a simple informal framework for gauging the impact of market mi-

crostructure frictions by plotting the average sample mean of RVt over a long time-span as a

function of the sampling frequency of the underlying intra-day returns, or M . In the absence of

any frictions and dynamic dependencies in the returns, the realized volatilities are all consistent

for the same total variation and hence, in practice, the signature plot should atten out at the

frequencies for which the microstructure frictions cease to have a distorting inuence.

The signature plots in Figure A1 of the supplementary appendix for each of the individual

stocks extend this idea by plotting the average realized bipower variation measures together with

18All of the tables in the supplementary appendix are available from the authors upon request.
19As argued in Hansen & Lunde (2006), using mid-quotes reduces the spurious serial correlation in the high-

frequency returns due to bid-ask bounce and non-synchronous trading e�ects.
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Figure 1: Median generalized volatility signature plots
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the standard realized variation for di�erent sampling frequencies. Cursory inspection reveals a

close similarity in the general shape across the individual stocks. We summarize the results in

Figure 1 by plotting the median values (over the 30 stocks) of the average realized variation

measures for each sampling frequency (measured in seconds).20

By reproducing the average (across days) RVt and BVt measures as a function of 1=M in

the same graph, the volatility signature plot a�ords an informal way to gauge the importance of

jumps. In particular, it follows from equation (16) that, under ideal conditions and for 1=M ! 0,

the distance between the two lines provides a consistent estimate of the total variation due to

jumps.21 In practice, of course, this theoretical prediction will be obscured by market microstruc-

ture \noise," as directly evidenced by the systematic decline in both lines in Figure 1 in the range

of 2-5 minutes, or 120-300 seconds. At the same time, the di�erence between the lines tends to

stabilize at a sampling frequency of only two minutes, or 120 seconds. These e�ects are also

in line with the extensive simulation results for the two measures based on empirically relevant

continuous-time processes subject to \noise" reported in Nielsen & Frederiksen (2008).22 This

20Both of the variation measures have been converted to percent by multiplication with 10,000.
21Related volatility signature plots, including plots for various integrated quarticity measures, have recently been

explored by Andersen, Bollerslev, Frederiksen & Nielsen (2006).
22The theoretical framework in Rosenbaum (2007) may also help provide an explanation for these patterns.
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suggest that both realized volatility and bipower variation measures are adversely a�ected by

microstructure frictions at lower frequencies but the impact is correlated and tends to cancel so

the gap between theem, and hence the estimate of the jump component, remains remarkably

stable for 1=M in excess of 120 seconds. Overall, this supports our use of a 5-minute return

interval as a reasonable, albeit for some stocks somewhat conservative, uniform sampling scheme.

5 Preliminary Data Analysis

As highlighted in the theoretical discussion, the presence of jumps and volatility feedback or

leverage e�ects will cause the distribution of returns standardized by realized volatility to be

non-Gaussian. Hence, we �rst present a set of summary statistics speaking to the importance of

each of these features.

5.1 Jumps

We begin by considering jumps. We �rst report results based on the simple jump-detection

procedure, followed by the more involved sequential jump-detection scheme.

5.1.1 Simple Jump Detection

Relying on the simple jump-detection method and a signi�cance level of � = 1%, Table 1 displays

the mean duration between signi�cant jumps, the relative contribution of jumps to the realized

variation, i.e., JVt=RVt, the mean size of the jump component for signi�cant jump days, and

lastly the corresponding mean (absolute) jump size, i.e., j~�tj as de�ned in equation (21). For ease
of interpretation, we summarize the results in terms of the mean, standard deviation, minimum,

and maximum of the statistics over all thirty DJIA stocks, with detailed results for each individual

stock deferred to Table A2 in the supplementary appendix.

The mean duration between jumps ranges from a low of 4.1 days (HON) to a high of 10.1 days

(GE), with an average across all stocks of 6.3 days. This intensity, of almost one jump per week, is

much higher than typically estimated from parametric models based on daily or coarser frequency

return observations.23 These initial summary statistics suggest that important additional insights

may be obtained from the use of higher frequency data in terms of disentangling the price process

into continuous and jump components. This is also consistent with the accumulating evidence

that price jumps associated with the release of macroeconomic announcements are much more

readily analyzed on the basis of intra-day data rather than the traditional daily return series,

see, e.g., Andersen, Bollerslev, Diebold & Vega (2003).

The potential importance of jumps is also evident from the last three columns of the table. In

particular, estimates of the relative contribution of the jump component range from 2.6 percent

23See, e.g., the GARCH-jump model estimates for individual stocks in Maheu & McCurdy (2004).
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Table 1: Jumps - Simple Method
Rel. jump contribution Mean size of jump Mean size of

Mean duration JVt=RVt component (�10,000) actual jumps (�100)
Mean across stocks 6.3201 0.0476 1.2119 0.9812

Std. dev. across stocks 1.6068 0.0133 0.3283 0.1233

Min. across stocks 4.1325 0.0256 0.6247 0.7352

Max. across stocks 10.0976 0.0746 2.0825 1.3121

Note: The table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for the

mean duration between jumps, the relative jump contribution to the realized volatility, the mean size of the jump

component (�10,000), as well as the mean size (in percent) of the square-root jump component (i.e. the absolute
value of the actual jumps). For further details, see Table A2 in the supplementary appendix.

(GE) to 7.5 percent (MO), with an average value of 4.8 percent.24 The more detailed results

in Table A2 of the supplementary appendix also point towards a negative association between

jump durations and relative jump contributions. Further, the mean size of the jump component

(multiplied by 10,000) on days with signi�cant jumps is estimated between 0.62 (JNJ) and 2.08

(HPQ), which compares to a typical daily realized variation (multiplied by 10,000) of around

3-4. In other words, on days identi�ed to have a jump, about a third of the return variation is

attributed to jumps. Finally, the mean absolute size of the \simple" jumps, i.e., j~�tj, ranges from
0.74 to 1.31 percent, with a mean across all stocks of 0.98 percent.

5.1.2 Sequential Jump Detection

The sequential jump-detection procedure accommodates the presence of multiple jumps on a

given trading day. It follows from the detailed results for the individual stocks in Figure A2 in the

supplementary appendix that the median (across stocks) estimated (unconditional) probability of

a single jump for the \typical" stock is roughly 14 percent, while there is a two percent probability

of two jumps. Meanwhile, the probability of three or more jumps in one day is very small, but

not zero. This illustrates the potential importance of the sequential jump detection procedure,

as most stocks have many days with multiple jumps.

At the same time, comparing the summary statistics in Table 2 for the sequential jump

detection method to the corresponding statistics for the simple method in the last three columns of

Table 1, the numbers are generally fairly close. The relative contribution of the jump component

for the sequential procedure ranges from 2.1 percent (GE) to 5.8 percent (MO), just slightly

24Our jump contribution measure is downward biased due to the conservative jump test. An asymptotically

unbiased estimate of the overall jump contribution is given by the average across all stocks of the ratio (RV �
BV )=RV , where the bar denotes average across all days. This value is 7.7 percent, indicating that there may be a

fair amount of return variation within the (so classi�ed) continuous component which actually stems from relatively

smaller jumps. Of course, such misclassi�cation would tend to render it harder to obtain Gaussian distributions

for the standardized returns in the empirical analysis below.
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Table 2: Jumps - Sequential Method
Rel. jump contribution Mean size of jump Mean size of

JV St=RVt component (�10,000) actual jumps (�100)
Mean across stocks 0.0373 1.0394 0.9282

Std. dev. across stocks 0.0101 0.3050 0.1177

Min. across stocks 0.0212 0.5065 0.6828

Max. across stocks 0.0575 1.8309 1.2464

Note: The table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for the

relative jump contribution to the realized volatility, the mean size of the jump component (�10,000), as well as
the mean size (in percent) of the absolute value of the actual jumps. For further details, see Table A3 in the

supplementary appendix.

Table 3: Simple and Sequential Jump Correlations
Correlation RMSE Theil's U

Mean across stocks 0.9450 0.0062 0.2999

Std. dev. across stocks 0.0332 0.0033 0.1036

Min. across stocks 0.8722 0.0030 0.1086

Max. across stocks 0.9945 0.0200 0.5508

Note: The table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for the

correlation, root mean squared error (RMSE), and Theil's U statistic for the two daily jump series based on the

simple and sequential methods, respectively. Observations where both series are zero have been removed. For

further details, see Table A4 in the supplementary appendix.

lower than the numbers for the simple method. Similarly, the mean size of the sequential jump

component averaged across the stocks equals 1.83, compared to 2.08 in Table 1, and the mean

absolute jump size ranges from a low of 0.68 percent (JNJ) to a high of 1.25 percent (HPQ), with

the overall absolute mean jump size of 0.93 percent again being slightly below that in Table 1.

The close coherence between the two daily jump component series, JVt and JV St in equa-

tions (19) and (25) is further underscored by Table 3 which presents various correlation measures

between the two. To focus on the relation between the jump series, all common no-jump (zero)

observations were excluded from the computations. The �rst column reports the standard sample

correlation coe�cient, the second the root mean squared error (RMSE) calculated as the square-

root of the sum of the squared di�erences between the series, and the third Theil's scale invariant

U-statistic. As above, the results are summarized through the mean, standard deviation, min-

imum, and maximum across the thirty stocks, with detailed results for each stock deferred to

Table A4 of the supplementary appendix. It is evident that the two di�erently estimated jump

components are close. For instance, the lowest sample correlation equals 0.87 (WMT) and the

average value is 0.95. Also, the RMSEs and Theil's U-statistics are generally low across the

stocks. Hence, the sequential procedure retains the information regarding jump occurrence and
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Figure 2: Median high-frequency leverage and volatility feedback e�ects
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relative size on a day-to-day basis but, importantly, also identi�es the intra-day timing of all

signi�cant jumps which is critical for the subsequent analysis.

5.2 Leverage and Volatility Feedback E�ects

The second key assumption underlying the normality of the integrated volatility standardized

returns concerns the lack of correlation between the di�usive volatility process and the Brownian

motion innovations to the price process.

