
QED
Queen’s Economics Department Working Paper No. 1227

Critical Values for Cointegration Tests

James G. MacKinnon
Queen’s University

Department of Economics
Queen’s University

94 University Avenue
Kingston, Ontario, Canada

K7L 3N6

1-2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6494353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Critical Values for Cointegration Tests

James G. MacKinnon

Department of Economics
Queen’s University

Kingston, Ontario, Canada
K7L 3N6

jgm@econ.queensu.ca
http://www.econ.queensu.ca/faculty/mackinnon/

Abstract

This paper provides tables of critical values for some popular tests of cointegration and
unit roots. Although these tables are necessarily based on computer simulations, they
are much more accurate than those previously available. The results of the simulation
experiments are summarized by means of response surface regressions in which critical
values depend on the sample size. From these regressions, asymptotic critical values
can be read off directly, and critical values for any finite sample size can easily be
computed with a hand calculator. Added in 2010 version: A new appendix contains
additional results that are more accurate and cover more cases than the ones in the
original paper.

January 1990
Reissued January 2010 with additional results

This paper originally appeared as University of California San Diego Discussion Paper 90-4,

which is apparently no longer available on the web. It was written while I was visiting UCSD

in the fall of 1989 and early 1990 and supported, in part, by grants from the Social Sciences

and Humanities Research Council of Canada. I am grateful to all of the econometricians at

UCSD for providing a hospitable research environment and to Rob Engle and the late Clive

Granger for comments on an earlier version.



Forward

I spent the academic year of 1989-1990 on sabbatical at the University of California
San Diego. Since Robert Engle and Clive Granger were there permanently, and David
Hendry, Søren Johansen, and Timo Teräsvirta were also visiting, there was inevitably
much discussion about cointegration. I was surprised to find that, for most of the
tests, accurate critical values did not then exist. I therefore set out to calculate them
for the Dickey-Fuller and Engle-Granger tests, and the result was this paper.

The paper originally appeared as University of California San Diego Discussion Paper
No. 90-4. For many years, a bitmapped PDF of it that was missing the cover page
could be found on the UCSD Economics website, but it seems to have vanished some
time during 2009. The paper was later published in a book edited by Rob Engle and
Clive Granger; see the references.

I have made this version available as a Queen’s Economics Department Working Paper
so that researchers who search for the UCSD working paper on the web will be able
to find it. I have also added an appendix in which I provide new results that are much
more accurate and cover more cases than the ones in the original paper. The enormous
increases in computing power over the past twenty years made this quite easy to do. I
have also added some additional references to works that did not exist when the paper
was originally written.

After I wrote this paper, I developed more advanced methods for calculating approxi-
mate distribution functions of test statistics such as the ones dealt with in this paper;
see, in particular, MacKinnon (1994, 1996, 2000), MacKinnon, Haug, and Michelis
(1999), and Ericsson and MacKinnon (2002). MacKinnon (1996) provides reasonably
accurate results for Dickey-Fuller and Engle-Granger tests which cover the same cases
as those in the new appendix, although they are not quite as accurate. The “numerical
distribution functions” obtained in that paper can be used to compute P values as
well as critical values. Nevertheless, the results of this paper continue to be used far
more often than the ones from the 1996 paper. Perhaps that is because they do not
require the use of a specialized computer program to calculate critical values. I hope
that, in future, researchers who prefer the approach of this paper will use the more
accurate and more widely applicable results that are now in Tables 2, 3, and 4.

This version of the paper is dedicated to the late Sir Clive Granger, 1934–2009, without
whose fundamental contributions it could never have been conceived.

January 2010
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1. Introduction
Engle and Granger (1987) suggested several techniques for testing the null hypothesis
that two or more series, each of which is I(1), are not cointegrated. This paper is
concerned with the most popular of these techniques, which I shall refer to as Engle-
Granger (or EG) tests even though they were not the only tests proposed by those
authors. EG tests are closely related to some of the tests suggested by Fuller (1976)
and Dickey and Fuller (1979) to test the unit root hypothesis; I shall refer to these
as Dickey-Fuller or DF tests. EG and DF tests are very easy to calculate, but they
suffer from one serious disadvantage: The test statistics do not follow any standard
tabulated distribution, either in finite samples or asymptotically.

Engle and Granger (1987), Engle and Yoo (1987), Yoo (1987), and Phillips and Ouliaris
(1990) all provide tables for one or more versions of the EG test. But these tables
are based on at most 10,000 replications, which means that they are quite inaccurate.
Moreover, they contain critical values for only a few finite sample sizes; asymptotic
critical values, which are in many cases the most interesting ones, are not provided.

This paper provides tables of critical values for two versions of the EG test and three
versions of the DF test. Although they are based on simulation, they should be
accurate enough for all practical purposes. The results of the simulation experiments
are summarized by means of response surface regressions, in which critical values are
related to sample size. The coefficients of the response surface regressions are tabulated
in such a way that asymptotic critical values can be read off directly, and critical values
for any finite sample size can easily be computed with a hand calculator.

