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Abstract

This paper derives a representation of preferences for a choice theory with vague

environments; vague in the sense that the agent does not know the precise lotteries

over outcomes conditional on states. Instead, he knows only a possible set of these

lotteries for each state. Thus, this paper’s main departure from the standard subjective

expected utility model is to relax an assumption about the environment, rather than

weakening the axiomatic structure. My model is consistent with the behavior observed

in the Ellsberg experiment. It can capture the same type of behavior as the multiple

priors models, but can also result in behavior that is different from both the behavior

implied by standard subjective expected utility models and the behavior implied by

the multiple priors models.
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1 Introduction

This paper derives a representation of preferences for a choice theory with vague environ-

ments; vague in the sense that the decision maker does not know the precise lotteries over

outcomes conditional on states. Instead, he knows only a possible set of these lotteries for

each state. Taking the standard Anscombe and Aumann (1963) model as a benchmark,

this paper relaxes an assumption about the environment by allowing for acts that are func-

tions from states into sets of lotteries rather than into singleton lotteries. Thus, a vague

environment can be thought of as a hybrid between the Anscombe-Aumann environment

and an environment considered by Ahn (2008) and Olszewski (2007), who both consider

choice between sets of objective lotteries. Anscombe and Aumann’s environment is the

special case of this paper’s environment where all sets are singleton.1

As an example, consider a situation where the decision maker is a webhost who has to

buy a server for his company. What he cares about is how much he spends on the server

and whether or not it will break down so he loses data. The probability that the server

will break down depends on whether the server has a high load or a low load. The decision

maker can choose between two different servers: either a brand-name server or a recently

introduced generic no-brand-name server. For the brand-name server he can go on the web

and look up what the probability of failure is if it has a high load, and what the probability

of failure is if it has a low load. However, for the new no-brand-name product he cannot

find these probabilities, so his information about that server is much less precise. He does

know the characteristics of the very best servers and the very worst servers in the market,

but he is not sure where the generic server under consideration fits in. This means that

he only knows the possible ranges of the probabilities that the server will fail under a high

respectively low load, rather than the precise probabilities.

In this example, the states of the world are ‘High load’ and ‘Low load’. The outcomes

the decision maker directly cares about are the possible combinations of money left after

buying the server and having a working versus a broken server. The environment is vague

because the decision maker only knows the possible range of the failure-probability in each

state for the generic server.

It seems intuitive that the decision maker will treat the brand-name server and the

generic server differently, because he has precise objective information about the proba-
1Anscombe and Aumann’s model is often explained as a horse race followed by a spin of a roulette,

where which roulette is spun depends on which horse wins the race. The present paper’s title refers to the

fact that it considers decision makers who do not know the exact probabilities on the roulettes.
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bilities in each state for one, but only imprecise objective information about the other.

This suggests that vagueness is an important feature of the environment, which should be

taken into account. As I will demonstrate later, allowing for these vague environments has

important economic implications.

The two main results in the paper (Theorems 2 and 3) provide axioms necessary and

sufficient for modeling an agent as if he evaluates an act by computing for each state the

von Neumann-Morgenstern utility of the best and worst lotteries within the set returned by

the act, then weighs these together, assigns unique subjective probabilities to the states,

and uses these and the weighted utility for each state to compute his overall utility of

the act. The weight on the best lottery has a natural interpretation as a measure of the

agent’s optimism, or the weight on the worst as pessimism. In the Optimism-Weighted

Subjective Expected Utility representation (Theorem 2), these weights, i.e. the decision

maker’s optimism, are state-independent, while in the Asymmetric Optimism-Weighted

Subjective Expected Utility representation (Theorem 3) they are state-dependent.

My axiomatic structure consists of the standard Anscombe-Aumann axioms, properly

expanded to my more general class of acts, plus two mild additional axioms. The first of

these roughly says that a decision maker does not mind more vagueness if the additional

vagueness is caused by adding better possibilities, and that he would never like more

vagueness if it is caused by including worse possibilities. The second non-standard axiom

is a dominance axiom, which roughly says that a vague act is strictly worse than a precise

act if the vagueness is caused by adding only strictly worse lotteries to the precise act.

The framework presented in this paper would be a natural model of a world where

there is a continuum of underlying states, which are grouped into coarse discrete states

in the decision maker’s perception of the world. Say, for example, that the probability of

an agent being able to do his job efficiently depends not only on whether his workplace

is well-functioning or dysfunctional, but varies depending on how dysfunctional it is. The

continuum of states corresponding to different degrees of dysfunctionality can be grouped

into the coarse state ‘dysfunctional workplace’ on which the probability of being efficient

ranges from what it is when the workers literally sabotage each other to what it is when

the workers just do not eat lunch together. Such a situation is exactly captured by the

proposed model. I would like to emphasize that this example of decision makers having

a coarse perception of the state space is intended as a motivation. The present paper’s

model is one of a fixed, known set of states and acts that map these states into sets of

probabilities. For a direct treatment of coarse contingencies, see Epstein, Marinacci, and
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Seo (2007).

The departure from the standard model that I make in this paper is in a different dimen-

sion than the departure made in the literature on ambiguity aversion, which includes, for

example, Gilboa and Schmeidler (1989), Ghirardato, Maccheroni, and Marinacci (2004),

and Klibanoff, Marinacci, and Mukerji (2005). That literature does not change the en-

vironment, but instead relaxes the independence axiom. Other examples of papers that

consider non-singleton priors over states are Bewley (1986), Mukerji (1997), Epstein and

Schneider (2003), and Gajdos, Hayashi, Tallon, and Vergnaud (forthcoming).

Kreps (1979), Kreps (1992), Nehring (1999), Dekel, Lipman, and Rustichini (2001), and

Ozdenoren (2002) derive the decision maker’s subjective state space from his preferences.

Although they involve sets, the objects of choice are fundamentally different from those in

the present paper. In the subjective state space literature the decision maker has a future

choice among the alternatives in the set, while in the present paper it is nature that makes

the future choice.

Other related papers where the objects of choice involve sets are Ghirardato (2001),

Olszewski (2007), and Ahn (2008). Ghirardato (2001) generalizes the Savage framework

by allowing the acts to be mappings from states into sets of consequences rather than

into unique consequences, while I generalize the Anscombe and Aumann framework and

have acts map into sets of lotteries. In addition to the difference in domains, there are

also important differences in the representations obtained in Ghirardato (2001) and here,

which I will discuss after the main representation theorems in section 3.

Olszewski (2007) and Ahn (2008) provide axioms and representation theorems for a

decision maker who chooses between sets of lotteries. Their environments can, adjusting

for technical differences, be viewed as one-state versions of the environment I consider, and

hence they do not consider the problem of assigning subjective probabilities to states. Con-

ceptually, if we interpret Olszewski’s model as a model of ‘objective ambiguity’, the model

in the present paper allows for asymmetric objective ambiguity, where the asymmetry can

be both across states and across acts. The representations in my Theorems 1 and 3 then

allow for the decision maker’s attitude towards objective ambiguity, i.e. his optimism, to

be asymmetric across states as well, while Theorem 2 gives axioms necessary and sufficient

for his optimism to be state-independent. The relationship to Olszewski will be discussed

in detail after Theorem 1.

Finally, a number of recent papers in econometrics have been concerned with set valued

random variables, see for example Manski and Tamer (2002). A vague act is exactly a set-
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valued random variable, thus the present paper provides a choice theory associated with

these.

The paper is organized as follows: Section 2 presents the model. In section 3 the axioms

on preferences are introduced and the representation theorems are derived. In section 4

the model is applied to a simple contracting problem, and it is shown how the introduction

of vagueness changes the optimal contract. Section 5 concludes and discusses directions

for further research.

2 A Model of Vague Environments

Let S = {1, . . . , n} be a finite set of states and let X = {x1, . . . , xm} be a finite set

of consequences, i.e., the outcomes the decision maker directly cares about. Let ∆ be

the set of all probability distributions, or lotteries, over X. Compound lotteries from ∆

are identified by their reduced form lotteries. Finally, let P be the space of non-empty,

compact, and convex polyhedral2 subsets of ∆. Note that this space includes all singletons

from ∆. Define an act h by:

h : S →P

h(s) = P sh ∈P for all s = 1, . . . , n.

Hence, the acts are functions mapping states into P (or correspondences mapping states

into sets of lotteries with the properties described above). Let H denote the set of all such

acts. The decision maker has preferences over H , represented by the binary relation �.

Figure 1 illustrates an act h in the case of 2 states and 3 outcomes. Each triangle

δx1δx2δx3 is a probability simplex ∆. Here, δxi is the lottery in the simplex that yields

outcome xi with probability 1. The sets of lotteries h(s1) and h(s2) are presented as

hatched areas. Thus, all the decision maker knows is that if he chooses the act h the

probability of getting x2 is greater than 1
2 if state 1 occurs and smaller than 1

4 if state 2

occurs.

It is important to notice that the decision maker has to choose his action without

knowing which state will occur. Each of the acts induces a set of conditional probabilities

over the outcomes for each of the states. For some states and acts this set can be a singleton,

but generally it is not, as was the case for the generic server in the introductory example.

Allowing for the acts to return sets of lotteries in some states permits the decision maker
2I.e. with a finite number of vertices.
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Figure 1: Illustration of an act h
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S = {s1, s2}
X = {x1, x2, x3}

h(s1) = {p ∈ ∆ : p2 ≥ 1
2}

h(s2) = {p ∈ ∆ : p2 ≤ 1
4}

to have a vague idea about the likelihood of different outcomes. However, since the sets

typically differ from act to act there is still a difference between acts in the vague states.

Two special cases are worth mentioning. First, if anything is possible in some state we

have h(s) = ∆ for that state, i.e. conditional on that state the set an act returns is equal

to the entire probability simplex. Second, Anscombe and Aumann’s model corresponds to

for all acts having h(s) ∈ ∆ for all states, i.e to having the set be a singleton for all states.

Hence their environment is nested within the present environment.

Assuming that the sets are compact and convex with a finite number of vertices is the

same as assuming that the decision maker knows the extreme points of the set and that

everything in between is possible. It implies that the decision maker has an idea about the

best and worst probability that could occur. It also implies that if vagueness of a state

results in the agent not knowing the precise probability distribution implied by an act,

then his knowledge is only precise enough to give a range of possible probabilities. We

will not have a situation where, for example, the agent knows that he will face one of two

known probability distributions in a state, or where, as another example, the probability

of a particular outcome conditional on some state is either very high or very low, but not

around 1
2 .
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Figure 2: Convex combination of a triangular set P and a line segment Q
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3 Optimism-Weighted Subjective Expected Utility

For P,Q ∈P define the convex combination αP+(1−α)Q = {αp+(1−α)q | p ∈ P, q ∈ Q}.
Note that the parameter α is fixed, while we run over all the elements of the sets P and

Q. For h, g ∈ H the convex combination αh + (1 − α)g is taken this way pointwise, i.e.

state by state. A convex combination of a triangular set P and a line segment Q in a state

s is illustrated in Figure 2, where the triangle δx1δx2δx3 is a probability simplex.

I now turn to the axioms. The first three are standard Anscombe and Aumann axioms

extended to the more general class of acts considered in the present paper.

Axiom 1 (Preference Relation) � on H is a preference relation, that is, it is asym-

metric (if h � g then g � h) and negatively transitive (if h � g and g � f then h � f).

Axiom 2 (Set Independence) For all acts h, h′, g ∈H , and for all scalars α ∈ (0, 1], h �
h′ ⇒ αh+ (1− α)g � αh′ + (1− α)g.

Axiom 3 (Continuity) For all acts h, h′, h′′ ∈H , if h � h′ � h′′ then there exist scalars

α, β ∈ (0, 1) such that αh+ (1− α)h′′ � h′ � βh+ (1− β)h′′.

Axiom 1 is subject to the standard critique, but the critique is no more severe for this

type of acts than for standard acts. Axiom 3 is a standard Archimedian axiom. To see
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why the independence axiom reasonably extends to sets, note that the axiom implies that

indifference curves between singleton lotteries are linear and that the convex combination

of two singleton lotteries is worse than the better lottery and better than the worse lottery.

The convex combination of two sets consists of lotteries that are all convex combinations of

individual lotteries in the two sets. The set independence axiom implies that this convex

combination set of lotteries that lie in between lotteries from the two sets in terms of

preference will lie between the other two sets in terms of preference as well. Generally, we

can think of independence in the present context the usual way, that a decision maker will

focus his attention on the differences between acts, and hence making the same substitution

for two acts will not alter the preference between them.

