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Abstract

We perform an extensive series of Monte Carlo experiments to compare the perfor-
mance of two variants of the “Jackknife Instrumental Variables Estimator,” or JIVE,
with that of the more familiar 2SLS and LIML estimators. We find no evidence to
suggest that JIVE should ever be used. It is always more dispersed than 25LS, often
very much so, and it is almost always inferior to LIML in all respects. Interestingly,
JIVE seems to perform particularly badly when the instruments are weak.
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1. Introduction

The finite-sample properties of instrumental variables estimators can be very poor,
especially when the sample size is small and/or the instruments are weak. See Nelson
and Startz (1990a, 1990b) and Staiger and Stock (1997) among many others. It was
suggested, first by Phillips and Hale (1977), and later by Angrist, Imbens, and Krueger
(1999) and Blomquist and Dahlberg (1999), henceforth AIK and BD, respectively, that
finite-sample properties might be improved by replacing the usual fitted values from
the reduced form regression(s) by “omit-one” fitted values which omit observation ¢
when estimating the ¢** fitted value. The idea is that this should eliminate the
correlation between the fitted values and the structural-equation errors.

ATK and BD proposed more than one “Jackknife Instrumental Variables Estimator”,
or JIVE, estimator based on these omit-one fitted values, although these estimators do
not really make use of the jackknife. A few simulations designed to study the finite-
sample properties of estimators of this type were performed by AIK, and greater
numbers by BD. Flores-Lagunes (2002) and Hahn, Hausman, and Kuersteiner (2004)
(henceforth HHK) were the first to provide simulation evidence that JIVE can perform
poorly. HHK also proposed a genuine jackknife estimator called JN2SLS which should
not be confused with JIVE.

In this paper, we perform an extensive series of Monte Carlo experiments that com-
pare the finite-sample properties of two forms of JIVE with those of 2SLS and LIML.
In order to keep the experimental design manageable, we limit ourselves to a model
with one structural and one reduced-form equation. Within this limitation, our exper-
iments are much more comprehensive than any comparable ones that we are aware
of. We vary the sample size, the number of instruments, the weakness of the in-
struments, and the correlation between the errors of the reduced-form and structural
equations. All of these factors affect the performance of the estimators we study, often
dramatically so.

HHK provide simulation evidence that, like LIML, JIVE has no moments, a fact
proved in Davidson and MacKinnon (2004). Here, we show that only in very limited
parts of the parameter space is JIVE systematically better behaved than LIML, the
contrary being true elsewhere. Since we also find that LIML does not clearly dominate
2SLS, there seems little reason to prefer JIVE to either of these estimators.

2. IV, JIVE, and LIML Estimators

We are interested in one structural equation from a linear simultaneous equations
model. The structural equation can be written as

y=2ZB +YB:+u=XB+u, (1)

where X = [Z Y], with Z an n x k; matrix of observations on exogenous variables,
Y an n x ky matrix of observations on endogenous variables, and 8 = [3," 32" a



vector of unknown parameters. The rest of the system is treated as an unrestricted
reduced form:
Y =WII+V, (2)

where there are [ instruments in the matrix W = [Z W5|. The errors in (1) and (2)
are assumed IID, with expectation zero conditional on W, and nonzero correlation
between the errors for the same observation.

The 2SLS, or generalized IV, estimator can be written compactly as
Y = (X" PwX) ' X Pyy,

where Py = W(W TW)~!W T is the orthogonal projection on to the space spanned
by the columns of W. The matrix of fitted values implicitly used as instruments
for the endogenous explanatory variables Y is Y = PwY = WII, where II is the
matrix of OLS estimates from the first-stage regressions (2). In contrast, the matrix
of omit-one fitted values used by JIVE is Y, of which the t*™ row is W, IT () where
IT® is the matrix of OLS estimates computed without observation ¢. It can be shown
that Y, = ((PWY)t — hth)/(l — ht), where hy is the t'* diagonal element of Pyy.