2. Engle-Granger and Dickey-Fuller Tests
Engle-Granger tests are conceptually and computationally quite simple. Let the vector
yt ≡ [yt1, . . . , ytN ]> denote the tth observation on N time series, each of which is
known to be I(1). If these time series are cointegrated, there exists a vector α such
that the stochastic process with typical observation zt ≡ [1 yt]>α is I(0). If they
are not cointegrated, there will exist no vector α with this property, and any linear
combination of y1 through yN and a constant will still be I(1).

To implement the original form of the EG test, one first has to run the cointegrating
regression

yt1 = α1 +
N∑

j=2

αjytj + ut, (1)

for a sample of size T +1, thus obtaining a vector of coefficients α̂ ≡ [1 −α̂1 . . .−α̂N ]>.
One then calculates

ẑt = [1 yt]>α̂ = y1t − α̂1 − α̂2yt2 . . .− α̂NytN

and tests to see if ẑt is I(1) using a procedure essentially the same (except for the dis-
tribution of the test statistic) as the DF test. The null hypothesis of non-cointegration
corresponds to the null hypothesis that ẑt is I(1). If one rejects the null, one concludes
that y1 through yN are cointegrated.
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To test whether ẑt is I(1), one may either run the regression

ẑt = ρẑt−1 + εt (2)

and calculate the ordinary t statistic for ρ = 1, or run the regression

∆ẑt = γẑt−1 + εt, (3)

where ∆ẑt ≡ ẑt − ẑt−1, and calculate the ordinary t statistic for γ = 0. In either case,
one drops the first observation, reducing the sample size to T . These two procedures
evidently yield identical test statistics. Because there is a constant term in (1), there
is no need to include one in (2) or (3). The regressand ẑt and regressor ẑt−1 would
each have mean zero if both were observed over observations 0 through T . However,
because the regression does not make use of the first observation on ẑt or the last
observation on ẑt−1, that will not be quite true. But they should both have mean very
close to zero except when T is small and either ẑ0 or ẑT is unusually large in absolute
value. Hence adding a constant to (2) or (3) would generally have a negligible effect
on the test statistic.1

The way the EG test is computed is somewhat arbitrary, since any one of the yj could
be given the index 1 and made the regressand of the cointegrating regression (1). As a
result, the value (but not the distribution) of the test statistic will differ depending on
which series is used as the regressand. One may therefore wish to repeat the procedure
with different choices of yj serving as regressand, thus computing up to N different
test statistics, especially if the first one is near the chosen critical value.

If N = 1, this procedure is equivalent to one variant of the ordinary DF test (see
below), in which one runs the regression

∆zt = α1 + γzt−1 + εt

and tests for γ = 0. As several authors have shown (see West (1988) and Hylleberg
and Mizon (1989)), the latter has the Dickey-Fuller distribution only when there is no
drift term in the data-generating process for zt, so that α1 = 0. When α1 6= 0, the test
statistic is asymptotically distributed as N(0, 1), and in finite samples its distribution
may or may not be well approximated by the Dickey-Fuller distribution. The original
version of the EG test likewise has a distribution that depends on the value of α1;
since all tabulated critical values assume that α1 = 0, they may be quite misleading
when that is not the case.

There is a simple way to avoid the dependence on α1 of the distribution of the test
statistic. It is to replace the cointegrating regression (1) by

yt1 = α0t + α1 +
N∑

j=2

αjytj + ut, (4)

1 Some changes were made in this paragraph in the 2010 version to correct minor errors
in the original paper. The conclusion is unchanged.
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that is, to add a linear time trend to the cointegrating regression. The resulting
test statistic will now be invariant to the value of α1, although it will have a different
distribution than the one based on regression (1).2 Adding a trend to the cointegrating
regression often makes sense for a number of other reasons, as Engle and Yoo (1990)
discuss. There are thus two variants of the Engle-Granger test. The “no-trend” variant
uses (1) as the cointegrating regression, and the “with-trend” variant uses (4).

In some cases, the vector α (or at least α2 through αN ) may be known. We can then
just calculate zt = yt1−α2yt2 . . .−αNytN and use an ordinary DF test. In this case, it
is easiest to dispense with the cointegrating regressions (1) or (4) entirely and simply
run one of the following test regressions:

∆zt = γzt−1 + εt (5)

∆zt = α1 + γzt−1 + εt (6)

∆zt = α0t + α1 + γzt−1 + εt. (7)

The t statistics for γ = 0 in these three regressions yield the test statistics that Fuller
(1976) refers to as τ̂ , τ̂µ, and τ̂t, respectively; he provides some estimated critical values
on page 373. We will refer to these test statistics as the “no-constant”, “no-trend”,
and “with-trend” statistics, respectively. Note that the tabulated distribution of the
no-constant statistic depends on the assumption that z0 = 0, while those of the other
two are invariant to z0. The tabulated distribution of the no-trend statistic depends
on the assumption that α1 = 0 (see West (1988) and Hylleberg and Mizon (1989)),
while that of the with-trend statistic depends on the assumption that α0 = 0.