In order to assess the validity of this assumption, Figure A3 of the supplementary appendix

graphs the 5-minute cross-correlations for each of the stocks, i.e., corr(jrj j ; rj+i), where for
notational simplicity rj for j = 1; : : : ; J refers to time series of approximately J = 1; 255� 78 =
97; 890 demeaned 5-minute returns available for each stock. An initial cursory look suggests a

broadly similar shape across stocks, although the idiosyncratic noise inherent in the individual

estimates makes it hard to draw sharp conclusions. Hence, we summarize the evidence in Figure

2 by plotting the median value, across the stocks, of each of the high-frequency cross-correlations.

Figure 2 reveals a clear tendency for the correlations between jrj j and rj+i to be negative for
negative i, while the correlations typically are positive or near zero for positive values of i. Of

course, there is a striking spike around i = 0, which is also present for most individual stocks.
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Table 4: Leverage and Volatility Feedback E�ect Estimates
Leverage Feedback Di�erence

Mean across stocks -0.0166 0.0076 -0.0243

Std. dev. across stocks 0.0151 0.0087 0.0145

Min. across stocks -0.0560 -0.0155 -0.0658

Max. across stocks 0.0053 0.0226 -0.0035

Signi�cance at 5% level 9 10 20

Signi�cance at 1% level 6 5 14

Note: The table reports the mean, standard deviation, minimum, and maximum over the 30 DJIA stocks for the

leverage and volatility feedback e�ect estimates along with their numerical di�erence, as described in the main

text. The last two rows report the number of stocks (out of 30) for which the corresponding t-statistics, based on

a heteroskedasticity and autocorrelation consistent Newey-West type covariance matrix estimator, are signi�cantly

di�erent from zero at the 5% and 1% levels. For further details, see Table A5 in the supplementary appendix.

As such, this points to the existence of a potentially distorting high-frequency leverage e�ect for

at least some of the stocks, but not much of a volatility feedback e�ect.25

Table 4 provides summary statistics related to the leverage and volatility feedback type e�ects.

Speci�cally, the table reports estimates of each individual e�ect as well as the di�erence between

the two; the more detailed �ndings for each individual stock are again reported in the supple-

mentary appendix, Table A5. The average leverage e�ect for an individual stock is estimated

by,

1

K � 2

K�1X
i=2

1

J �K + 1

JX
j=K

jrj j rj�i;

while the volatility feedback e�ect is calculated as,

1

K � 2

K�1X
i=2

1

J �K + 1

J�K+1X
j=1

jrj j rj+i:

That is, the leverage e�ect is measured as the (un-weighted) mean of the sample cross-covariances

between the absolute returns and the lagged 2; : : : ; (K � 1) period returns, corresponding to the
K � 2 cross-correlations immediately to the left of negative one in the �gures. Similarly, the
volatility feedback e�ect is measured as the mean of the sample cross-covariances between the

absolute returns and the returns 2; : : : ; (K�1) periods into the future, corresponding to the sum
of the �rst K�2 cross-correlations immediately to the right of one in the �gures. For conciseness,
we focus on K = 30, but identical qualitative �ndings are obtained for other values of K. Also, to

guard against spurious non-synchronous trading e�ects, we explicitly exclude the �rst (positive

25This is consistent with the corresponding plots for high-frequency S&P500 futures returns in Bollerslev et al.

(2006), which show even more pronounced negative cross-correlations for negative lags along with cross-correlations

close to zero for positive lags.
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and negative) cross-covariance but including these does not materially a�ect the results.26

More formal tests generally con�rm the visual impression. The auto-covariances correspond-

ing to the leverage e�ect are negative while the volatility feedback auto-covariances are close to

zero and, if anything, positive, on average. Interestingly, although the e�ects are statistically

insigni�cant for most stocks, there is considerable cross-sectional variation in the magnitude of

the leverage e�ect, and for some stocks the cross-covariances are quite signi�cant.27 We also note

that the di�erence between the two e�ects is negative for all stocks, and signi�cantly so at the

5% level for twenty of the thirty.

The results suggest that �nancial-time sampling is necessary to restore normality of the

standardized return distributions, at least for some stocks. Of course, whether the high-frequency

leverage and volatility feedback e�ects are large enough to cause noticeable distortions in the

standardized return distributions remains an empirical question to which we now turn.

6 Daily Return Distributions

6.1 Unconditional Return Distributions

It is well established that the unconditional distributions of daily stock returns are fat-tailed.

At the same time, our theory predicts that suitably jump-adjusted and standardized returns

should be i.i.d. Gaussian. Hence, as a natural benchmark, we �rst provide a summary of the

raw unconditional return distributions for the DJIA stocks. The �rst row of Table 5 con�rms

the abovementioned stylized facts. Using the normality tests of Andersen, Bollerslev & Dobrev

(2007) involving the joint distribution of the �rst four sample moments, the null hypothesis that

the unconditional return distribution, or Rt=
p
V ar(Rt), is standard normal is rejected at the 1%

level for all stocks.28 Table A6 in the supplementary appendix indicates that the overwhelming

rejections are due primarily to excess kurtosis.

These results are as expected if the underlying return volatility is time-varying since this

induces a mixture type distribution. We next look at the unconditional distributions obtained

by standardizing the daily returns with the one-day-ahead conditional volatility forecasts from a

conventional GARCH(1,1) model.

26We also calculated the same statistics for the jump-adjusted returns, resulting in very similar numbers to the

ones reported in the tables. These results are available upon request.
27These high-frequency based �ndings are corroborated by conventional EGARCH models for the daily returns

which produce most signi�cant volatility asymmetries for the stocks for which the leverage e�ects in Table A5 in

the supplementary appendix are the largest. These additional results are available upon request.
28Ignoring potential complications arising from correcting for jumps, this procedure is equivalent to testing that

the �rst four orthogonal Hermite polynomials are equal to zero. As such, it is special case of the general class of

normality tests developed by Bontemps & Meddahi (2005a, 2005b) based on the so-called Stein equation.
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Table 5: Daily Return Distributions
Raw Returns Demeaned Returns

Signi�cance Signi�cance

Series 5 % level 1 % level 5 % level 1 % level

Rt=
p
V ar(Rt) 30 30 30 30

Rt=
p
GARCH(1; 1) 30 30 30 30

Rt=
p
RVt 21 12 18 9

~Rt=
p
CVt 18 10 15 9

R̂t=
p
CV St 20 12 18 11

R̂�k=
p
E(CV St) 13 6 11 5

R̂�5k;5=
p
5E(CV St) 6 3 2 2

Note: The table reports the number of stocks (out of 30) for which the hypothesis of normality is rejected based on

the joint test for the �rst four moments. The results in the last two columns are based on subtracting the sample

mean from the return series in the numerator. Rt refers to the daily return, while ~Rt and R̂t denote the daily

jump-adjusted returns calculated according to the simple and sequential procedures, respectively. RVt gives the

total realized variation. The continuous variation based on the simple and sequential jump-adjustment procedures

are denoted by CVt and CV St, respectively. R̂
�
k refers to the �nancial-time return series constructing from the

sequential jump-adjusted intra-day returns spanning E(CV St) time-units. Lastly, R̂
�
5k;5 � R̂�5k+ R̂�5k�1+ R̂�5k�2+

R̂�5k�3+R̂
�
5k�4 de�nes the �nancial-time return series spanning 5E(CV St) time-units. For further details regarding

each of the individual stocks, see Table A6 in the supplementary appendix.

6.2 GARCH Standardized Returns

The results for GARCH standardized returns, Rt=
p
GARCH(1; 1), in the second row of Table

5, are again fully consistent with the existing literature. Although the mass in the tails of the

GARCH standardized return distributions shrinks relative to that of the unconditional distribu-

tions, they remain signi�cantly leptokurtic for all stocks; see Bollerslev (1987), Baillie & Bollerslev

(1989), and Hsieh (1989) for early related evidence.29

Of course, if the underlying price and volatility processes evolve stochastically within the

trading day, the GARCH volatilities, at best, represent the one-day-ahead conditional expecta-

tions of the corresponding (latent) integrated volatilities. As argued in Section 2, the GARCH

standardized returns should therefore follow a fat-tailed mixture-of-normals distribution, with

the mixture determined by the distribution of the GARCH volatility forecast errors vis-a-vis the

true integrated volatilities. We next explore the distributions obtained by standardizing returns

by realized volatilities. Since the latter provide more accurate ex-post estimates of the integrated

volatility realizations than ex-ante GARCH forecasts, we expect these distributions to be closer

to normal.

29We also experimented with alternative EGARCH-M models, allowing for volatility asymmetry resulting in very

similar �ndings; see Kim & Kon (1994) for related evidence.
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6.3 Realized Volatility Standardized Returns

We now focus on the distribution of realized volatility standardized returns, Rt=
p
RVt. From

the density and QQ-plots for the individual stocks in Figures A8 and A9 of the supplementary

appendix, it is evident that the RV standardized distributions are much closer to the reference

Gaussian distributions than the raw and GARCH standardized returns. In particular, the tails

of the QQ-plots have improved considerably and mostly feature only slight deviations from the

straight 45-degree line. These �ndings are also in accord with earlier studies by Andersen,

Bollerslev, Diebold & Labys (2000a) and Andersen, Bollerslev, Diebold & Ebens (2001), arguing

through similar informal graphical tools and summary statistics that the sample distributions of

the RVt standardized returns are close to Gaussian.

Complementing this informal evidence, the third row in Table 5 reports results from apply-

ing our formal moment-based test to the realized volatility standardized return distributions.

Importantly, as shown in Andersen, Bollerslev & Dobrev (2007), under the null hypothesis of a

time-invariant, or homogeneous, di�usion, the fourth population moment of the RVt standardized

returns equals m4 = 3
M
M+2 , rather than the standard normal value of three, and we use this value

in implementing the test. Given theM = 78 5-minute returns per day, this translates into a value

of 2:925. The results con�rm that the �rst four sample moments of Rt=
p
RVt generally adhere

fairly closely to those of the slightly modi�ed Gaussian distribution. Speci�cally, the implicit null

of an underlying continuous-time di�usion is not rejected for nine of the thirty stocks at the 5%

signi�cance level, while the tests are insigni�cant for eighteen stocks at the 1% level.

