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Abstract

This paper surveys bootstrap and Monte Carlo methods for testing hypotheses in
econometrics. Several different ways of computing bootstrap P values are discussed,
including the double bootstrap and the fast double bootstrap. It is emphasized that
there are many different procedures for generating bootstrap samples for regression
models and other types of model. As an illustration, a simulation experiment exam-
ines the performance of several methods of bootstrapping the supF test for structural
change with an unknown break point.
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1. Introduction

The basic idea of any sort of hypothesis test is to compare the observed value of a test
statistic, say 7, with the distribution that it would follow if the null hypothesis were
true. The null is then rejected if 7 is sufficiently extreme relative to this distribution.
In certain special cases, such as ¢ and F' tests on the coefficients of a linear regression
model with exogenous regressors and normal errors, this distribution is known, and
we can perform exact tests. In most cases of interest to econometricians, however, the
distribution of the test statistic we use is not known. We therefore have to compare 7
with a distribution that is only approximately correct. In consequence, the test may
overreject or underreject.

Traditionally, the approximations that we use in econometrics have been based on
asymptotic theory. But advances in computing have made an alternative approach
increasingly attractive. This approach is to generate a large number of simulated
values of the test statistic and compare 7 with the empirical distribution function, or
EDF, of the simulated ones. Using the term “bootstrap” in a rather broad sense, I
will refer to this approach as bootstrap testing, although the term simulation-based
testing is more general and might perhaps be more accurate. Bootstrap testing can
work very well indeed in some cases, but it is, in general, neither as easy nor as reliable
as practitioners often seem to believe.

Although there is a very large literature on bootstrapping in statistics, a surprisingly
small proportion of it is devoted to bootstrap testing. Instead, the focus is usually on
estimating bootstrap standard errors and constructing bootstrap confidence intervals.
Two classic books are Efron and Tibshirani (1993) and Davison and Hinkley (1997).
There have been many useful survey papers, including DiCiccio and Efron (1996),
MacKinnon (2002), Davison, Hinkley, and Young (2003), and Horowitz (2001, 2003).

The next section discusses the basic ideas of bootstrap testing and its relationship
with Monte Carlo testing. Section 3 explains what determines how well bootstrap
tests perform under the null hypothesis. Section 4 discusses double bootstrap and
fast double bootstrap tests. Section 5 discusses various bootstrap data generating
processes. Section 6 discusses tests of multiple hypotheses. Section 7 presents some
simulation results for a particular case which illustrate how important the choice of
bootstrap DGP can be, and Section 8 concludes.

2. Bootstrap and Monte Carlo Tests

Suppose that 7 is the observed value of a test statistic 7, and we wish to perform a
test at level a that rejects when 7 is in the upper tail. Then the P value, or marginal
significance level, of 7 is

p(7) =1-F(7), (1)

where F'(7) is the cumulative distribution function of 7 under the null hypothesis. If
we knew F'(7), we would simply calculate p(7) and reject the null whenever p(7) < a.
This is equivalent to rejecting whenever 7 exceeds the critical value F3_,(7), which is

11—



the 1 — a quantile of F'(7). When we do not know F(7), which is usually the case, it
is common to use an asymptotic approximation to it. This may or may not work well.

An increasingly popular alternative is to perform a bootstrap test. We first gener-
ate B bootstrap samples, or simulated data sets, indexed by j. The procedure for
generating the bootstrap samples is called a bootstrap data generating process, or
bootstrap DGP, and there are often a number of choices. Some bootstrap DGPs may
be fully parametric, others may be fully nonparametric, and still others may be partly
parametric; see Section 5. Each bootstrap sample is then used to compute a bootstrap
test statistic, say 7, most commonly by the same procedure used to calculate 7 from
the real sample. It is strongly recommended that the bootstrap samples should satisfy
the null hypothesis, but this is not always possible. When they do not satisfy the null,
the 77 cannot be calculated in quite the same way as 7 itself.

If we wish to reject when 7 is in the upper tail, the bootstrap P value is simply
1 B
PR =1-F (7)) =5 I > 1), (2)
j=1

where F* denotes the empirical distribution function, or EDF, of the 77, and I(-)
denotes the indicator function, which is equal to 1 when its argument is true and 0
otherwise. The inequality would be reversed if we wished to reject when 7 is in the
lower tail, as with many unit root tests. Thus the bootstrap P value is, in general,
simply the proportion of the bootstrap test statistics 77 that are more extreme than
the observed test statistic 7. In the case of (2), it is in fact the empirical analog of (1).
Of course, rejecting the null hypothesis whenever p*(7) < « is equivalent to rejecting
it whenever 7 exceeds the 1 — a quantile of F~,

Perhaps surprisingly, this procedure can actually yield an exact test in certain cases.
The key requirement is that the test statistic 7 should be pivetal, which means that
its distribution does not depend on anything that is unknown. This implies that 7 and
the 77 all follow the same distribution if the null is true. In addition, the number of
bootstrap samples B must be such that a(B + 1) is an integer, where « is the level of
the test. If a bootstrap test satisfies these two conditions, then it is exact. This sort of
test, which was originally proposed in Dwass (1957), is generally called a Monte Carlo
test. For an introduction to Monte Carlo testing, see Dufour and Khalaf (2001).

It is quite easy to see why Monte Carlo tests are exact. Imagine sorting all B 4 1 test
statistics. Then rejecting the null whenever p(7) < « implies rejecting it whenever
7 is one of the largest (B + 1) statistics. But, if 7 and the 77 all follow the same
distribution, this happens with probability precisely a. For example, if B = 999 and
a = .01, we reject the null whenever 7 is one of the 10 largest test statistics.

Since a Monte Carlo test is exact whenever a(B + 1) is an integer, it is tempting to
make B very small. In principle, it could be as small as 19 for o = .05 and as small
as 99 for a« = .01. There are two problems with this, however. The first problem is
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that the smaller is B the less powerful is the test. The loss of power is proportional
to 1/B; see Jockel (1986) and Davidson and MacKinnon (2000).

The second problem is that, when B is small, the results of the test can depend non-
trivially on the particular sequence of random numbers used to generate the bootstrap
test statistics, and most investigators find this unsatisfactory. Since p* is just a fre-
quency, the variance of p* is p*(1 — p*)/B. Thus, when p* = .05, the standard error of
p* is 0.0219 for B = 99, 0.0069 for B = 999, and 0.0022 for B = 9999. This suggests
that, if computational cost is not a serious concern, it might be dangerous to use a
value of B less than 999, and it would not be unreasonable to use B = 9999.

When computational cost is a concern, but it is not extremely high, it is often possible
to obtain reliable results for a small value of B by using an iterative procedure proposed
in Davidson and MacKinnon (2000). The idea is to start with a small value of B, decide
whether the outcome of the test would almost certainly have been the same if B had
been oo, and then increase B if not. This process is then repeated until either an
unambiguous result is obtained or it is clear that p*(7) is very, very close to «. For
example, if B =19, and 5 or more of the 7} are greater than 7, we can safely decide
not to reject at the .05 level, because the probability of obtaining that many values of
77 larger than 7 by chance if p* = .05 is very small (it is actually .00024). However, if
fewer than 5 of the 7} are greater than 7, we need to generate some more bootstrap
samples and calculate a new P value. Much of the time, especially when the null
hypothesis is true, this procedure stops when B is under 100.

When computational cost is extremely high, two useful procedures have recently been
proposed. Racine and MacKinnon (2007a) proposes a very simple method for per-
forming Monte Carlo tests that does not require a(B + 1) to be an integer. However,
this procedure may lack power. Racine and MacKinnon (2007b) proposes a more com-
plicated method for calculating bootstrap P values that is based on kernel smoothing.
The P value depends on the actual values of 7 and the 7, not just on the rank of 7 in
the sorted list of all the test statistics. This method does not quite yield exact tests,
but it can substantially increase power when B is very small. In some cases, one can
reliably reject the null at the .05 level using fewer than 20 bootstrap samples.

Quite a few popular specification tests in econometrics are pivotal if we condition
on the regressors and the distribution of the error terms is assumed to be known.
These include any test that just depends on ordinary least squares residuals and on
the matrix of regressors and that does not depend on the variance of the error terms.
Examples include the Durbin-Watson test and several other tests for serial correla-
tion, as well as popular tests for heteroskedasticity, skewness, and kurtosis. Tests for
heteroskedasticity will be discussed further in the next section.