Up to this point, it has been assumed that the innovations εt are serially independent
and homoskedastic. These rather strong assumptions can be relaxed without affecting
the asymptotic distributions of the test statistics. The test statistics do not even have
to be modified to allow for heteroskedasticity, since, as Phillips (1987) has shown,
heteroskedasticity does not affect the asymptotic distribution of a wide class of unit
root test statistics. They do have to be modified to allow for serial correlation, however.
The easiest way to do this is to use Augmented Dickey-Fuller, or ADF, and Augmented
Engle-Granger, or AEG, tests. In practice, this means that one must add as many
lags of ∆ẑt to regressions (2) or (3), or of ∆zt to regressions (5), (6), or (7), as are
necessary to ensure that the residuals for those regressions appear to be white noise.

A different approach to obtaining unit root tests that are asymptotically valid in the
presence of serial correlation and/or heteroskedasticity of unknown form was suggested
by Phillips (1987) and extended to the cointegration case by Phillips and Ouliaris
(1990). The asymptotic distributions of what Phillips and Ouliaris call the Ẑt statistic
are identical to those of the corresponding DF, ADF, EG, and AEG tests. Phillips
and Ouliaris tabulate critical values for two forms of this statistic (corresponding to
the no-trend and with-trend versions of the DF and EG statistics) for several values of
N . Unfortunately, these critical values are based on only 10,000 replications, so that

2 It will not be invariant to the value of α0, however. To achieve that, one would have
to add t2 to the regression; see the appendix.
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they suffer from considerable experimental error. Moreover, they are for 500 rather
than an infinite number of observations, so that they are biased away from zero as
estimates of asymptotic critical values. As can be seen from Table 1 below, this bias
is by no means negligible in some cases.

3. The Simulation Experiments
Instead of simply providing tables of estimated critical values for a few specific sample
sizes, as previous papers have done, this paper estimates response surface regressions.
These relate the 1%, 5% and 10% lower-tail critical values for the test statistics dis-
cussed above, for various values of N, to the sample size T .3 Recall that T refers to
the number of observations in the unit root test regression, and that this is one less
than the total number of observations available and used in the cointegrating regres-
sion. Response surfaces were estimated for thirteen different tests: the no-constant,
no-trend and with-trend versions of the DF test, which are equivalent to the corres-
ponding EG tests for N = 1, and the no-trend and with-trend versions of the EG test
for N = 2, 3, 4, 5 and 6. Thus a total of thirty-nine response surface regressions were
estimated.

The DF tests were computed using the one-step procedures of regressions (5), (6),
and (7), while the EG tests were computed using two-step procedures consisting of
regressions (1) or (4) followed by (3). These are the easiest ways to calculate these
tests. Note that there is a slight difference between the degrees-of-freedom corrections
used to calculate the regression standard errors, and hence t statistics, for the DF tests
(N = 1) and for the EG tests (N ≥ 2). If the no-trend and with-trend DF tests were
computed in the same way as the corresponding EG tests, they would be larger by
factors of

(
(T − 1)/(T − 2)

)1/2 and
(
(T − 1)/(T − 3)

)1/2, respectively.

Conceptually, each simulation experiment consisted of 25,000 replications for a single
value of T and a single value of N .4 The 1%, 5% and 10% empirical quantiles for
these data were then calculated, and each of these became a single observation in
the response surface regression. The number 25,000 was chosen to make the bias in
estimating quantiles negligible, while keeping the memory requirements of the program
manageable.

For all values of N except N = 6, forty experiments were run for each of the following
sample sizes: 18, 20, 22, 25, 28, 30, 32, 40, 50, 75, 100, 150, 200, 250, and 500. For
N = 6, the sample sizes were 20, 22, 25, 28, 30, 32, 36, 40, 50, 100, 250, and 275.
Most of the sample sizes were relatively small because the cost of the experiments
was slightly less than proportional to the sample size, and because small sample sizes

3 The upper tail is not of any interest in this case, and the vast majority of hypothesis
tests are at the 1%, 5%, or 10% levels.

4 In fact, results for N = 2, 3, 4, and 5 were computed together to save computer time.
Results for N = 1 were computed separately because the calculations were slightly
different. Results for N = 6 were computed separately because it was not decided to
extend the analysis to this case until after most of the other calculations had been
completed.
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provided more information about the shape of the response surfaces.5 However, a few
large values of T were also included so that the response surface estimates of asymptotic
critical values would be sufficiently accurate. The total number of replications was 12
million in 480 experiments for N = 1 and 15 million in 600 experiments for the other
values of N .6

Using a correct functional form for the response surface regressions is crucial to ob-
taining useful estimates. After considerable experimentation, the following form was
found to work very well:

Ck(p) = β∞ + β1T
−1
k + β2T

−2
k + ek. (8)

Here Ck(p) denotes the estimated p% quantile from the k th experiment, Tk denotes
the sample size for that experiment, and there are three parameters to be estimated.
The parameter β∞ is an estimate of the asymptotic critical value for a test at level p,
since, as T tends to infinity, T−1 and T−2 both tend to zero. The other two parameters
determine the shape of the response surface for finite values of T .