Nonetheless, looking at the more detailed statistics in Table A6 in the supplementary ap-

pendix, we �nd that the sample kurtosis for Rt=
p
RVt remains signi�cantly di�erent from the

theoretical value of m4 = 2:925 that should obtain for a homogeneous di�usion in many cases.

Of course, many studies argue for the importance of allowing for jumps of stock returns, and

the empirical results in Section 5.1 support this notion. The presence of a few large jumps tends

to imply that the RVt standardized distribution has thinner tails than the (modi�ed) normal

because the jumps inate the denominator realized volatility disproportionately. More generally,

however, the presence of jumps simply obfuscates the asymptotic normality of the Rt=
p
RVt dis-

tribution. Indeed, even though the majority of the rejections in Table 5 arise from exceedingly

low sample values of m4, for a few stocks the empirical values are signi�cantly larger than 2:925.

In an attempt to clarify these issues, we next consider the distribution of jump-adjusted returns

standardized by an estimate of the corresponding continuous sample path variation.

6.4 Jump-Adjusted Realized Volatility Standardized Returns

Following Sections 2.2 and 3.2, we consider jump-adjusted return distributions using both the

simple and sequential jump-detection schemes. Summary results of the normality tests for these

distributions, labeled ~Rt=
p
CVt and R̂t=

p
CV St, respectively, are given in rows four and �ve of
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Table 5. Perhaps surprisingly, the results indicate that neither of the jump-adjusted standardized

series are systematically closer to Gaussian than the Rt=
p
RVt non-adjusted realized volatility

standardized returns. The hypothesis of normality is rejected for eighteen stocks at the 5% level

using the simple method and twenty stocks using the sequential procedure, compared to twenty-

one stocks for the non-adjusted returns. Similarly, at the 1% level, ten and twelve stocks reject

for the jump-adjusted returns, while twelve stocks reject for the unadjusted returns.

Although jumps appear important and, according to Section 5.1, account for about a third of

the return variation on jump days, adjusting for jumps fails to restore normality to the standard-

ized returns. One reason is that jumps largely self-standardize: a large jump tends to inate the

(absolute) value of both the return (numerator) and the realized volatility (denominator) of stan-

dardized returns, so the impact is muted. Thus, even if jumps impact the raw return distribution

signi�cantly they exert much less inuence on the realized volatility standardized distribution.

In sum, the remaining, still appreciable, deviations from normality likely stem from a di�erent

source. One potential factor is systematic dependencies between the numerator and denominator

of the standardized returns as indicated in Section 2.3. Moreover, the empirical correlation-based

measures discussed in Section 5.2 also suggest that a leverage type e�ect may be at work. To

explore this possibility, we now consider the properties of jump-adjusted standardized returns

sampled in �nancial-time, i.e., equal increments of integrated volatility.

6.5 Jump-Adjusted Financial-Time Standardized Returns

If realized daily integrated volatility conveys information about the corresponding daily returns,

or vice versa, as implied by the leverage and volatility feedback e�ects, discretely sampled re-

turns from a di�usive process, standardized by integrated volatility, are generally not Gaussian.

However, as discussed in Section 2.3, the dependence between the numerator and denominator of

the standardized returns may be broken by sampling in so-called event, or �nancial, time. The

new sequential jump-adjustment procedure, which identi�es the timing of the jumps within the

day, permits the construction of such �nancial-time returns by accumulating the jump-adjusted

intra-day returns until they span identical increments of the CV St process, but time-varying

calendar-time intervals. To compute R̂�k in practice, we include intraday returns until the cu-

mulative squared returns exceeds ��; i.e., the average daily (when �� = E(CV St)) respectively

weekly (�� = 5E(CV St)) realized volatility in calendar time. Importantly, only non-jump re-

turns as identi�ed by the sequential jump detection scheme were included, since the simple

jump-adjustment method does not identify the timing of all jumps and so is less appropriate for

this purpose.

The second to last row of Table 5, labeled R̂�k=
p
E(CV St), reports results from applying the

moment-based tests to jump-adjusted �nancial time returns where, for ease of comparison, the

�nancial time unit is calibrated to an average trading day; i.e., �� = E(CV St). Interestingly,
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the move to �nancial-time sampling results in a marked reduction in the number of stocks for

which normality is rejected, with only six (�ve for demeaned returns) stocks now being signi�-

cantly non-Gaussian at the 1% level. The quality of the approximation a�orded by the normal

distribution is also evident from the density and QQ-plots in Figures A14 and A15 in the supple-

mentary appendix which, except for a few stocks, display a remarkably close coherence between

the empirical and theoretical distributions.

Comparing the test results for leverage and volatility feedback e�ects for each stock in Table

A5 with the normality tests in Table A6, there is generally also a close association between

the signi�cance of the former and the strength of the \normality gains" obtained by moving to

�nancial-time sampling. For instance, for IBM the leverage and volatility feedback e�ects are

both signi�cant, and consequently normality of the standardized return series in calendar time

is rejected at the 5% level, while the p-value for the normality test for the one-day �nancial-time

returns is 0.316. Conversely, for JPM, one of only two stocks for which normality of one-day

returns is rejected at the 5% level in �nancial but not calendar time, the leverage e�ect appears

insigni�cant and the volatility feedback e�ect is only marginally signi�cant at the 10% level.

The CV St series used to construct the �nancial-time scale often varies considerably over the

sample. Consequently, some \one-day" observations span intra-day returns over several calendar

days while others are based on the sum of only a few squared 5-minute returns. In the latter

case, the asymptotic theory, for the number of intraday returns approaching in�nity, provides

a poor approximation. Hence, the last row of Table 5, labeled R̂�5k;5=
p
5E(CV St), reports on

normality test applied to returns spanning one �nancial \week," or �ve average \days;" i.e.,

�� = 5E(CV St). Remarkably, normality for this longer return horizon, but shorter time series,

is now rejected at the 1% level for only three (two for demeaned returns) stocks.30

To highlight the improved accuracy of the normal approximation a�orded by the sequential

distributional adjustments, Figure 3 plots the p-values for the tests for each stock and return

transformation underlying Table 5. If these distributions are Gaussian and the individual tests

independent, the p-values should be distributed uniformly on the unit interval. The raw and

GARCH standardized daily return series invariably have p-values of zero, as indicated by the

single point on the plot. Standardizing the returns by the realized volatilities improves the picture,

but all p-values remain below 0.25, and the results for the standardized jump-adjusted returns do

not fare any better. In contrast, the p-values for the \daily" and \weekly" �nancial-time returns

appear close to uniformly distributed. Thus, the p-value plots further support the hypothesis that

by moving to �nancial time normality of the (jump-adjusted) returns is restored. It is consistent

with the notion that stock prices may be thought of as discretely sampled observations from

a continuous-time jump-di�usion model, while also underscoring the impact of leverage and/or

30Of course, the power of the tests based on fewer longer horizon returns is likely lower. However, we also

studied the distribution of the standardized returns over longer calendar time periods, and did not observe a

similar dramatic reduction in the number of rejections. These results are available upon request.
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Figure 3: p-values for the 30 DJIA stocks, Jan. 1998 - Dec. 2002, 5-minute sampling
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volatility feedback e�ects.

6.6 Alternative Sampling Frequencies

Our empirical results hinge on the use of high-frequency data for construction of reliable realized

variation measures and associated jump detection and �nancial-time sampling schemes. In par-

ticular, the volatility signature plots introduced in Section 4.2 guided our selection of a 5-minute

sampling frequency. To con�rm that a sampling frequency in this range provides a reasonable

trade-o� between the preference for �nely sampled returns and avoiding market microstructure

contamination, we applied the same distributional tests to series based on both more and less

frequently sampled intra-day returns.

Figure 4 reports p-values for the di�erent return transformations based on a coarser 30-minute

sampling frequency, corresponding to the right-most points in the median volatility signature plot

in Figure 1. Under ideal conditions, the realized volatility measures and jump detection tests

based on \only" M = 13 half-hourly intra-day observations are subject to much larger mea-

surement errors than the 5-minute based measures and tests. This e�ect manifests itself in a

noticeable deterioration in the dispersion of the p-values for the realized volatility standardized

returns, which are now visible less consistent with a uniform distribution. Meanwhile, the distri-

bution of the p-values for the �nancial-time returns, and the \5-day" returns in particular, still

appear fairly close to uniform.

At the other end of the spectrum, Figure 5 displays p-values obtained using �nely sampled
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Figure 4: p-values for the 30 DJIA stocks, Jan. 1998 - Dec. 2002, 30-minute sampling
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30-second returns; i.e., M = 780. This corresponds to the point in Figure 1 where the slope of

the signature plots for the average realized volatility and bipower variation measures begin to

diverge. A marked deterioration in the dispersion of the p-values for the �nancial-time returns is

now apparent. The contaminating inuences from the market microstructure \noise" overwhelm

the signal in the realized variation measures. Not surprisingly, direct investigation of this very

high-frequency series (not reported here) reveals dramatic violations of the basic arbitrage-free

semi-martingale assumption for the price process.

In sum, the 5-minute sampling frequency appears to be a reasonable choice for eliciting

distributional information from the high-frequency data within this context.31

7 Concluding Remarks

We show how high-frequency intra-day data can be used to construct simple non-parametric

realized variation measures and test statistics which shed light on the nature of daily or lower

frequency return distributions. Each step in our sequential test procedure speaks directly to

important qualitative features of the underlying return generating process. As such, the tests

may serve as diagnostic tools in the speci�cation of empirically realistic continuous-time models.

31The minimum tick size on the NYSE was reduced to one cent on January 29, 2001. In the supplementary

appendix we provide summary conclusions for the more recent time period February 2001 through December 2004,

which mirror our more detailed empirical �ndings for the longer sample.
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Figure 5: p-values for the 30 DJIA stocks, Jan. 1998 - Dec. 2002, 30-second sampling
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In this regard, our empirical results for the set of DJIA stocks suggest that their price series may

be satisfactorily described as discretely sampled observations from a jump-di�usion model, but

only after allowing for leverage and/or volatility feedback e�ects.