It is very easy to perform this sort of Monte Carlo test. After we calculate 7 from the
residual n-vector @ and, possibly, the regressor matrix X, we generate B bootstrap
samples. We can do this by generating B vectors of length n from the standard normal
distribution, or possibly from some other assumed distribution, and regressing each of
them on X so as to obtain B vectors of bootstrap residuals uj. We then calculate each
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of the bootstrap statistics 7/ from @} in the same way that we calculated 7 from .
Provided we have chosen B correctly, the bootstrap P value (2) will then provide us
with an exact test.

Even when 7 is not pivotal, using the bootstrap to compute a P value like (2) is
asymptotically valid. Moreover, this type of bootstrap testing can in many cases yield
more accurate results than using an asymptotic distribution to compute a P value.
This subject will be discussed in the next section.

When we wish to perform a two-tailed test, we cannot use equation (2) to compute
a bootstrap P value. If we are willing to assume that 7 is symmetrically distributed
around zero, we can use the symmetric bootstrap P value

Z | > [#]), (3)

oy

which effectively converts a two-tailed test into a one-tailed test. If we are not willing to
make this assumption, which can be seriously false for ¢ statistics based on parameter
estimates that are biased, we can instead use the equal-tail bootstrap P value

Dot (T) = 2min <% ZI(T; <7), %ZI(T; > %)) (4)

Here we actually perform two tests, one against values in the lower tail of the distri-
bution and the other against values in the upper tail. The factor of 2 is necessary to
take account of this. Without it, p}, would lie between 0 and 0.5. If the mean of the
77 is far from zero, p; and pg may be very different, and tests based on them may
have very different properties under both null and alternative hypotheses.

Of course, equation (3) can only apply to test statistics that can take either sign,
such as t statistics. For test statistics that are always positive, such as ones that are
asymptotically chi-squared, only equation (2) is usually applicable. But we could use
(4) if we wanted to reject for small values of the test statistic as well as for large ones.

Equations (2), (3), and (4) imply that the results of a bootstrap test are invariant
to monotonically increasing transformations of the test statistic. Applying the same
transformation to all the test statistics does not affect the rank of 7 in the sorted
list of 7 and the 77, and therefore it does not affect the bootstrap P value. One of
the implications of this result is that, for linear and nonlinear regression models, a
bootstrap F' test and a bootstrap likelihood ratio test based on the same bootstrap
DGP must yield the same outcome.

3. Finite-Sample Properties of Bootstrap Tests

Even when B is infinite, bootstrap tests will generally not be exact when 7 is not
pivotal. Their lack of exactness arises from the difference between the true distribution
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characterized by the CDF F(7) and the bootstrap distribution characterized by the
CDF F*(7). When more than one sort of bootstrap DGP can be used, we should
always use the one that makes F*(7) as close as possible to F'(7) in the neighborhood
of the critical value Fy_, (7). Unfortunately, this is easier said than done. Either very
sophisticated econometric theory or extensive simulation experiments may be needed
to determine which of several bootstrap DGPs leads to the most reliable tests.

A very important result, which may be found in Beran (1988), shows that, when a
test statistic is asymptotically pivotal, bootstrapping yields what is generally called
an asymptotic refinement. A test statistic is asymptotically pivotal if its asymptotic
distribution does not depend on anything that is unknown. If a test statistic has a
conventional asymptotic distribution such as standard normal or chi-squared, then it
must be asymptotically pivotal. But a test statistic can be asymptotically pivotal
without having a known asymptotic distribution. In this context, what is meant by
an asymptotic refinement is that the error in rejection probability, or ERP, of the
bootstrap test is of a lower order in the sample size n than the ERP of an asymptotic
test based on the same test statistic.

A serious treatment of asymptotic refinements is well beyond the scope of this paper.
Rigorous discussions are generally based on Edgeworth expansions of the distributions
of test statistics; see Beran (1988) and Hall (1992). Davidson and MacKinnon (1999)
take a different approach based on what they call the rejection probability function,
or RPF, which relates the probability that a test will reject the null to one or more
nuisance parameters. Strictly speaking, this approach applies only to parametric boot-
strap tests, but it helps to illuminate other cases as well.

Consider the case in which the DGP depends on a single nuisance parameter. If the
RPF is flat, as it must be when a test statistic is pivotal, then a parametric bootstrap
test will be exact, because the value of the nuisance parameter does not matter. When
the RPF is not flat, as is commonly the case, a bootstrap test will generally not be
exact, because the estimated parameter of the bootstrap DGP will differ from the
(unknown) parameter of the true DGP. How well a bootstrap test performs in such a
case depends on the slope and curvature of the RPF and the bias and precision of the
estimated nuisance parameter.

Although the actual behavior of bootstrap tests in simulation experiments does not
accord well with theory in every case, the literature on the finite-sample properties of
bootstrap tests has produced several theoretical results of note:

e When a test statistic is asymptotically pivotal, bootstrapping it will generally yield
a test with an ERP of lower order in the sample size than that of an asymptotic
test based on the same statistic.

e When a test statistic is not asymptotically pivotal, bootstrapping it will generally
yield an asymptotically valid test, but the ERP of the bootstrap test will not be
of lower order in the sample size than that of an asymptotic test.



e In many cases, the reduction in ERP due to bootstrapping is O(n_l/ 2) for one-
tailed tests and O(n~1!) for two-tailed tests that assume symmetry around the
origin. Note that, when a test statistic is asymptotically chi-squared, a test that
rejects when the statistic is in the upper tail has the properties of a two-tailed test
from the point of view of this theory. In contrast, a test based on the equal-tail
P value (4) has the properties of a one-tailed test.

e To minimize the Type I errors committed by bootstrap tests, we should attempt
to estimate the bootstrap DGP as efficiently as possible. This generally means
imposing the null hypothesis whenever it is possible to do so.

In general, bootstrap tests can be expected to perform well under the null whenever
the bootstrap DGP provides a good approximation to those aspects of the true DGP
to which the distribution of the test statistic is sensitive. Since different test statistics
may be sensitive to different features of the DGP, it is quite possible that a particular
bootstrap DGP may work well for some tests and poorly for others.

It is not always easy to impose the null hypothesis on a bootstrap DGP without also
imposing parametric assumptions that the investigator may not be comfortable with.
Various partly or wholly nonparametric bootstrap DGPs, some of which impose the
null and some of which do not, are discussed in Section 5. Martin (2007) discusses
how to impose the null in a nonparametric way in certain cases of interest.

Although there is always a modest loss of power due to bootstrapping when B is
small, bootstrapping when B is large generally has little effect on power. Comparing
the power of tests that do not have the correct size is fraught with difficulty; see
Davidson and MacKinnon (2006a). It is shown in that paper that, if bootstrap and
asymptotic tests based on the same test statistic are size-corrected in a sensible way,
then any difference in power should be modest.

Since Monte Carlo tests are exact, and bootstrap tests are generally not exact, it may
seem attractive to use the former whenever possible. The problem is that, in order
to do so, it is generally necessary to make strong distributional assumptions. For
concreteness, consider tests for heteroskedasticity. Dufour et al. (2004) show that many
popular test statistics for heteroskedasticity in the linear regression model y = X3+
are pivotal when the regressors are treated as fixed and the distribution of the error
terms is known up to a scale factor. These statistics all have the form 7(Z, Mxu).
That is, they simply depend on a matrix Z of regressors that is treated as fixed and
on the residual vector Mxu, where the projection matrix Mx yields residuals from a
regression on X. Moreover, they are invariant to o2, the variance of the error terms.

One particularly popular procedure, proposed in Koenker (1981), involves taking the
vector of residuals Mx vy, squaring each element, regressing the squared residuals on
a constant and the matrix Z, and then calculating the usual F' statistic for all slope
coefficients to be zero. The Koenker procedure is asymptotically invariant to the
distribution of the error terms. It was originally proposed as a modification to the LM
test of Breusch and Pagan (1979), which is asymptotically valid only when the error
terms are normally distributed.
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Performing a Monte Carlo test for heteroskedasticity simply involves drawing B error
vectors u} from an assumed distribution, using each of them to calculate a bootstrap
statistic 7(Z, Mxuj), and then calculating a P value by (2). But what if the assumed
distribution is incorrect? As Godfrey, Orme, and Santos Silva (2005) show, when the
distribution from which the u} are drawn differs from the true distribution of u, Monte
Carlo tests for heteroskedasticity can be seriously misleading. In particular, Monte
Carlo versions of Breusch-Pagan tests can overreject or underreject quite severely in
samples of any size, while Monte Carlo versions of Koenker tests can suffer from modest
size distortions when the sample size is small. In contrast, nonparametric bootstrap
tests in which the u} are obtained by resampling residuals (this sort of bootstrap DGP
will be discussed in Section 5) always yield valid results for large samples and generally
perform reasonably well even in small samples.