The ability of (8) to fit the data from the simulation experiments was remarkably
good. To test its adequacy, it was compared to the most general specification possible,
in which Ck(p) was regressed on 15 dummy variables (12 when N = 6), corresponding
to the different values of T . It was rejected by the usual F test in only a very few cases
where it seemed to have trouble fitting the estimated critical values for the very smallest
value(s) of T . The adequacy of (8) was therefore further tested by adding dummy
variables corresponding to the smallest values of T , and this test proved slightly more
powerful than the first one. When either test provided evidence of model inadequacy,
the offending observations (T = 18 and in one case T = 20 as well) were dropped from
the response surface regressions.

Several alternative functional forms were also tried. Adding additional powers of 1/T
never seemed to be necessary. In fact, in several cases, fewer powers were necessary,
since the restriction that β2 = 0 appeared to be consistent with the data. In most
cases, one could replace T−2 by T−3/2 without having any noticeable effect on either
the fit of the regression or the estimate of β∞; the decision to retain T−2 rather than
T−3/2 in (8) was based on very slim evidence in favor of the former. On the other
hand, replacing T by either T −N or T −N −1, the numbers of degrees of freedom for

5 The experiments would have required roughly nine hundred hours on a 20 Mh. 386
personal computer. All programs were written in FORTRAN 77. About 70% of the
computations were done on the PC, using programs compiled with the Lahey F77L-
EM/32 compiler. Some experiments, representing roughly 30% of the total computa-
tional burden, were performed on other computers, namely, an IBM 3081G, which was
about 7.5 times as fast as the PC, and an HP 9000 Model 840, which was about 15%
faster.

6 The experiments for N = 6 were done later than the others and were designed in the
light of experience with them. It was decided that the extra accuracy available by
doing more experiments for large values of T was not worth the extra cost.
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the cointegrating regression in the no-trend and with-trend cases, respectively, often
(but not always) resulted in a dramatic deterioration in the fit of the response surface.

The residuals ek in regression (8) were heteroskedastic, being larger for the smaller
sample sizes. This was particularly noticeable when (8) was run for larger values of
N . The response surface regressions were therefore estimated by feasible GLS. As a
first step, Ck(p) was regressed on 15 (or 12) dummy variables, yielding residuals ék.
The following regression was then run:

é2
k = δ∞ + δ1(Tk − d)−1 + δ2(Tk − d)−2 + error, (9)

where d is the number of degrees of freedom used up in the cointegrating regression,
and there are three coefficients to be estimated.7 The inverses of the square roots of
the fitted values from (9) were then used as weights for feasible GLS estimation of (8).
The feasible GLS estimates were generally much better than the OLS ones in terms of
loglikelihood values, but the two sets of estimates were numerically very close.

The final results of this paper are the feasible GLS estimates of regression (8) for 39
sets of experimental data. These estimates are presented in Table 1. The estimates of
β∞ provide asymptotic critical values directly, while values for any finite T can easily
be calculated using the estimates of all three parameters. The restriction that β2 = 0
has been imposed whenever the t statistic on β̂2 was less than one in absolute value.

Estimated standard errors are reported for β̂∞ but not for β̂1 or β̂2, since the latter
are of no interest. What is of interest is the standard error of

Ĉ(p, T ) = β̂∞ + β̂1T
−1 + β̂2T

−2,

the estimated critical value for a test at the p% level when the sample size is T .
This varies with T and tends to be smallest for sample sizes in the range of 80 to
150. Except for very small values of T (less than about 25), the standard error of
Ĉ(p, T ) was always less than the standard error of the corresponding β̂∞, so that, if
the standard errors of the β̂∞ were accurate, they could be regarded as upper bounds
for the standard errors of Ĉ(p, T ) for most values of T .

However, the standard errors for β̂∞ reported in Table 1 are undoubtedly too small.
The problem is that they are conditional on the specification of the response surface
regressions. Although the specification (8) performed very well in all cases, other
specifications also performed well in many cases, sometimes outperforming (8) in-
significantly. Estimates of β∞ sometimes changed by as much as twice the reported
standard error as a result of minor changes in the specification of the response surface
that did not significantly affect its fit. Thus it is probably reasonable to think of the

7 Considerable experimentation preceded the choice of the functional form for regression
(9). It was found that omitting d had little effect on the fit of the regression, although
on balance it seemed preferable to retain it. In this respect, regression (9) is quite
different from regression (8), where using Tk − d rather than Tk sometimes worsened
the fit substantially.
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actual standard errors on the β̂∞ as being about twice as large as the reported ones.
Even so, it seems likely that few if any of the estimated 1% critical values in Table 1
differ from the true value by as much as .01, and extremely unlikely that any of the
estimated 5% and 10% critical values differ from their true values by that much.