We consider two JIVE estimators. The principal one is

BMVE — (XTX) Xy, where X =[Z Y]. (3)
This estimator was called JIVE1 by AIK and UJIVE by BD. We will adopt the former
notation. AIK also propose a very similar estimator, which they call JIVE2. It uses
the matrix with typical row ¥; = (PwY); — hY;)/(1 — 1/n) instead of Y in (3).
In most of our simulations, the results for JIVE2 were extremely similar to those for
JIVE1, although JIVE2 generally seemed to perform a little bit less well. We therefore
present results for JIVE1 only, except for one case, with a different experimental
design, in which JIVE1 and JIVE2 differed substantially. Note, however, that the two
JIVE estimators may differ noticeably in any particular sample.

BD also consider the estimator BJLS = (XTX)_l)ZT , which is simply the OLS esti-
mator from a regression of y on X. It has finite-sample properties extremely different
from those of the two JIVE estimators. Since X can be thought of as X measured
with error, JLS suffers from a sort of errors-in-variables problem. Unlike the 2SLS
estimator, which is always biased towards the inconsistent OLS estimator, JLS seems
to be biased in the direction of zero, just like the OLS estimator when the explana-
tory variable is measured with error. In our experiments, JL.S was almost always both
more biased and less precise than 2SLS, even when there was no correlation between
the reduced-form and structural error terms. Limited results are presented in Figures
12 and 13, which are available from the JAE Data Archive website.



A classic alternative to the 2SLS estimator is the LIML estimator
BYML — (XTI — & Mw)X) ' X'(1— & Mw)y,

where & is the value of the ratio

(y —YBy) 'Mz(y — YB,)
(y— YB2) Mw(y — YS3)

minimized with respect to 3. Here Mz and Mw are orthogonal projections that
annihilate the columns of Z and W respectively. We also study this estimator.

3. The Simulation Experiments

The design of our experiments is just about as simple as possible. There is one
structural equation, with dependent variable y generated by the equation

Yy = Bt + fex + u.

Here ¢ is a vector of ones, and the endogenous explanatory variable x is generated as
a function of the instruments in the n x [ matrix W by the reduced-form equation

x=Wr+o. (4)

It is shown in Davidson and MacKinnon (2004) that the distributions of all the esti-
mators covered in our experiments are the same for this model, with n observations, as
for a model in which the structural equation has k; exogenous explanatory variables,
one endogenous explanatory variable, and a sample size of n — ky + 1.

The first column of W is ¢, and the remaining columns, except when otherwise noted,
are IID standard normal random variables, redrawn for each replication. Only the
orthogonal projection Py affects the estimators we consider, and so it is of no interest
to change W in ways that do not affect Py,. The number of overidentifying restric-
tions is r = [ — 2. The elements of u and v have variances o2 and o2, respectively,
and correlation p.

The t statistic for F to be equal to its true value does not depend on the values of (31,
(B2, and o,,. The bias of the IV estimator, when it exists, does not depend on [3; or s,
and is proportional to o,. Thus, without loss of generality, we set 81 = 1, f2 = 1, and
02 =1 in all experiments. It can also be seen that multiplying o, and the elements
of the vector 7 by the same constant affects only the scale of the variable @, and so
has only a scale effect on the estimators of 35 and no effect at all on the ¢ statistics.

What does have an important effect is the ratio of ||7||? to ¢2. This ratio can be

interpreted as the signal-to-noise ratio in the reduced-form equation (4). In order to
capture the effect of the ratio on the distributions we study, we normalize the quantity
|7||* + 02 to unity. In addition, without loss of generality, the values of the m;, for
j > 2, are constrained to be equal, with m; = 0. The parameter that does vary is
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denoted by R2 : It is the limiting R? of the reduced-form regression as n — oc. Since
n~!W TW tends to an identity matrix as n — oo, we see that R2, = 1/(1+02/||x||?).
It is conveniently restricted to the [0,1] interval and is a monotonically increasing
function of the “concentration parameter” that is often used in the weak instruments
literature; see Stock, Wright, and Yogo (2002). A small value of nR2, implies that
the instruments are weak. In our experiments, therefore, we vary the sample size
and three parameters: the number r of overidentifying restrictions, the correlation p,
and RZ.