None of these results is at all surprising. In order to obtain valid results in large
samples, we either need to use a test statistic, such as the F statistic of Koenker (1981),
that is asymptotically invariant to the distribution of the error terms, or we need to
use a bootstrap DGP that adapts itself asymptotically to the distribution of the error
terms, or preferably both. Using a Monte Carlo test based on the wrong distributional
assumption together with a test statistic that is not asymptotically invariant to the
distribution of the error terms is a recipe for disaster.

Another way to get around this sort of problem, instead of using a nonparametric
bootstrap, is proposed in Dufour (2006). This paper introduces maximized Monte
Carlo tests. In principle, these can be applied to any sort of test statistic where the
null distribution depends on one or more nuisance parameters. The idea is to perform
a (possibly very large) number of simulation experiments, each for a different set of
nuisance parameters. Using some sort of numerical search algorithm, the investigator
searches over the nuisance parameter(s) in an effort to maximize the bootstrap P
value. The null hypothesis is rejected only if the maximized P value is less than
the predetermined level of the test. In the context of testing for heteroskedasticity,
it is necessary to search over a set of possible error distributions. An application of

maximized Monte Carlo tests to financial economics may be found in Beaulieu, Dufour,
and Khalaf (2007).

The idea of maximized Monte Carlo tests is elegant and ingenious, but these tests can
be very computationally demanding. Moreover, their actual rejection frequency may
be very much less than the level of the test, and they may in consequence be severely
lacking in power. This can happen when the RPF is strongly dependent on the value(s)
of one or more nuisance parameters, and there exist parameter values (perhaps far away
from the ones that actually generated the data) for which the rejection probability
under the null is very high. The maximized Monte Carlo procedure will then assign
a much larger P value than the one that would have been obtained if the true, but
unknown, values of the nuisance parameters had been used.



4. Double Bootstrap and Fast Double Bootstrap Tests

It seems plausible that, if bootstrapping a test statistic leads to an asymptotic refine-
ment, then bootstrapping a quantity that has already been bootstrapped will lead to a
further refinement. This is the basic idea of the iterated bootstrap, of which a special
case is the double bootstrap, proposed in Beran (1987, 1988).

There are at least two quite different types of double bootstrap test. The first type
potentially arises whenever we do not have an asymptotically pivotal test statistic to
start with. Suppose, for example, that we obtain a vector of parameter estimates 6

~

but no associated covariance matrix Var(@), either because it is impossible to estimate
Var(0) at all or because it is impossible to obtain a reasonably accurate estimate. We
can always use the bootstrap to estimate Var(@). If 87 denotes the estimate from the

4t bootstrap sample, and 6* denotes the average of the bootstrap estimates, then

A

provides a reasonable way to estimate Var(#). Note that whatever bootstrap DGP is
used here should not impose any restrictions on 6.

We can easily construct a variety of Wald statistics using 6 and @(é) The simplest
would just be an asymptotic t statistic for some element of @ to equal a particular
value. Creating a t statistic from a parameter estimate, or a Wald statistic from a
vector of parameter estimates, is sometimes called prepivoting, because it turns a
quantity that is not asymptotically pivotal into one that is.

Even though test statistics of this sort are asymptotically pivotal, their asymptotic
distributions may not provide good approximations in finite samples. Thus it seems
natural to bootstrap them. Doing so is conceptually easy but computationally costly.
The procedure works as follows:

~

1. Obtain the estimates 6.

2. Generate By bootstrap samples from a bootstrap DGP that does not impose any

~

restrictions, and use them to estimate Var(6).
3. Calculate whatever test statistic 7 = T(é, \7a\r(é)) is of interest.

4. Generate By bootstrap samples using a bootstrap DGP that imposes whatever
restrictions are to be tested. Use each of them to calculate 0;.

5. For each of the By bootstrap samples, perform steps 2 and 3 exactly as before.
This yields By bootstrap test statistics 77 = 7‘(0;, Var(@}f)).

6. Calculate the bootstrap P value for 7 using whichever of the formulas (2), (3), or
(4) is appropriate, with By playing the role of B.

This procedure is conceptually simple, and, so long as the procedure for computing
0 is reliable, it should be straightforward to implement. The major problem is com-
putational cost, which can be formidable, because we need to obtain no less than
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(B1+ 1)(B2 4+ 1) estimates of 8. For example, if By = 999 and By = 500, we need
to obtain 501,000 sets of estimates. It may therefore be attractive to utilize either
the method of Davidson and MacKinnon (2000) or the one of Racine and MacKinnon
(2007b), or both together, because they can allow B; to be quite small.

The second type of double bootstrap test arises when we do have an asymptotically
pivotal test statistic 7 to start with. It works as follows:

1. Obtain the test statistic 7 and whatever estimates are needed to generate boot-
strap samples that satisfy the null hypothesis.

2. Generate B; bootstrap samples that satisfy the null, and use each of them to
compute a bootstrap statistic 7;° for j =1,..., B;.

3. Use 7 and the 7} to calculate the first-level bootstrap P value p*(7) according to,
for concreteness, equation (2).

4. For each of the B first-level bootstrap samples, generate By second-level boot-
strap samples, and use each of them to compute a second-level bootstrap test
statistic 77" forl=1,...,B5.

5. For each of the B; first-level bootstrap samples, compute the second-level boot-
strap P value

Observe that this formula is very similar to equation (2), but we are comparing

77 with the 77" instead of comparing 7 with the 7.

6. Compute the double-bootstrap P value as the proportion of the p7* that are
smaller (i.e., more extreme) than p*(7):

1 &
PR = 5 DL <5 (7)- (5)
j=1

In order to avoid the possibility that p;* = p*(7), which would make the strict
inequality here problematical, it is desirable that By # Bj.

This type of double bootstrap simply treats the single bootstrap P value as a test
statistic and bootstraps it. Observe that (5) is just like (2), but with the inequality
reversed. Like the first type of double bootstrap, this one is computationally demand-
ing, as we need to calculate 1 + By + By By test statistics, and it may therefore be
attractive to employ methods that allow B; and/or Bs to be small.

The computational cost of performing this type of double bootstrap procedure can
be substantially reduced by utilizing one or more ingenious stopping rules proposed in
Nankervis (2005). The idea of these stopping rules is to avoid unnecessarily calculating
second-level bootstrap test statistics that do not affect the decision on whether or not
to reject the null hypothesis.



The asymptotic refinement that we can expect from the second type of double boot-
strap test is greater than we can expect from the first type. For the first type, the
ERP will normally be of the same order in the sample size as the ERP of an ordinary
(single) bootstrap test. For the second type, it will normally be of lower order. Of
course, this does not imply that double bootstrap tests of the second type will always
work better than double bootstrap tests of the first type.

Davidson and MacKinnon (2007) proposes a procedure for computing fast double
bootstrap, or FDB, P values for asymptotically pivotal test statistics. It is much
less computationally demanding than performing a true double bootstrap, even if the
procedures of Nankervis (2005) are employed, because there is just one second-level
bootstrap sample for each first-level one, instead of By of them. Steps 1, 2, and 3 of
the procedure just given are unchanged, except that B replaces B;. Steps 4, 5, and 6
are replaced by the following ones:

4. For each of the B bootstrap samples, generate a single dataset using a second-level
bootstrap sample, and use it to compute a second-level test statistic 7,

5. Calculate the 1 — p* quantile of the 7%, denoted by A};"(l p*) and defined
implicitly by the equation

BZ(**<Q (1-5"(7)) = 1-5(7). (6)

Of course, for finite B, there will be a range of values of Q7 that satisfy (6), and
we must choose one of them somewhat arbitrarily.

6. Calculate the FDB P value as

i (7 > Q5 (1 -p"(3))).

Thus, instead of seeing how often the bootstrap test statistics are more extreme
than the actual test statistic, we see how often they are more extreme than the

1 — p* quantile of the 7.

The great advantage of this procedure is that it involves the calculation of just 2B + 1
test statistics, although B should be reasonably large to avoid size distortions on the
order of 1/B. However, for the FDB to be asymptotically valid, 7 must be asymp-
totically independent of the bootstrap DGP. This is a reasonable assumption for the
parametric bootstrap when the parameters of the bootstrap DGP are estimated under
the null hypothesis, because a great many test statistics are asymptotically indepen-
dent of all parameter estimates under the null; see Davidson and MacKinnon (1999).

For the linear regression model y = X;8; + X232 + v with normal errors, it is easy
to show that the F statistic for 82 = 0 is independent of the restricted estimates 81,
because the latter depend on the projection of y onto the subspace spanned by the
columns of Xj, and the former depends on its orthogonal complement. For more
general types of model, the same sort of independence holds, but only asymptotically.
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The assumption makes sense in a number of other cases as well, including the residual
and wild bootstraps when they use parameter estimates under the null.