4. Conclusion
It is hoped that the results in Table 1 will prove useful to investigators testing for
unit roots and cointegration. Although the methods used to obtain these results
are quite computationally intensive, they are entirely feasible with current personal
computer technology. The use of response surface regressions to summarize results
is valuable for two reasons. First, this approach allows one to estimate asymptotic
critical values without actually using infinitely large samples. Second, it makes it
possible to tabulate results for all sample sizes based on experimental results for only
a few. Similar methods could be employed in many other cases where test statistics
do not follow standard tabulated distributions.
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Table 1. Response Surface Estimates of Critical Values

N Variant Level Obs. β∞ (s.e.) β1 β2

1 no constant 1% 600 −2.5658 (0.0023) −1.960 −10.04

5% 600 −1.9393 (0.0008) −0.398

10% 560 −1.6156 (0.0007) −0.181

1 no trend 1% 600 −3.4336 (0.0024) −5.999 −29.25

5% 600 −2.8621 (0.0011) −2.738 −8.36

10% 600 −2.5671 (0.0009) −1.438 −4.48

1 with trend 1% 600 −3.9638 (0.0019) −8.353 −47.44

5% 600 −3.4126 (0.0012) −4.039 −17.83

10% 600 −3.1279 (0.0009) −2.418 −7.58

2 no trend 1% 600 −3.9001 (0.0022) −10.534 −30.03

5% 600 −3.3377 (0.0012) −5.967 −8.98

10% 600 −3.0462 (0.0009) −4.069 −5.73

2 with trend 1% 600 −4.3266 (0.0022) −15.531 −34.03

5% 560 −3.7809 (0.0013) −9.421 −15.06

10% 600 −3.4959 (0.0009) −7.203 −4.01

3 no trend 1% 560 −4.2981 (0.0023) −13.790 −46.37

5% 560 −3.7429 (0.0012) −8.352 −13.41

10% 600 −3.4518 (0.0010) −6.241 −2.79

3 with trend 1% 600 −4.6676 (0.0022) −18.492 −49.35

5% 600 −4.1193 (0.0011) −12.024 −13.13

10% 600 −3.8344 (0.0009) −9.188 −4.85

4 no trend 1% 560 −4.6493 (0.0023) −17.188 −59.20

5% 560 −4.1000 (0.0012) −10.745 −21.57

10% 600 −3.8110 (0.0009) −8.317 −5.19

4 with trend 1% 600 −4.9695 (0.0021) −22.504 −50.22

5% 560 −4.4294 (0.0012) −14.501 −19.54

10% 560 −4.1474 (0.0010) −11.165 −9.88

5 no trend 1% 520 −4.9587 (0.0026) −22.140 −37.29

5% 560 −4.4185 (0.0013) −13.641 −21.16

10% 600 −4.1327 (0.0009) −10.638 −5.48

5 with trend 1% 600 −5.2497 (0.0024) −26.606 −49.56

5% 600 −4.7154 (0.0013) −17.432 −16.50

10% 600 −4.4345 (0.0010) −13.654 −5.77

6 no trend 1% 480 −5.2400 (0.0029) −26.278 −41.65

5% 480 −4.7048 (0.0018) −17.120 −11.17

10% 480 −4.4242 (0.0010) −13.347

6 with trend 1% 480 −5.5127 (0.0033) −30.735 −52.50

5% 480 −4.9767 (0.0017) −20.883 −9.05

10% 480 −4.6999 (0.0011) −16.445
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Explanation of Table 1

N : Number of I(1) series for which null of non-cointegration is being tested.

Level: Level of one-tail test of the unit root null against the alternative of stationarity.

Obs.: Number of observations used in response surface regression. Possible values are
600, 560, 520, and 480. If Obs. = 600, the regression used 40 observations from
each of T = 18, 20, 22, 25, 28, 30, 32, 40, 50, 75, 100, 150, 200, 250, and 500. If
Obs. = 560, observations for T = 18 were not used. If Obs. = 520, observations
for T = 18 and T = 20 were not used. If Obs. = 480, the regression used 40
observations from each of T = 20, 22, 25, 28, 30, 32, 36, 40, 50, 100, 250, and
275.

β∞: Estimated asymptotic critical values (with estimated standard errors in paren-
theses).

β1: Coefficient on T−1 in response surface regression.

β2: Coefficient on T−2 in response surface regression. It was omitted if the t statistic
was less than one in absolute value.

For any sample size T , the estimated critical value is

β∞ + β1/T + β2/T 2.

For example, when T = 100, the 5% critical value for the with-trend EG test when
N = 5 is

−4.7154− 17.432/100− 16.50/1002 = −4.8914 .
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Appendix (added in 2010 version)

In the twenty years since this paper was written, computer technology has advanced
enormously. On the occasion of reissuing the paper, it therefore makes sense to report
new results based on a much larger number of replications that cover a broader range of
cases. However, for comparability with the original paper, the methodology is largely
unchanged. The simulation results could also have been used to provide somewhat
more accurate numerical distribution functions than those of MacKinnon (1996), which
allow one to compute P values and critical values for tests at any level, but no attempt
is made to do so here.

