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Abstract

This paper studies endogenous coalition formation in an environment where con�

tinuing con�ict exists� A number of players compete for an indivisible prize and the

probability of winning for a player depends on his initial resource as well as the dis�

tribution of initial resources among the other players� Players can pool their resources

together to increase their probabilities of winning through coalition formation� If a

coalition wins� the players in the coalition will further compete and possibly form new

coalitions� The game continues until one individual winner is left� We determine sub�

game perfect equilibria for the game of three or four players and provide conditions

under which the equilibrium coalition structures involve a balance of power� We also

illustrate that there can be no equilibrium coalition structure� Our analysis sheds some

lights on problems of temporary cooperation among heterogeneous individuals who are

rivals in nature�



I Introduction

An alliance may be considered as a typical device from which countries attain the balance

of power� Viewing back to the Warring States period of ancient China ��	�
��� B�C���

where the nation was dissected into seven parts� forming successful alliance was crucial in

safeguarding a party�s survival as well as advancing its claim to the future sovereignty� More

recent examples include the Triple Alliance in Europe ����

������ the North Atlantic Treaty

Organization� and the former Soviet Bloc� Timeless as the concept of alliance seems to be�

what determines the formation of these alliances and the stability of an alliance system

remain to be an unexplored area� The topic is further complicated by taking into account

the dynamics of continuing con�icts between the allies� In this paper� we study endogenous

alliance �or coalition� formation in an environment where both external e�ects of alliance

formation and continuing con�ict within an alliance are present� Stable alliance structures

are characterized and shown to exhibit a balance of power�

In the real world� alliances are inevitably made transitory as parties enter into the spiral

of continuing con�icts� where synergy comes and goes in an intractable manner� Once an

alliance achieves certain objectives� it may face dissolution as its partners engage in new

con�ict� which then gives rise to new alliances� In order to analyze the externalities from

alliance formation and continuing con�ict� we provide a simple stylized model� a number

of players �ght for an indivisible prize and the probability of winning for a player depends

on his initial resource and the distribution of initial resources among other players� By

forming coalitions� some players increase their probabilities of winning� often at the expense

of others� probability of winning� Besides� when players form coalitions� they simply pool

their resources together� This indirectly alters the number of e�ective players in the contest

as well as the distribution of initial resources� Moreover� the contest is of a sequential

nature� If a coalition loses� the payo�s for all the players within the coalition are zero� If a

coalition wins� the allies within the coalition will further form sub
coalitions and �ght among

themselves� The contest continues until one individual winner is left�

We model coalition formation as a game with multiple stages� In each stage� there is

a bargaining process in which the remaining players form coalitions and once coalitions
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are formed� there is a �ght among the coalitions� The members of the winning coalition

will further form coalitions and �ght among themselves in the next stage� The bargaining

process in each stage is modelled as follows� Partitions of the set of the remaining players are

proposed by nature or an outsider in a sequential and exhaustive order� Given a partition�

all players vote simultaneously� If all players in a particular subset implied by the partition

voted �yes�� the subset becomes a coalition� If a coalition is formed� the current sequence is

stopped and a new sequence of partitions is proposed� A subset implied by a partition in the

new exhaustive sequence must contain either none of the players from an existing coalition�

or all of the players from that coalition� All the players vote again� This process repeats

until no new coalition is formed in the most current sequence�

A stable coalition structure is de�ned as an outcome of a subgame
perfect equilibrium

that is independent of the order of partitions proposed� We have characterized the equilib


rium coalition structures and obtained the following results� First� in a game consisting of

three players� there always exists an equilibrium coalition structure and� under reasonable

restrictions on the probability function of winning� the weakest two players form a coalition

against the strongest� Here� the strongest is the player who processes the largest amount

of initial resource� Therefore� if the strongest player is an aggressor� then the equilibrium

implies that weaker players form a counter coalition in an attempt to balance the power of

the aggressor�

Second� in a game consisting of four players� however� there may not be any equilibrium

coalition structure� To illustrate this fact� we have constructed such an example� If the

probability function of winning has reasonable properties� the equilibrium coalition structure

exists and takes one of the following two forms� �i� the coalition of three weakest players

against the strongest or �ii� the coalition of the weakest and strongest players against the

coalition of the other two players� The latter coalition structure results when the players�

initial resources or strengths are relatively close� while the former results when their strengths

exhibit a wide disparity� Again� the equilibrium coalition structure exhibits a balance of

power� Characterizing the equilibrium coalition structures for a game of more than four

players is a challenging task� However� since the games of three and four players are subgames

of games of more number of players� our results serve to narrow down the set of equilibrium
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structures tremendously� and make a general characterization possible�

Contemporary economics literature on alliance formation �in the context of international

politics� has mainly focused on the collective action problem within an alliance� In their

pioneering study of the budget
sharing problem within an international organization� Olson

and Zeckhauser ������ provide a model in which there is one alliance and each member

in the alliance makes a contribution to the collective defense� In other words� collective

defense is treated as a collective good and external threats to the alliance are assumed to

be constant or not exist�� Their analyses have not taken into account two important factors

that might a�ect alliance formation� externalities generated from alliance formation and

continuing con�ict among the allies within the alliance� Niou and Tan ����	� ����� analyze

the e�ect of external threats on the formation of alliance� but do not consider the possibility

of continuing con�ict�

There is a large literature on con�ict among several independent states or individuals

�see in particular Hirshleifer ����� ����� ���	� Skaperdas ����� ����� Grossman and Kim

����� Neary ����� ����� and references therein�� The main issue analyzed there is how a

contestant chooses between productive use �or consumption� of his current resources and

�ghting to defend his resources or acquire resources from others� In making such e�ort


allocating decision� the possibility of coalition formation was not considered� Most papers

along this line of research� with the exception of Hirshleifer ������ ���	� and Skaperdas

������� allow the players to make a one
time investment decision and thus con�ict is resolved

within one period� Hirshleifer ������ ���	� addresses the issue of continuing struggle for

resources� but does not allow players to form coalitions� In our paper� we analyze the problem

of coalition formation in combination with the presence of continuing con�icts� For simplicity�

here we do not consider investment decisions made by players� Skaperdas ������ does not

consider the investment decisions either� but takes into account the �strategic endowment� of

each player� Focusing on the case of three players� Skaperdas derives conditions under which

stable alliances would be formed and provides guidelines on which alliance is most likely to

form� We provide a formal model of non
cooperative bargaining on coalition formation and

�Further development along this line of research can be found in a survey by Sandler 
����
�
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extend some of his results to the case of four players� In principle� our model can be used

to analyze the case of more players� As we illustrate in the paper� many more complications

arise when there are more than three players in the contest�

Our analysis is closely related to several recent papers on endogenous coalition formation�

Bloch ������ studies sequential formation of coalitions in a model where coalitional worths

depend on the whole coalition structure and are distributed among the coalition partners

according to a �xed sharing rule� Ray and Vohra ������ provide a general theory of en


dogenous coalition structure where coalitional worths are endogenously distributed� In both

papers the authors explicitly model the formation of coalitions as a non
cooperative sequen


tial bargaining process� and look for stationary subgame perfect equilibria in the spirit of

Rubinstein �������s bargaining game� According to Bloch� any core stable coalition struc


ture can be supported by a stationary perfect equilibrium of the game� A general method is

proposed for the characterization of equilibria in a class of symmetric games� Ray and Vohra

show that there always exists a stationary subgame perfect equilibrium in their bargaining

game and further develop an algorithm that generates equilibrium coalition structures for

symmetric games�

The main di�erence between our model and theirs is that� in our model players �ght

sequentially and thus the total payo� of a winning coalition in any stage of contest is dis


tributed through subsequent stages of contests� and so forth� When players decide to form

a coalition� they take into account the consequences of coalition formation in subsequent

stages� In this sense� a coalition in our model is a temporary agreement� and that entails

a game of multiple stages� There is a sequential bargaining game of coalition formation in

each stage� while the number of stages is endogenously determined� The bargaining game

in each stage is similar to the one provided by Bloch ������ and Ray and Vohra ������� In

a related paper� Yi ������ analyzes a model of stable coalition structures under positive or

negative externalities and di�erent rules of coalition formation�

The paper is organized as follows� In Sections II� the formal model is outlined in detail�

In Section III� the players� underlying incentives for coalition formation are examined� In

Sections IV and V� we characterize equilibrium coalition structures for cases of three and

four players� Discussions on the model are provided in Section VI and concluding remarks
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follow in Section VII�

II The Model

Consider a model in which there are n players �ghting for an indivisible object� The value

of the object is the same for all players and is normalized to be equal to �� Each player is

endowed with an absolute strength� or skill� initial resource� and so forth� Let Ai represent

player i�s strength� where Ai � 
 for i � �� � � � � n� and let N � f�� � � � � ng be the set of all

players�

The rule of �ghting is the winner
takes
it
all� There is only one �nal winner who gets

the object and all the other players receive zero� The winning probability for a player

depends on his strength through a production function h�A�� with the properties that h�A�

is continuously di�erentiable� h�A� � 
� and h��A� � 
 for all A � 
� In particular� when all

the players in N �ght simultaneously� the probability of winning for player i is assumed to

be equal to

Pi�N� �
h�Ai�PN
j�� h�Aj�

�

This functional form of winning probabilities is commonly employed in the literature on

con�ict and rent
seeking and is axiomatized by Skaperdas ��������

The game consists of many stages� In each stage� the only strategy for a surviving player

is to form a possible coalition with other players� Once coalitions are formed� they �ght

against each other� In the initial stage �stage t � ��� each subset of N represents a possible

coalition� Conversely� any coalition must be represented by a subset of N � A coalition

structure of the players can be de�ned as a partition of N � which is denoted by �� The

players in each subset implied by the partition form a coalition� A player who does not

�Skaperdas 
����
 shows that the crucial property of the functional form is the independence from ir�

relevant alternatives� That is� if player i only participates in a contest among a subset of players� then

his probability of winning is independent of the strengths of the players not included in the subset� This

property is useful for our analysis of continuing con�ict�

	



belong to any coalitions is de�ned as an individual coalition� Given a coalition structure�

� � �C�� C�� � � � � Cm�� where � � m � n� the probability that coalition Cs wins is assumed to

be equal to

PCs
��� �

h�
P

j�Cs
Aj�Pm

t�� h�
P

j�Ct
Aj�

�

where s � �� ����m� There are two e�ects of forming a coalition� One is that the allied players

aggregate their strengths and become stronger� Synergy among the allied players may exist�

depending on the property of h�A� function� Another e�ect is that the number of actively

�ghting players is essentially reduced� Therefore� coalition formation allows the players to

change the �ghting game�

The members of any winning coalition will further form coalitions and �ght among them


selves in the second stage� Coalitions and probabilities of winning are de�ned analogously

for the new set of the players in the winning coalition� The game will continue until there

is one �nal individual winner� Therefore� the number of stages in the game is endogenously

determined�

We assume that there is no discounting in the game and that any transfer payment

between players is not feasible� The payo� for each player is equal to his probability of being

the �nal individual winner� Each player selects a particular coalition to join in order to

maximize his payo�� If we divide player i�s payo� by h�Ai�� it will not a�ect the player�s

optimization problem� We call this divided payo� as player i�s modi�ed payo�� which are

sometimes used in the following analyses�

We now describe the coalition formation process in detail� Let Nt be the set of remaining

players in stage t� Notice that N� � N � In stage t� partitions of the player set Nt are

proposed by nature in a sequential and exhaustive order� Given a partition� all players vote

simultaneously� If and only if all players in a particular subset implied by the partition voted

�yes�� the subset becomes a new coalition� If a new coalition is formed� the current sequence

is stopped and a new sequence of partitions is proposed� A subset implied by a partition

in the new exhaustive sequence must contain either none of the players from an existing

coalition� or all of the players from that coalition� All the players vote again� This process
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repeats until no new coalition is formed in the most current sequence�

It is important to note that the members of a subset have only the power to decide

whether or not their own subset will become a coalition� Once a coalition is formed� it is

not allowed to break up� Of course� a larger coalition may be formed later� as long as all

members in that larger subset of players vote �yes�� If some of them� who could be from

the original coalition or the new members� voted �no�� the larger coalition is not formed�

However� the original coalition remains a coalition�

Notice that� in the coalition formation process speci�ed above� once a coalition is formed

it cannot be broken up and a new coalition should include all or none of them� We make

this restriction primarily because we want the coalition process to converge� Even so� our

process is still �exible enough to allow the formation of any particular coalition� as long as

all members in this coalition wait for that chance� The delay involved is not signi�cant� since

there is no discounting in this game� Of course� a coalition can accept new members� as long

as it improves the payo�s of everyone involved and does not break up any coalition already

formed�

We shall be looking for subgame
perfect equilibria of the extensive
form game that are

independent of the order of partitions proposed� In each stage� the resulting coalition struc


tures in these equilibria should be the same no matter which order that the partitions are

proposed� Two equilibria are regarded as equivalent in our model if the resulting coalition

structures are the same� even though the formation process may be di�erent� These coali


tion structures are called equilibrium coalition structures for each stage� A collection of the

equilibrium coalition structures from di�erent stages is the equilibrium coalition structure

for the whole game�

The coalition structure in a subgame
perfect equilibrium in the game may not be inde


pendent of the order of partitions proposed� For example� suppose that i wants to form a

coalition with j� j wants to form a coalition with k� but k wants to form a coalition with i�

and that all players prefer a two
player coalition to an individual coalition� If the relevant

partitions are proposed in the following order� �fi� jg� fkg� �� �fi� kg� fjg� �� �fk� jg� fig��

then �fi� jg� fkg� would be selected in the subgame
perfect equilibrium� This claim can be
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proved by using backward induction� If no coalition has been formed when the last above


mentioned partition is proposed� then k and j would form a coalition in the last partition�

Given this� in the second partition� i would form a coalition with k� since this is preferred

by both players to the last partition� Still given this� i would form a coalition with j when

the �rst partition is proposed� which is the equilibrium outcome� If the relevant partitions

are proposed in the following order� �fi� kg� fjg� �� �fi� jg� fkg� �� �fk� jg� fig�� however�

then �fi� kg� fjg� would be selected in the subgame
perfect equilibrium� In this case� k and

j would form a coalition when the last partition is proposed� However� i and j would not

form a coalition when the second partition is proposed� Given this� i and k would form a

coalition when the �rst partition is proposed� which is the equilibrium outcome� Therefore�

in this game the equilibrium outcome depends on the order of partitions proposed�

In what follows� we shall investigate the existence of an equilibrium outcome which is

independent of the order of partitions proposed and the characterization of this outcome�

The equilibrium coalition structures will depend on the number of players� the distribution

of the players� strengths� and the property of h�A� function�

III Synergy of Forming a Coalition

To investigate the players� incentives to form a coalition in the game� we make the following

restriction on the function h�A� throughout the paper�

�R�� For any A � 
 and B � 
� h�A�B� � h�A� � h�B��

Restriction �R�� implies that there exists strictly positive synergy between two players or two

coalitions� If two players form a coalition� then their joint winning probability will increase�

This is the primary reason for why players form a coalition in our game� �R�� also implies

that h�
� � 
� This can be seen by letting A go to zero in the above inequality� Examples

of h�A� that satisfy �R�� include h�A� � A� for � � �� and h�A� � e�A � � for � � 
�

Furthermore� the following lemma shows that �R�� is satis�ed if h��� is convex�

Lemma � Suppose h�
� � 
� h�A� � 
 and h��A� � 
� �A � 
� If h�A� is also strictly

�



convex� then �R�� holds�

Proof Notice that �A � 
��B � 
�

h�A�B�� h�A� �
Z B

�
h

�

�x�A�dx

�
Z B

�
h

�

�x�dx

� h�B�� h�
��

where the inequality holds because the convexity of h��� implies that h
�

��� is an increasing

function and thus h��x� A� � h��x�� �A � 
� The claim then follows from the assumption

that h�
� � 
� �

Note that �R�� does not necessarily imply that h��� is convex� For example� h�A� �

A���
A������	A�� which is concave between A � ��	 and A � 	�	� and convex everywhere

else� It is easy to check that h�
� � 
� h�A� � 
 and h��A� � 
 for all A � 
� Notice that

h�A�B��h�A��h�B� � �ABg�A�B�� where g�A�B� � �A���AB��B���
A��
B�����	�

It can be easily veri�ed that g�A�B� reaches its minimum at A � B � �
��� where it is

positive� Therefore� g�A�B� is positive everywhere and hence �R�� is satis�ed�

The implication of �R�� is presented in the following lemma�

Lemma � Suppose that �R�� holds� Then two players �ghting individually are domi


nated by forming a coalition�

Proof Consider a coalition structure � � �C�� C�� ���� Cm� in which C� � fig and C� � fjg�

Player i�s winning probability is given by

Pi �
h�Ai�

h�Ai� � h�Aj� � �
�

�



where � �
Pm

s�� h�
P

k�Cs
Ak�� If forming a coalition with j� then i�s �nal winning probability

is

�Pi �
h�Ai �Aj�

h�Ai �Aj� � �
�

h�Ai�

h�Ai� � h�Aj�

�
h�Ai� � h�Aj�

h�Ai� � h�Aj� � �
�

h�Ai�

h�Ai� � h�Aj�

�
h�Ai�

h�Ai� � h�Aj� � �
�

The above inequality holds since h�Ai � Aj� � h�Ai� � h�Aj� and since x��x � �� is an

increasing function of x� Therefore� joining j increases i�s probability of winning� Similarly�

joining i increases j�s probability of winning� �

It should be noted that �R�� does not necessarily imply that any two coalitions have

incentives to merge� The reason is that if the merged coalition wins� the players in that

coalition might form di�erent new coalitions from the two original coalitions and hence

might receive di�erent payo�s�

IV The Case of Three Rivals

To characterize the equilibrium coalition structure� we �rst consider the case of three players�

From Lemma �� there will be no two individuals standing alone� The nature of the game

implies that the grand coalition is not feasible or given the grand coalition players will further

form subcoalitions� Therefore� there are only three possible coalition structures to consider�

�f�� �g� f�g�� �f�� �g� f�g�� and �f�� �g� f�g�� The winning probabilities for each player in these

coalition structures are presented in Table �� These probabilities are the players� payo�s in

the game� Each player ranks the probabilities of winning across the three coalition structures�

Proposition � Suppose �R�� holds and n � �� Then equilibrium coalition structures

exist and are in the form of a coalition of two players against one�

�




Player � Player � Player �

�f�� �g� f�g� h�A��A��
h�A��A���h�A��

� h�A��
h�A���h�A��

h�A��A��
h�A��A���h�A��

� h�A��
h�A���h�A��

h�A��
h�A��A���h�A��

�f�� �g� f�g� h�A��
h�A���h�A��A��

h�A��A��
h�A���h�A��A��

� h�A��
h�A���h�A��

h�A��A��
h�A���h�A��A��

� h�A��
h�A���h�A��

�f�� �g� f�g� h�A��A��
h�A��A���h�A��

� h�A��
h�A���h�A��

h�A��
h�A��A���h�A��

h�A��A��
h�A��A���h�A��

� h�A��
h�A���h�A��

Table �� Players� Probability of Winning

Proof� Each player prefers a coalition structure that yields him the highest payo�� or

equivalently the highest modi�ed payo�� We need to select the highest number among the

modi�ed payo�s across coalition structures for each player� Given �R��� this number cannot

be the modi�ed payo� when the player stands alone� Furthermore� the modi�ed payo�s for

the two members within a coalition are the same� Since there exists at least one highest

number of the modi�ed payo�s among the three coalitions� it follows that equilibrium coali


tion structures always exist and that the two players who obtain the highest modi�ed payo�s

form a coalition when the corresponding partition is proposed� �

It should be noted that the coalition structure is not unique in some degenerate cases�

Consider the case where A� � A� � A�� Any two players against the remaining one is

an equilibrium coalition structure� If all three players have di�erent strengths� then the

equilibrium coalition structure is always unique�

Next� we study how the equilibrium coalition structure depends on the distribution of

the players� strengths and the property of h�A� function� In particular� we are interested

in when the two weaker players form a coalition against the strongest player� We make the

following restrictions on the probability function of winning

�R�� �a� h�A� � A�� where � � �� or �b� h�A� � e�A � �� where � � 
�

Clearly� �R�� implies �R��� Notice that the power function has the property that winning

��



probabilities depend only on the ratios of players� strengths and the parameter � measures

the decisiveness of strengths� This functional form is widely used in the literature of con


�ict and rent
seeking� and see Hirshleifer ����	�� Skaperdas ������� and references therein�

This literature also uses an exponential functional form which has property that winning

probabilities depend only on the di�erences in strengths� that is� h�A� � e�A� However� the

exponential function does not satisfy our synergy property� We have therefore made a minor

modi�cation by requiring h�
� � 
� The following proposition is a direct implication of �R���

Proposition � Suppose �R�� holds and let A� � maxfA�� A�g� Then �f�� �g� f�g� is the

unique equilibrium coalition structure�

Proof� Given Proposition �� we need to show that by forming a coalition players � and