There is no guarantee that double bootstrap tests will always work well. Experience
suggests that, if the improvement in ERP from using a single-level bootstrap test is
modest, then the further gain from using either a double bootstrap test of the second
type or an FDB test is likely to be even more modest.

5. Bootstrap Data Generating Processes

From the discussion in Section 3, it is evident that the choice of bootstrap DGP
is absolutely critical. Just what choices are available depend on the model being
estimated and on the assumptions that the investigator is willing to make.

At the heart of many bootstrap DGPs is the idea of resampling, which was the key
feature of the earliest bootstrap methods proposed in Efron (1979, 1982). Suppose
we are interested in some quantity 6(y), where y is an n-vector of data with typical
element y;. What is meant by resampling is that each element of every bootstrap
sample y7 is drawn randomly from the EDF of the y;, which assigns probability 1 /n
to each of the y;. Thus each element of every bootstrap sample can take on n possible
values, namely, the values of the y;, each with probability 1/n. Each bootstrap sample
therefore contains some of the y; just once, some of them more than once, and some
of them not at all.

Resampling is conceptually simple and computationally efficient. It works in theory,
at least asymptotically, because the EDF consistently estimates the distribution of
the y;. For regression models, and other models that involve averaging, it often works
very well in practice. However, in certain respects, the bootstrap samples y7 differ
fundamentally from the original sample y. For example, the largest element of y7 can
never exceed the largest element of y and will be less than it nearly 37% of the time.
Thus resampling is likely to yield very misleading results if we are primarily interested
in the tails of a distribution.

Bootstrap samples based on resampling are less diverse than the original sample. When
the y; are drawn from a continuous distribution, the n elements of y are all different.
But the n elements of each bootstrap sample inevitably include a number of duplicates,
because the probability that any element of the original sample will not appear in a
particular bootstrap sample approaches 1/e = 0.3679 as n — oo. This can cause
bootstrap DGPs based on resampling to yield invalid inferences, even asymptotically.
An important example is discussed in Abadie and Imbens (2006), which shows that
certain bootstrap methods based on resampling are invalid for matching estimators.

Resampling can be used in a variety of ways. One of the most general and widely
used bootstrap DGPs is the pairs bootstrap, or pairwise bootstrap, which dates back
to Freedman (1981, 1984). The idea is simply to resample the data, keeping the
dependent and independent variables together in pairs. In the context of the linear
regression model y = X3 + wu, this means forming the matrix [y X| with typical row
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[y X:] and resampling the rows of this matrix. Each observation of a bootstrap
sample is [y; X;|, a randomly chosen row of [y X|. This method implicitly assumes
that each observation [y; X;] is an independent random drawing from a multivariate
distribution, which may or may not be a reasonable assumption.

The pairs bootstrap can be applied to a very wide range of models, not merely regres-
sion models. It is most natural to use it with cross-section data, but it is often used
with time-series data as well. When the regressors include lagged dependent variables,
we simply treat them the same way as any other column of X. The pairs bootstrap
does not require that the error terms be homoskedastic. Indeed, error terms do not
explicitly appear in the bootstrap DGP at all. However, a serious drawback of this
method is that it does not condition on X. Instead, each bootstrap sample has a
different X * matrix. This can lead to misleading inferences in finite samples when the
distribution of a test statistic depends strongly on X.

In the context of bootstrap testing, the pairs bootstrap is somewhat unsatisfactory.
Because it is completely nonparametric, the bootstrap DGP does not impose any
restrictions on the parameters of the model. If we are testing such restrictions, as
opposed to estimating covariance matrices or standard errors, we need to modify the
bootstrap test statistic so that it is testing something which is true in the bootstrap
DGP. Suppose the actual test statistic takes the form of a ¢ statistic for the hypothesis
that 4 = 3°:

Here B is the unrestricted estimate of the parameter § that is being tested, and S(B) is
its standard error. The bootstrap test statistic cannot test the hypothesis that 3 = 3°,
because that hypothesis is not true for the bootstrap DGP. Instead, we must use the
bootstrap test statistic

<@

B

T, =

TSy

where ﬁ* is the estimate of 3 from the j ' bootstrap sample, and s(ﬁj) is its standard
error, calculated by whatever procedure was employed to calculate s(ﬂ) using the
actual sample. Since the estimate of 3 from the bootstrap samples should, on average,
be equal to B, at least asymptotically, the null hypothesis tested by 7 is “true” for
the pairs bootstrap DGP.

: (7)

As an aside, when S(B) is difficult to compute, it is very tempting to replace S(BJ*)

n (7) by s(8). This temptation should be resisted at all costs. If we were to use
the same standard error to compute both 7 and 77, then we would effectively be
using the nonpivotal quantity 6 B0 as a test statistic. Bootstrapping it would be
asymptotically valid, but it would offer no asymptotic refinement. We can always use
the bootstrap to compute S(B) and the S(B;‘), which will lead to the first type of double
bootstrap test discussed in the previous section.
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In the case of a restriction like 3 = 9, it is easy to modify the bootstrap test statistic,
as in (7), so that bootstrap testing yields valid results. But this may not be so easy
to do when there are several restrictions and some of them are nonlinear. Great care
must be taken when using the pairs bootstrap in such cases.

Many simulation results suggest that the pairs bootstrap is never the procedure of
choice for regression models. Consider the nonlinear regression model

yr = x¢(8) +us, ue ~ IID(0, 02)7 (8)

where x:(0) is a regression function, in general nonlinear in the parameter vector 3,
that implicitly depends on exogenous and predetermined variables. It is assumed
either that the sample consists of cross-section data or that the regressand and all
regressors are stationary. Note that the error terms u; are assumed to be independent
and identically distributed.

A good way to bootstrap this sort of model is to use the residual bootstrap. The
first step is to estimate (8) under the null hypothesis, obtaining parameter estimates
B and residuals ;. If the model (8) does not have a constant term or the equivalent,
then the residuals may not have mean zero, and they should be recentered. Unless the
test statistic to be bootstrapped is invariant to the variance of the error terms, it is
advisable to rescale the residuals so that they have the correct variance. The simplest

type of rescaled residual is
1/2
. n _
i= () )

where ki is the number of parameters estimated under the null hypothesis. The first
factor here is the inverse of the square root of the factor by which 1/n times the sum
of squared residuals underestimates 02 A somewhat more complicated method uses
the diagonals of the hat matrix, that is, X (X" X)™1X, to rescale each residual by a
different factor. It may work a bit better than (9) when some observations have high
leverage. Note that this method is a bit more complicated than the analogous one
for the wild bootstrap that is described below, because we need to ensure that the
rescaled residuals have mean zero; see Davidson and MacKinnon (2006b).

The residual bootstrap DGP may be written as

yr = ze(B) +ug,  uy ~ EDF(iy). (10)

In other words, we evaluate the regression function at the restricted estimates and then
resample from the rescaled residuals. There might be a slight advantage in terms of
power if we were to use unrestricted rather than restricted residuals in (10). This would
involve estimating the unrestricted model to obtain residuals @; and then replacing
by @; and ky by k in (9). What is important is that we use 3 rather than 8. Doing
so allows us to compute the bootstrap test statistics in exactly the same way as the
actual one. Moreover, since 8 will, in most cases, be more precisely estimated than 3,
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the bootstrap DGP (10) will more closely approximate the true DGP than it would if
we used .

When z;(3) includes lagged values of the dependent variable, the residual bootstrap
should be modified so that the y; are generated recursively. For example, if the
restricted model were y; = 61 + B2zt + B3y:—1 + u¢, the bootstrap DGP would be

Y = 51 + BQZt + Bsyf_1 +uy, u; ~EDF(iy). (11)

In most cases, the observed pre-sample value(s) of y; are used to start the recursion.
It is important that the bootstrap DGP should be stationary, which in this case means
that | Bg| < 1. If this condition is not satisfied naturally, it should be imposed on the
bootstrap DGP.

The validity of the residual bootstrap depends on the strong assumption that the
error terms are independent and identically distributed. We cannot use it when they
are actually heteroskedastic. If the form of the heteroskedasticity is known, we can
easily modify the residual bootstrap by introducing a skedastic function, estimating
it, using feasible weighted least squares (linear or nonlinear), and then resampling
from standardized residuals. But if the form of the heteroskedasticity is unknown, the
best method that is currently available, at least for tests on 3, seems to be the wild
bootstrap, which was originally proposed in Wu (1986).