One major difference between the original experiments and the new ones is that the
latter involve far more computation. Instead of 25,000 replications, each simulation
now involves 200,000. Instead of 40 simulations for each sample size, there are now
500. And instead of the 12 or 15 sample sizes used originally, there are 30. The sample
sizes are 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250,
300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, and 1400. Some of these values
of T are much larger than the largest ones used originally. This increases the precision
of the estimates but made the experiments much more expensive.

The total number of observations for the response surface regressions is usually 15,000
(that is, 30 times 500), although, in a few cases, the simulations for T = 20 were
dropped because the response surface did not fit well enough. In a very few cases, the
simulations for T = 25 were dropped as well. Thus a few of the estimates, always for
larger values of N, are based on either 14,500 or 14,000 observations.

Because the new response surface regressions are based on 200 times as many simula-
tions as the original ones, any misspecification becomes much more apparent. It was
therefore necessary in most cases to add an additional (cubic) term to equation (8),
which thus becomes

Ck(p) = β∞ + β1T
−1
k + β2T

−2
k + β3T

−3
k + ek. (A.1)

To avoid adding the cubic term, it would usually have been necessary to drop one
or more of the smaller sample sizes (often quite a few of them). This was tried in
several cases, and the estimate of β∞ did not change much when enough small values
of Tk were dropped so that the estimate of β3 became insignificant at the 10% level.
In general, the standard error of β̂∞ was lower when equation (A.1) was estimated
using all the data than when equation (8) was estimated without the observations
corresponding to some of the smaller values of Tk.

The second major difference between the original experiments and the new ones is
that the latter deal with a broader range of cases. The values of N now go from 1 to
12 instead of from 1 to 6. Moreover, an additional variant of the DF and EG tests is
included, in which t2 is added to either the cointegrating regression (4) or the DF test
regression (7). This variant of the tests was advocated by Ouliaris, Park, and Phillips
(1989). In the notation used by MacKinnon (1996), the tests for which critical values
are computed are the τc, τct, and τctt tests. These involve, respectively, a constant
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term, a constant and a trend, and a constant, trend, and trend squared in either the
cointegrating regression or the DF test regression. For N = 1 only, as in Table 1,
results are also presented for the τnc test, in which the DF test regression does not
contain a constant term. Use of this test is not recommended, however, because it
requires highly unrealistic assumptions.

Table 2 contains results for the τc test for N = 1 to 12 and also for the τnc test for
N = 1. Table 3 contains results for the τct test for N = 1 to 12, and Table 4 contains
results for the τctt test for N = 1 to 12. These tables are to be read in exactly the
same way as Table 1, except that there is (usually) one more coefficient to take into
account. Note that the β3 coefficient was set to 0 (and omitted from the table) when
the t statistic on β̂3 was less than

√
2 in absolute value.

The feasible GLS method of estimating equation (A.1) discussed in the body of this
paper yields identical results to the GMM method discussed in MacKinnon (1996)
when the variances of the ek are estimated in the same way. The estimates in Tables
2, 3, and 4 were actually obtained using the latter method. One advantage of this
approach is that it automatically yields a GMM overidentification test statistic which
would reveal misspecification if it were at all serious.

The standard errors of β̂∞ reported in the tables are undoubtedly too small, because
they ignore uncertainty about the specification of the response surface. Nevertheless,
it is interesting to compare the standard errors in Table 1 with the ones in the three
new tables. For example, consider the τct tests with N = 2 and N = 3. In Table 1,
the standard errors for the .05 asymptotic critical values of those two tests are 0.0013
and 0.0011, respectively. In Table 3, they are 0.000054 and 0.000066. The standard
error is larger for N = 3 than for N = 2 because β3 has to be estimated in the former
case but not in the latter. In most cases, the standard errors seem to be smaller by
factors of between 15 and 20.

Using the tables, it is easy to calculate a critical value (strictly valid only under the
assumption that the errors are IID normal) for any finite sample size T . The estimated
critical value is simply

β∞ + β1/T + β2/T 2 + β3/T 3.

For example, when T = 100, the 5% critical value for the τct test (that is, the EG test
with trend) when N = 5 is

−4.71537− 17.3569/100− 22.660/1002 + 91.359/1003 = −4.89111 .