Each step in the sequential procedure could be extended in a number of directions. As dis-

cussed, several recent studies argue for the use of new multi-scale or kernel-based realized volatility

measures for more accurately measuring the true latent return variation, e.g., Bandi & Russell

(2007), Hansen & Lunde (2006), Barndor�-Nielsen et al. (2008), and Ait-Sahalia et al. (2005).

Also, while the use of daily realized volatility measures conveniently circumvents complications

associated with the strong intra-day volatility patterns, e.g., Andersen & Bollerslev (1998b), the

�nancial-time scale will invariably span di�erent periods of the day, and it may prove bene�cial to

explicitly control for this feature. Moreover, a number of alternative jump detection procedures

have recently been proposed, e.g., Jiang & Oomen (2005) and Mancini (2005), and it would be

interesting to compare and contrast the results obtained here to such alternative schemes.

It may also be informative to relate price jumps to news arrivals, either in the form of company

speci�c news, e.g., Johannes (2004), or macroeconomic announcements, e.g., Andersen, Bollerslev,

Diebold & Vega (2003). Similarly, it might prove instructive to associate the �nancial-time scale

de�ned by realized volatility to observable economic activity variables within the context of the

MDH, e.g., Ane & Geman (2000) and Luu & Martens (2003). From the reverse perspective,

given that our realized volatility and jump transformations have a sound foundation in theory

and appear to outperform prior MDH style models for the return distribution on the empirical
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dimension, it may be useful for MDH style models to relate their candidate economic mixing

variables to the di�usive and jump return variation components estimated here.

Another interesting question relates to the possible extension of the distributional results and

test statistics derived here to a multivariate setting. Although the notion of realized covariation

may be de�ned straightforwardly, practical issues related to the non-synchronicity of multiple

high-frequency price series looms large, e.g., de Pooter, Martens & van Dijk (2008). The mul-

tivariate extension also presents challenges from a theoretical perspective in terms of the time

deformation required to simultaneously guard against leverage and/or volatility feedback e�ects

across multiple assets, e.g., Ploberger (2005).

Last but not least, it is of interest to directly explore the usefulness of the return transfor-

mations and decompositions developed here for value-at-risk type calculations, volatility timing,

and other related �nancial decisions, e.g., Fleming, Kirby & Ostdiek (2003).
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Supplementary Appendix

Appendix A: Detailed Tables and Figures

Table A1: DJIA Stocks
Ticker symbol Company

AA Alcoa Inc.

AXP American Express Co.

BA Boeing Co.

C Citigroup Inc.

CAT Caterpillar Inc.

DD E.I. DuPont de nemours & Co.

DIS Walt Disney Co.

EK Eastman Kodak Co.

GE General Electric Co.

GM General Motors Corp.

HD Home Depot Inc.

HON Honeywell International Inc.

HPQ Hewlett-Packard Co.

IBM International Business Machines Corp.

INTC Intel Corp.

IP International Paper Co.

JNJ Johnson & Johnson

JPM JPMorgan Chase & Co.

KO Coca-Cola Co.

MCD McDonalds Corp.

MMM 3M Co.

MO Philip Morris Cos.

MRK Merck & Co. Inc.

MSFT Microsoft Corp.

PG Procter & Gamble Co.

SBC SBC Communications Inc.

T AT&T Corp.

UTX United Technologies Corp.

WMT Wal-mart Stores Inc.

XOM Exxon Mobil Corp.
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Table A2: Jump Statistics - Simple Method
Rel. jump contribution Mean size of jump Mean size of

Ticker Mean duration JVt=RVt component (�10,000) actual jumps (%)

AA 4.6270 0.0640 1.1124 0.9585

AXP 7.6503 0.0354 1.5130 1.0419

BA 4.7786 0.0609 1.1738 1.0030

C 6.8022 0.0421 1.7782 1.1129

CAT 4.9524 0.0577 1.2022 1.0292

DD 7.1782 0.0373 1.1006 0.9871

DIS 4.9133 0.0615 1.5087 1.0842

EK 4.2990 0.0679 1.0711 0.9446

GE 10.0976 0.0256 1.0117 0.9172

GM 5.2661 0.0553 0.8704 0.8398

HD 6.3503 0.0449 1.3689 1.0559

HON 4.1325 0.0716 1.2323 0.9825

HPQ 6.2923 0.0434 2.0825 1.3121

IBM 8.9429 0.0296 1.2891 0.9332

INTC 8.3557 0.0323 1.8501 1.2570

IP 5.1975 0.0553 1.2874 1.0673

JNJ 6.0680 0.0458 0.6247 0.7352

JPM 7.2069 0.0371 1.2865 1.0315

KO 5.8762 0.0469 0.7670 0.8189

MCD 4.9176 0.0594 0.9186 0.8942

MMM 5.4304 0.0503 0.8019 0.8301

MO 4.1940 0.0746 1.2886 0.9435

MRK 8.3758 0.0330 1.4525 0.9711

MSFT 6.6543 0.0411 1.2839 1.0321

PG 7.4083 0.0371 0.9408 0.8694

SBC 4.7778 0.0584 0.9903 0.9257

T 6.0197 0.0448 1.2514 1.0244

UTX 5.7569 0.0488 1.1999 0.9565

WMT 8.6276 0.0330 1.3469 1.0684

XOM 8.4527 0.0316 0.7529 0.8088

Note: The table reports the mean durations between jumps, the relative jump contributions to the total realized

variation, the mean size of the jump component (�10,000) on days of non-zero jumps, and the mean size in percent
of the square-root of the jump component (i.e. the absolute value of the actual jumps) on days of non-zero jumps.
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Table A3: Jump Statistics - Sequential Method
Rel. jump contribution Mean size of jump Mean size of

Ticker JV St=RVt component (�10,000) actual jumps (%)

AA 0.0498 0.9110 0.8965

AXP 0.0288 1.3529 1.0064

BA 0.0477 0.9933 0.9488

C 0.0349 1.6895 1.0507

CAT 0.0455 0.9816 1.0005

DD 0.0297 0.8888 0.9216

DIS 0.0461 1.2555 1.0201

EK 0.0532 0.9216 0.8844

GE 0.0212 0.8845 0.8616

GM 0.0464 0.7901 0.8007

HD 0.0350 1.1157 0.9818

HON 0.0566 1.0739 0.9494

HPQ 0.0354 1.8309 1.2464

IBM 0.0256 1.2385 0.9036

INTC 0.0240 1.3542 1.1379

IP 0.0432 1.0255 1.0082

JNJ 0.0359 0.5065 0.6828

JPM 0.0303 1.0900 0.9689

KO 0.0327 0.5474 0.7318

MCD 0.0438 0.7365 0.8536

MMM 0.0397 0.6832 0.7814

MO 0.0575 1.3316 0.9646

MRK 0.0277 1.3683 0.9507

MSFT 0.0317 1.1158 0.9763

PG 0.0302 0.8741 0.8306

SBC 0.0448 0.8432 0.8908

T 0.0357 1.0333 0.9563

UTX 0.0375 1.0344 0.8970

WMT 0.0255 1.1120 1.0057

XOM 0.0233 0.5973 0.7362

Note: The table reports the relative jump contributions to the total realized variation, the mean size of the jump

component (�10,000) on days of non-zero jumps, and the mean size in percent of the absolute value of the actual
jumps.
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Table A4: Simple and Sequential Jumps Correlations
Ticker Correlation RMSE Theil's U

AA 0.9592 0.0048 0.2566

AXP 0.9940 0.0051 0.1086

BA 0.9171 0.0049 0.3014

C 0.9764 0.0105 0.2409

CAT 0.9421 0.0042 0.2621

DD 0.9118 0.0043 0.3012

DIS 0.9833 0.0062 0.1823

EK 0.9450 0.0046 0.2856

GE 0.9213 0.0048 0.3180

GM 0.9486 0.0049 0.3417

HD 0.9595 0.0058 0.2524

HON 0.9643 0.0063 0.2669

HPQ 0.9636 0.0069 0.2212

IBM 0.9941 0.0062 0.1381

INTC 0.9112 0.0084 0.3404

IP 0.9219 0.0051 0.2975

JNJ 0.9146 0.0030 0.3302

JPM 0.9399 0.0050 0.2697

KO 0.9389 0.0032 0.3142

MCD 0.9532 0.0034 0.2759

MMM 0.9075 0.0042 0.3857

MO 0.9927 0.0200 0.4912

MRK 0.9928 0.0055 0.1264

MSFT 0.9597 0.0124 0.5508

PG 0.9439 0.0079 0.4760

SBC 0.9285 0.0044 0.3344

T 0.8987 0.0064 0.3512

UTX 0.9945 0.0056 0.1670

WMT 0.8722 0.0078 0.4176

XOM 0.9005 0.0039 0.3905

Note: The table reports the correlation, the root mean squared error (RMSE), and Theil's U statistic for the two

jump component series based on the simple and sequential jumps identi�cation schemes. Observations where both

series are zero have been removed.
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Table A5: Leverage and Volatility Feedback E�ect Estimates
Ticker Leverage Feedback p-value