For a restricted version of a model like (8), with independent but possibly heteroskedas-
tic error terms, the wild bootstrap DGP is

yr = 24(B) + f(Ue) vy,

where f(7;) is a transformation of the ¢*® residual @, and v} is a random variable with
mean 0 and variance 1. One possible choice for f(@;) is just @, but a better choice is

Uy

f(ﬂt)zm,

(12)

where h; is the t'! diagonal of the “hat matrix” that was defined just after (9). When
the f(a;) are defined by (12), they would have constant variance if the error terms
were homoskedastic.

There are various ways to specify the distribution of the v;. The simplest, but not the
most popular, is the Rademacher distribution,

vy =1 with probability %; vy = —1 with probability % (13)

Thus each bootstrap error term can take on only two possible values. Davidson and
Flachaire (2008) have shown that wild bootstrap tests based on (13) usually perform
better than wild bootstrap tests which use other distributions when the conditional
distribution of the error terms is approximately symmetric. When this distribution is
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sufficiently asymmetric, however, it may be better to use another two-point distribu-
tion, which is the one that is most commonly used in practice:

. { ~(V5—1)/2 with probability (v5 + 1)/(2v5);
t (VBE+1)/2  with probability (v/5 —1)/(2V5).

In either case, since the expectation of the square of u; is approximately the variance
of u;, the wild bootstrap error terms will, on average, have about the same variance as
the u;. In many cases, this seems to be enough for the wild bootstrap DGP to mimic
the essential features of the true DGP.

Although it is most natural to use the wild bootstrap with cross-section data, it can
also be used with at least some types of time-series model, provided the error terms
are uncorrelated. See Gongalves and Kilian (2004). The wild bootstrap can also be
used with clustered data. In this case, the entire vector of residuals for each cluster
is multiplied by v} for each bootstrap sample so as to preserve any within-cluster
relationships among the error terms. See Cameron, Gelbach, and Miller (2008).

Bootstrap methods may be particularly useful in the case of multivariate regression
models, because standard asymptotic tests often overreject severely; see Stewart (1997)
and Dufour and Khalaf (2002). When there are g dependent variables, a multivariate
nonlinear regression model can be written, using notation similar to that of (8), as

yti:l'ti(,6>+uti, tzl,...,n, 221,,9 (14)

If we arrange the y;, x4, and ug; into g-vectors y;, @;, and u¢, respectively, the model
(14) can be written more compactly as

Yy = x(8) +uy, E(uwu) = X. (15)

Here the conventional assumption that the error terms are correlated across equations,
but homoskedastic and serially uncorrelated, is made explicit. The model (15) is
typically estimated by either feasible GLS or maximum likelihood. Doing so under the
null hypothesis yields parameter estimates B and residuals u,.

The residual bootstrap DGP for the model (15) is simply

yi = z(8) +uy, wu;~EDF(a), (16)

which is analogous to (10). We evaluate the regression functions at the restricted
estimates 3 and resample from vectors of residuals, as in the pairs bootstrap. This
resampling preserves the joint empirical distribution of the residuals, and in particular
the correlations among them, without imposing any distributional assumptions. This
approach is simpler and less restrictive than drawing the w; from a multivariate normal
distribution with covariance matrix estimated from the w;, which is a procedure that
is also sometimes used. Of course, we may wish to impose the normality assumption
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since, in some cases, doing so makes it possible to perform Monte Carlo tests on
multivariate linear regression models; see Dufour and Khalaf (2002). Alternatively, if
we wished to allow for heteroskedasticity, we could use a wild bootstrap.

A particularly important type of multivariate regression model is the simultaneous
equations model. Often, we are only interested in one equation from such a model,
and it is estimated by generalized instrumental variables (also called two-stage least
squares). A model with one structural equation and one or more reduced form equa-
tions may be written as

y=2ZB31+YB +u (17)
Y =WIT+V. (18)

Here y is an n x 1 vector of the endogenous variable of interest, Y is an n x g matrix
of other endogenous variables, Z is an n X k matrix of exogenous variables, and W
is an n x [ matrix of instruments, which must include all the exogenous variables. In
finite samples, inferences about (37 and B based on asymptotic theory can be very
unreliable, so it is natural to think about bootstrapping.

However, bootstrapping this model requires some effort. Even if we are only interested
in the structural equation (17), the bootstrap DGP must generate both y* and Y*.
We could just use the pairs bootstrap (Freedman, 1984), but it often does not work
very well. In order to use the residual bootstrap, we need estimates of 31, B2, and
II, as well as a way to generate the bootstrap error terms u* and V*. It is natural
to use 2SLS estimates of 3 and B2 from (17) under the null hypothesis, along with
OLS estimates of IT from (18). The bootstrap error terms may then be obtained by
resampling from the residual vectors [u, Vt], as in (16).

Although the residual bootstrap DGP just described is asymptotically valid and gen-
erally provides less unreliable inferences than using asymptotic tests, it often does not
work very well. But its finite-sample properties can be greatly improved if we use OLS
estimates IT’ from the system of regressions

Y = WIT + 48" + residuals (19)

rather than the usual OLS estimates IT from (18). In (19), @ is the vector of 2SLS
residuals from estimation of (17) under the null hypothesis, and § is a g-vector of
coefficients to be estimated. We also use V! = Y — WII' instead of V when we
resample the bootstrap error terms.

It was shown in Davidson and MacKinnon (2008) that, in the case in which there
is just one endogenous right-hand-side variable, ¢ statistics for B, = 0 are far more
reliable when the bootstrap DGP uses IT’ and V' than when it uses IT and V. This
is especially true when the instruments are weak, which is when asymptotic tests tend
to be seriously unreliable. A wild bootstrap variant of this procedure, which allows
for heteroskedasticity of unknown form, was proposed in Davidson and MacKinnon
(2009).
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Any sort of resampling requires independence. Either the data must be treated as
independent drawings from a multivariate distribution, as in the pairs bootstrap, or
the error terms must be treated as independent drawings from either univariate or
multivariate distributions. In neither case can serial dependence be accommodated.
Several bootstrap methods that do allow for serial dependence have been proposed,
however. Surveys of these methods include Bithlmann (2002), Horowitz (2003), Politis
(2003), and Hérdle, Horowitz, and Kreiss (2003).

One way to generalize the residual bootstrap to allow for serial correlation is to use
what is called the sieve bootstrap, which assumes that the error terms follow an
unknown, stationary process with homoskedastic innovations. The sieve bootstrap,
which was given its name in Bithlmann (1997), attempts to approximate this stationary
process, generally by using an AR(p) process, with p chosen either by some sort of
model selection criterion or by sequential testing. One could also use MA or ARMA
processes, and this appears to be preferable in some cases; see Richard (2007).

After estimating the regression model, say (8), under the null hypothesis, we retain
the residuals and use them to select the preferred AR(p) process and estimate its
coefficients, making sure that it is stationary. Of course, this two-step procedure
would not be valid if (8) were a dynamic model. Then the bootstrap DGP is

p
N * *

g pivy_; +e;, t=-m,...,0,1,...,n,

i=1

l’t(

uy
*
Yy

B)+u;, t=1,...,n,

where the p; are the estimated parameters, and the e} are resampled from the (possibly
rescaled) residuals of the AR(p) process. Here m is an arbitrary number, such as 100,
chosen so that the process can be allowed to run for some time before the sample
period starts. We set the initial values of uj_; to zero and discard the uj for ¢t < 1.

The sieve bootstrap is somewhat restrictive, because it rules out GARCH models and
other forms of conditional heteroskedasticity. Nevertheless, it is quite popular. It has
recently been applied to unit root testing in Park (2003) and Chang and Park (2003),
and it seems to work quite well in many cases.

Another approach that is more in the spirit of resampling and imposes fewer assump-
tions is the block bootstrap, originally proposed in Kiinsch (1989). The idea is to
divide the quantities that are being resampled into blocks of b consecutive observa-
tions. These quantities may be either rescaled residuals or [y, X| pairs. The blocks,
which may be either overlapping or nonoverlapping and may be either fixed or vari-
able in length, are then resampled. Theoretical results due to Lahiri (1999) suggest
that the best approach is to use overlapping blocks of fixed length. This is called the
moving-block bootstrap.

For the moving-block bootstrap, there are n — b+ 1 blocks. The first contains obser-
vations 1 through b, the second contains observations 2 through b + 1, and the last
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contains observations n — b+ 1 through n. Each bootstrap sample is then constructed
by resampling from these overlapping blocks. Unless n/b is an integer, one or more of
the blocks will have to be truncated to form a sample of length n.