The set independence axiom is not rejected by the usual Ellsberg argument. To see

this, note that the 2-urn Ellsberg experiment can be reinterpreted as a one-state version of

my environment. Here we interpret the information Ellsberg gives about the urns as the

decision maker’s objective information. We have 1 state, 2 outcomes, and 4 acts, which

in the one-state version of the environment are sets of lotteries. Then bets on the urn

with unknown proportions of the balls are vague acts, while bets on the urn with known

proportions are precise acts. Hence, the Ellsberg experiment fits naturally in the vague

framework, and the axioms presented in this paper can generate behavior consistent with

that observed in the Ellsberg experiment: for an optimism parameter less than 1
2 , the

representation below is consistent with the majority of subjects’ behavior of preferring

bets on the urn with known proportions. Also, the representation is consistent with the

behavior reported by Ellsberg of the two minority groups, who either prefer bets on the

urn with unknown proportions or are indifferent between betting on either urn. In my

representation these decision makers’ optimism parameters are greater than 1
2 or equal to

1
2 , respectively.

A few definitions are needed before I can present the next two axioms, which are non-

standard. Define weak preference % by h % g if g � h, and indifference by h ∼ g if h � g

and g � h. Let Psh denote the act that returns the set P ∈P in state s and agrees with

act h in all other states s′ 6= s:

Psh(s) = P

Psh(s′) = h(s′) for all s′ 6= s.

As a special case psh denotes the act that returns the singleton lottery p ∈ ∆ in state s

and agrees with act h in all other states. I.e. a lower case letter means that state s returns

a singleton lottery.
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For sets P 1, . . . , P k ∈ P let Co(P 1, . . . , P k) denote the convex hull of the sets. For

acts h1, . . . , hk the convex hull Co(h1, . . . , hk) is taken pointwise, i.e. state by state.

Axiom 4 (Set Convexity) For all acts h ∈ H , and for all sets of lotteries P,Q ∈ P,

if Psh % Qsh then Psh % Co(Psh,Qsh) % Qsh.

Set convexity says that if two acts return the same sets in all other states, and if having

the set P in state s is at least as good as having the set Q in state s, then having all mixes

between P and Q as possibilities in state s is no better than having only the possibilities

in P and no worse than having only the possibilities in Q in state s. Hence, the decision

maker will not be made worse off by including weakly better possibilities, and will not

be made better off by including weakly worse possibilities. Note that the axiom merely

requires the decision maker to feel this way about acts that agree in all but a single state s.

He is allowed to feel differently when making more complex comparisons of acts that differ

in multiple states. As such the axiom is not very restrictive, and it is very natural in the

presence of Axiom 2. The set independence axiom implies that any convex combination

of two sets is no better than the best set and no worse than the worst set. When we take

the convex hull we include all such convex combinations. Since we are only including sets

that lie in between the original sets in terms of preference, it is reasonable that doing so

will not make the decision maker better off than he is with only the best set and not worse

off than he is with only the worst set. Intuitively, Axiom 4 says that the decision maker

does not mind more vague acts if the additional vagueness is caused by including (weakly)

better lotteries in the possible set. On the other hand, he would never like more vagueness

if it is caused by including (weakly) worse lotteries.

Axiom 5 (Dominance) For all acts h ∈ H , for all lotteries p ∈ ∆, and for all sets of

lotteries Q ∈P, if psh � qsh for all q ∈ Q then psh � Co(psh,Qsh) � Qsh.

Dominance says that if two acts return the same set in all other states, and if having

the lottery p in state s is preferred to having any of the lotteries in the set Q in state s then

having all mixes of p and Q as possibilities in state s is worse than having the lottery p for

sure, but better than having only the lotteries in Q. Thus, adding strictly better lotteries

to a set makes the decision maker better off, while adding only worse possibilities makes

him worse off. Intuitively, a vague act is strictly worse than a precise act if the vagueness

is caused by including only strictly worse lotteries. On the other hand, the decision maker
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likes more vagueness if it results from including strictly better lotteries. Note that this

axiom also only concerns acts that differ in just a single state.

Axioms 4 and 5 may at first glance seem quite similar, but the important differences

are that Axiom 5 applies to strict preference and only concerns disjoint sets, while Axiom

4 applies to weak preference and also concerns how the decision maker feels about sets that

might intersect. Axiom 4 implies that no set is better than its best element or worse than

its worst element. Therefore the utility of the set can be expressed in terms of the utilities

of its best and worst lotteries. Axiom 5 then ensures that the decision maker’s weighting

of the best and worst lotteries is the same for all sets.

Theorem 1 Axioms 1 through 5 are necessary and sufficient for the existence of state-

dependent Bernoulli utility functions us(·) over the outcomes3 and unique state-dependent

parameters αs ∈ (0, 1) that capture the decision maker’s level of optimism in state s, such

that

for all h, g ∈H , h % g

if and only if

n∑
s=1

[
αs

m∑
i=1

h
s(xi)us(xi) + (1− αs)

m∑
i=1

hs(xi)us(xi)
]
≥

n∑
s=1

[
αs

m∑
i=1

gs(xi)us(xi) + (1− αs)
m∑
i=1

gs(xi)us(xi)
]
,

where hs and h
s are, respectively, the worst and best lotteries in P sh , while gs and gs are,

respectively, the worst and best lotteries in P sg .

Outline of proof: I use a sequence of lemmas to prove that the axioms are sufficient for

the representation. In Lemma 2 the mixture space theorem is used to show that Axioms

1 through 3 are equivalent to existence and linearity of the representation. Lemma 3 then

shows that the representation is separable over states. Lemma 4 shows that for mixtures

between two acts, mixtures with a higher weight on the better act are preferred to mixtures

with a lower weight on the better act, while Lemma 5 shows that an act will be indifferent

to a convex combination of a weakly better and a weakly worse act, and, as long as these

two acts are not indifferent to each other, this convex combination is unique.
3us(·) is non-constant and unique up to a positive affine transformation if state s is non-null (defined

below).
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So far everything has followed from only Axioms 1, 2, and 3. Lemma 6 is the first of

the lemmas that invokes Axiom 4. Lemmas 6 through 10 consider acts that differ in only a

single state s. Lemma 6 shows that if h(s) is a line, and if the acts that give the endpoints

of this line in state s are not indifferent to each other, then there exists a unique convex

combination of the latter two acts to which h(s) is indifferent. Lemma 7 shows that if

we consider an act h, where h(s) is a subset of a line, then the weighting of the better

and worse endpoints of this subset is the same as the weighting of the better and worse

endpoints for the larger set, while Lemma 8 shows that this weighting has to be the same

for two acts where the sets in state s are both lines and these lines are parallel. Lemmas 7

and 8 build on Lemma 6 but do not further invoke Axiom 4. Lemma 9 extends the result

in Lemma 8 to acts where the lines are not parallel. Lemma 9 uses Axiom 4 and it is the

only part of the proof of Theorem 1 that invokes Axiom 5. Lemma 10 then shows that if

h(s) is any set P ∈P then the act h will be indifferent to an act which in state s returns

a line between the best and worst lotteries in P . Lemma 10 directly invokes Axiom 4.

It is now straightforward to show that the weight αs is the same for all sets in state s.

I then show that the representation holds for singleton sets by induction on the size of the

support of the lotteries and Lemma 3. Finally, Lemmas 3, 6, and 10 are used to show that

the representation holds for general P ∈P.

It is fairly easy to show necessity of the axioms. The detailed proof of Theorem 1 is in

the appendix. �

If we were to only accept Axioms 1 through 3, we would get existence and linearity of

the representation, and that it is additively separable over states. If we furthermore accept

Axiom 4, we get that each set will be evaluated in terms of its best and worst lotteries.

However, the weight on the best and worst could depend on the set. By also accepting

Axiom 5 we get that the weighting is the same for all sets.

The interpretation of αs as capturing the decision maker’s optimism in state s can be

given the following behavioral justification: Suppose two decision makers with preferences

%1 and %2 have the same ranking of singleton sets in state s, i.e. psh %1 rsh ⇔ psh %2

rsh ∀p, r ∈ ∆, h ∈ H . Then we can think of %2 as more optimistic than than %1 if

Psh %1 qsh ⇒ Psh %2 qsh and Psh �1 qsh ⇒ Psh �2 qsh ∀P ∈ P, q ∈ ∆, h ∈ H .

That is, if %1 prefers a vague act over a precise act in state s, then %2 always prefers the

vague act as well. Therefore, %2 can be viewed as having a more optimistic view of what

the outcome of the vagueness will be. A more optimistic decision maker will have a higher
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αs. If αs approaches zero, we approach the case where the decision maker is extremely

pessimistic and takes only the worst possibility into account. If, on the other hand, αs
approaches one, we approach the case where the decision maker is extremely optimistic

and takes only the best possibility into account. The limits α = 0 and α = 1 require that

we relax dominance. We get a representation with α = 0 if we do not impose Axiom 5 and

use the special instance of Axiom 4 where if Psh % Qsh then Co(Psh,Qsh) ∼ Qsh. We get

a representation with α = 1 if we do not impose Axiom 5 and use the special instance of

Axiom 4 where if Psh % Qsh then Co(Psh,Qsh) ∼ Psh.

In each state, indifference curves between singleton lotteries are linear. For general sets

there is either a unique best lottery or, if the highest von Neumann-Morgenstern utility is

achieved along one of the edges of the set, a continuum thereof. The same applies for the

worst lottery or lotteries. For each state, the von Neumann-Morgenstern utility of the best

lottery is unique given the representation, as is the von Neumann-Morgenstern utility of

the worst lottery.

If we restrict the model to a single state, the representation in Theorem 1 above is the

same as that obtained in Olszewski (2007). Olszewski’s Theorem 3 applies to a domain

which is a one-state version of a vague environment. For this domain he provides axioms

that are sufficient for the representation in Theorem 1 when we restrict it to a single state.

In essence, by establishing that my axioms are necessary and sufficient for the representa-

tion, I show that by strengthening Olszewski’s Set S-Independence and Set S-Solvability

axioms to my Axioms 2 and 3, his Axiom 6 (Two-Set Union) becomes redundant.4

The representation in Theorem 1 has a lot of structure, but for applications even more

structure, namely state-independent Bernoulli utility and uniquely determined subjective

probabilities over states, is often desirable. The extra structure can be obtained by adding

another two standard axioms: a non-triviality axiom and a state independence axiom,

also extended to my more general class of acts. Whether the optimism-parameter is state-

independent as well, depends on which set of acts the state-independence axiom is imposed
4Olszewski’s Set S-Solvability follows from my Lemma 5, hence it is implied by my Axioms 1 through

3, and my Axiom 2 is stronger than, and implies, his Set S-Independence. My Axiom 4 and Olszewski’s

weak GDSB are quite similar, he imposes A1 - A2 ⇒ A1 - PA1 + (1− P )A2 - A2 for all P ⊂ [0, 1] with

the uniqueness property, while I just impose it for P = [0, 1] (the convex hull). Weak GDSB with P = p (a

singleton) is implied by my Axiom 2. My Axiom 5 is weaker than Olszewski’s strict GDSB, since it allows

one set to be singleton, and I only impose the axiom for P=[0,1], while he imposes it for all P different

from {0} and {1}. Strong GDSB with P = p is implied by my Axioms 2 and 4.
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on.

Axiom 6 (Non-triviality) There exist acts h, g ∈H such that h � g.

Define a state s′ to be null if for all acts h, g ∈H for which h(s) = g(s) in every s 6= s′

we have that h ∼ g.

Axiom 7 (Set State Independence) For all acts h ∈ H , and for all sets of lotteries

P,Q ∈ P, if there exists some state s such that Psh � Qsh, then Ps′h � Qs′h for all

non-null s′.

Axiom 7’ (State Independence) For all acts h ∈ H , and for all singleton lotteries

p, q ∈ ∆, if there exists some state s such that psh � qsh, then ps′h � qs′h for all non-null

s′.

Axiom 7 says that the decision maker’s preference over sets of lotteries is state-independent,

which implies that both the decision maker’s preference over singleton lotteries and how he

averages lotteries are state-independent. Axiom 7’ only requires that the decision maker’s

preference over singleton lotteries is state-independent. Hence, Axiom 7’ is weaker than

Axiom 7.

Adding Axioms 6 and 7 to the first five axioms results in Theorem 2, which is the

Optimism-Weighted Subjective Expected Utility (OWSEU) representation and the main

result in this paper. If we instead impose Axioms 1 through 6 and 7’, i.e. relax Set

State Independence to State Independence, we get the Asymmetric Optimism-Weighted

Subjective Expected Utility (AOWSEU) representation in Theorem 3.5 Discussion of both

these results follows after Theorem 3.

Theorem 2 (Optimism-Weighted Subjective Expected Utility) Axioms 1 through

7 are necessary and sufficient for the existence of a non-constant, state-independent Bernoulli

utility function u(·) over outcomes, a unique probability measure µ over states, and a unique

state-independent parameter α ∈ (0, 1) that captures the decision maker’s level of optimism,

such that

for all h, g ∈H , h % g

if and only if
5I am grateful to the anonymous referee for suggesting this.
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n∑
s=1

µ(s)
[
α

m∑
i=1

h
s(xi)u(xi) + (1− α)

m∑
i=1

hs(xi)u(xi)
]
≥

n∑
s=1

µ(s)
[
α

m∑
i=1

gs(xi)u(xi) + (1− α)
m∑
i=1

gs(xi)u(xi)
]
,

where hs and h
s are, respectively, the worst and best lotteries in P sh , while gs and gs are,

respectively, the worst and best lotteries in P sg . The Bernoulli utility function u(·) is unique

up to a positive affine transformation.