All experiments used 500,000 replications. When either p or R2, was varied, we
performed experiments for every value from 0.00 to 0.99 at intervals of 0.01; only the
absolute value of p affects anything other than the sign of any bias. When R2 = 0,
(2 is not asymptotically identified. This case is included to show what happens in the
limit as the instruments become infinitely weak. When r was varied, we considered
all values from 0 to 16. Every experiment was performed six times, for samples of size

25, 50, 100, 200, 400, and 800.

To keep our experiments within reasonable bounds, when we varied one parameter,
we held the other two fixed at certain base values, chosen so as to make estimation
challenging. The base value of p was 0.9, because all three estimators generally
performed worse as p was increased. The base value of R?, was 0.1, which implies
that the instruments are very weak when n is small. The base value of r was 5, a
compromise chosen since computational costs rise sharply with r, and since results
for very small r sometimes differ markedly from those for larger values.

Because the LIML and JIVE estimators have no moments, we report as a measure
of the central tendency of each estimator its median bias, that is, the 0.5 quantile of
the Bg estimates minus the true value 359. As a measure of dispersion, we report the
nine decile range, that is, the 0.95 quantile minus the 0.05 quantile. The nine decile
range is the width of an interval in which the estimates lie 90% of the time.

4. Results of the Experiments

All results are reported graphically. To save space, only one figure is printed here. The
rest may be found on the JAE Data Archive website at www.econ.queensu.ca/jae.
The results of the principal experiments are reported in Figures 1 through 9. Each
figure contains six panels, one for each of the sample sizes 25, 50, 100, 200, 400, and
800. Readers should be careful to check the vertical scales of the various panels, which
are not always the same for different sample sizes. Figure A, which is printed here,
contains the panels for n = 50 from Figures 1 through 6.

The first three figures concern median bias. Figure 1 suggests that the median bias
of the 2SLS estimator is proportional to p and inversely proportional to n. These
results are consistent with the theoretical results in Phillips (1984). In contrast, the
median biases of LIML and JIVE1 are evidently nonlinear functions of p. That of
LIML is indiscernible for n > 200, but that of JIVE1, as with 2SLS, appears to be
O(n~1), positive for small samples and negative for large ones. Figure 2 shows that
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the median biases of all three estimators generally decline as RZ increases. For 2SLS
and LIML, the decline is monotonic. For JIVE1, however, the sign always changes
from positive to negative as R%  increases, before finally approaching zero. When
nR?, is very small, JIVEL is actually slightly more biased than 2SLS. Figure 3 shows
the dependence of median bias on the number of overidentifying restrictions. For
2SLS and LIML, it increases monotonically with r, although, for n > 100, the median
bias of LIML appears to be essentially zero. That of JIVE1 can be of either sign and
can be larger in absolute value than that of 2SLS. It is always negative for the larger
sample sizes. Notice that 2SLS and LIML are identical when r = 0, but JIVE1 is
quite different, and always more biased.

We conclude that JIVEL1 is usually worse than LIML in terms of median bias, and
for larger sample sizes almost always very much worse. However, because the sign of
the bias changes, it is always possible to find parameter values for which JIVEL is not
biased. Although JIVE1 usually outperforms 2SLS according to this criterion, there
are numerous cases in which it fails to do so. Unlike LIML, JIVE1 may be biased in
either the same direction as 2SLS or in the opposite direction.