A variant of the moving-block bootstrap for dynamic models is the block-of-blocks
bootstrap (Politis and Romano, 1992), which is analogous to the pairs bootstrap.
Consider the dynamic regression model

yr = XeB+ YY1+ ue,  u NHD(O,Uz)-
If we define Z; as [y, y1—1, Xi], then we can construct n — b+ 1 overlapping blocks as
Zl...Zb; ZQ...Zb+1; ...... ;Zn—b—l—l---Zn-

These overlapping blocks are then resampled. Note that the block-of-blocks bootstrap
can be used with any sort of dynamic model, not just regression models.

Because of the way the blocks overlap in a moving-block bootstrap, not all observations
appear with equal frequency in the bootstrap samples. Observations 1 and n each
occur in only one block, observations 2 and n — 1 each occur in only two blocks, and
so on. This can have implications for the way one should calculate the bootstrap test
statistics. See Horowitz et al. (2006).

Block bootstrap methods inevitably suffer from two problems. The first problem is
that the bootstrap samples cannot possibly mimic the original sample, because the
dependence is broken at the start of each new block; this is often referred to as the
join-point problem. The shorter the blocks, the more join points there are. The second
problem is that the bootstrap samples look too much like the particular sample we
started with. The longer the blocks, the fewer the number of different blocks in any
bootstrap sample, and hence the less opportunity there is for each of the bootstrap
samples to differ from the original one.

For any block bootstrap method, the choice of b is very important. If b is too small,
the join-point problem may well be severe. If b is too large, the bootstrap samples
may well be insufficiently random. In theory, b must increase with n, and the rate of
increase should often be proportional to n!/2. Of course, since actual sample sizes are
generally fixed, it is not clear what this means in practice. It often requires quite a
large sample size for it to be possible to choose b so that the blocks are neither too
short nor too long.

Block bootstrap methods have many variants designed for different types of problem.
For example, Paparoditis and Politis (2003) proposes a residual-based block bootstrap
designed for unit root testing. Andrews (2004) proposes an ingenious block-block
bootstrap that involves modifying the original test statistic, so that its join-point
features resemble those of the bootstrap statistics.

The finite-sample properties of block bootstrap methods are generally not very good.
In some cases, it can require substantial effort just to show that they are asymptot-
ically valid; see Gongalves and White (2004). In theory, these methods frequently
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offer higher-order accuracy than asymptotic methods, but the rate of improvement is
generally quite small; see Hall, Horowitz, and Jing (1995) and Andrews (2002, 2004).

6. Multiple Test Statistics

Whenever we perform two or more tests at the same time, we cannot rely on ordinary
P values, or ordinary critical values, because the probability of obtaining an unusually
large test statistic by chance increases with the number of tests we perform. However,
controlling the overall significance level of several tests without sacrificing power is
difficult to do using classical procedures. In order to ensure that the overall significance
level is no greater than «, we must use a significance level o’ for each test that is
smaller than «. If there are m tests, the well-known Bonferroni inequality tells us to
set o’ = a/m. A closely related approach is to set o/ = 1 — (1 —«)'/™. This will yield
a very similar, but slightly less conservative, answer. If we are using P values, the
Bonferroni P value is simply m times the smallest P value for each of the individual
tests. Thus, when performing five tests, we would need one of them to have a P value
of less than .01 before we could reject at the .05 level.

When some of the test statistics are positively correlated, the Bonferroni approach
can be much too conservative. In the extreme case in which all of the statistics were
perfectly correlated, it would be appropriate just to use « as the significance level for
each of the tests. One attractive feature of bootstrap testing is that it is easily adapted
to situations in which there is more than one test statistic. Westfall and Young (1993)
provides an extensive discussion of how to test multiple hypotheses using bootstrap
methods. However, with the recent exception of Godfrey (2005), there seems to have
been little work on this subject in econometrics.

Suppose we have m test statistics, 7, through 7,,. If these all follow the same distri-
bution under the null hypothesis, then it makes sense to define

Tmax = max(7y), [=1,...,m, (20)

and treat T,ax like any other test statistic for the purpose of bootstrapping. We simply
need to calculate all m test statistics for the actual sample and for each bootstrap
sample and use them to compute 7,,.x and B realizations of 77 ,.. However, if the 7
follow different distributions, perhaps because the statistics have different numbers of
degrees of freedom, or perhaps because the discrepancies between their finite-sample
and asymptotic distributions differ, then the value of 7,,,« Will be excessively influenced
by whichever of the 7; tend to be most extreme under the null hypothesis.

In most cases, therefore, it make sense to base an overall test on the minimum of the
P values of all the individual tests,

Pmin = min(p(n)), I=1,...,m. (21)

This can be thought of as a test statistic to be bootstrapped, where we reject when
Pmin 18 in the lower tail of the empirical distribution of the p?; . In equation (21), p(7;)
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denotes a P value associated with the test statistic 7;. It could be either an asymptotic
P value or a bootstrap P value; the latter may or may not be more reliable. If it is
a bootstrap P value, then bootstrapping pmin will require a double bootstrap. Such
a double bootstrap scheme has been proposed in Godfrey (2005) for dealing with
multiple diagnostic tests for linear regression models.

In many cases, it should not be necessary to use a double bootstrap. If asymptotic P
values are reasonably reliable, then using a single bootstrap with pnin can be expected
to work well. Whenever the test statistics 7 through 7, have a joint asymptotic
distribution that is free of unknown parameters, then 7., and by extension ppyin,
must be asymptotically pivotal. Thus bootstrapping either of them will provide an
asymptotic refinement. However, this is a stronger condition than assuming that each
of 71 through 7, is asymptotically pivotal, and it may not always hold. When it does
not, a (single) bootstrap test based on Tyax O Pmin Will still be asymptotically valid,
but it will not offer any asymptotic refinement. Of course, one can then apply a double
bootstrap scheme like the second one discussed in Section 4, and doing so will offer an
asymptotic refinement; see Godfrey (2005).

Test statistics like (20) arise naturally when testing for structural change with an
unknown break point. Here each of the 7; is an F', Wald, or LR statistic that tests
for a break at a different point in time. Such tests are often called “sup” (short for
“supremum” ) tests. Thus, in the case of a regression model where each of the 7; is an
F statistic, Tmax is referred to as a supF statistic. The number of test statistics is the
number of possible break points, which is typically between 0.6n and 0.9n, where n
is the sample size. Various authors, notably Andrews (1993), Andrews and Ploberger
(1994), and Hansen (1997), have calculated asymptotic critical values for many cases,
but these values may not be reliable in finite samples.

It is natural to apply the the bootstrap to this sort of problem. Diebold and Chen
(1996) and Hansen (2000) seem to have been among the first papers to do so. The
two fixed regressor bootstrap procedures suggested in Hansen (2000) are essentially
variants of the residual bootstrap and the wild bootstrap. They are called “fixed re-
gressor” because, when the regressors include lagged dependent variables, the latter
are treated as fixed rather than generated recursively as in (11). This seems unsat-
isfactory, but it allows the proposed procedures to work for nonstationary as well as
stationary regressors. Note that, since T,.x in this case has an asymptotic distribu-
tion, it is evidently asymptotically pivotal, and so bootstrapping should, in principle,
yield an asymptotic refinement.

The supF test for structural change will be examined further in the next section,
partly because it provides a simple example of a procedure that is conceptually easier
to perform as a bootstrap test than as an asymptotic one, and partly because it
illustrates the importance of how the bootstrap DGP is chosen.

Another case in which it would be very natural to use the bootstrap with multiple test
statistics is when performing point-optimal tests. Suppose there is some parameter,
say 6, that equals fy under the null hypothesis. The idea of a point-optimal test
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is to construct a test statistic that is optimal for testing § = 6y against a specific
alternative, say # = 6;. Such a test may have substantially more power when 6 is in
the neighborhood of #; than conventional tests that are locally optimal. Classic papers
on point-optimal tests for serial correlation include King (1985) and Dufour and King
(1991). Elliott, Rothenberg, and Stock (1996) applies the idea to unit root testing.

The problem with point-optimal tests is that, if the actual value of # happens to be
far from 6, the test may not be very powerful. To guard against this, it is natural to
calculate several test statistics against different, plausible values of #. This introduces
the usual problems associated with performing multiple tests, but they are easily
overcome by using the bootstrap.

In the case of tests for first-order serial correlation in the linear regression model
y = X3 + u with normal errors, point-optimal tests for pg against p; have the form

a' Xyt

——— 22
' X a (22)

T(Pl,Po) =

where Xy and Xy are n X n positive definite matrices proportional to the covariance
matrices of the error terms under the null and alternative hypotheses, respectively,
and w and u are vectors of GLS residuals corresponding to those two error covariance
matrices. When the null hypothesis is that the errors are serially uncorrelated, so that
po = 0, Xy is an identity matrix, and @ is a vector of OLS residuals.