Outline of proof: Axiom 6 guarantees that there exists at least one non-null state. That

Axiom 7 has to hold for acts where the sets in state s are singletons is used to show that

there exists a state-independent Bernoulli utility function. That Axiom 7 has to hold for

any sets P and Q is used to show that the optimism-parameter must be the same for all

states. Finally I get the subjective probabilities from the scaling of the Bernoulli utility

function in the different states (remember that Bernoulli utility functions are unique up to

a positive affine transformation). Necessity of the axioms is again fairly easy to show. The

detailed proof of Theorem 2 is in the appendix.6 �

Theorem 3 (Asymmetric Optimism-Weighted Subjective Expected Utility)

Axioms 1 through 6 and 7’ are necessary and sufficient for the existence of a non-constant,

state-independent Bernoulli utility function u(·) over outcomes, a unique probability mea-

sure µ over states, and unique state-dependent parameters αs ∈ (0, 1) that capture the

decision maker’s level of optimism in state s, such that

for all h, g ∈H , h % g

if and only if

n∑
s=1

µ(s)
[
αs

m∑
i=1

h
s(xi)u(xi) + (1− αs)

m∑
i=1

hs(xi)u(xi)
]
≥

n∑
s=1

µ(s)
[
αs

m∑
i=1

gs(xi)u(xi) + (1− αs)
m∑
i=1

gs(xi)u(xi)
]
,

6There also exists a representation with state-dependent Bernoulli-utility where subjective probabili-

ties over states are not identified. Since I am interested in the the representation most operational for

applications, the focus here is on the state-independent representation.
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where hs and h
s are, respectively, the worst and best lotteries in P sh , while gs and gs are,

respectively, the worst and best lotteries in P sg . The Bernoulli utility function u(·) is unique

up to a positive affine transformation.

Proof: Please see the appendix. �

The OWSEU representation in Theorem 2 shows that we can model the decision maker

as if he evaluates an act by computing for each state the usual von Neumann-Morgenstern

utility of the best lottery and of the worst lottery in that state’s set and weighting them

together, where the weight on the best lottery can be interpreted as the decision maker’s

level of optimism. The decision maker assigns unique subjective probabilities to the states

and computes his overall utility using these and the weighted utility for each state.

Decision-making in vague environments where acts map states into sets of lotteries is

potentially a very complex affair. Pushing the interpretation of the OWSEU representation

a bit, we could view the decision maker as if he simplifies his decision making process by

taking into consideration only the very best and the very worst among all the lotteries he

could possibly come across in each state. Under this interpretation, his simplification of the

problem even goes beyond this, since how much emphasis he puts on the best respectively

worst lottery is independent of exactly how the possible set of lotteries looks. Furthermore,

in Theorem 2 the emphasis on the best and worst is independent of which state will be

realized, which is reflected by the state-independence of the optimism-parameter α: the

decision maker puts weight α on the best possibility and weight (1 − α) on the worst

possibility in the set, regardless of the state. Different acts are then compared using

this weighting between the best and worst in constructing a subjective expected utility,

assigning unique subjective probabilities to the states.

From the above, the appeal of Theorem 2 for applications is clear. All we need to

characterize a decision maker is a Bernoulli utility function, an optimism-parameter, and

a unique probability distribution over states characterizing his beliefs. Once we know the

Bernoulli utility function, we get the best and worst lotteries in each set for free.

Theorem 3 lies between Theorems 1 and 2. The AOWSEU representation in Theorem

3 allows for asymmetric optimism across states, while at the same time the subjective

probability measure is uniquely determined, as is the Bernoulli-utility function (up to a

positive affine transformation). In any given state the decision maker’s weighting of the

best and worst lotteries is independent of the set of lotteries under evaluation, just as in
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Theorem 2. However, with asymmetric optimism the weighting of the best and worst will

generally differ between states.

Axioms 4, 5, and either Axiom 7 or 7’, all play important parts in achieving the sim-

plifying structure. Without the strong form of state independence, the decision maker’s

optimism will in general depend on the state. Without the weak version of state indepen-

dence we cannot disentangle the Bernoulli utility functions from the subjective probabili-

ties, and a representation with state-independent utilities will generally not exist. Without

the dominance axiom the weighting between the best and the worst lotteries in each state

could depend on the shape of the particular set the act returns in that state. If we were to

further drop the set convexity axiom, the decision maker could potentially take all lotteries

in the possible set into account, and modeling his decision-making process would be highly

complex.

If the decision maker were boundedly rational it is very unlikely that he would be

able to undertake such highly complex comparisons of acts. It is much more reasonable

to expect that he simplifies the problem. Thus, Theorems 2 and 3 could be interpreted

as an axiomatization and representation of decision making under some form of bounded

rationality.

Returning to the server example from the introduction, we see that which server the

decision maker will choose depends on his level of optimism. The more optimistic he is,

the more inclined he will be to buy the no-brand-name server. This is the case because,

for the brand-name server, the over-all emphasis the decision maker puts on server-failure

is independent of his level of optimism since his information about this server is precise.

For the generic server, on the other hand, the vagueness results in his over-all emphasis on

server-failure being lower the more optimistic he is.

When α differs across states, my model captures behavior that is clearly different

from behavior under the multiple priors approach. Again, I use the server example as an

illustration. In my environment we have the two states {High load, Low load} ≡ {H,L},
the relevant outcomes are {Failure, No failure} ≡ {F,N}, and buying the generic server is a

vague act g with g(H) = [a, b] and g(L) = [c, d], where the intervals are for the probability

of No failure. Assume that u(N) > u(F ), that the states H and L reflect, respectively,

a boom and a recession, and that buyers of the server become extremely pessimistic in a

recession so that αL = 0, while αH > 0. Then

AOWSEU(g) = µ(H)[αHb+ (1− αH)a]u(N) + µ(H)[αH(1− b) + (1− αH)(1− a)]u(F )

+(1− µ(H))cu(N) + (1− µ(H))(1− c)u(F ).
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Suppose the producer of the generic server can invest in the following 4 projects:

1) research or advertising raising a,

2) research or advertising raising b,

3) research or advertising raising c, and

4) research or advertising raising d.

Assume also, for simplicity, that he can perfectly price discriminate. When faced with

consumers with the asymmetric optimism just described, the producer would pay positive

amounts for projects 1), 2), and 3), but nothing for 4). If we were to redefine the problem

to take the multiple priors approach, with S = {HN,HF,LN,LF} and a set of priors

A = {Π = (µHpH , µH(1 − pH), (1 − µH)pL, (1 − µH)(1 − pL) | pH ∈ [a, b], pL ∈ [c, d]},
we would get that the producer of the generic server would pay for 1) if and only if he

would pay for 3), and that he would pay for 2) if and only if he would pay for 4), since the

multiple priors approach does not allow for asymmetric ambiguity attitude. The example

is simple, but the described behavior seems reasonable, and the example illustrates that my

model captures more types of behavior than the multiple priors models do. Importantly,

my model accomplishes this while maintaining a structure with Bernoulli utility functions,

beliefs, and optimism parameters.

Comparison of Theorem 2 with the main representation result in Ghirardato (2001)

shows important differences in the representations obtained in the two papers. In Ghi-

rardato’s main representation result (see his Theorem 2 and Corollary 1), an act is eval-

uated by weighting an optimistic and a pessimistic component, but his weights depend

on the act under evaluation, his beliefs are non-additive and depend on the weight used

in the representation, and the belief function for the pessimistic component is generally

different from the belief function for the optimistic component. On the contrary, in my

OWSEU-representation in Theorem 2, the weight α on the best lottery is the same across

all sets, states, and acts, and beliefs are additive and independent of the act. Ghirardato

also considers a representation in which the weight does not depend on the act (see his

Corollary 2 and Theorem 3), but beliefs are still non-additive and indexed by the act under

evaluation.

Finally, there are many applied problems that make use of probabilities being objective,

and where my model is therefore much more appealing than a model with subjective

multiple priors. This is, for example, the case in Vierø (2007) where I, among other things,

revisit a problem considered in Holmström (1979) of when it will be valuable for a principal

to condition a contract on an outside signal. I show that it can be optimal for the principal
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to condition the contract on an outside vague signal, even if this signal is orthogonal to

the directly payoff relevant variables of interest, which provides a nice explanation for

the granting of stock options to rank-and-file employees who individually have negligible

influence on company performance. This problem is meaningful when probabilities are

objective, since it will then be clear whether or not the signal is orthogonal. With subjective

beliefs, the problem does not make as much sense.

4 How Vagueness Matters: A Contracting Problem

To illustrate the economic implications of the more general decision-making environments

introduced above, this section considers the consequences of vagueness for a simple con-

tracting problem. The introduction of vagueness substantially changes the problem and

thus yields different predictions than the standard approach. Even more interesting is the

resulting fundamental change in the mechanism behind the optimal contract. Vagueness

gives room for the principal to affect which final scenario the agent puts most emphasis on

through the design of the contract.

The canonical textbook principal-agent problem with hidden information (see e.g. Mas-

Colell et al. (1995)) considers a risk neutral principal and a risk averse agent. The principal

wants to hire the agent to complete a task. It is assumed that the agent’s utility depends

on a variable, here interpreted as his efficiency level, the value of which is realized after the

contract is signed. Suppose that the agent’s effort can be measured by a one-dimensional

variable e ∈ [0,∞). The principal’s gross profit is a function of effort, π(e), with π(0) = 0,

π′(e) > 0, and π′′(e) < 0 ∀e.
The agent’s Bernoulli utility function depends on his wage w, how much effort he

chooses to exert, and his efficiency x, which affects how much disutility he experiences

from effort. Assume for simplicity that there are only two possible values of x: the agent

is either of high-efficiency type xH or of low-efficiency type xL. Assume that his Bernoulli

utility function is of the form

u(w, e, x) = v(w − g(e, x)), v′(·) > 0, v′′(·) < 0.

Assume also that g(0, xH) = g(0, xL) = ge(0, xH) = ge(0, xL) = 0, such that he suffers no

disutility if he does not exert any effort, that ge(e, x) > 0 ∀e > 0 and gee(e, x) > 0 ∀e, such

that his disutility from effort is increasing at an increasing rate, and that g(e, xL) > g(e, xH)

and ge(e, xL) > ge(e, xH), such that his disutility and marginal disutility from effort are

higher if he is of low-efficiency type. Finally, let u denote the agent’s reservation utility.
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One could, for example, think of the principal as a large food processing company

and the agent as a potato farmer entering an arrangement where the processing company

provides the potato seed and financing for the crop and the farmer puts in his land and

labor. The company has a standardized process all of its farmers must follow, a process

which is new to the farmer. Therefore, he is not sure how much disutility he will suffer.

The contracting environment is as follows: The senate is currently debating whether to

change environmental policies, which would affect farming. There are two possible states of

the world. In state 1 the legislation remains unchanged, while in state 2 it is changed. With

the current legislation, both parties know that the probability of a farmer being efficient

with the production process is p1. If, however, legislation is changed, both parties are less

sure about the probability of the agent being efficient, since the two sides of the senate

strongly disagree and the new legislation would likely be some compromise. Therefore, in

state 2 the parties only know that the probability of the agent being of high-efficiency type

is p2 ∈ Q ⊆ [0, 1].

Assume that the principal and the agent both maximize Optimism-Weighted Subjective

Expected Utility (OWSEU), that their subjective probabilities of state 1 are µP1 and µA1

respectively, and that their optimism-parameters are αP and αA respectively.

Consider the first-best situation where the value of the parameter x is observable by

both contracting parties and would also be verifiable by a court. In this situation the

principal maximizes his OWSEU subject to a participation constraint for the agent:

max
wL,eL≥0,wH ,eH≥0

µP1

[
p1(π(eH)− wH) + (1− p1)(π(eL)− wL)

]
+(1− µP1 )

[
αP

{
pP2 (π(eH)− wH) + (1− pP2 )(π(eL)− wL)

}
+(1− αP )

{
pP
2

(π(eH)− wH) + (1− pP
2

)(π(eL − wL)
}]

subject to

µA1

[
p1v(wH − g(eH , xH)) + (1− p1)v(wL − g(eL, xL))

]
+(1− µA1 )

[
αA

{
pA2 v(wH − g(eH , xH)) + (1− pA2 )v(wL − g(eL, xL))

}
+(1− αA)

{
pA
2
v(wH − g(eH , xH)) + (1− pA

2
)v(wL − g(eL, xL))

}]
≥ u

where pP2 and pP
2

are the lotteries in Q that are best and worst, respectively, from the

principal’s point of view, and pA2 and pA
2

are the lotteries in Q that are best and worst,

respectively, from the agent’s point of view. In the terminology of sections 2 and 3, the
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acts the principal chooses between are all the feasible contracts he could offer, while the

acts the agent chooses between are accepting the offered contract or taking the outside

option.