Figures 4 through 6 deal with the dispersion of the three estimators, as measured
by the nine decile range. In Figure 4, where p varies on the horizontal axes, JIVE1
is always more dispersed then LIML, which in turn is always more dispersed than
2SLS. The differences are very large when n is small, although they are quite modest
when n = 800. Figure 5 shows that the same pattern holds for most values of RZ .
However, LIML is more dispersed than JIVE1 for a set of extremely small values, this
set becoming smaller as n increases. The phenomenon evidently occurs only when the
instruments are extremely weak, which is also the case in which the median bias of
JIVEL is very large. Figure 6 shows that JIVE1 is always more dispersed than LIML
except for large values of » when n = 25. 2SLS, the only estimator with moments, is
always less dispersed than LIML, which is often very much less dispersed than JIVE1.
It is clear from all three figures that JIVE1 and LIML are much more dispersed than
2SLS when the instruments are weak. Thus it is evident that, in line with a conclusion
reached in HHK, using an estimator with no moments is not a way to solve the weak
instruments problem.

The next three figures concern rejection frequencies for two-tailed asymptotic tests
based on pseudo-t statistics for Gy to equal its true value. On average, in Figures
7 through 9, LIML seems to yield the most reliable inferences, although there are a
number of cases in which JIVE1 is more reliable. Because the base case value of p is
0.9, overrejection is more common in the figures than underrejection. However, it can
be seen from Figure 7 that all three estimators underreject for smaller values of p.
This is particularly severe for JIVE1. For values of p less than about 0.35, even 2SLS
yields more reliable inferences than JIVE1l. Figures 7 through 9 thus provide little
support for using JIVE1 rather than LIML for testing purposes.

For all the simulation results reported so far, the instruments were IID normal. This
implies that the design of the W matrix is, on average, balanced. Since the h; play
a key role in distinguishing between JIVE1 and JIVE2, it is of interest to see what
happens when the design of W is not balanced. To this end, we performed a second
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series of experiments in which the instruments were IID lognormal. Limited results
from these experiments, for the case n = 50, are shown in the right-hand columns of
Figures 10 and 11. For comparison, and to support our claim that JIVE1 and JIVE2
are extremely similar when the instruments are normally distributed, the left-hand
columns contain corresponding results from the original experiments. As can be seen
from Figures 10 and 11, the distribution of the 2SLS estimator is only slightly affected
by the design of the W matrix. The same is true of the LIML estimator, results for
which are not shown. However, the results for JIVE1 and, especially, JIVE2 are very
sensitive to the design of W, and the two can yield quite different results. However,
there is nothing in the figures, or in any of the results that we do not report, to suggest
that changing the design of W will cause either version of JIVE to perform better
relative to IV and LIML.

5. Conclusion

We have presented the results of a rather extensive set of Monte Carlo experiments
on the finite-sample performance of four single-equation estimators for linear simult-
aneous equations models, two variants of JIVE, and the familiar 2SLS and LIML
estimators. The results show clearly that, in most regions of the parameter space
that we have studied, JIVE is inferior to LIML with regard to median bias, disper-
sion, and reliability of inference. Thus, if an investigator wishes to use an estimator
that has no moments, it is usually better to use LIML than JIVE. Our results, how-
ever, do not provide unambiguous support for the use of LIML. It is always more
dispersed than 2SLS, often dramatically so when the instruments are weak. Other
estimators that have moments, such as Fuller’s (1977) modification of LIML and the
JN2SLS estimator proposed by HHK, outperform LIML in many circumstances, as
the latter paper shows. It would be of interest to investigate additional estimators
using the experimental design of this paper. On account of space limitations, we have
not done so here.
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Reply

Russell Davidson and James G. MacKinnon

We welcome the comments on our paper by Ackerberg and Devereux (AD) and
Blomquist and Dahlberg (BD), and we are happy to take this opportunity to respond
briefly to them.

We agree wholeheartedly with both AD and BD that is it unprofitable to try to obtain
meaningful empirical results when all available instruments are very weak. At least in
our experiments, however, it is only in this case that JIVE1 ever outperforms LIML in
terms of dispersion; see Figure 5 and the top left panel of Figure 6. Thus we disagree
with BD that our “categorical rejection of JIVE” is not in accord with our simulation
results. BD are, however, absolutely correct to point out that our experiments deal
with a very simple case and do not tell the whole story.