Although the test statistic (22) does not follow any standard distribution, it is not
hard to show that it is asymptotically pivotal if the distribution of the error terms is
known. With fixed regressors as well as error terms that follow a known distribution,
it will be exactly pivotal, and Monte Carlo testing will be exact. More generally, since
the distribution of the error terms evidently matters for the distribution of 7(p1, po),
even asymptotically, one would expect bootstrap testing to be asymptotically valid but
not to offer any asymptotic refinement. Nevertheless, since the EDF of the residuals
should provide a good estimate of the distribution of the error terms in large samples,
it seems plausible that bootstrap testing will work reasonably well if the sample size
is large enough.

Bootstrapping this sort of test statistic is much more convenient than looking up non-
standard critical values even if we are just performing a single point-optimal test. It
is even more convenient when we wish to perform several such tests. For example, if
there are m alternative values of p, we just need to calculate

Tmax = max(7(p1, po), 7(p2, P0)s - - -, 7(Pms P0))

and bootstrap it in the usual way. Of course, the bootstrap P value associated with
Tmax Will inevitably be larger than the one associated with any individual point-optimal
test statistic. Thus a test based on Ty, must have less power than one based on
7(p1, po) for p sufficiently close to p;.
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Yet another case in which it would be natural to use the bootstrap with multiple
test statistics is when testing more than two nonnested hypotheses. Consider a set of
nonnested and possibly nonlinear regression models, Hy through H,,:

Hy: y:ml<ﬁl)+ul7 [=0,...,m,

where y is an n-vector of observations on a dependent variable, and each of the x;(3;)
is a vector of regression functions, which may be linear or nonlinear in 3;. The object
is to test the specification of one of these models by using the evidence obtained by
estimating the others. See Davidson and MacKinnon (2004, Chapter 15).

The easiest way to test Hy against any one of the other models, say H1, is to use the P
test proposed in Davidson and MacKinnon (1981), which reduces to the better-known
J test, proposed in the same paper, when H is a linear regression model. The P test
is based on the Gauss-Newton regression

Y- mO(BO) = Xo(ﬁo)b + a(w1(ﬁ1) — wo(ﬁo)) + residuals. (23)

Here 3y and B; are vectors of least squares estimates, mO(BO) and ml(Bl) are vectors
of fitted values, and Xo(Bo) is a matrix of the derivatives of zo(8y) with respect to
Bo, evaluated at ﬁo. The P statistic is simply the ¢ statistic for « = 0. Under the
assumption of homoskedasticity, this ¢ statistic would be based on the usual OLS covar-
iance matrix for regression (23). Under the weaker assumption of heteroskedasticity of
unknown form, it would be based on a heteroskedasticity-consistent covariance matrix.

Under the null hypothesis that the data are generated by Hy and a suitable assump-
tion about the error terms, either sort of P statistic is asymptotically distributed as
standard normal. However, in samples of moderate size, the P statistic is often far
from its asymptotic distribution. It generally has a positive expectation, which can be
quite large, and, in consequence, it tends to overreject severely. Thus, in a great many
cases, it is not safe to compare the P statistic to the standard normal distribution.

However, at least for homoskedastic errors, bootstrapping the P statistic using the
residual bootstrap generally works very well. Davidson and MacKinnon (2002a) pro-
vides a detailed analysis for the case in which Hy and H; are both linear models. Even
when the asymptotic test rejects more than half the time at the .05 level, the bootstrap
test typically overrejects quite modestly. There are some, generally unrealistic, cases
in which the ordinary bootstrap test performs much better than the asymptotic test
but still overrejects noticeably. In such cases, using the fast double bootstrap generally
results in a substantial further improvement, so that the overrejection often becomes
negligible; see Davidson and MacKinnon (2002b).

It is customary to test Hy separately against each of H; through H,,, although one
could also test Hy against all the other models jointly by generalizing (23) in the
obvious way and using an F' statistic with m numerator degrees of freedom. When we
compute m separate P statistics, there is the usual problem of how to make inferences.
If we denote the m test statistics by 71 through 7,,, we could simply calculate 7.

—929



as in (20), but this is probably not a good thing to do, because the 7, may have quite
different finite-sample distributions under the null hypothesis.

It would be better to use a double bootstrap, in which we first assign a bootstrap P
value p*(7;) to each of the 7;. This should be an equal-tail P value based on equation
(4) if we wish to perform a two-tailed test, because the distribution of the 7; is often
far from being symmetric around the origin. We would then bootstrap the overall test
statistic

P =min(p* (7)), I1=1,...,m.

Under the assumption of homoskedasticity, it would be appropriate to employ the
ordinary t statistic for & = 0 in (23) and the residual bootstrap. Under the weaker
assumption of heteroskedasticity of unknown form, it would be appropriate to employ
a heteroskedasticity-robust ¢ statistic and the wild bootstrap.

7. Finite-Sample Properties of Bootstrap SupF Tests

Although bootstrap tests can work very well indeed, they certainly do not always
perform particularly well. Moreover, the precise form of the bootstrap DGP is often
very important. In this section, these two points are illustrated by examining the
performance of several bootstrap tests based on the supF statistic introduced in the
previous section.

The supF statistic may be calculated whenever we have a linear regression model
estimated using time series data. Such a model may be written as

yt:Xtﬁ+ut7 tzl?"'ana

where X; is a 1 x k vector of observations on regressors that may include lagged
dependent variables. To calculate the statistic, we first estimate this model by OLS to
obtain the sum of squared residuals, or SSR. Let m be a number greater than 0 and, in
most cases, substantially less than 0.50 (typical values are 0.10, 0.15, and 0.20), and
let n1 be the integer closest to mn. We next run the regression again for every pair of
subsamples
1,...,m and ny+1,...,n;
1,...,n14+1 and n;+2,...,n;

1,....n—n7 and n—n;+1,...,n.

Let the sum of squared residuals from the first of each pair of regressions be denoted
SSR;, and the one from the second be denoted SSRy. Then, for the [*" pair of sub-
sample regressions, we can calculate the usual F', or Chow, statistic for the coefficients
to be the same in both subsamples:

(SSR — SSR; — SSR») /k

Fi(k, n —2k) = (SSR; + SSR»)/(n — 2k)

(24)
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The supF statistic is just the maximum of the statistics (24) over the n —2n; + 1 pairs
of subsamples. The asymptotic distribution of this statistic depends on k and 7; see
Andrews (1993) and Hansen (1997). The programs from Hansen (1997) are actually in
terms of k£ times supF, since the same asymptotic distribution applies to a much wider
class of tests for structural stability than just the supF test, and the test statistic is,
in general, the maximum of n — 2n; + 1 statistics that each have an asymptotic x?(k)
distribution.

Results for three sets of simulation experiments are reported. In the first set, there
are no lagged dependent variables. The vector X; simply consists of a constant term
and k — 1 independent, normally distributed random variables, and the error term u,
is also IID normal. Of course, this is not a very realistic model for time-series data,
but it makes it easy to focus on the role of k, the number of regressors. There are
four sets of experiments, for sample sizes n = 50, 100, 200, and 400. In all of them,
7 = 0.15. The number of regressors, k, varies from 2 to 7 when n = 50 and from 2
to 12 for the remaining values of n. Note that, when n = 50, 7n = 7.5, and therefore
nyp = 8. This is why k£ < 7 when n = 50.

Four different tests are investigated. The first is an asymptotic test based on the
approximate asymptotic distribution functions of Hansen (1997). The others are
bootstrap tests using the residual bootstrap, as in equation (10), the wild bootstrap
(Davidson-Flachaire version), and the pairs bootstrap, respectively. Note that, for the
supF test, the pairs bootstrap does impose the null hypothesis, because all the [y;, X;]
pairs are implicitly assumed to come from the same joint distribution, and so we do
not need to modify the test statistic.

Every experiment has 100,000 replications, and all bootstrap methods use B = 199.
This is a much smaller value of B than would normally be used in practice, but errors
tend to cancel out across replications in a simulation experiment like this one. The
value of B is small because these experiments are very expensive, especially for the
larger sample sizes. Each replication involves running (B + 1)(2n — 4ny + 3) linear
regressions.

The results of the experiments are shown in Figure 1. There are four panels, which
correspond to the four different sample sizes. Note that the vertical axis in the two
top panels, for n = 50 and n = 100, is not the same as in the two bottom panels,
for n = 200 and n = 400. This choice was made because, as expected, all the tests
perform better for larger sample sizes.