Using the first-order conditions of the problem, it is easy to show that, as in the

standard model with no vagueness, the participation constraint binds such that the agent

gets exactly his reservation utility, and the optimal contract will specify effort levels e∗H
and e∗L that are both strictly positive with π′(e∗H) = ge(e∗H , xH) and π′(e∗L) = ge(e∗L, xL).

If µP = µA = 1 we have the standard problem with no vagueness. The optimal

contract (w∗H , e
∗
H , w

∗
L, e
∗
L) will fully insure the agent against all risk and exactly give him

his reservation utility. That is, w∗H −g(e∗H , xH) = w∗L−g(e∗L, xL) and v(w∗H −g(e∗H , xH)) =

v(w∗L − g(e∗L, xL)) = u.

If any of the contracting parties assigns positive probability to the vague state, the

result changes substantially. The reason is a fundamental change in the mechanism behind

the contracts. Suppose the principal thinks the legislation will remain unchanged and

hence has beliefs µP = 1 that the precise state will occur, while the agent assigns positive

probability to the vague state and hence has beliefs µA < 1. Thus, there is vagueness for

the agent, but no vagueness for the principal.7

To illustrate the intuition and the mechanism that arises from vagueness in an easy

and tractable way, consider the following example:

π(e) = e1/2, v(·) = log(·), g(e, x) =
e2

x
, xL = 1, xH = 8, and u = 0.

Let µA = p1 = 1/2 and p2 ∈ [0, b] with b > 1
2 .

Figure 3 illustrates the optimal contract as a function of the agent’s optimism. If he

is sufficiently optimistic, that is, if αA > b−p1
b , the optimal contract does not fully insure

the agent. Instead, the principal will offer a contract where the parties disagree on which

final scenario is the best. The contract makes the agent better off if he turns out to be of

type xL than if he turns out to be of type xH , but makes the principal better off if the

agent turns out to be of type xH . The agent gets a relatively low compensation if he turns

out to be of type xH , but a relatively high compensation if he turns out to be of type xL.

Since the optimistic agent puts most emphasis on the best scenario for him, in which he is

of type xL, he does not mind the relatively low compensation if he is of type xH .
7The mechanism is even stronger when both parties face vagueness. The assumption that only the

agent faces vagueness is made for simplicity. The consequences of vagueness for contracting problems are

investigated more comprehensively in Vierø (2007).
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Figure 3: Optimal contracts when only the agent faces vagueness

-

0 1(b− p1)/b

αA

︸ ︷︷ ︸
Full insurance

︸ ︷︷ ︸
Disagreement

What drives this result is that which lotteries are best and worst for the agent depends

on the contract offered. Hence, the presence of vagueness gives room for the principal

to affect which final scenario the agent puts most emphasis on through the design of the

contract. The principal can exploit the presence of optimism to offer contracts that are

better from his point of view. This is a crucial difference from the standard model with

no vagueness where, even if the parties have heterogeneous beliefs, the beliefs do not

depend on the contract and thus the over-all weights on the different final scenarios are

also independent of the contract.

5 Concluding Remarks

In this paper I have derived a representation of preferences for a choice theory with vague

environments; vague in the sense that the agent does not know the precise lotteries over

outcomes conditional on states. Instead, he knows only a possible set of these lotteries. The

result is the Optimism-Weighted Subjective Expected Utility (OWSEU) and Asymmetric

Optimism-Weighted Subjective Expected Utility (AOWSEU) representations, where the

decision maker evaluates acts by computing for each state the von Neumann-Morgenstern

utility of the best and worst lotteries within the set and weighting them together according

to his optimism, and then computes his overall utility using these weighted utilities and

unique subjective probabilities over the states. The model is consistent with the behavior

observed in the Ellsberg experiment. It can capture the same type of behavior as the

multiple priors models, but can also result in behavior that is different from both the

behavior implied by standard subjective expected utility models and the behavior implied

21



by the multiple priors models.

Given the important implications for contracting problems8 we can expect vagueness to

generate very interesting predictions in other economic applications. For example, vague-

ness could have interesting effects for no trade results and lemons problems. We can expect

trade to occur more often in a vague world than in a world with precise information. With

vagueness, willingness to sell an item does not mean that the seller necessarily has infor-

mation that the item is not worth much, such willingness can now arise as a result of the

seller being pessimistic. Consequently, prices will not reveal as much information about

asset values in a vague world as they do when there is no vagueness.

Vagueness could also have effects on asset pricing in the following way: the presence of

vagueness changes individuals’ investment problems and hence their demand for different

assets. Specifically, some agents, depending on their level of optimism/pessimism, could

want to not participate in the markets for risky assets. The existence of such agents will

affect prices in general equilibrium.

These further investigations of the implications of vagueness for economic problems are

left for future research.

Appendix

Lemma 1 shows that the set of acts H is a mixture space.

Lemma 1 The set of acts H with the family of functions φα : H ×H →H for α ∈ [0, 1]

defined by φα(h, g) = αh+ (1− α)g is a mixture space.

Proof: I have to show that the three defining properties of a mixture space are satisfied:

(i) φ1(h, g) = 1 ∗ h+ 0 ∗ g = h.

(ii) φα(h, g) = αh+ (1− α)g = φ1−α(g, h).

(iii) I have to show that φα(φβ(h, g), g) = φαβ(h, g). In order to see this, note that

φα(φβ(h, g), g) = {αβx + α(1 − β)y + (1 − α)y′ |x ∈ h, y ∈ g, y′ ∈ g}. To see that

φαβ(h, g) ⊆ φα(φβ(h, g), g) note that y = y′ ⇒ α(1− β)y + (1− α)y′ = (1− αβ)y. To see

that φα(φβ(h, g), g) ⊆ φαβ(h, g) we will show that {α(1− β)y + (1− α)y′ | y ∈ g, y′ ∈ g} ⊆
{(1− αβ)y | y ∈ g}. Suppose t ∈ {α(1− β)y + (1− α)y′ | y ∈ g, y′ ∈ g}. Then there exists

y, y′ ∈ g such that t = α(1−β)y+(1−α)y′ = (α(1−β)+1−α)
[

α(1−β)
α(1−β)+1−αy+ 1−α

α(1−β)+1−αy
′
]
,

8These are investigated further in Vierø (2007).
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where the expression in square brackets is an element of g, since g is convex. Thus there

exists y′′ ∈ g such that t = (α(1−β) + 1−α)y′′ = (1−αβ)y′′ ⇒ t ∈ {(1−αβ)y | y ∈ g}. �

Theorem 1 is proved in a sequence of lemmas. Lemma 2 shows existence and linearity

of the representation.

Lemma 2 � on H satisfies Axioms 1-3 if and only if there exists F : H → < such that

(i) h � g ⇔ F (h) > F (g),

(ii) F (αh+ (1− α)g) = αF (h) + (1− α)F (g).

Proof: This follows directly from the mixture space theorem, see Kreps (1988). �

Lemmas 3, 4, and 5 are pretty standard (see for example Kreps (1988)) as are their

proofs. Lemma 3 shows that the representation is separable over states.

Lemma 3 The function F , defined in Lemma 2, satisfies F (h) =
∑n

s=1 Fs(hs).

Proof: Fix some h∗ = (h∗1, . . . , h∗n) ∈ H . For any h ∈ H , let h1 = (h1, h∗2, . . . , h∗n),

h2 = (h∗1, h2, . . . , h∗n), . . . , hn = (h∗1, . . . , h∗n−1, hn). For any h ∈H ,

1
n
h+

n− 1
n

h∗ =
n∑
s=1

1
n
hs. (1)

To see this recall that convex combinations are done pointwise. Consider state 1 (the proof

is the same for the other states). For the coordinate corresponding to state 1 in the acts

we have
∑n

s=1
1
nh

1
s = 1

nh
1
1 + 1

nh
1
2 + · · ·+ 1

nh
1
n = 1

nh
1 + 1

nh
∗1 + · · ·+ 1

nh
∗1 = 1

nh
1 + n−1

n h∗1.

Using (1) and Lemma 2,

1
n

n∑
s=1

F (hs) = F (
n∑
s=1

1
n
hs) = F (

1
n
h+

n− 1
n

h∗)

=
1
n
F (h) +

n− 1
n

F (h∗). (2)

For s = 1, . . . , n, define Fs : P → < by Fs(P ) = F (h∗1, . . . , h∗s−1, P, h∗s+1, . . . , h∗n) −
n−1
n F (h∗). For h ∈ H , this definition gives Fs(hs) = F (hs) − n−1

n F (h∗), which implies

that 1
n

∑n
s=1 Fs(h

s) = 1
n

∑n
s=1 F (hs) − n−1

n F (h∗). Combining this with (2) we get that
1
n

∑n
s=1 Fs(h

s) = 1
nF (h) + n−1

n F (h∗)− n−1
n F (h∗) ⇒ F (h) =

∑n
s=1 Fs(h

s). �
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Lemma 4 shows that for mixtures between two acts, mixtures with a higher weight on

the better act are preferred to mixtures with a lower weight on the better act.

Lemma 4 For all h, g ∈H , if h � g and 0 ≤ α < β ≤ 1 then βh+(1−β)g � αh+(1−α)g.

Proof: First consider α = 0. By Axiom 2, h � g and β ∈ (0, 1] ⇒ βh + (1 − β)g �
βg + (1− β)g = g = αh+ (1− α)g.

Now consider α > 0. Since 0 < α
β < 1 and βh + (1 − β)g � g by Axiom 2, using

Axiom 2 again implies that βh+ (1− β)g = (1− α
β )(βh+ (1− β)g + α

β (βh+ (1− β)g) �
(1− α

β )g + α
β (βh+ (1− β)g) = αh+ (1− α)g. �

Lemma 5 shows that an act will be indifferent to a convex combination of a weakly better

and a weakly worse act, and as long as these two acts are not indifferent to each other this

convex combination is unique.

Lemma 5 For all h, h1, h2 ∈ H , if h1 % h % h2 and h1 � h2, then there exists a unique

α∗ ∈ [0, 1] such that h ∼ α∗h1 + (1− α∗)h2.

Proof: By Lemma 4, if α∗ exists, it is unique. Thus it suffices to show existence.

If h1 ∼ h then α∗ = 1, and if h ∼ h2 then α∗ = 0. So consider h1 � h � h2.

Define α∗ = sup
{
α ∈ [0, 1] : h % αh1 + (1 − α)h2

}
. α = 0 is in the set, guaranteeing we

are not taking the sup over an empty set.

Suppose, in order to reach a contradiction, that α∗h1 + (1 − α∗)h2 � h. By Axiom 3,

since h � h2, there exists β ∈ (0, 1) such that β(α∗h1 + (1 − α∗)h2) + (1 − β)h2 � h ⇔
βα∗h1 + (1− βα∗)h2 � h. By Lemma 4, if α∗ > α ≥ 0 then h � αh1 + (1− α)h2, so since

βα∗ < α∗, h � βα∗h1 + (1− βα∗)h2. Hence we have a contradiction with Axiom 1.

Suppose now, again to reach a contradiction, that h � α∗h1 + (1 − α∗)h2. By Axiom

3, since h1 � h, there exists β ∈ (0, 1) such that h � β(α∗h1 + (1 − α∗)h2) + (1 − β)h1

⇔ h � (1 − β(1 − α∗))h1 + β(1 − α∗)h2. By definition of α∗, if α∗ < α ≤ 1 then

αh1 + (1 − α)h2 � h, so since β < 1 ⇒ β(1 − α∗) < 1 − α∗ ⇒ α∗ < 1 − β(1 − α∗) we get

that (1− β(1− α∗))h1 + β(1− α∗)h2 � h, and we have a contradiction with Axiom 1.

Since Axiom 1 implies completeness of % we are left with h ∼ α∗h1 + (1− α∗)h2.�

Lemmas 6 through 10 consider acts that differ in only a single state s. Lemma 6 shows

that if the set such an act gives in state s is a line, and if the acts that give the endpoints

of the line in state s are not indifferent to each other, then the first act is indifferent to
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a unique convex combination of the latter two. Lemma 6 is the first of the lemmas that

invokes Axiom 4. Lemmas 1 through 5 have followed from only Axioms 1, 2 and 3.

Lemma 6 Let psh, qsh ∈ H be acts that differ only in state s. If psh � qsh then there

exists a unique α∗ ∈ [0, 1] such that Co(psh, qsh) ∼ α∗psh+ (1− α∗)qsh.

Proof: By Axiom 4, psh � qsh ⇒ psh % Co(psh, qsh) % qsh. Then applying Lemma 5

gives the result. �

Also, note that if psh ∼ qsh then Co(psh, qsh) ∼ psh since psh % Co(psh, qsh) % qsh ∼
psh.

Before reading the following lemmas note that for all p1, . . . , pk ∈ ∆, Co(p1
sh, . . . , p

k
sh) =

Co(p1, . . . , pk)sh since the convex hull is taken pointwise.