AD discuss two quite new estimators, IJIVE and UIJIVE, which apparently improve
upon the JIVE1 estimator. Their comment suggests that our conclusion that JIVE1
is inferior to LIML does not necessarily apply to these estimators. In order to inves-
tigate the properties of these two estimators, we performed a new set of simulation
experiments, with the same design as those we describe in the paper. The results
of the new experiments are presented graphically in Figures la—6a, which, like Fig-
ures 1-13 from the paper itself, are available from the JAE Data Archive website at
www.econ.queensu.ca/jae/. The new figures deal with the same cases as Figures 1—-
6 of the paper. Results for IJIVE and UIJIVE are added, and, for readability, results
for 2SLS are removed.

The superiority of IJIVE and, especially, ULJIVE relative to JIVE1l emerges quite
clearly from the new figures. What is particularly interesting is that UIJIVE tends to
be substantially less dispersed than the other JIVE estimators. When the instruments
are weak, it is often much less dispersed than LIML. Our tentative conclusion is that
ULJIVE is the best JIVE estimator to date and may well be worth using in practice.

The simulation results suggest that IJIVE and ULJIVE, like JIVE1 and LIML, have
no moments, and we have confirmed this analytically. This leads us to question
the interpretation of the results in Phillips and Hale (1977) and in Ackerberg and
Devereux (2003) that purport to yield approximate biases for these estimators. These
results are based on stochastic expansions which can be represented schematically as

n%(By — Bao) = to + n~ Y2, + Op(nil/z)v (5)

where Bg, as in the paper, is an estimator of the coefficient of the endogenous regressor
in the second-stage regression, s is the true value of the parameter, ¢y is a random
variable that has a normal distribution with zero expectation, and ¢; is a random
variable with a nonzero expectation, which provides the approximate bias of the
estimator.

The catch is that the 0,(n~!/2) remainder in (5) has no moments. However, the fact
that it does tend to zero in probability implies that the distribution of the first two
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terms of the truncated expansion converges to that of the estimator itself for large
sample sizes n. We have expressed the stochastic expansion as an expansion in powers
of n=1/2, but it is just as possible to express it in the form of small-sigma asymptotics,
as is done by Phillips and Hale. The two expansions appear to be equivalent, at least
to order n=1/2.

The techniques proposed in Appendix 1 of Phillips and Hale for simplifying the cal-
culation of JIVE-type estimators can equally well be applied to IJIVE and UIJIVE.
In all cases, the instruments Yt can be expressed in terms of the fitted values PwY
of the first-stage regressions of 2SLS and the diagonal elements h; of Py, as we show
for JIVEL in the paper. Since IJIVE is just JIVE1 using projected variables, the same
formulas can be used for it. For UILJIVE, it is easy to see that the instruments are
given by a very similar formula, namely,

~ 1

t= m((PWY)t — (bt — W)Yi), (6)
in which h; is replaced by hy — w, with w = 2/n in the case with just one included
endogenous variable, or w = (g + 1)/n more generally when there are g included
endogenous variables. Of course, here Y and W should be interpreted as matrices
of endogenous variables and instruments that have been projected off the included
exogenous variables.

The formula (6) suggests that, whereas JIVE1 and IJIVE involve “omit-1” fitted val-
ues, ULJIVE involves “omit-less-than-1" fitted values. Using this formula together
with equation (3) of our paper to calculate the ULJIVE estimator is orders of mag-
nitude faster, for large n, than using the elegant formula in Ackerberg and Devereux
(2003), which involves manipulating n x n matrices.

A point that emerges clearly from our simulations and those presented by AD in
their comment is that, although UIJIVE is constructed so as to reduce mean bias, it
does not do nearly so well as regards median bias. This implies that the estimator is
significantly skewed, a point that would be worth subsequent investigation. It would
also be interesting to look more closely at the modified LIML estimator proposed by
Fuller (1977), for which moments exist, to see how well it performs relative to ULJIVE.
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Figure 2a. Median bias of four estimators, r = 5, p = 0.9
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Figure 4a. Nine decile range of four estimators, r = 5, R?%, =0.1
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Figure 6a. Nine decile range of four estimators, R% =0.1,r=0.9
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