This is very close to the value of −4.8914 that was calculated using the results in
Table 1; see the explanation following that table.
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Table 2. Critical Values for No Trend Case (τnc and τc)

N Variant Level Obs. β∞ (s.e.) β1 β2 β3

1 τnc 1% 15,000 −2.56574 (0.000110) −2.2358 −3.627

1 τnc 5% 15,000 −1.94100 (0.000074) −0.2686 −3.365 31.223

1 τnc 10% 15,000 −1.61682 (0.000059) 0.2656 −2.714 25.364

1 τc 1% 15,000 −3.43035 (0.000127) −6.5393 −16.786 −79.433

1 τc 5% 15,000 −2.86154 (0.000068) −2.8903 −4.234 −40.040

1 τc 10% 15,000 −2.56677 (0.000043) −1.5384 −2.809

2 τc 1% 15,000 −3.89644 (0.000102) −10.9519 −22.527

2 τc 5% 15,000 −3.33613 (0.000056) −6.1101 −6.823

2 τc 10% 15,000 −3.04445 (0.000044) −4.2412 −2.720

3 τc 1% 15,000 −4.29374 (0.000123) −14.4354 −33.195 47.433

3 τc 5% 15,000 −3.74066 (0.000067) −8.5631 −10.852 27.982

3 τc 10% 15,000 −3.45218 (0.000043) −6.2143 −3.718

4 τc 1% 15,000 −4.64332 (0.000101) −18.1031 −37.972

4 τc 5% 15,000 −4.09600 (0.000055) −11.2349 −11.175

4 τc 10% 15,000 −3.81020 (0.000043) −8.3931 −4.137

5 τc 1% 15,000 −4.95756 (0.000101) −21.8883 −45.142

5 τc 5% 15,000 −4.41519 (0.000055) −14.0406 −12.575

5 τc 10% 15,000 −4.13157 (0.000043) −10.7417 −3.784

6 τc 1% 15,000 −5.24568 (0.000124) −25.6688 −57.737 88.639

6 τc 5% 15,000 −4.70693 (0.000068) −16.9178 −17.492 60.007

6 τc 10% 15,000 −4.42501 (0.000054) −13.1875 −5.104 27.877

7 τc 1% 15,000 −5.51233 (0.000126) −29.5760 −69.398 164.295

7 τc 5% 15,000 −4.97684 (0.000068) −19.9021 −22.045 110.761

7 τc 10% 15,000 −4.69648 (0.000054) −15.7315 −6.922 67.721

8 τc 1% 15,000 −5.76202 (0.000126) −33.5258 −82.189 256.289

8 τc 5% 15,000 −5.22924 (0.000068) −23.0023 −24.646 144.479

8 τc 10% 15,000 −4.95007 (0.000053) −18.3959 −7.344 94.872

9 τc 1% 15,000 −5.99742 (0.000126) −37.6572 −87.365 248.316

9 τc 5% 15,000 −5.46697 (0.000069) −26.2057 −26.627 176.382

9 τc 10% 14,500 −5.18897 (0.000062) −21.1377 −9.484 172.704

10 τc 1% 15,000 −6.22103 (0.000128) −41.7154 −102.680 389.330

10 τc 5% 15,000 −5.69244 (0.000068) −29.4521 −30.994 251.016

10 τc 10% 15,000 −5.41533 (0.000054) −24.0006 −7.514 163.049

11 τc 1% 14,500 −6.43377 (0.000145) −46.0084 −106.809 352.752

11 τc 5% 15,000 −5.90714 (0.000068) −32.8336 −30.275 249.994

11 τc 10% 15,000 −5.63086 (0.000055) −26.9693 −4.083 151.427

12 τc 1% 15,000 −6.63790 (0.000127) −50.2095 −124.156 579.622

12 τc 5% 15,000 −6.11279 (0.000069) −36.2681 −32.505 314.802

12 τc 10% 15,000 −5.83724 (0.000054) −29.9864 −2.686 184.116
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Table 3. Critical Values for Linear Trend Case (τct)