Lemma 7 shows that if the set an act gives in state s is a subset of a line, then the weight

on the act that gives the better endpoint of this subset in state s is the same as the weight

for the act which gives the larger set. Lemma 7 builds on Lemma 6 but does not further

invoke Axiom 4.

Lemma 7 Consider p1
sh, p

2
sh ∈H with p1

sh � p2
sh. There exists a unique β∗ ∈ [0, 1] such

that for all p3, p4 ∈ Co(p1, p2) with p3
sh � p4

sh, Co(p3
sh, p

4
sh) ∼ β∗p3

sh+ (1− β∗)p4
sh.

Proof: Figure 4 should be helpful when reading the proof. By Lemma 6 there exists a

unique β∗ ∈ [0, 1] such that Co(p1
sh, p

2
sh) ∼ β∗p1

sh+(1−β∗)p2
sh. Since p3 ∈ Co(p1, p2) there

exists a unique α3 ∈ [0, 1] such that p3
sh = α3p

1
sh+ (1− α3)p2

sh, and since p4 ∈ Co(p1, p2)

there exists a unique α4 ∈ [0, 1] such that p4
sh = α4p

1
sh+ (1− α4)p2

sh.

Note that α4p
1 + (1 − α4)Co(p1, p2) = Co(p1, α4p

1 + (1 − α4)p2) = Co(p1, p4). Hence

α4p
1
sh+ (1− α4)Co(p1, p2)sh = Co(p1, p4)sh. Thus, by Lemma 2,

F (Co(p1, p4)sh) = F (α4p
1
sh+ (1− α4)Co(p1, p2)sh)

= α4F (p1
sh) + (1− α4)F (Co(p1, p2)sh)

= α4F (p1
sh) + (1− α4)[β∗F (p1

sh+ (1− β∗)F (p2
sh)]

= β∗F (p1
sh) + (1− β∗)F (p4

sh).
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Figure 4: Illustration for Lemma 7

p2 p1p4 = α4p
1 + (1− α4)p2v v v︸ ︷︷ ︸

︸ ︷︷ ︸
Co(p1, p4) =

Co(α4p
1 + (1− α4)p2, p1) =

α4p
1 + (1− α4)Co(p1, p2)

Co(p1, p2)

Next, if λ = α3−α4
1−α4

then λp1 + (1− λ)p4 = α3p
1 + (1− α3)p2 = p3. Thus λCo(p1, p4) +

(1− λ)p4 = Co(λp1 + (1− λ)p4, p4) = Co(p3, p4) and hence λCo(p1, p4)sh+ (1− λ)p4
sh =

Co(p3, p4)sh

Now, by Lemma 2,

F (Co(p3, p4)sh) = λF (Co(p1, p4)sh) + (1− λ)F (p4
sh)

= λ[β∗F (p1
sh) + (1− β∗)F (p4

sh)] + (1− λ)F (p4
sh)

= λβ∗F (p1
sh) + (1− λβ∗)F (p4

sh)

=
α3 − α4

1− α4
β∗F (p1) + (1− α3 − α4

1− α4
β∗)[α4F (p1

sh) + (1− α4)F (p2
sh)]

= β∗[α3F (p1
sh) + (1− α3)F (p2

sh)] + (1− β∗)[α4F (p1
sh) + (1− α4)F (p2

sh)]

= β∗F (p3
sh) + (1− β∗)F (p4

sh). �

Note that if p1
sh � p2

sh and p3
sh ∼ p4

sh then we have Co(p3
sh, p

4
sh) ∼ αp3

sh + (1 − α)p4
sh

for all α ∈ [0, 1], and thus we still have Co(p3
sh, p

4
sh) ∼ β∗p3

sh + (1 − β∗)p4
sh, but we have

lost uniqueness. If p1
sh ∼ p2

sh we lose uniqueness as well.

Lemma 8 shows that if we are considering two acts which both give a set that is a line

in state s, the better endpoint acts of the two lines are indifferent, the worse endpoint acts
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Figure 5: Illustration for Lemma 8
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Co(r1, r̂) is the line segment r1r̂

Co(r, r̃) is the line segment rr̃

of the two lines are indifferent, and the lines are parallel, then the weight on the act that

gives the better endpoint in state s must be the same for the two acts. Again Lemma 8

builds on the previous lemmas but does not directly use Axiom 4.

Lemma 8 Consider p1
sh, p

2
sh ∈H with p1

sh � p2
sh and Co(p1

sh, p
2
sh) ∼ β∗p1

sh+(1−β∗)p2
sh.

If for q1sh, q
2
sh ∈ H we have q1sh ∼ p1

sh, q2sh ∼ p2
sh and Co(q1, q2) parallel to Co(p1, p2)

then Co(q1sh, q
2
sh) ∼ β∗q1sh+ (1− β∗)q2sh.

Proof: By Lemma 6, β∗ is unique and there exists a unique α∗ ∈ [0, 1] such that

Co(q1sh, q
2
sh) ∼ α∗q1sh + (1 − α∗)q2sh ≡ qαs h. Suppose, in order to reach a contradiction,

that β∗ > α∗.

Suppose first that β∗ < 1. Let qβs h ≡ β∗q1sh+(1−β∗)q2sh and pβsh ≡ β∗p1
sh+(1−β∗)p2

sh.

By Lemmas 2 and 4, pβsh ∼ qβs h and qβs h � qαs h, so by Axiom 1, pβsh � qαs h. Furthermore,

if we define q̂sh ≡ α̂q1sh + (1 − α̂)q2sh with α̂ ≡ β∗−α∗
1−α∗ ∈ (0, β∗] then q1sh � q̂sh � q2sh by

Lemma 4 and q̂ = α̂q1+(1−α̂)q2 ∈ Co(q1, q2), and thus Co(q1sh, q̂sh) ∼ α∗q1sh+(1−α∗)q̂sh
by Lemma 7. Note that α∗q1sh + (1 − α∗)q̂sh = α∗q1sh + (1 − α∗)[α̂q1sh + (1 − α̂)q2sh] =

β∗q1sh+ (1− β∗)q2sh. Thus Co(q1sh, q̂sh) ∼ Co(p1
sh, p

2
sh).

By Lemma 2, qβs h ∼ Co(p1
sh, p

2
sh) ⇔ F (qβs h) = F (Co(p1

sh, p
2
sh)) and Co(q1sh, q̂sh) ∼
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Co(p1
sh, p

2
sh)⇔ F (Co(q1sh, q̂sh)) = F (Co(p1

sh, p
2
sh). Using this and Lemma 2 again,

F (λqβs h+ (1− λ)Co(p1
sh, p

2
sh)) = λF (qβs h) + (1− λ)F (Co(p1

sh, p
2
sh)) = F (Co(p1

sh, p
2
sh))

for all λ ∈ [0, 1] and

F (µCo(q1sh, q̂sh)+(1−µ)Co(p1
sh, p

2
sh)) = µF (Co(q1sh, q̂sh))+(1−µ)F (Co(p1

sh, p
2
sh)) = F (Co(p1

sh, p
2
sh))

for all µ ∈ [0, 1]. Hence,

F (λqβs h+ (1− λ)Co(p1
sh, p

2
sh)) = F (µCo(q1sh, q̂sh) + (1− µ)Co(p1

sh, p
2
sh)) (3)

for all λ, µ ∈ [0, 1].

Figure 5 should be helpful for the following. Consider λ = µ = 1
2 and let r1 ≡ 1

2p
1 + 1

2q
1

and r2 ≡ 1
2p

2 + 1
2q

2. 1
2qβ + 1

2Co(p
1, p2) = Co(r, r̃) where r ≡ 1

2p
1 + 1

2q
β and r̃ ≡ 1

2p
2 + 1

2q
β.

Also, 1
2Co(q

1, q̂) + 1
2Co(p

1, p2) = Co(r1, r̂) where r̂ ≡ 1
2p

2 + 1
2 q̂.

Since Co(p1, p2) and Co(q1, q2) are parallel, Co(rβ, r̃β) and Co(r1, r̂) are both subsets

of Co(r1, r2). Thus, by Lemma 7 there exists a unique γ∗ ∈ [0, 1] such that Co(r, r̃)sh ∼
γ∗rsh+ (1− γ∗)r̃sh and Co(r1, r̂)sh ∼ γ∗r1sh+ (1− γ∗)r̂sh.

Since by (3) Co(rsh, r̃sh) ∼ Co(r1sh, r̂sh), we have γ∗F (rsh) + (1 − γ∗)F (r̃sh) =

γ∗F (r1sh) + (1 − γ∗)F (r̂sh). Using Lemma 2, we can express F (rsh), F (r̃sh), F (r̂sh),

and F (r1sh) in terms of F (p1
sh) and F (p2

sh):

F (rsh) =
1
2
F (p1

sh) +
1
2
F (qβs h) =

1
2
F (p1

sh) +
1
2

[β∗F (p1
sh) + (1− β∗)F (p2

sh)]

=
1
2

(1 + β∗)F (p1
sh) +

1
2

(1− β∗)F (p2
sh),

F (r̃sh) =
1
2
F (p2

sh) +
1
2
F (qβs h) =

1
2
F (p2

sh) +
1
2

[β∗F (p1
sh) + (1− β∗)F (p2

sh)]

=
β∗

2
F (p1

sh) + (1− β∗

2
)F (p2

sh),

F (r̂sh) =
1
2
F (p2

sh) +
1
2
F (q̂sh) =

1
2

(β∗ − α∗
1− α∗

F (p1
sh) + (1− β∗ − α∗

1− α∗
)F (p2

sh)
)

+
1
2
F (p2

sh)

=
1
2
β∗ − α∗

1− α∗
F (p1

sh) + (1− 1
2
β∗ − α∗

1− α∗
)F (p2

sh), and

F (r1sh) =
1
2
F (p1

sh) +
1
2
F (q1sh) = F (p1

sh).

Therefore, γ∗F (rsh) + (1−γ∗)F (r̃sh) = γ∗
[

1
2(1 +β∗)F (p1

sh) + 1
2(1−β∗)F (p2

sh)
]

+ (1−

γ∗)
[
β∗

2 F (p1
sh) + (1 − β∗

2 )F (p2
sh)
]

= γ∗+β∗

2 F (p1
sh) + (1 − γ∗+β∗

2 )F (p2
sh). Also, γ∗F (r1sh) +

28



(1 − γ∗)F (r̂sh) = γ∗F (p1
sh) + (1 − γ∗)

[
1
2
β∗−α∗
1−α∗ F (p1

sh) + (1 − 1
2
β∗−α∗
1−α∗ )F (p2

sh)
]
. Thus, in

order to have γ∗F (rsh) + (1− γ∗)F (r̃sh) = γ∗F (r1sh) + (1− γ∗)F (r̂sh), we must have

γ∗ + β∗

2
= γ∗ + (1− γ∗)1

2
β∗ − α∗

1− α∗
⇔ γ∗ = α∗. (4)

Now I will do the same exercise the other way around. If psh ≡ αp1
sh+ (1−α)p2

sh with

α ≡ α∗

β∗ ∈ (0, 1) then p1
sh � psh � p2

sh by Lemma 4 and p = αp1 + (1 − α)p2 ∈ Co(p1, p2)

and thus Co(psh, p2
sh) ∼ β∗psh + (1 − β∗)p2

sh by Lemma 7. Note that β∗psh + (1 −
β∗)p2

sh = α∗p1
sh + (1 − α∗p2

sh, and therefore Co(psh, p2
sh) ∼ Co(q1sh, q

2
sh). We have that

pαs h ∼ Co(q1sh, q
2
sh) ⇔ F (pαs h) = F (Co(q1sh, q

2
sh)) and Co(psh, p2

sh) ∼ Co(q1sh, q
2
sh) ⇔

F (Co(psh, p2
sh)) = F (Co(q1sh, q

2
sh)).

Using this and Lemma 2, we get

F (λpαs h+ (1− λ)Co(q1, q2)) = λF (pαs h) + (1− λ)F (Co(q1sh, q
2
sh)) = F (Co(q1sh, q

2
sh))

for all λ ∈ [0, 1] and

F (µCo(psh, p2
sh) + (1− µ)Co(q1sh, q

2
sh))

= µF (Co(psh, p2
sh)) + (1− µ)F (Co(q1sh, q

2
sh)) = F (q1sh, q

2
sh).

Hence

F (λpαs h+ (1− λ)Co(q1, q2)) = F (µCo(psh, p
2
sh) + (1− µ)Co(q1sh, q

2
sh)). (5)

Consider λ = µ = 1
2 . Define 1

2p
α + 1

2Co(q
1, q2) = Co(t̃, t̂) where t̃ = 1

2p
α + 1

2q
1 and t̂ =

1
2p
α+ 1

2q
2. Also, 1

2Co(p, p
2)+ 1

2Co(q
1, q2) = Co(t, t2) where t = 1

2p+ 1
2q

1 and t2 = 1
2p

2+ 1
2q

2.