AA 0.0053 (0.0013) 0.0100 (0.0025) 0.600

AXP -0.0306c (-0.0059) 0.0068 (0.0017) 0.001

BA -0.0104 (-0.0026) -0.0069 (-0.0011) 0.716

C -0.0025a (-0.0049) 0.0109 (0.0024) 0.020

CAT 0.0029 (0.0009) 0.0088 (0.0023) 0.481

DD -0.0119b (-0.0032) 0.0140b (0.0038) 0.001

DIS 0.0050 (0.0007) 0.0217c (0.0046) 0.154

EK -0.0121 (-0.0031) -0.0006 (-0.0001) 0.316

GE -0.0222c (-0.0058) 0.0045 (0.0015) 0.004

GM -0.0192c (-0.0060) -0.0010 (0.0003) 0.038

HD -0.0357c (-0.0069) 0.0016 (0.0006) 0.005

HON -0.0461c (-0.0092) -0.0098 (-0.0016) 0.019

HPQ -0.0192a (-0.0026) 0.0163a (0.0029) 0.034

IBM -0.0253c (-0.0068) 0.0102b (0.0025) 0.000

INTC -0.0560c (-0.0075) 0.0098 (0.0058) 0.000

IP -0.0097a (-0.0019) 0.0095a (0.0020) 0.047

JNJ -0.0021 (-0.0011) 0.0139c (0.0058) 0.010

JPM -0.0046 (-0.0008) 0.0226a (0.0045) 0.145

KO -0.0064a (-0.0022) 0.0051 (0.0023) 0.041

MCD -0.0184b (-0.0051) 0.0065 (0.0019) 0.009

MMM -0.0051 (-0.0015) 0.0041 (0.0016) 0.162

MO -0.0294c (-0.0082) -0.0155 (-0.0041) 0.214

MRK -0.0083a (-0.0029) 0.0162c (0.0047) 0.001

MSFT -0.0294c (-0.0064) 0.0103 (0.0026) 0.000

PG -0.0145c (-0.0046) -0.0044 (-0.0012) 0.227

SBC -0.0199b (-0.0045) 0.0139b (0.0030) 0.001

T 0.0039 (0.0007) 0.0163b (0.0039) 0.279

UTX -0.0309c (-0.0075) 0.0078 (0.0022) 0.000

WMT -0.0364c (-0.0083) 0.0165b (0.0039) 0.000

XOM -0.0121a (-0.0046) 0.0092a (0.0037) 0.000

SP500 -0.0126c (-0.0081) 0.0063a (0.0042) 0.000

Note: The two main columns report the leverage and volatility feedback e�ect estimates based on the (average)

cross-covariances (multiplied by 105), as described in the main text of the paper. The superscripts a, b, and c refer

to signi�cance at the 10%, 5%, and 1% levels, respectively. The numbers in parentheses give the corresponding

(average) cross-covariances. The last column reports the p-values for the test for signi�cant di�erences in the

mean leverage and volatility feedback e�ects for each of the stocks calculated on the basis of an autocorrelation

heteroskedasticity consistent robust covariance matrix estimator.
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Table A6: Normality Tests for Stocks AA, AXP, BA, C and CAT
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjoint pjoint-dm

AA

Rt=
p
V ar(Rt) -0.0013 0.9622 0.9992 0.9841 0.5293 0.0000 5.0647 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0057 0.8397 0.9850 0.7069 0.4797 0.0000 4.8573 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0341 0.2266 1.1737 0.0000 0.1284 0.2403 3.6360 0.0101 0.0000 0.0000

~Rt=
p
CVt -0.0443 0.1164 1.2119 0.0000 0.0079 0.9425 3.9528 0.0002 0.0000 0.0000

R̂t=
p
CV St -0.0437 0.1220 1.1792 0.0000 0.0265 0.8083 3.7326 0.0035 0.0000 0.0000

R̂�k=
p
E(CV St) -0.0027 0.9267 1.2058 0.0000 -0.0180 0.8718 3.9207 0.0002 0.0000 0.0000

R̂�5k;5=
p
5E(CV St) -0.0130 0.8382 1.1577 0.0791 0.2327 0.3441 4.0151 0.0951 0.1689 0.1601

AXP

Rt=
p
V ar(Rt) -0.0066 0.8146 0.9992 0.9850 -0.0503 0.6452 4.5829 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0046 0.8702 0.9786 0.5923 -0.0199 0.8556 3.7047 0.0048 0.0000 0.0000

Rt=
p
RVt 0.0044 0.8754 1.0505 0.2059 0.1571 0.1508 2.9843 0.8302 0.0407 0.0381

~Rt=
p
CVt -0.0065 0.8167 1.0770 0.0537 0.1512 0.1667 3.2073 0.3073 0.0150 0.0090

R̂t=
p
CV St -0.0034 0.9035 1.0523 0.1901 0.1580 0.1483 3.0090 0.7613 0.0221 0.0169

R̂�k=
p
E(CV St) -0.0200 0.4913 1.0319 0.4369 -0.0428 0.7040 2.6373 0.4606 0.0224 0.0279

R̂�5k;5=
p
5E(CV St) -0.0443 0.4867 0.9613 0.6674 -0.1169 0.6353 2.4566 0.4075 0.8081 0.8913

BA

Rt=
p
V ar(Rt) 0.0371 0.1891 1.0006 0.9885 0.1010 0.3557 4.6790 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0425 0.1326 0.9963 0.9256 0.1154 0.2912 4.5216 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0525 0.0628 0.9298 0.0785 0.1592 0.1453 2.3603 0.0412 0.0766 0.2485

~Rt=
p
CVt 0.0275 0.3293 0.9560 0.2703 0.1140 0.2971 2.4674 0.0980 0.2610 0.3446

R̂t=
p
CV St 0.0257 0.3622 0.9314 0.0858 0.0923 0.3987 2.3550 0.0393 0.1953 0.2531

R̂�k=
p
E(CV St) 0.0204 0.4804 0.9978 0.9579 0.0235 0.8341 2.5910 0.3267 0.2308 0.2818

R̂�5k;5=
p
5E(CV St) 0.0462 0.4672 1.0880 0.3273 0.3087 0.2094 4.0264 0.0914 0.2088 0.3119

C

Rt=
p
V ar(Rt) -0.0428 0.1312 1.0010 0.9795 0.1364 0.2148 7.6305 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0143 0.6144 1.0000 0.9991 -0.1776 0.1062 4.3208 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0356 0.2099 0.8387 0.0001 -0.0044 0.9683 1.8834 0.0002 0.0002 0.0008

~Rt=
p
CVt -0.0372 0.1902 0.8452 0.0001 -0.0427 0.6978 1.9754 0.0006 0.0010 0.0026

R̂t=
p
CV St -0.0360 0.2053 0.8352 0.0000 -0.0258 0.8148 1.9262 0.0003 0.0003 0.0009

R̂�k=
p
E(CV St) -0.0388 0.1837 0.9479 0.2073 -0.1099 0.3318 2.5854 0.3694 0.4688 0.7554

R̂�5k;5=
p
5E(CV St) -0.0894 0.1619 0.8692 0.1478 -0.2372 0.3378 1.7745 0.0569 0.1917 0.3617

CAT

Rt=
p
V ar(Rt) -0.0446 0.1142 1.0012 0.9762 0.0645 0.5549 4.0521 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0497 0.0780 0.9981 0.9615 -0.0485 0.6574 3.6947 0.0054 0.0000 0.0000

Rt=
p
RVt -0.0577 0.0410 1.0267 0.5042 -0.0518 0.6355 3.0050 0.7724 0.0851 0.3906

~Rt=
p
CVt -0.0600 0.0335 1.0584 0.1436 -0.1223 0.2633 3.2897 0.1873 0.1130 0.5326

R̂t=
p
CV St -0.0569 0.0437 1.0189 0.6361 -0.0663 0.5444 2.9537 0.9173 0.1323 0.5491

R̂�k=
p
E(CV St) -0.0448 0.1202 1.0800 0.0497 -0.1163 0.2973 3.1881 0.2627 0.1028 0.2704

R̂�5k;5=
p
5E(CV St) -0.0953 0.1334 1.1518 0.0909 -0.0119 0.9615 3.9204 0.1301 0.0805 0.1328

41



Table A6 cont.: Normality Tests for Stocks DD, DIS, EK, GE and GM
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjoint pjoint-dm

DD

Rt=
p
V ar(Rt) 0.0128 0.6494 0.9994 0.9874 0.3109 0.0045 4.7612 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0121 0.6689 0.9857 0.7196 0.3195 0.0035 4.4075 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0027 0.9240 0.9331 0.0939 0.2061 0.0594 2.5258 0.1489 0.0162 0.0142

~Rt=
p
CVt -0.0084 0.7664 0.9427 0.1510 0.1648 0.1317 2.5471 0.1718 0.0289 0.0276

R̂t=
p
CV St -0.0033 0.9063 0.9268 0.0666 0.1851 0.0904 2.4567 0.0904 0.0136 0.0123

R̂�k=
p
E(CV St) 0.0033 0.9082 1.0575 0.1592 0.2148 0.0546 3.2094 0.2415 0.0167 0.0178

R̂�5k;5=
p
5E(CV St) 0.0162 0.7988 0.9712 0.7476 0.0138 0.9552 2.4606 0.4049 0.8179 0.8327

DIS

Rt=
p
V ar(Rt) -0.0134 0.6343 0.9994 0.9877 0.0768 0.4822 4.3863 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0187 0.5069 0.9867 0.7398 -0.0446 0.6832 4.3731 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0327 0.2467 0.9044 0.0166 -0.0233 0.8311 2.1274 0.0039 0.0129 0.0204

~Rt=
p
CVt -0.0403 0.1531 0.9302 0.0802 -0.1135 0.2993 2.4743 0.1032 0.2484 0.3698

R̂t=
p
CV St -0.0345 0.2222 0.8799 0.0026 -0.0664 0.5434 2.0933 0.0026 0.0136 0.0196

R̂�k=
p
E(CV St) -0.0148 0.6091 0.9725 0.5010 -0.0378 0.7360 2.5674 0.3036 0.7230 0.7694

R̂�5k;5=
p
5E(CV St) -0.0282 0.6580 0.9663 0.7083 0.0606 0.8057 2.6918 0.6500 0.8602 0.9000

EK

Rt=
p
V ar(Rt) -0.0581 0.0396 1.0026 0.9485 -0.5582 0.0000 8.1642 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0681 0.0159 1.0004 0.9914 -0.6332 0.0000 8.5247 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0810 0.0041 0.8478 0.0001 -0.0769 0.4820 2.0331 0.0013 0.0000 0.0003

~Rt=
p
CVt -0.0699 0.0132 0.8939 0.0078 -0.0800 0.4642 2.3318 0.0320 0.0018 0.0207

R̂t=
p
CV St -0.0716 0.0112 0.8622 0.0006 -0.0662 0.5446 2.1187 0.0036 0.0001 0.0016