N Level Obs. β∞ (s.e.) β1 β2 β3

1 1% 15,000 −3.95877 (0.000122) −9.0531 −28.428 −134.155

1 5% 15,000 −3.41049 (0.000066) −4.3904 −9.036 −45.374

1 10% 15,000 −3.12705 (0.000051) −2.5856 −3.925 −22.380

2 1% 15,000 −4.32762 (0.000099) −15.4387 −35.679

2 5% 15,000 −3.78057 (0.000054) −9.5106 −12.074

2 10% 15,000 −3.49631 (0.000053) −7.0815 −7.538 21.892

3 1% 15,000 −4.66305 (0.000126) −18.7688 −49.793 104.244

3 5% 15,000 −4.11890 (0.000066) −11.8922 −19.031 77.332

3 10% 15,000 −3.83511 (0.000053) −9.0723 −8.504 35.403

4 1% 15,000 −4.96940 (0.000125) −22.4694 −52.599 51.314

4 5% 15,000 −4.42871 (0.000067) −14.5876 −18.228 39.647

4 10% 15,000 −4.14633 (0.000054) −11.2500 −9.873 54.109

5 1% 15,000 −5.25276 (0.000123) −26.2183 −59.631 50.646

5 5% 15,000 −4.71537 (0.000068) −17.3569 −22.660 91.359

5 10% 15,000 −4.43422 (0.000054) −13.6078 −10.238 76.781

6 1% 15,000 −5.51727 (0.000125) −29.9760 −75.222 202.253

6 5% 15,000 −4.98228 (0.000066) −20.3050 −25.224 132.030

6 10% 15,000 −4.70233 (0.000053) −16.1253 −9.836 94.272

7 1% 15,000 −5.76537 (0.000125) −33.9165 −84.312 245.394

7 5% 15,000 −5.23299 (0.000067) −23.3328 −28.955 182.342

7 10% 15,000 −4.95405 (0.000054) −18.7352 −10.168 120.575

8 1% 15,000 −6.00003 (0.000126) −37.8892 −96.428 335.920

8 5% 15,000 −5.46971 (0.000068) −26.4771 −31.034 220.165

8 10% 15,000 −5.19183 (0.000054) −21.4328 −10.726 157.955

9 1% 15,000 −6.22288 (0.000125) −41.9496 −109.881 466.068

9 5% 15,000 −5.69447 (0.000069) −29.7152 −33.784 273.002

9 10% 15,000 −5.41738 (0.000054) −24.2882 −8.584 169.891

10 1% 15,000 −6.43551 (0.000127) −46.1151 −120.814 566.823

10 5% 15,000 −5.90887 (0.000069) −33.0251 −37.208 346.189

10 10% 14,500 −5.63255 (0.000063) −27.2042 −6.792 177.666

11 1% 15,000 −6.63894 (0.000125) −50.4287 −128.997 642.781

11 5% 15,000 −6.11404 (0.000069) −36.4610 −36.246 348.554

11 10% 15,000 −5.83850 (0.000055) −30.1995 −5.163 210.338

12 1% 15,000 −6.83488 (0.000126) −54.7119 −139.800 736.376

12 5% 15,000 −6.31127 (0.000068) −39.9676 −37.021 406.051

12 10% 14,000 −6.03650 (0.000074) −33.2381 −6.606 317.776
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Table 4. Critical Values for Quadratic Trend Case (τctt)

N Level Obs. β∞ (s.e.) β1 β2 β3

1 1% 15,000 −4.37113 (0.000123) −11.5882 −35.819 −334.047

1 5% 15,000 −3.83239 (0.000065) −5.9057 −12.490 −118.284

1 10% 15,000 −3.55326 (0.000051) −3.6596 −5.293 −63.559

2 1% 15,000 −4.69276 (0.000124) −20.2284 −64.919 88.884

2 5% 15,000 −4.15387 (0.000067) −13.3114 −28.402 72.741

2 10% 15,000 −3.87346 (0.000052) −10.4637 −17.408 66.313

3 1% 15,000 −4.99071 (0.000125) −23.5873 −76.924 184.782

3 5% 15,000 −4.45311 (0.000068) −15.7732 −32.316 122.705

3 10% 15,000 −4.17280 (0.000053) −12.4909 −17.912 83.285

4 1% 15,000 −5.26780 (0.000125) −27.2836 −78.971 137.871

4 5% 15,000 −4.73244 (0.000069) −18.4833 −31.875 111.817

4 10% 15,000 −4.45268 (0.000053) −14.7199 −17.969 101.920

5 1% 15,000 −5.52826 (0.000125) −30.9051 −92.490 248.096

5 5% 15,000 −4.99491 (0.000068) −21.2360 −37.685 194.208

5 10% 15,000 −4.71587 (0.000054) −17.0820 −18.631 136.672

6 1% 15,000 −5.77379 (0.000126) −34.7010 −105.937 393.991

6 5% 15,000 −5.24217 (0.000067) −24.2177 −39.153 232.528

6 10% 15,000 −4.96397 (0.000054) −19.6064 −18.858 174.919

7 1% 15,000 −6.00609 (0.000125) −38.7383 −108.605 365.208

7 5% 15,000 −5.47664 (0.000067) −27.3005 −39.498 246.918

7 10% 14,500 −5.19921 (0.000062) −22.2617 −17.910 208.494

8 1% 14,500 −6.22758 (0.000143) −42.7154 −119.622 421.395

8 5% 15,000 −5.69983 (0.000067) −30.4365 −44.300 345.480

8 10% 15,000 −5.42320 (0.000054) −24.9686 −19.688 274.462

9 1% 15,000 −6.43933 (0.000125) −46.7581 −136.691 651.380

9 5% 15,000 −5.91298 (0.000069) −33.7584 −42.686 346.629

9 10% 15,000 −5.63704 (0.000054) −27.8965 −13.880 236.975

10 1% 15,000 −6.64235 (0.000125) −50.9783 −145.462 752.228

10 5% 15,000 −6.11753 (0.000070) −37.056 −48.719 473.905

10 10% 15,000 −5.84215 (0.000054) −30.8119 −14.938 316.006

11 1% 14,500 −6.83743 (0.000145) −55.2861 −152.651 792.577

11 5% 15,000 −6.31396 (0.000069) −40.5507 −46.771 487.185

11 10% 14,500 −6.03921 (0.000062) −33.8950 −9.122 285.164

12 1% 15,000 −7.02582 (0.000124) −59.6037 −166.368 989.879

12 5% 15,000 −6.50353 (0.000070) −44.0797 −47.242 543.889

12 10% 14,500 −6.22941 (0.000063) −36.9673 −10.868 418.414
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