Since Co(t̃, t̂) and Co(t, t2) are subsets of Co(r1, r2), Co(t̃, t̂)sh ∼ γ∗t̃sh + (1 − γ∗)t̂sh

and Co(t, t2)sh ∼ γ∗tsh + (1 − γ∗)t2sh. By (5) we have γ∗F (t̃sh) + (1 − γ∗)F (t̂sh) =

γ∗F (tsh) + (1− γ∗)F (t2sh). Using Lemma 2, we have

F (t̃sh) = 1
2 [α∗F (p1

sh) + (1−α∗)F (p2
sh)] + 1

2F (p1
sh) = 1

2(1 +α∗)F (p1
sh) + 1

2(1−α∗)F (p2
sh),

F (t̂sh) = 1
2 [α∗F (p1

sh) + (1− α∗)F (p2
sh)] + 1

2F (q2sh) = α∗

2 F (p1
sh) + (1− α∗

2 )F (p2
sh),

F (t̄sh) = 1
2 [αF (p1

sh) + (1−α)F (p2
sh)] + 1

2F (p1
sh) = 1

2(1 + α
β )F (p1

sh) + 1
2(1− α

β )F (p2
sh), and

F (t2sh) = F (p2
sh).

Thus, γ∗F (t̃sh)+(1−γ∗)F (t̂sh) = γ∗[12(1+α∗)F (p1
sh)+1

2(1−α∗)F (p2
sh]+(1−γ∗)[α∗2 F (p1

sh)+

(1− α∗

2 )F (p2
sh)] and γ∗F (tsh) + (1− γ∗)F (t2sh) = γ∗[12(1 + α

β )F (p1
sh) + 1

2(1− α
β )F (p2

sh)] +

(1 − γ∗)F (p2
sh). Hence γ∗F (t̃sh) + (1 − γ∗)F (t̂sh) = γ∗F (tsh) + (1 − γ∗)F (t2sh) ⇔

γ∗

2 (1 + α∗) + (1 − γ∗)α
∗

2 ⇔ γ∗ = β∗. But since by (4) we have γ∗ = α∗ and γ∗ is

unique this contradicts that β∗ > α∗.
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Figure 6: Illustration for Lemma 9
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Now suppose that β∗ = 1. Let pαs h = α∗p1
sh+(1−α∗)p2

sh and note that Co(q1, q2)sh ∼
pαs h. Also, Co(q1, q2)sh ∼ Co(pαs h, p

2
sh). Therefore, if we define û = 1

2p
α + 1

2q
1 and

ũ = 1
2p
α+ 1

2q
2, and u2 = 1

2p1 + 1
2q

2, we have Co(û, ũ)sh ∼ Co(û, u2)sh⇔ γ∗û+(1−γ∗)ũ =

γ∗û+ (1− γ∗)u2 ⇔ γ∗ = 1.

Let q3 ≡ 1+α∗

2 q1 + 1−α∗
2 q2 and q4 ≡ α∗

2 q
1 +(1− α∗

2 )q2 and note that Co(q3, q4)sh ∼ pαs h.

Therefore Co(1
2p
α + 1

2q
3, 1

2p
α + 1

2q
4)sh ∼ pαs h. Since γ∗ = 1, Co(1

2p
α + 1

2q
3, 1

2p
α + 1

2q
4)sh ∼

1
2p
α+ 1

2q
3 ∼ 1

2(α∗p1+(1−α∗)p2)+ 1
2(1+α∗

2 p1+ 1−α∗
2 p2). Thus Co(1

2p
α+ 1

2q
3, 1

2p
α+ 1

2q
4)sh ∼

pαs h⇔ α∗

2 + 1+α∗

4 = α∗ ⇔ α∗ = 1.

A similar argument gives a contradiction if we assume that β∗ < α∗. Hence we must

have α∗ = β∗. �

Lemma 9 extends the result in Lemma 8 to acts where the lines are not parallel. Lemma

9 uses Axiom 4 and it is the only part of the proof of Theorem 1 that invokes Axiom 5.

Lemma 9 Consider p1
sh, p

2
sh, q

1
sh, q

2
sh ∈H . If p1

sh ∼ q1sh and p2
sh ∼ q2sh then Co(p1, p2)sh ∼

Co(q1, q2)sh.

Proof: Suppose first that p1
sh ∼ p2

sh. Then the result follows from Axiom 4 and Lemma

2.
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So suppose now without loss of generality that p1
sh � p2

sh. (The case p2
sh � p1

sh

is analogous.) By Lemma 6, there exists a unique β∗ ∈ [0, 1] such that Co(p1, p2)sh ∼
β∗p1

sh+(1−β∗)p2
sh, and there exists a unique α∗ ∈ [0, 1] such that Co(q1sh, q

2
sh) ∼ α∗q1sh+

(1− α∗)q2sh.

Suppose, in order to reach a contradiction, that β∗ > α∗. Then Co(p1
sh, p

2
sh) �

Co(q1sh, q
2
sh) by Lemmas 2 and 4. Let p̂sh ≡ α̂p1

sh + (1 − α̂)p2
sh with α̂ ≡ α∗

β∗ ∈ (0, 1).

Since p̂ ∈ Co(p1, p2) we have Co(p̂sh, p2
sh) ∼ β∗p̂sh+ (1− β∗)p2

sh by Lemma 7. See figure

6 for an illustration.

Thus Co(p̂sh, p2
sh) ∼ β∗p̂sh+ (1− β∗)p2

sh = β∗
[
α∗

β∗ p
1
sh+ (1− α∗

β∗ )p2
sh
]

+ (1− β∗)p2
sh =

α∗p1
sh + (1 − α∗)p2

sh ∼ α∗q1sh + (1 − α∗)q2sh ∼ Co(q1sh, q
2
sh). By Lemma 8, without loss

of generality we can let q2 = p2. (If q2 6= p2 we can replace it with an act with a parallel

segment that has q2 = p2 by Lemma 8.)

Note that Co
(
Co(q1sh, q

2
sh), Co(p̂sh, p2

sh)
)

= Co
(
q1sh,Co(p̂sh, p

2
sh)
)

, i.e. the set for

state s consists of the triangle (q1, p̂, q2).

By Axiom 4, since Co(q1sh, q
2
sh) ∼ Co(p̂sh, p2

sh) we have

Co
(
Co(q1sh, q

2
sh), Co(p̂sh, p2

sh)
)
∼ Co(p̂sh, p2

sh).

By Axiom 5, since q1sh � psh for all psh ∈ Co(p̂sh, p2
sh) we have

Co
(
q1sh,Co(p̂sh, p

2
sh)
)
� Co(p̂sh, p2

sh).

But since Co
(
q1sh,Co(p̂sh, p

2
sh)
)

= Co
(
Co(q1sh, q

2
sh), Co(p̂sh, p2

sh)
)

we then have

Co
(
q1sh,Co(p̂sh, p

2
sh)
)
� Co

(
q1sh,Co(p̂sh, p

2
sh)
)
,

which is a contradiction with Axiom 1. �

Lemma 10 shows that if the set the act gives in state s is any set P ∈ P then the act

will be indifferent to an act that gives a line in state s where the endpoints of the line are

the singleton lotteries from P that are considered respectively best and worst in state s.

Lemma 10 uses Axiom 4.

Lemma 10 Consider Psh ∈ H . Let vksh denote the act in Psh for which vksh % psh for

all p ∈ P , and let v1
sh denote the act in Psh for which psh % v1

sh for all p ∈ P . Then

Psh ∼ Co(v1, vk)sh.
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Figure 7: Illustration for Lemma 10
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Proof: Since P ∈ P, there exist constant singleton acts v1, . . . , vk such that P =

Co(v1, . . . , vk). Without loss of generality, let vksh % vk−1
s h % . . . % v1

sh. By Lemma

2 vksh % psh for all p ∈ P and psh % v1
sh for all p ∈ P .

I will proceed by induction on the number of vertices of P (that is, on k). We already

have the result for k = 2.

For the inductive step, suppose the result is true for acts where P has k vertices. Then

Co(v1
sh, . . . , v

k
sh) ∼ Co(v1

sh, v
k
sh). Consider vsh such that vksh % vsh % v1

sh. We want to

show that Co(v1
sh, . . . , v

k
sh, vsh) ∼ Co(v1

sh, v
k
sh). See Figure 7 for an illustration.

If vksh ∼ v1
sh then Co(v1

sh, v
k
sh) ∼ vksh ∼ vsh, and since Co(v1

sh, . . . , v
k
sh, vsh) =

Co
(
Co(v1

sh, . . . , v
k
sh), vsh

)
we have Co(v1

sh, . . . , v
k
sh, vsh) ∼ vsh ∼ Co(v1

sh, v
k
sh) by Ax-

iom 4.

So suppose vksh � v1
sh. Also suppose Co(v1

sh, v
k
sh) % vsh. (If vsh % Co(v1

sh, v
k
sh) a

similar proof applies.) Note that Co(v1
sh, . . . , v

k
sh, vsh) = Co

(
Co(v1

sh, . . . , v
k
sh), vsh

)
, so

Co(v1
sh, v

k
sh) % vsh⇒ Co(v1

sh, v
k
sh) % Co(v1

sh, . . . , v
k
sh, vsh) (6)

by Axiom 4.

Now we have to show that Co(v1
sh, . . . , v

k
sh, vsh) % Co(v1

sh, v
k
sh). Since vksh % vsh %

v1
sh there exists a unique v̂ ∈ Co(v1, vk) such that vsh ∼ v̂sh ≡ βvksh + (1− β)v1

sh. Note
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that β ≤ α∗ since Co(v1
sh, v

k
sh) % v.

Case 1: vksh � vsh � v1
sh. Then vksh � v̂sh � v1

sh, which implies that there exists

γ ∈ (0, 1) such that γvksh + (1 − γ)v1
sh ≡ vγsh � v̂sh by Axiom 3. If γ ≥ 1 − (1 − α∗) β

α∗

then, since v̂, vγ ∈ Co(v1, vk), by Lemma 7 we have Co(v̂sh, v
γ
sh) ∼ α∗vγsh+ (1−α∗)v̂sh =

α∗[γvksh+(1−γ)v1
sh] % α∗vksh+(1−α∗)v1

sh ∼ Co(v1
sh, v

k
sh). Therefore, because β ≤ α∗ ⇒

1− (1− α∗) β
α∗ ∈ (0, 1), it is possible to pick γ such that Co(v̂sh, v

γ
sh) % Co(v1

sh, v
k
sh).

By Lemma 9, since vsh ∼ v̂sh, we have Co(vsh, v
γ
sh) ∼ Co(v̂sh, v

γ
sh), and since

Co(v̂sh, v
γ
sh) % Co(v1

sh, . . . , v
k
sh) we then have Co(vsh, v

γ
sh) % Co(v1

sh, . . . , v
k
sh). Now,

since vγsh ∈ Co(v1
sh, v

k
sh), it follows that vγsh ∈ Co(v1

sh, . . . , v
k
sh) and therefore

Co
(
Co(v1

sh, v
γ
sh), Co(v1

sh, . . . , v
k
sh)
)

= Co(v1
sh, . . . , v

k
sh, vsh).

By Axiom 4,

Co(vsh, vγsh) % Co(v1
sh, . . . , v

k
sh)⇒

Co
(
Co(vsh, vksh), Co(v1

sh, . . . , v
k
sh)
)
% Co

(
v1
sh, . . . , v

k
sh
)
.

By inductive assumption, Co
(
v1
sh, . . . , v

k
sh
)
∼ Co(v1

sh, v
k
sh) and thus

Co(v1
sh, . . . , v

k
sh, vsh) % Co(v1

sh, v
k
sh).

Combining with (6) we have that Co(v1
sh, . . . , v

k
sh, vsh) ∼ Co(v1

sh, v
k
sh).

Case 2: vksh � vsh ∼ v1
sh. Then Co(vsh, vksh) ∼ Co(v1

sh, v
k
sh) by Lemma 9. Thus,

Co(vsh, vksh) % Co(v1
sh, . . . v

k
sh), which implies

Co
(
Co(vsh, vksh), Co(v1

sh, . . . , v
k
sh)
)
% Co(v1

sh, . . . , v
k
sh)

by Axiom 4 and thus Co(v1
sh, . . . , v

k
sh, vsh) % Co(v1

sh, v
k
sh). Also, Co(v1

sh, . . . , v
k
sh) %

Co(v1
sh, v

k
sh) ⇒ Co(v1

sh, . . . , v
k
sh) % Co

(
Co(v1

sh, . . . , v
k
sh), Co(vsh, vksh)

)
by Axiom 4, so

Co(v1
sh, v

k
sh) % Co(v1

sh, . . . , v
k
sh, vsh).