Although the asymptotic test works very well for k = 2, it overrejects more and more
severely as k increases. In contrast, the residual bootstrap seems to perform very
well for all values of k, and the wild bootstrap underrejects just a little for large
values of k£ and small values of n. The pairs bootstrap performs very differently from,
but no better than, the asymptotic test; it underrejects more and more severely as
k increases. In this case, since the errors are IID, there is no need to use either
the wild or the pairs bootstrap. In practice, however, one might well want to guard
against heteroskedasticity by using one of these methods. The cost of using the wild
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bootstrap appears to be modest, but the pairs bootstrap should always be avoided.
Of course, it would also be desirable to use a heteroskedasticity-robust test statistic if
heteroskedasticity were suspected.

In the second set of experiments, there are only two regressors, a constant term and a
lagged dependent variable. Thus the model is really the AR(1) process

Ye = B1 + Bayi—1 +ug,  up ~ NID(0, ). (25)

There are 19 cases for each sample size, corresponding to the following values of fs:
—0.9,—-0.8,...,0.8,0.9. All results are invariant to the values of 3; and o.

This time, five different tests are investigated. Once again, the first is an asymp-
totic test, and the others are bootstrap tests. There are two versions of the residual
bootstrap. One is the fixed regressor bootstrap of Hansen (2000), which is calculated
exactly the same way as the residual bootstrap in the first experiment, incorrectly
treating the X; as fixed. The other is a recursive residual bootstrap, in which the
model is assumed to be known and estimates of 5, and (> from the entire sample are
used, along with resampled rescaled residuals, to generate the bootstrap samples. This
is the type of bootstrap that was studied in Diebold and Chen (1996) for the same
model. The value of |(B2| is constrained to be less than 0.99 to ensure stationarity.
When Bg is greater than 0.99 or less than —0.99, it is set to 0.99 or —0.99, as appro-
priate. This happened just twice in all the experiments when n = 100 and g, = —0.9,
and a few hundred times when n = 50 and |G2] = 0.9.

The other two bootstrap methods are block-of-blocks variants of the moving block
bootstrap. These are essentially generalizations of the pairs bootstrap. The length of
the blocks is set to the smallest integer greater than n'/3 in one case, and to twice
that in the other. The actual block lengths are indicated in Figure 2, which shows
rejection frequencies as a function of §; for all five tests.

From Figure 2, we can see that the performance of all the tests is sensitive to the value
of (35. For the largest sample sizes, the recursive residual bootstrap performs quite well
for all values of (5. For the smaller sample sizes, it underrejects slightly for negative
and small positive values of (32, and it overrejects noticeably for large positive values.
None of the other methods performs at all well. They all underreject for most values
of B2 and overreject, often severely, for positive ones that are sufficiently large. The
fixed regressor bootstrap performs almost the same as the asymptotic test. The two
moving block bootstraps always reject less often than the asymptotic test, both when
it underrejects and when it overrejects. This is more true for the variant that uses
longer blocks, which overrejects only for the largest positive values of 3,.

Notice that every one of the rejection frequency curves in Figure 2 is below 0.05 for
some values of 35 and above it for others. Thus we can always find a value of (35 for
which any of the tests, whether bootstrap or asymptotic, happens to work perfectly.
Nevertheless, with the exception of the recursive residual bootstrap, it is fair to say
that, overall, none of these methods works well.
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Although the recursive residual bootstrap works reasonably well, it is interesting to see
whether it can be improved upon, especially for extreme values of #5. Two variants of
this procedure are therefore examined. The first is the fast double bootstrap, or FDB,
which was discussed in Section 4. This method is easy to implement, although the
probability of obtaining estimates of (5 greater than 0.99 in absolute value is much
greater than for the single bootstrap, because of the random variation in the values
of (B3 used in the second-level bootstrap DGPs. All such estimates were replaced by
either 0.99 or —0.99, as appropriate.

The third method that is studied is cruder but less computationally intensive than
the FDB. One obvious problem with the recursive residual bootstrap is that the OLS
estimate of (5 is biased. A simple way to reduce this bias is to generate B bootstrap
samples, calculate the average value 35 over them, and then obtain the estimator

By = Bo— (B — B2) = 262 — B3

The term in parentheses here is an estimate of the bias; see MacKinnon and Smith
(1998). The idea is simply to use Bé instead of 3 in the bootstrap DGP. This sort
of bias correction has been used successfully when bootstrapping confidence intervals
for impulse response functions from vector autoregressions; see Kilian (1998). When
| Bé\ > 0.99, something which occurs not infrequently when the absolute value of s is
large, Bé is replaced by a value halfway between Bg and either 1 or —1. This value is
in turn replaced by 0.99 or —0.99, if necessary.

In the third set of experiments, the model is once again (25), but there are now
23 values of (35, with —0.95, —0.85, 0.85, and 0.95 added to the values considered
previously so as to obtain more information about what happens near the edge of the
stationarity region. Because the recursive residual bootstrap works very well indeed
for n = 400, the sample sizes are now 25, 50, 100, and 200. Also, because the FDB
suffers from size distortions when B is small, B is now 999 instead of 199.

Figure 3 shows rejection frequencies for the recursive residual bootstrap test and the
bias-corrected and FDB variants of it as functions of 35. It is clear that bias correction,
at least as it is implemented here, generally does not improve the performance of the
recursive residual bootstrap test. In contrast, the FDB typically does improve its
performance. For the smaller sample sizes, this improvement is noticeable for most
values of 35. For the larger sample sizes, it is noticeable only for large, positive values
of (35, the values for which both bootstrap and asymptotic tests perform worst.

8. Conclusion

Tests based on asymptotic theory can be difficult to implement and do not always
work well in finite samples. In such cases, bootstrap testing may be very attractive.
There are at least four ways to compute bootstrap P values. We may wish to reject
in the upper tail, the lower tail, or both tails. In the latter case, we may or may not
wish to impose the assumption that the distribution of the test statistic is symmetric
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around the origin. Equations (3) and (4) are both perfectly valid ways of computing
P values for two-tailed tests, but they may yield quite different results.

In certain circumstances, which generally involve rather strong distributional assump-
tions, bootstrap tests can actually be exact, and they are called Monte Carlo tests.
However, the idea that bootstrap tests always perform well is quite false, as the results
in Figures 1 and 2 illustrate. Procedures such as the double bootstrap and fast double
bootstrap may help matters, but this is by no means guaranteed.

More importantly, there are often many ways to specify a bootstrap DGP. Whether a
bootstrap test works well or badly depends on how well the bootstrap DGP mimics
the essential features of the true DGP under the null hypothesis. In general, it seems
that bootstrap procedures which are at least partly parametric perform better than
ones that are fully nonparametric. That is certainly true for the supF test studied
in Section 7. The parameters should always be estimated under the null hypothesis,
if possible. Of course, we would not expect a parametric bootstrap to work well if
the rejection probabilities depended strongly on one or more nuisance parameters and
those parameters were hard to estimate reliably.

One of the big advantages of bootstrap testing is that it can be used in situations where
asymptotic theory is unavailable or difficult to employ. For example, it can easily be
used to assign a P value to the maximum of a possibly large number of test statistics.
Examples where this may be useful include nonnested hypothesis tests when there are
several alternative hypotheses, point-optimal tests, and tests for structural change.
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Figure 1. Rejection frequencies for bootstrap and asymptotic tests, static regression model

—32—



0.25 0.25

- Asymptotic - Asymptotic
o Fixed Regressor o Fixed Regressor
0.20 . . { 0.20 ) )
. Recursive residual ; . Recursive residual
I Moving BOB (4) o e Moving BOB (5)
015 N MOVlng BOB (8) :" 0'15 : ............... Moving BOB (10)
0.10 0.10
0.05 0.05
0.00 +—rrrrrrrrrrrrr e 82 0.00 e B
-1.0 -0.5 0.0 0.5 1.0 —1.0 -0.5 0.0 0.5 1.0
Sample Size 50 Sample Size 100
0.16 0.16
- Asymptotic - Asymptotic
0.14 | o Fixed Regressor 0.14 1 Fixed Regressor
0.12 Recursive residual 0.12 - Recursive residual
A e, Moving BOB (6) e R Moving BOB (8)
0.10 J E— Moving BOB (12) 0'10: ............... Moving BOB (16)
0.08 0.08 —
0.06 0.06 —
0.04 0.04
0.02 0.02
000+ TTTTrrrrrrrrrrrrrr 102 000+t rrrrrrrrrrrTroror15
—1.0 —0.5 0.0 0.5 1.0 —1.0 -0.5 0.0 0.5 1.0
Sample Size 200 Sample Size 400

Figure 2. Rejection frequencies for bootstrap and asymptotic tests, AR(1) model
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Figure 3. Rejection frequencies for bootstrap tests, AR(1) model
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