R̂�k=
p
E(CV St) -0.0400 0.1695 1.0713 0.0831 -0.0301 0.7894 3.0523 0.4566 0.0593 0.1205

R̂�5k;5=
p
5E(CV St) -0.1043 0.1012 1.0342 0.7042 -0.2700 0.2732 2.6607 0.6184 0.2132 0.5777

GE

Rt=
p
V ar(Rt) -0.0099 0.7260 0.9993 0.9860 0.1136 0.2987 4.6779 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0212 0.4528 0.9906 0.8132 -0.1219 0.2650 4.0252 0.0001 0.0000 0.0000

Rt=
p
RVt 0.0048 0.8660 1.0031 0.9372 0.1630 0.1361 2.7449 0.5150 0.0989 0.0890

~Rt=
p
CVt -0.0044 0.8761 0.9965 0.9304 0.1303 0.2333 2.7468 0.5195 0.1664 0.1403

R̂t=
p
CV St -0.0025 0.9294 0.9894 0.7909 0.1370 0.2100 2.7114 0.4400 0.1648 0.1407

R̂�k=
p
E(CV St) -0.0209 0.4689 0.9391 0.1362 -0.0616 0.5824 2.3854 0.0979 0.3916 0.4587

R̂�5k;5=
p
5E(CV St) -0.0381 0.5482 1.0155 0.8628 -0.1877 0.4454 3.3306 0.5657 0.8414 0.9147

GM

Rt=
p
V ar(Rt) -0.0614 0.0297 1.0030 0.9407 -0.1011 0.3552 3.9479 0.0002 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0581 0.0397 0.9767 0.5590 -0.0417 0.7030 3.5313 0.0284 0.0000 0.0000

Rt=
p
RVt -0.0791 0.0051 1.2509 0.0000 -0.1396 0.2016 4.1136 0.0000 0.0000 0.0000

~Rt=
p
CVt -0.0833 0.0032 1.2700 0.0000 -0.1875 0.0864 4.2958 0.0000 0.0000 0.0000

R̂t=
p
CV St -0.0840 0.0029 1.2457 0.0000 -0.1688 0.1227 4.1078 0.0000 0.0000 0.0000

R̂�k=
p
E(CV St) -0.0719 0.0134 1.3383 0.0000 -0.3245 0.0040 4.8491 0.0000 0.0000 0.0000

R̂�5k;5=
p
5E(CV St) -0.1591 0.0124 1.2387 0.0080 -0.5198 0.0349 4.3316 0.0296 0.0091 0.2074

42



Table A6 cont.: Normality Tests for Stocks HD, HON, HPQ, IBM and INTC
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjoint pjoint-dm

HD

Rt=
p
V ar(Rt) -0.0406 0.1507 1.0008 0.9830 0.1111 0.3095 4.7731 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0412 0.1447 0.9741 0.5164 0.0604 0.5809 4.0722 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0316 0.2636 1.0089 0.8226 0.0387 0.7235 2.6000 0.2400 0.0057 0.0114

~Rt=
p
CVt -0.0309 0.2742 1.0308 0.4408 0.0216 0.8432 2.6636 0.3446 0.0017 0.0030

R̂t=
p
CV St -0.0299 0.2891 1.0060 0.8800 0.0283 0.7960 2.5488 0.1738 0.0041 0.0078

R̂�k=
p
E(CV St) -0.0427 0.1401 1.0682 0.0959 -0.1459 0.1935 2.9087 0.8334 0.0155 0.0417

R̂�5k;5=
p
5E(CV St) -0.0874 0.1695 0.9910 0.9206 -0.1653 0.5025 2.6876 0.6504 0.5803 0.9337

HON

Rt=
p
V ar(Rt) -0.0322 0.2538 1.0002 0.9952 -0.6711 0.0000 8.4935 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0283 0.3159 0.9976 0.9528 -0.5925 0.0000 7.9188 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0103 0.7150 1.0808 0.0429 0.0248 0.8203 3.3133 0.1604 0.2441 0.1195

~Rt=
p
CVt -0.0264 0.3492 1.1132 0.0046 0.0079 0.9421 3.5644 0.0208 0.0272 0.0124

R̂t=
p
CV St -0.0281 0.3197 1.0672 0.0921 0.0261 0.8110 3.2504 0.2393 0.1409 0.0986

R̂�k=
p
E(CV St) -0.0463 0.1139 1.1051 0.0112 -0.2398 0.0346 3.3114 0.0997 0.0111 0.0487

R̂�5k;5=
p
5E(CV St) -0.1045 0.1013 1.1420 0.1153 -0.2887 0.2423 4.5269 0.0128 0.0272 0.0785

HPQ

Rt=
p
V ar(Rt) 0.0074 0.7925 0.9993 0.9852 0.2672 0.0147 4.6537 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0075 0.7894 0.9824 0.6603 0.2907 0.0079 4.7255 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0095 0.7366 1.0486 0.2242 0.1043 0.3406 2.8920 0.9052 0.0539 0.0550

~Rt=
p
CVt 0.0063 0.8229 1.0356 0.3737 0.0939 0.3907 2.8250 0.7181 0.0847 0.0841

R̂t=
p
CV St 0.0063 0.8226 1.0288 0.4712 0.1018 0.3523 2.7767 0.5922 0.0720 0.0710

R̂�k=
p
E(CV St) 0.0020 0.9451 1.0117 0.7764 -0.0787 0.4863 2.8148 0.9066 0.6575 0.6568

R̂�5k;5=
p
5E(CV St) 0.0179 0.7788 1.0161 0.8586 0.0313 0.8993 3.1704 0.7510 0.9928 0.9963

IBM

Rt=
p
V ar(Rt) -0.0114 0.6869 0.9993 0.9867 0.0767 0.4829 4.8981 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0179 0.5262 0.9728 0.4953 -0.0010 0.9924 4.3591 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0130 0.6439 1.0219 0.5839 0.0935 0.3924 2.7572 0.5441 0.0373 0.0442

~Rt=
p
CVt -0.0213 0.4511 1.0293 0.4635 0.0880 0.4207 2.8093 0.6758 0.0202 0.0289

R̂t=
p
CV St -0.0246 0.3841 1.0203 0.6114 0.0751 0.4922 2.7644 0.5615 0.0256 0.0413

R̂�k=
p
E(CV St) -0.0290 0.3157 1.0398 0.3305 -0.0279 0.8033 2.9176 0.8583 0.3157 0.4444

R̂�5k;5=
p
5E(CV St) -0.0598 0.3465 1.0529 0.5557 -0.1811 0.4615 2.6768 0.6298 0.2499 0.3487

INTC

Rt=
p
V ar(Rt) -0.0202 0.4739 0.9996 0.9922 -0.0093 0.9323 4.0023 0.0001 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0231 0.4130 0.9845 0.6982 -0.0886 0.4180 3.7339 0.0035 0.0000 0.0000

Rt=
p
RVt 0.0053 0.8513 1.1430 0.0003 0.1922 0.0789 3.5605 0.0216 0.0001 0.0000

~Rt=
p
CVt 0.0026 0.9271 1.1446 0.0003 0.1675 0.1256 3.6386 0.0099 0.0004 0.0001

R̂t=
p
CV St 0.0020 0.9441 1.1278 0.0014 0.1687 0.1230 3.5182 0.0320 0.0012 0.0003

R̂�k=
p
E(CV St) -0.0268 0.3517 0.9848 0.7090 -0.0299 0.7885 2.8718 0.9843 0.7160 0.8494

R̂�5k;5=
p
5E(CV St) -0.0560 0.3778 0.9747 0.7778 -0.1426 0.5619 2.9095 0.9156 0.9157 0.9950
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Table A6 cont.: Normality Tests for Stocks IP, JNJ, JPM, KO and MCD
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjoint pjoint-dm

IP

Rt=
p
V ar(Rt) -0.0640 0.0234 1.0033 0.9342 0.1503 0.1692 4.0798 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0712 0.0116 0.9805 0.6258 -0.0312 0.7753 3.4195 0.0738 0.0000 0.0000

Rt=
p
RVt -0.0681 0.0159 0.9353 0.1048 -0.0299 0.7842 2.3500 0.0376 0.0012 0.0289

~Rt=
p
CVt -0.0618 0.0285 0.9507 0.2170 -0.0537 0.6235 2.5235 0.1466 0.0253 0.2135

R̂t=
p
CV St -0.0614 0.0296 0.9326 0.0915 -0.0249 0.8196 2.4044 0.0598 0.0058 0.0630

R̂�k=
p
E(CV St) -0.0582 0.0432 1.0930 0.0224 -0.1657 0.1375 3.1792 0.2819 0.0124 0.0784

R̂�5k;5=
p
5E(CV St) -0.1275 0.0451 0.9547 0.6146 -0.0964 0.6956 2.6639 0.6133 0.1028 0.4712

JNJ

Rt=
p
V ar(Rt) 0.0474 0.0935 1.0014 0.9711 0.2218 0.0425 4.9252 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0437 0.1212 0.9700 0.4521 0.1934 0.0769 3.9416 0.0002 0.0000 0.0000

Rt=
p
RVt 0.0377 0.1822 0.8962 0.0093 0.1591 0.1457 2.2501 0.0147 0.0438 0.0585

~Rt=
p
CVt 0.0408 0.1483 0.9067 0.0195 0.1336 0.2218 2.2819 0.0201 0.0716 0.1152

R̂t=
p
CV St 0.0428 0.1299 0.8873 0.0048 0.1471 0.1786 2.1953 0.0083 0.0246 0.0422

R̂�k=
p
E(CV St) 0.0491 0.0899 0.9623 0.3574 0.1610 0.1511 2.6513 0.4793 0.4196 0.8894

R̂�5k;5=
p
5E(CV St) 0.1142 0.0720 0.8504 0.0956 -0.1225 0.6183 2.4421 0.3931 0.0023 0.0074

JPM

Rt=
p
V ar(Rt) -0.0056 0.8432 0.9992 0.9847 0.7355 0.0000 11.2179 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0199 0.6124 1.0000 0.9995 0.1088 0.3196 5.3609 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0325 0.2496 1.0485 0.2245 0.0194 0.8595 2.9310 0.9826 0.0298 0.0387