Combining we get Co(v1
sh, . . . , v

k
sh, vsh) ∼ Co(v1

sh, v
k
sh)

Case 3: vksh ∼ vsh � v1
sh. Then Co(v1

sh, vsh) ∼ Co(v1
sh, v

k
sh) by Lemma 9, and the

same procedure as in case 2 works. �

Proof of Theorem 1: Sufficiency of axioms: Fix some h∗ ∈ H . Let δ ∈ ∆ denote

the lottery for which δsh
∗ % psh∗ for all p ∈ ∆, and let δ ∈ ∆ denote the singleton lottery

for which psh % δsh for all p ∈ ∆. If δsh∗ ∼ δsh
∗ then Lemmas 1 through 10 imply that

the decision maker is indifferent between anything that could happen in state s.

33



So suppose δsh
∗ ∼ δsh

∗. By Lemma 6, there exists a unique αs ∈ [0, 1] such that

Co(δsh∗, δsh∗) ∼ αsδsh
∗ + (1 − αs)δsh∗. By Lemma 7 this implies that for all p1, p2 ∈

Co(δ, δ) with p1
sh
∗ % p2

sh
∗, Co(p1

sh
∗, p2

sh
∗) ∼ αsp1

sh
∗+(1−αs)p2

sh
∗. Since for all q1, q2 ∈ ∆

with q1sh
∗ % q2sh

∗ there exists p1, p2 ∈ Co(δ, δ) such that p1
sh
∗ ∼ q1sh

∗ and p2
sh
∗ ∼ q2sh

∗,

Lemma 9 implies that Co(q1sh
∗, q2sh

∗) ∼ αsq
1
sh
∗ + (1 − αs)q2sh∗. Then Lemma 10 implies

that for all P ∈ P, Psh
∗ ∼ αsv

k
sh
∗ + (1 − αs)v1

sh
∗, where the notation is the same as in

Lemma 10. Hence, the weight αs is the same for all sets in state s.

Now, let δxi ∈ ∆ denote the lottery that gives the outcome xi for sure. Define

us(xi) ≡ Fs(δxi) (7)

Recall that Fs(δxi) = F (h∗1, . . . , h∗s−1, δxi , h∗s+1, . . . , h∗n)−n−1
n F (h∗). Note that Fs(δxi) =

us(xi) = αs
∑m

i=1 δ
xi(xi)us(xi) + (1− αs)

∑m
i=1 δ

xi(xi)us(xi), so it satisfies Theorem 1.

Now I will proceed by proving that it holds for all singleton lotteries p by induction

on the size of the support of p. Suppose that for all p ∈ ∆ with |supp{p}| = k − 1,

Fs(p) =
∑k−1

i=1 p(xi)us(xi). Consider q ∈ ∆ with |supp{q}| = k and let x̂ ∈ supp{q}.
Define q̂ by

q̂(x̂) = 0,

q̂(x) = q(x)
1−q(x̂) for all x 6= x̂.

Note that |supp{q̂}| = k − 1 and q = q(x̂)δx̂ + (1− q(x̂))q̂. Hence,

Fs(q) = F (h∗1, . . . , h∗s−1, q, h∗s+1, . . . , h∗n)− n− 1
n

F (h∗)

= F (h∗1, . . . , h∗s−1, q(x̂)δx̂ + (1− q(x̂))q̂, h∗s+1, . . . , h∗n)− n− 1
n

F (h∗)

= q(x̂)F (h∗1, . . . , h∗s−1, δx̂, h∗s+1, . . . , h∗n)

+(1− q(x̂))F (h∗1, . . . , h∗s−1, q̂, h∗s+1, . . . , h∗n)− n− 1
n

F (h∗)

= q(x̂)Fs(δx̂) + (1− q(x̂))Fs(q̂) = q(x̂)us(x̂) + (1− q(x̂))
∑
xi 6=x̂

qxi

1− q(xi)
us(xi)

by (7) and the inductive assumption. Thus, we have Fs(q) =
∑k

i=1 q(xi)us(xi). Note that

Fs(q) =
∑k

i=1 q(xi)us(xi) = αs
∑m

i=1 q(xi)us(xi) + (1 − αs)
∑m

i=1 q(xi)us(xi), so again it

satisfies Theorem 1.

Finally, for general P ∈ P, let v1 denote the worst vertex of P and let vk denote the

best vertex of P . By Lemmas 6 and 10

Fs(P ) = F (h∗1, . . . , h∗s−1, P, h∗s+1, . . . , h∗n)− n− 1
n

F (h∗)
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= F (h∗1, . . . , h∗s−1, αsv
k + (1− αs)v1, h∗s+1, . . . , h∗n)− n− 1

n
F (h∗)

= αsF (h∗1, . . . , h∗s−1, vk, h∗s+1, . . . , h∗n)

+(1− αs)F (h∗1, . . . , h∗s−1, v1, h∗s+1, . . . , h∗n)− n− 1
n

F (h∗)

= αsFs(vk) + (1− αs)Fs(v1) = αs

k∑
i=1

vk(xi)us(xi) + (1− αs)
k∑
i=1

v1(xi)us(xi).

Combining this with Lemma 3 we have that F (h) =
∑n

s=1

[
αs
∑m

i=1 h
s(xi)us(xi) + (1 −

αs)
∑m

i=1 h
s(xi)us(xi)

]
.

Necessity of axioms: Necessity of Axioms 1 through 3 follows from Lemma 2. To see

that Axiom 4 is necessary, suppose the representation holds and that Ps′h % Qs′h. Denote

by f
s and fs the best respectively worst lottery in Ps′h(s) and by gs and gs the best

respectively worst lottery in Qs′h(s). Then, since the representation holds,

Ps′h % Qs′h ⇔
n∑
s=1

[
αs

m∑
i=1

f
s(xi)us(xi) + (1− αs)

m∑
i=1

f s(xi)us(xi)
]
≥

n∑
s=1

[
αs

m∑
i=1

gs(xi)us(xi) + (1− αs)
m∑
i=1

gs(xi)us(xi)
]

⇔ αs′
m∑
i=1

p(xi)us′(xi) + (1− αs′)
m∑
i=1

p(xi)us′(xi) ≥

αs′
m∑
i=1

q(xi)us′(xi) + (1− αs′)
m∑
i=1

q(xi)us(xi),

where

p = argmaxp∈P

m∑
i=1

p(xi)us′(xi)⇔
m∑
i=1

p(xi)us′(xi) ≥
m∑
i=1

p(xi)us′(xi) for all p ∈ P, (8)

q = argmaxq∈Q

m∑
i=1

q(xi)us′(xi)⇔
m∑
i=1

q(xi)us′(xi) ≥
m∑
i=1

q(xi)us′(xi) for all q ∈ Q, (9)

p = argminp∈P
∑m

i=1 p(xi)us′(xi)⇔
∑m

i=1 p(xi)us′(xi) ≥
∑m

i=1 p(xi)us′(xi) for all p ∈ P,
(10)

and

q = argminq∈Q
∑m

i=1 q(xi)us′(xi)⇔
∑m

i=1 q(xi)us′(xi) ≥
∑m

i=1 q(xi)us′(xi) for all q ∈ Q.
(11)
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Define t = argmaxt∈Co(P,Q)

∑m
i=1 t(xi)us′(xi) and t = argmint∈Co(P,Q)

∑m
i=1 t(xi)us′(xi).

We want to show that

αs′
∑m

i=1 p(xi)us′(xi) + (1− αs′)
∑m

i=1 p(xi)us′(xi) ≥
αs′
∑m

i=1 t(xi)us′(xi) + (1− αs′)
∑m

i=1 t(xi)us(xi) ≥
αs′
∑m

i=1 q(xi)us′(xi) + (1− αs′)
∑m

i=1 q(xi)us(xi).

Note that for all t ∈ Co(P,Q) there exists p ∈ P, q ∈ Q,λ ∈ [0, 1] such that t =

λp+ (1−λ)q. Thus, there exists p∗ ∈ P, q∗ ∈ Q,λ∗ ∈ [0, 1] such that t = λ∗p∗+ (1−λ∗)q∗.
Hence,

m∑
i=1

t(xi)us′(xi) =
m∑
i=1

(λ∗p∗(xi) + (1− λ∗)q∗(xi))us′(xi)

= λ∗
m∑
i=1

p∗(xi)us′(xi) + (1− λ∗)
m∑
i=1

q∗(xi))us′(xi).

From this, (8), and (9), we see that we must have
∑m

i=1 p
∗(xi)us′(xi) =

∑m
i=1 p(xi)us′(xi)

and
∑m

i=1 q
∗(xi)us′(xi) =

∑m
i=1 q(xi)us′(xi) (otherwise the sum would not be maximized).

Also, there exists p̂ ∈ P, q̂ ∈ Q,µ∗ ∈ [0, 1] such that t = λ∗p̂ + (1 − µ∗)q̂. Hence∑m
i=1 t(xi)us′(xi) =

∑m
i=1(µ∗p̂(xi) + (1 − µ∗)q̂(xi))us′(xi) = µ∗

∑m
i=1 p̂(xi)us′(xi) + (1 −

µ∗)
∑m

i=1 q̂(xi))us′(xi).

From this, (10), and (11), we see that we must have
∑m

i=1 p̂(xi)us′(xi) =
∑m

i=1 p(xi)us′(xi)

and
∑m

i=1 q̂(xi)us′(xi) =
∑m

i=1 q(xi)us′(xi) (otherwise the sum would not be minimized).

Thus,

αs′
∑m

i=1 t(xi)us′(xi) + (1− αs′)
∑m

i=1 t(xi)us(xi) =

αs′
∑m

i=1[λ∗p(xi) + (1− λ∗)q(xi)]us′(xi) + (1− αs′)
∑m

i=1[µ∗p(xi) + (1− µ∗)q∗(xi)]us(xi),

which is equal to

λ∗αs′
∑m

i=1 p(xi)us′(xi) + µ∗(1− αs′)
∑m

i=1 p(xi)us′(xi)

+(1− λ∗)αs′
∑m

i=1 q(xi)us′(xi) + (1− µ∗)(1− αs′)
∑m

i=1 q(xi)us′(xi).
(12)

Since αs′
∑m

i=1 p(xi)us′(xi) + (1− αs′)
∑m

i=1 p(xi)us′(xi) ≥ αs′
∑m

i=1 q(xi)us′(xi) + (1−
αs′)

∑m
i=1 q(xi)us(xi) we must have that

∑m
i=1 p(xi)us′(xi) ≥

∑m
i=1 q(xi)us′(xi) or

∑m
i=1 p(xi)us′(xi) ≥∑m

i=1 q(xi)us(xi).

Thus, if λ∗ = µ∗ = 1, (12) = αs′
∑m

i=1 p(xi)us′(xi)+(1−αs′)
∑m

i=1 p(xi)us′(xi), if λ∗ ≤ 1 or

µ∗ ≤ 1, αs′
∑m

i=1 p(xi)us′(xi)+(1−αs′)
∑m

i=1 p(xi)us′(xi) ≥ (12) ≥ αs′
∑m

i=1 q(xi)us′(xi)+

(1− αs′)
∑m

i=1 q(xi)us′(xi), and if λ∗ = µ∗ = 0,

(12) = αs′
m∑
i=1

q(xi)us′(xi) + (1− αs′)
m∑
i=1

q(xi)us′(xi).
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Hence, we have that

αs′
∑m

i=1 p(xi)us′(xi) + (1− αs′)
∑m

i=1 p(xi)us′(xi) ≥
αs′
∑m

i=1 t(xi)us′(xi) + (1− αs′)
∑m

i=1 t(xi)us(xi) ≥
αs′
∑m

i=1 q(xi)us′(xi) + (1− αs′)
∑m

i=1 q(xi)us(xi)

⇔ P s
′
h % Co(P,Q)sh % Qs′h.

To see that Axiom 5 is necessary, suppose that we have the representation and that

ps′h � qs′h for all q ∈ Q. Then ps′h � qs′h for all q ∈ Q is equivalent to

m∑
i=1

p(xi)us′(xi) ≥
m∑
i=1

q(xi)us′(xi) for all q ∈ Q. (13)

First, I will show that ps′h � Co(p,Q)s′h is necessary if αs
′
< 1. So suppose αs

′
< 1.

Since for all t ∈ Co(p,Q) there exists q ∈ Q and λ ∈ [0, 1] such that t = λp + (1 − λ)q,

we have that
∑m

i=1 t(xi)us′(xi) ≤
∑m

i=1 p(xi)us′(xi) for all t ∈ Co(p,Q). Also, since Q ⊆
Co(p,Q), (13)⇒ there exists t ∈ Co(p,Q) such that

∑m
i=1 p(xi)us′(xi) >

∑m
i=1 t(xi)us′(xi)

⇒
∑m

i=1 p(xi)us′(xi) > αs′
∑m

i=1 p(xi)us′(xi) + (1− αs′)
∑m

i=1 t(xi)us′(xi).

I will now show that Co(p,Q)s′h � Qs′h is necessary. Note that

t = argmaxt∈Co(p,Q)

m∑
i=1

t(xi)us′(xi) = argmaxλ∈[0,1],q∈Qλ

m∑
i=1

p(xi)us′(xi)+(1−λ)
m∑
i=1

q(xi)us′(xi).

Since

maxλ∈[0,1],q∈Qλ

m∑
i=1

p(xi)us′(xi) + (1− λ)
m∑
i=1

q(xi)us′(xi) > maxq∈Q

m∑
i=1

q(xi)us′(xi)

we now have that
m∑
i=1

t(xi)us′(xi) >
m∑
i=1

q(xi)us′(xi). (14)

Also, for all t ∈ Co(p,Q),
∑m

i=1 t(xi)us′(xi) =
∑m

i=1(λp(xi) + (1 − λ)q(xi))us′(xi) ≥∑m
i=1(λp(xi) + (1 − λ)q(xi))us′(xi) ≥

∑m
i=1 q(xi))us′(xi) and thus

∑m
i=1 t(xi)us′(xi) ≥∑m

i=1 q(xi)us′(xi). Combining this with (14) we have that αs′
∑m

i=1 t(xi)us′(xi) + (1 −
αs′)

∑m
i=1 t(xi)us′(xi) > αs′

∑m
i=1 q(xi)us′(xi)+(1−αs′)

∑m
i=1 q(xi)us′(xi)⇔ Co(p,Q)s

′
h �

Qs
′
h. �

Proof of Theorem 2: Sufficiency of axioms: By Axioms 1 through 5,

n∑
s=1

[
αs

m∑
i=1

h
s(xi)us(xi) + (1− αs)

m∑
i=1

hs(xi)us(xi)
]
≥
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n∑
s=1

[
αs

m∑
i=1

gs(xi)us(xi) + (1− αs)
m∑
i=1

gs(xi)us(xi)
]

By Axiom 6 there exists at least one non-null state. Let ŝ be a non-null state. Consider

P,Q ∈P. Let s′ be any non-null state. By Axiom 7

αs′
m∑
i=1

p(xi)us′(xi) + (1− αs′)
m∑
i=1

p(xi)us′(xi)

> αs′
m∑
i=1

q(xi)us′(xi) + (1− αs′)
m∑
i=1

q(xi)us′(xi)

⇔
∑
s 6=s′

[
αs

m∑
i=1

h
s(xi)us(xi) + (1− αs)

m∑
i=1

hs(xi)us(xi)
]

+αs′
m∑
i=1

p(xi)us′(xi) + (1− αs′)
m∑
i=1

p(xi)us′(xi)

>
∑
s 6=s′

[
αs

m∑
i=1

h
s(xi)us(xi) + (1− αs)

m∑
i=1

hs(xi)us(xi)
]

+αs′
m∑
i=1

q(xi)us′(xi) + (1− αs′)
m∑
i=1

q(xi)us′(xi)

⇔ Ps′h � Qs′h⇔ (h1, . . . , hs
′−1, P, hs

′+1, . . . , hn) � (h1, . . . , hs
′−1, Q, hs

′+1, . . . , hn)

⇔ Pŝh � Qŝh⇔ (h1, . . . , hŝ−1, P, hŝ+1, . . . , hn) � (h1, . . . , hŝ−1, Q, hŝ+1, . . . , hn)

⇔
∑
s 6=ŝ

[
αs

m∑
i=1

h
s(xi)us(xi) + (1− αs)

m∑
i=1

hs(xi)us(xi)
]

+αŝ
m∑
i=1

p(xi)uŝ(xi) + (1− αŝ)
m∑
i=1

p(xi)uŝ(xi)

>
∑
s 6=ŝ

[
αs

m∑
i=1

h
s(xi)us(xi) + (1− αs)

m∑
i=1

hs(xi)us(xi)
]

+αŝ
m∑
i=1

q(xi)uŝ(xi) + (1− αŝ)
m∑
i=1

q(xi)uŝ(xi)

⇔ αŝ

m∑
i=1

p(xi)uŝ(xi) + (1− αŝ)
m∑
i=1

p(xi)uŝ(xi)

> αŝ

m∑
i=1

q(xi)uŝ(xi) + (1− αŝ)
m∑
i=1

q(xi)uŝ(xi).
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For singleton sets p and q this implies that

m∑
i=1

p(xi)us′(xi) >
m∑
i=1

q(xi)us′(xi)⇔
m∑
i=1

p(xi)uŝ(xi) >
m∑
i=1

q(xi)uŝ(xi).

Since p and q are simple lotteries this means that they are evaluated according to the

same von Neumann-Morgenstern expected utility function in states ŝ and s′. Since von

Neumann-Morgenstern expected utility functions are unique up to a positive linear trans-

formation there exist scalars as′ > 0 and bs′ such that us′(·) = as′uŝ(·) + bs′ .

Define u(xi) = uŝ(xi). Since ŝ is non-null, we have that uŝ(·) is non-constant, since a

state s is null if and only if us(·) is constant. Then for general h, g ∈H ,

h � g ⇔
n∑
s=1

[
αs

m∑
i=1

h
s(xi)[asu(xi) + bs] + (1− αs)

m∑
i=1

hs(xi)[asu(xi) + bs]
]
>

n∑
s=1

[
αs

m∑
i=1

gs(xi)[asu(xi) + bs] + (1− αs)
m∑
i=1

gs(xi)[asu(xi) + bs]
]

⇔
n∑
s=1

[
asαs

m∑
i=1

h
s(xi)u(xi) + as(1− αs)

m∑
i=1

hs(xi)u(xi)
]
>

n∑
s=1

[
asαs

m∑
i=1

gs(xi)u(xi) + as(1− αs)
m∑
i=1

gs(xi)u(xi)
]
.

Suppose now, in order to reach a contradiction, that αs′ > αŝ. For P,Q ∈ P

with
∑m

i=1 q(xi)u(xi) >
∑m

i=1 p(xi)u(xi) and 1−αŝ
αŝ

[∑m
i=1 q(xi)u(xi) −

∑m
i=1 p(xi)u(xi)

]
≥∑m

i=1 p(xi)u(xi)−
∑m

i=1 q(xi)u(xi) >
1−αs′
αs′

[∑m
i=1 q(xi)u(xi)−

∑m
i=1 p(xi)u(xi)

]
we have a

violation of Axiom 7, because this is equivalent to

αŝ

m∑
i=1

p(xi)u(xi) + (1− αŝ)
m∑
i=1

p(xi)u(xi) ≤ αŝ
m∑
i=1

q(xi)u(xi) + (1− αŝ)
m∑
i=1

q(xi)u(xi)

and αs′
∑m

i=1 p(xi)u(xi)+(1−αs′)
∑m

i=1 p(xi)u(xi) > αs′
∑m

i=1 q(xi)u(xi)+(1−αs′)
∑m

i=1 q(xi)u(xi),

which is again equivalent to P s
′
h � Qs′h but P ŝh � Qŝh. Thus, since Axiom 7 has to hold

for all P,Q ∈P we cannot have αs′ > αŝ.

Suppose similarly, again in order to reach a contradiction, that αŝ > αs′ . For P,Q ∈P

with
∑m

i=1 q(xi)u(xi) >
∑m

i=1 p(xi)u(xi) and 1−αs′
αs′

[∑m
i=1 q(xi)u(xi)−

∑m
i=1 p(xi)u(xi)

]
≥∑m

i=1 p(xi)u(xi) −
∑m

i=1 q(xi)u(xi) > 1−αŝ
αŝ

[∑m
i=1 q(xi)u(xi) −

∑m
i=1 p(xi)u(xi)

]
we have

another violation of Axiom 7. Therefore, since Axiom 7 has to hold for all P,Q ∈ P we

cannot have αŝ > αs′ .
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Hence, the only possibility is αs′ = αŝ ≡ α. Thus,

h � g ⇔
n∑
s=1

as

[
α

m∑
i=1

h
s(xi)u(xi) + (1− α)

m∑
i=1

hs(xi)u(xi)
]
>

n∑
s=1

as

[
α

m∑
i=1

gs(xi)u(xi) + (1− α)
m∑
i=1

gs(xi)u(xi)
]
.

Define µ(s) = asP
s as

. We have that
∑

s µ(s) = 1, and since as ≥ 0 for all s and as > 0

for some s, we also have 0 ≤ µ(s) ≤ 1. Thus µ is a probability measure over the states.

We therefore have that
n∑
s=1

µ(s)
[
α

m∑
i=1

h
s(xi)u(xi) + (1− α)

m∑
i=1

hs(xi)u(xi)
]
≥

n∑
s=1

µ(s)
[
α

m∑
i=1

gs(xi)u(xi) + (1− α)
m∑
i=1

gs(xi)u(xi)
]
.

Necessity of axioms: The necessity of Axioms 1 through 5 follows from Theorem 1. To

prove necessity of Axiom 6, suppose we have the representation in Theorem 2 and that

h ∼ g for all h, g ∈H . However, then h ∼ g for all h, g ∈H if and only if for all h, g ∈H ,

n∑
s=1

µ(s)
[
α

m∑
i=1

h
s(xi)u(xi) + (1− α)

m∑
i=1

hs(xi)u(xi)
]

=
n∑
s=1

µ(s)
[
α

m∑
i=1

gs(xi)u(xi) + (1− α)
m∑
i=1

gs(xi)u(xi)
]
,

which implies that u(·) must be constant. Hence we must have that there exists h, g ∈H

such that h � g.

To prove the necessity of Axiom 7, suppose there exists ŝ such that Pŝh � Qŝh. Then

µ(ŝ)
[
α

m∑
i=1

p(xi)u(xi) + (1− α)
m∑
i=1

p(xi)u(xi)
]

+
∑
s 6=ŝ

µ(s)
[
α

m∑
i=1

h
s(xi)u(xi) + (1− α)

m∑
i=1

hs(xi)u(xi)
]

> µ(ŝ)
[
α

m∑
i=1

q(xi)u(xi) + (1− α)
m∑
i=1

q(xi)u(xi)
]

+
∑
s 6=ŝ

µ(s)
[
α

m∑
i=1

h
s(xi)u(xi) + (1− α)

m∑
i=1

hs(xi)u(xi)
]
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⇔ α

m∑
i=1

p(xi)u(xi) + (1− α)
m∑
i=1

p(xi)u(xi)

> α
m∑
i=1

q(xi)u(xi) + (1− α)
m∑
i=1

q(xi)u(xi)

⇒ µ(s′)
[
α

m∑
i=1

p(xi)u(xi) + (1− α)
m∑
i=1

p(xi)u(xi)
]

+
∑
s 6=s′

µ(s)
[
α

m∑
i=1

h
s(xi)u(xi) + (1− α)

m∑
i=1

hs(xi)u(xi)
]

> µ(s′)
[
α

m∑
i=1

q(xi)u(xi) + (1− α)
m∑
i=1

q(xi)u(xi)
]

+
∑
s 6=s′

µ(s)
[
α

m∑
i=1

h
s(xi)u(xi) + (1− α)

m∑
i=1

hs(xi)u(xi)
]
.

This holds for all non-null s′, and thus Ps′h � Qs′h for all non-null s′.�

Proof of Theorem 3: Sufficiency of axioms: The proof follows that of Theorem 2

until the point where I establish that for general h, g ∈H ,

h � g ⇔
n∑
s=1

[
asαs

m∑
i=1

h
s(xi)u(xi) + as(1− αs)

m∑
i=1

hs(xi)u(xi)
]
>

n∑
s=1

[
asαs

m∑
i=1

gs(xi)u(xi) + as(1− αs)
m∑
i=1

gs(xi)u(xi)
]
.

In the proof of Theorem 2 we get a violation of Axiom 7 when we assume αs′ > αŝ for

P,Q ∈P with
∑m

i=1 q(xi)u(xi) >
∑m

i=1 p(xi)u(xi) and
1−αŝ
αŝ

[∑m
i=1 q(xi)u(xi)−

∑m
i=1 p(xi)u(xi)

]
≥
∑m

i=1 p(xi)u(xi)−
∑m

i=1 q(xi)u(xi) >
1−αs′
αs′

[∑m
i=1 q(xi)u(xi) −

∑m
i=1 p(xi)u(xi)

]
. Since Axiom 7’ only applies to singleton lot-

teries p and q, we do not get this violation here. Similarly, we do not get a contradiction

by assuming αs′ < αŝ.

Define µ(s) = asP
s as

. We have that
∑

s µ(s) = 1, and since as ≥ 0 for all s and as > 0

for some s, we also have 0 ≤ µ(s) ≤ 1. Thus µ is a probability measure over the states.

We therefore have that
n∑
s=1

µ(s)
[
αs

m∑
i=1

h
s(xi)u(xi) + (1− αs)

m∑
i=1

hs(xi)u(xi)
]
≥

n∑
s=1

µ(s)
[
αs

m∑
i=1

gs(xi)u(xi) + (1− αs)
m∑
i=1

gs(xi)u(xi)
]
.
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Necessity of axioms: The proof of necessity of the axioms follows that of Theorem 2

with p(xi) = p(xi) = p(xi) and q(xi) = q(xi) = q(xi).
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