~Rt=
p
CVt -0.0405 0.1512 1.0464 0.2451 -0.0314 0.7743 2.9548 0.9142 0.0647 0.1138

R̂t=
p
CV St -0.0428 0.1297 1.0365 0.3610 -0.0294 0.7877 2.8893 0.8973 0.0563 0.1161

R̂�k=
p
E(CV St) -0.0169 0.5647 1.0779 0.0600 0.0076 0.9468 2.9587 0.6735 0.0227 0.0262

R̂�5k;5=
p
5E(CV St) -0.0340 0.5927 0.9949 0.9544 -0.2541 0.3025 2.5178 0.4813 0.5261 0.5426

KO

Rt=
p
V ar(Rt) 0.0663 0.0187 1.0036 0.9280 0.1896 0.0828 5.4486 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0751 0.0078 0.9858 0.7227 0.3347 0.0022 4.3434 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0728 0.0099 0.9523 0.2321 0.3366 0.0021 2.6987 0.4133 0.0185 0.2096

~Rt=
p
CVt 0.0680 0.0161 1.0171 0.6677 0.3294 0.0026 3.1288 0.4611 0.0299 0.4278

R̂t=
p
CV St 0.0699 0.0132 0.9797 0.6112 0.3332 0.0023 2.9020 0.9337 0.0283 0.3411

R̂�k=
p
E(CV St) 0.0639 0.0269 1.0097 0.8121 0.1062 0.3419 2.9687 0.7280 0.1642 0.7194

R̂�5k;5=
p
5E(CV St) 0.1351 0.0334 1.0268 0.7656 0.3613 0.1418 3.0198 0.9451 0.3049 0.9950

MCD

Rt=
p
V ar(Rt) 0.0407 0.1491 1.0009 0.9828 -0.1446 0.1860 6.7429 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0375 0.1839 1.0004 0.9926 -0.3083 0.0048 6.8464 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0404 0.1523 0.8683 0.0010 0.1263 0.2479 2.1399 0.0045 0.0093 0.0194

~Rt=
p
CVt 0.0402 0.1544 0.9257 0.0626 0.1251 0.2524 2.4848 0.1115 0.2260 0.4304

R̂t=
p
CV St 0.0416 0.1403 0.8724 0.0014 0.1206 0.2701 2.1587 0.0056 0.0119 0.0268

R̂�k=
p
E(CV St) 0.0544 0.1784 0.9981 0.9734 0.0958 0.5404 2.9946 0.8758 0.6577 0.9480

R̂�5k;5=
p
5E(CV St) 0.0984 0.1214 0.9611 0.6649 0.3320 0.1770 2.5952 0.5409 0.5736 0.9487
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Table A6 cont.: Normality Tests for Stocks MM, MO, MRK, MSFT and PG
Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjoint pjoint-dm

MMM

Rt=
p
V ar(Rt) 0.0077 0.7839 0.9993 0.9853 0.2053 0.0604 4.4250 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0067 0.8124 0.9887 0.7762 0.1971 0.0714 4.3277 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0149 0.5971 0.8875 0.0048 -0.0340 0.7557 2.2041 0.0092 0.0621 0.0544

~Rt=
p
CVt -0.0114 0.6869 0.9085 0.0219 -0.0346 0.7515 2.3932 0.0545 0.2287 0.1896

R̂t=
p
CV St -0.0122 0.6644 0.8827 0.0033 -0.0574 0.5995 2.2169 0.0105 0.0527 0.0435

R̂�k=
p
E(CV St) 0.0123 0.6722 0.9797 0.6204 0.0361 0.7480 2.6082 0.3659 0.7641 0.7950

R̂�5k;5=
p
5E(CV St) 0.0299 0.6380 0.9974 0.9773 0.0111 0.9642 3.1362 0.7991 0.9366 0.9606

MO

Rt=
p
V ar(Rt) -0.0177 0.5318 0.9995 0.9903 -0.6655 0.0000 8.1469 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0105 0.7106 0.9678 0.4194 -0.5370 0.0000 7.6965 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0029 0.9194 1.1071 0.0073 0.0692 0.5270 3.2627 0.2221 0.0101 0.0063

~Rt=
p
CVt -0.0008 0.9770 1.1499 0.0002 0.0615 0.5737 3.5559 0.0225 0.0008 0.0003

R̂t=
p
CV St -0.0019 0.9455 1.1076 0.0070 0.0638 0.5596 3.2265 0.2757 0.0045 0.0020

R̂�k=
p
E(CV St) -0.0300 0.3075 1.1743 0.0000 -0.0593 0.6024 3.3800 0.0616 0.0000 0.0000

R̂�5k;5=
p
5E(CV St) -0.0608 0.3412 1.3292 0.0003 -0.3859 0.1189 4.9408 0.0016 0.0028 0.0071

MRK

Rt=
p
V ar(Rt) 0.0512 0.0696 1.0018 0.9635 0.1398 0.2010 5.4439 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0478 0.0902 0.9885 0.7725 -0.0053 0.9613 5.3820 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0536 0.0574 1.0176 0.6594 0.2851 0.0091 2.8277 0.7249 0.0368 0.1143

~Rt=
p
CVt 0.0568 0.0442 1.0077 0.8480 0.2912 0.0077 2.7697 0.5745 0.0350 0.1249

R̂t=
p
CV St 0.0528 0.0613 1.0042 0.9159 0.2870 0.0087 2.7653 0.5636 0.0432 0.1211

R̂�k=
p
E(CV St) 0.0510 0.0786 1.0194 0.6358 0.2046 0.0685 2.9420 0.7825 0.3787 0.9281

R̂�5k;5=
p
5E(CV St) 0.1167 0.0666 1.1426 0.1131 0.3620 0.1418 3.5580 0.3494 0.1555 0.5856

MSFT

Rt=
p
V ar(Rt) 0.0094 0.7383 0.9993 0.9858 0.2211 0.0432 3.8981 0.0004 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0066 0.8149 0.9916 0.8334 0.1651 0.1311 3.5600 0.0217 0.0000 0.0000

Rt=
p
RVt 0.0174 0.5389 1.1276 0.0014 0.1926 0.0782 3.2160 0.2930 0.0000 0.0000

~Rt=
p
CVt 0.0164 0.5619 1.1645 0.0000 0.1926 0.0783 3.5206 0.0313 0.0000 0.0000

R̂t=
p
CV St 0.0172 0.5418 1.1331 0.0009 0.1742 0.1112 3.3082 0.1660 0.0001 0.0001

R̂�k=
p
E(CV St) -0.0004 0.9878 1.0406 0.3204 0.1940 0.0826 3.1411 0.3434 0.0362 0.0366

R̂�5k;5=
p
5E(CV St) 0.0057 0.9282 1.0663 0.4602 0.1756 0.4751 3.3179 0.5828 0.7971 0.8004

PG

Rt=
p
V ar(Rt) 0.0809 0.0042 1.0057 0.8857 -0.0287 0.7927 6.4023 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0845 0.0028 0.9820 0.6521 -0.0651 0.5513 5.6220 0.0000 0.0000 0.0000

Rt=
p
RVt 0.1135 0.0001 0.8651 0.0007 0.3066 0.0050 2.1305 0.0041 0.0000 0.0044

~Rt=
p
CVt 0.1042 0.0002 0.8795 0.0025 0.2890 0.0082 2.1833 0.0073 0.0001 0.0162

R̂t=
p
CV St 0.1050 0.0002 0.8663 0.0008 0.2893 0.0081 2.1164 0.0035 0.0000 0.0056

R̂�k=
p
E(CV St) 0.0719 0.0133 0.8918 0.0085 0.2108 0.0610 2.2512 0.0339 0.0086 0.0815

R̂�5k;5=
p
5E(CV St) 0.1600 0.0119 0.8375 0.0709 0.3665 0.1370 1.9701 0.1076 0.0377 0.3456
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Table A6 cont.: Normality Tests for Stocks SBC, T, UTX, WMT and XOM

Ticker m1 p1 m2 p2 m3 p3 m4 p4 pjoint pjoint-dm

SBC

Rt=
p
V ar(Rt) 0.0090 0.7498 0.9993 0.9857 0.2213 0.0429 4.0972 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0090 0.7504 0.9742 0.5178 0.1828 0.0946 3.6803 0.0063 0.0000 0.0000

Rt=
p
RVt 0.0188 0.5050 1.0207 0.6048 0.1531 0.1613 2.8130 0.6855 0.1687 0.1890

~Rt=
p
CVt 0.0230 0.4148 1.0561 0.1601 0.1582 0.1480 3.0478 0.6570 0.1259 0.1626

R̂t=
p
CV St 0.0242 0.3912 1.0288 0.4710 0.1585 0.1472 2.9077 0.9500 0.2639 0.3319

R̂�k=
p
E(CV St) 0.0151 0.6020 1.0403 0.3254 0.0728 0.5168 3.1209 0.3454 0.7967 0.8584

R̂�5k;5=
p
5E(CV St) 0.0310 0.6254 1.0186 0.8355 0.4636 0.0594 3.0607 0.8886 0.1834 0.2035

T

Rt=
p
V ar(Rt) -0.0349 0.2169 1.0004 0.9916 0.0983 0.3685 4.3611 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0465 0.0995 0.9947 0.8940 0.0529 0.6286 4.3034 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0733 0.0095 1.0984 0.0137 -0.1751 0.1091 3.2388 0.2565 0.0016 0.0273

~Rt=
p
CVt -0.0946 0.0008 1.1377 0.0006 -0.2550 0.0197 3.4481 0.0586 0.0000 0.0025

R̂t=
p
CV St -0.0887 0.0017 1.1071 0.0073 -0.2064 0.0591 3.2393 0.2558 0.0001 0.0087

R̂�k=
p
E(CV St) -0.0525 0.0698 1.1208 0.0032 -0.1208 0.2811 3.2834 0.1306 0.0021 0.0095

R̂�5k;5=
p
5E(CV St) -0.1137 0.0739 1.1715 0.0567 -0.5444 0.0272 3.6133 0.3064 0.0367 0.1737

UTX

Rt=
p
V ar(Rt) -0.0246 0.3833 0.9998 0.9962 -0.5102 0.0000 6.7359 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0264 0.3488 0.9790 0.5984 -0.5060 0.0000 7.1273 0.0000 0.0000 0.0000

Rt=
p
RVt -0.0172 0.5428 0.9313 0.0854 -0.0375 0.7316 2.2774 0.0192 0.1006 0.1141

~Rt=
p
CVt -0.0101 0.7216 0.9458 0.1747 0.0184 0.8662 2.4234 0.0697 0.2871 0.2783

R̂t=
p
CV St -0.0144 0.6091 0.9163 0.0361 -0.0093 0.9321 2.2263 0.0115 0.0817 0.0880

R̂�k=
p
E(CV St) -0.0232 0.4228 1.0298 0.4667 -0.0532 0.6351 2.9987 0.6383 0.8574 0.9516

R̂�5k;5=
p
5E(CV St) -0.0575 0.3662 0.9638 0.6878 -0.1354 0.5826 2.4982 0.4465 0.7752 0.9187

WMT

Rt=
p
V ar(Rt) -0.0185 0.5123 0.9995 0.9909 -0.0301 0.7833 4.5764 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) -0.0161 0.5689 0.9677 0.4178 0.0287 0.7930 3.9897 0.0001 0.0000 0.0000

Rt=
p
RVt -0.0132 0.6397 0.9488 0.1993 0.1050 0.3370 2.6264 0.2804 0.1488 0.1681

~Rt=
p
CVt -0.0089 0.7524 0.9744 0.5215 0.1134 0.2995 2.7954 0.6393 0.2769 0.2734

R̂t=
p
CV St -0.0116 0.6799 0.9543 0.2525 0.0950 0.3848 2.6521 0.3237 0.2446 0.2653

R̂�k=
p
E(CV St) -0.0193 0.5035 1.0215 0.5978 -0.0240 0.8303 3.0130 0.6057 0.9052 0.9568

R̂�5k;5=
p
5E(CV St) -0.0442 0.4861 0.7781 0.0135 -0.3031 0.2179 1.9784 0.1085 0.0612 0.0646

XOM

Rt=
p
V ar(Rt) 0.0105 0.7099 0.9993 0.9863 0.5357 0.0000 6.6417 0.0000 0.0000 0.0000

Rt=
p
GARCH(1; 1) 0.0084 0.7665 0.9674 0.4141 0.4019 0.0002 5.0410 0.0000 0.0000 0.0000

Rt=
p
RVt 0.0131 0.6418 0.8689 0.0010 0.1136 0.2988 2.0265 0.0012 0.0066 0.0066

~Rt=
p
CVt 0.0165 0.5600 0.8676 0.0009 0.1111 0.3096 2.0995 0.0028 0.0112 0.0117

R̂t=
p
CV St 0.0165 0.5583 0.8561 0.0003 0.1011 0.3549 1.9995 0.0008 0.0043 0.0045

R̂�k=
p
E(CV St) 0.0124 0.6671 0.8342 0.0000 -0.0070 0.9504 2.0316 0.0031 0.0009 0.0010

R̂�5k;5=
p
5E(CV St) 0.0285 0.6540 0.8065 0.0312 0.1186 0.6295 2.2390 0.2374 0.1473 0.1560

Note: The table reports the �rst four moments (m1�m4) for the di�erent return series, along with the corresponding

p-values for testingm1 = 0,m2 = 1,m3 = 0, andm4 = 3, respectively, except for the realized volatility standardized

return series, for which the test for the fourth moment is based on the �nite sample correction, m4 = 3
78
80
= 2:925.

The column labelled pjoint gives the p-value for testing the four moment conditions jointly, while pjoint-dm refers

to the same test involving the (unconditionally) demeaned return series. The raw daily returns are denoted by

Rt, while ~Rt and R̂t refer to the daily jump-adjusted returns based on the simple and sequential procedures,

respectively. The daily realized volatility and the corresponding continuous component based on the simple and

sequential jump-adjustment procedures are denoted by RVt, CVt, and CV St, respectively. Lastly, R̂
�
k refers to the

�nancial-time return series constructing from the sequential jump-adjusted intra-day returns spanning E(CV St)

time-units. Lastly, R̂�5k;5 � R̂�5k+ R̂�5k�1+ R̂�5k�2+ R̂�5k�3+ R̂�5k�4 de�nes the �nancial-time return series spanning
5E(CV St) time-units.
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Figure A1: Generalized volatility signature plots for AA-INTC stocks
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Figure A1 cont.: Generalized volatility signature plots for IP-XOM stocks
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Figure A2: Histograms for number of jumps per day for AA-INTC stocks
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Figure A2 cont.: Histograms for number of jumps per day for IP-XOM stocks
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Figure A3: High-frequency leverage and volatility feedback e�ects, stocks AA-INTC
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Figure A3 cont.: High-frequency leverage and volatility feedback e�ects, stocks IP-XOM
HighFrequency Leverage and Volatility Feedback
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Figure A4: Density plots of daily returns for 30 DJIA stocks standardized by sample standard

deviation
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Figure A5: QQ plots of daily returns for 30 DJIA stocks standardized by sample standard

deviation
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Figure A6: Density plots of daily returns for 30 DJIA stocks standardized by GARCH(1,1)

standard errors
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Figure A7: QQ plots of daily returns for 30 DJIA stocks standardized by GARCH(1,1) standard

errors
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Figure A8: Density plots of daily returns for 30 DJIA stocks standardized by realized volatility

2.5 0.0 2.5 5.0

AA

5.0 2.5 0.0 2.5 5.0

AXP

2.5 0.0 2.5

BA

2.5 0.0 2.5

C

2.5 0.0 2.5 5.0

CAT

5.0 2.5 0.0 2.5 5.0

DD

2.5 0.0 2.5

DIS

2.5 0.0 2.5

EK

2.5 0.0 2.5 5.0

GE

2.5 0.0 2.5 5.0

GM

2.5 0.0 2.5

HD

5.0 2.5 0.0 2.5 5.0

HON

2.5 0.0 2.5

HPQ

2.5 0.0 2.5

IBM

2.5 0.0 2.5 5.0

INTC

2.5 0.0 2.5 5.0

IP

2.5 0.0 2.5 5.0

JNJ

2.5 0.0 2.5

JPM

2.5 0.0 2.5 5.0

KO

5.0 2.5 0.0 2.5

MCD

2.5 0.0 2.5 5.0

MMM

5.0 2.5 0.0 2.5 5.0

MO

2.5 0.0 2.5 5.0

MRK

5.0 2.5 0.0 2.5

MSFT

2.5 0.0 2.5

PG

2.5 0.0 2.5 5.0

SBC

5.0 2.5 0.0 2.5 5.0

T

2.5 0.0 2.5

UTX

2.5 0.0 2.5 5.0

WMT

2.5 0.0 2.5

XOM

57



Figure A9: QQ plots of daily returns for 30 DJIA stocks standardized by realized volatility
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Figure A10: Density plots of jump-adjusted (simple method) daily returns for 30 DJIA stocks

standardized by continuous component of realized volatility
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Figure A11: QQ plots of jump-adjusted (simple method) daily returns for 30 DJIA stocks stan-

dardized by continuous component of realized volatility
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Figure A12: Density plots of jump-adjusted (sequential method) daily returns for 30 DJIA stocks

standardized by continuous component of realized volatility
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Figure A13: QQ plots of jump-adjusted (sequential method) daily returns for 30 DJIA stocks

standardized by continuous component of realized volatility
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Figure A14: Density plots of �nancial-time daily returns for 30 DJIA stocks standardized by ��
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Figure A15: QQ plots of �nancial-time daily returns for 30 DJIA stocks standardized by ��
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Appendix B: More Recent Data

The minimum tick size for trades and quotes on the NYSE was reduced from a sixteenth of a

dollar to one cent on January 29, 2001. The results in Hansen & Lunde (2006) suggest that

this �ner tick size has been accompanied by a substantial reduction in the impact of the market

microstructure noise for a variety of realized volatility measures. To investigate the robustness

of our �ndings with respect to this change in market structure, we replicated the analysis with

data spanning the shorter period from February 2001 through December 2004.

Suppressing details, preliminary data analysis along the lines of Section 5 indicates that the

jump intensities and the relative importance of jumps are somewhat smaller over the more recent

period, but that jumps remain an important part of the price process.32 For instance, the average

duration between jumps increased by about �fty percent relative to the earlier period, and the

relative jump contribution and the number of days with multiple jumps fell by roughly half.

The diminished importance of jumps and the alleged decline in distortion arising from mi-

crostructure noise suggest that the calendar-time standardized returns may be more closely ap-

proximated by a normal distribution. This is indeed the case. Comparing the p-value plots in

Figures B1 and 3, the numbers for the Rt=
p
RVt, ~Rt=

p
CVt, and R̂t=

p
CV St standardized distri-

butions over the more recent time period in Figure B1 are better dispersed than for the earlier

period in Figure 3.33 The closer coherence between the p-values for the RVt, CVt, and CV St

standardizations and the p-values for the \daily" �nancial-time returns also indirectly suggests

a diminished impact of the volatility asymmetry, or leverage e�ect. Still, with the exception of

one or two stocks, all p-values for the former standardizations are less than one-half. On the

other hand, the p-values for the �nancial-time returns, and the \weekly" returns in particular,

are again fairly close to uniformly distributed.

As such, the broad conclusions for this recent time period mirror our more detailed empirical

�ndings for the longer sample. Importantly, however, the smaller tick size and apparent reduction

in confounding market microstructure e�ects produce an environment that is even more amenable

to our realized volatility measures. Looking ahead, this suggests that the basic methodology and

testing procedures developed here should provide even better guidance in future applications.

32Complete results are available upon request.
33Of course, the slightly shorter sample period is likely to result in marginally lower powers of the di�erent tests.
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Figure B1: p-values for the 30 DJIA stocks, Feb. 2001 - Dec. 2004, 5-minute sampling
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