� receive the highest modi�ed payo�s� i�e��

h�Ak �Aj�

h�A�� � h�Ak �Aj�
�

�

h�Ak� � h�Aj�
�

h�A� �Aj�

h�A� �Aj� � h�Ak�
�

�

h�A�� � h�Aj�
� ���

for j� k � �� � and k �� j� We �rst consider the case in which h�A� � A�� where � � �� Using

cross multiplications and the property that h�AB� � h�A�h�B�� we can rewrite inequality

��� as

�X
s��

h�xs� �
�X

s��

h�ys� ���

where x� � A��A� � Aj��Ak � Aj�� x� � A�Ak�Ak � Aj�� x� � AjAk�Ak � Aj�� y� �

A�Ak�A� � Aj�� y� � A�Aj�A� �Aj�� y� � Ak�Ak �Aj��A� �Aj�� Notice that

�X
s��

xs �
�X

s��

ys � �A� �Aj��A� �Ak��Ak �Aj��

and A� � maxfAk� Ajg implies that x� � x� � x� and x� � ys � x� for s � �� �� ��

Consider two uniformly distributed random variables �x and �y with supports fx�� x�� x�g and

��



fy�� y�� y�g� respectively� Clearly� �x is a mean
preserving spread of �y� Inequality ��� then

follows from the convexity of h�A��

Next� consider the case in which h�A� � e�A��� where � � 
� Using cross multiplications

and simple manipulations� we can rewrite inequality ��� as

h�A��h�Ak�h�Aj��h�Aj� � ���h�A��� h�Ak�� � 


which holds since A� � Ak� The claim follows� �

This proposition implies that� given certain restrictions on h�A�� the two weaker players

will initially form a coalition in an attempt to balance the power of the strongest player� And

if they win� they then �ght between themselves for the �nal victory� This result is essentially

the same as the one obtained by Skaperdas ������ �see Proposition � and Corollary in his

paper�� The main di�erence is that we have provided a non
cooperative justi�cation for the

stability concept that he used� This justi�cation proves to be useful when we extend our

analysis to the game of more than three players�

It is interesting to note that in equilibrium the strongest player may not have the highest

probability of winning� This is because the weak players can increase their probabilities

of winning by forming a coalition� For example� let h�A� � A�� A� � 
��� A� � 
�	�

and A� � 
��� In this case� �f�g� f�� �g� is the equilibrium coalition structure� It can be

computed that the �nal probabilities of winning for players �� � and � are 
���� 
�	
� and


�
�� respectively� It is player � who has the highest probability of winning� This result raises

an interesting issue of disarmment� In the example� player � has incentives to reduce his

strength to a level below A� so that he will form a coalition with player �� provided that such

a reduction is credible� For instance� if A� is reduced to A
�

� � 
��� and A� and A� are the

same as before� then the new equilibrium coalition structure is �f�� �g� f�g� in which the �nal

probabilities of winning for players �� � and � are 
�	�� 
��	� and 
�
�� respectively� Clearly�

player � is better o�� Then� player � may want to do the same� In order to understand this

type of contests� we need a more general model in which players �rst invest in their strengths

or military capabilities and then form coalitions and �ght� This is beyond the scope of the

��



present paper�

One might also conjecture that the strongest player always has a higher probability of

winning than the weakest player� However� this conjecture is false when the players have

similar strengths� Let h�A� � A� again� but now A� � ���� A� � ���� and A� � ��
� The

probabilities of winning for players �� � and � are 
��	� 
���� and 
���� respectively� The

examples clearly illustrate the gains of forming a coalition for the coalition partners�

Proposition � provides a set of su�cient conditions on h�A� under which the game exhibits

a balance of power through coalition formation� This result may not hold when �R�� is not

satis�ed� We consider two examples� In the �rst one� suppose A� � �A� A� � A� � A� A

balance of power implies that players � and � should form a coalition� in which each of them

has a winning probability ��� and player � has a winning probability ���� Suppose players

� and � form a coalition� Then the winning probability for player � is greater than ���� for

player � is less than ���� and for player � is

h��A�

h��A� � h�A�
�

h�A�

h��A� � h�A�
�

Suppose h�A� � A���� �A� and A � 
��	� Then the above probability is equal to 
��	
�	��

Thus� in equilibrium players � and � or � and � form a coalition�

In the second example� let

h�A� �

�����
����

�
�
A�� if A � ��

�
���A

��� � �	
���� if A � ��

It is easy to check that h��� is everywhere increasing and di�erentiable� h�
� � 
� and h��� is

convex� Therefore� by Lemma �� �R�� is satis�ed� Let A� � 
��� A� � 
�	� and A� � 
��	�

Table � presents the payo�s for all three players in di�erent coalition structures� Clearly�

the unique equilibrium coalition structure is �f�� �g� f�g�� which is di�erent from the one

predicted by Proposition �� In this case� the weakest player joins the strongest�

��



Player � Player � Player �

�f�� �g� f�g� �	��� ��
�	 �


�

�f�� �g� f�g� ���	� ����� �����

�f�� �g� f�g� ����� �
��� ���	


Table �� Players� Probability of Winning

It should also be noted that given the h��� function in this example� the two strongest

players may form a coalition� Take the following values� A� � 
��� A� � 
�	� and A� � 
����

It can be computed that the equilibrium requires players � and � to form a coalition� This

implies that coalition formation is not necessarily to balance power� but to increase the

probability of winning for the allied partners� In this example� it depends on who makes

player � happier� If player i makes � happier then � will join i and i clearly gains� The

biggest player can pick whoever he wants in this example�

V The Case of Four Rivals

Suppose now that there are four players in the game� There will be di�erent types of coalition

structures in the initial stage of coalition formation� These are �fi� j� kg� flg� �� possibilities��

�fi� jg� fk� lg� �� possibilities�� �fi� jg� fkg� flg� �� possibilities�� and �fig� fjg� fkg� flg� �� pos


sibility��

Lemma � implies that �fi� jg� fkg� flg� dominates �fig� fjg� fkg� flg� for players i and j�

and �fi� jg� fk� lg� dominates �fi� jg� fkg� flg� for players k and l� Therefore� the only pos


sible equilibrium coalition structures in the initial stage are of the following two types�

�fi� j� kg� flg� and �fi� jg� fk� lg�� Furthermore� when a coalition of two players wins� the two

will �ght again between themselves� When a coalition of three wins� the three players will

further form coalitions and �ght among the newly formed coalitions� If h�A� is a power

function or an exponential function as in Proposition �� then the weakest two among the

�	



three will join a coalition� The following lemma is useful for our characterization�

Lemma � Suppose �R�� holds and let Ai � Aj � Ak� Al� Then player i prefers

�fi� jg� fk� lg� to �fi� j� kg� flg��

Proof See Appendix� �

Given Proposition � and Lemma �� we are now ready to characterize the equilibrium

coalition structures for the case of four players�

Proposition � Suppose �R�� holds and n � �� and let A� � A� � A� � A��

�i� If A� � A� �A�� then the unique equilibrium coalition structure is �f�� �� �g� f�g� in the

initial stage� followed by �f�g� f�� �g� if f�� �� �g wins�

�ii� If A� � A� � A�� then the equilibrium coalition structure is unique and is in the form

of �fi� jg� fk� lg��

Proof The proof of part �i� consists of the following three steps� The �rst step is to show

that �f�� �� �g� f�g� is the most favorable coalition structure for players � and �� There are

several cases to consider�

Case a�� �f�� �g� f�� �g� is dominated by �f�� �� �g� f�g�� Consider players � and � as

a group� Since the group has strength A� � A� which is less than A�� it follows from

Proposition � that �f�� �� �g� f�g� provides the group with a greater probability of winning

than �f�� �g� f�� �g� does� This translates into a greater probability of �nal victory for both

players� The claim follows�

Case b�� �f�� �g� f�� �g� is dominated by �f�� �� �g� f�g�� By Proposition �� player � prefers

�f�� �� �g� f�g� to �f�� �� �g� f�g� followed by �f�� �g� f�g� if f�� �� �g wins� On the other hand�

notice that

��



h�A�

h�A� � h�A� �A��
�

h�A�

h�A� � h�A�� � h�A��
�

h�A�A��

h�A�A�� � h�A��
�

h�A�

h�A� � h�A��
�

where A � A� � A�� the �rst inequality holds due to �R��� and the second follows from

Lemma �� That is� player � prefers �f�� �� �g� f�g� followed by �f�� �g� f�g� to �f�� �g� f�� �g��

Thus� �f�� �g� f�� �g� is dominated by �f�� �� �g� f�g� for player �� Similarly� for player ��

�f�� �g� f�� �g� is dominated by �f�g� f�� �� �g� followed by �f�g� f�� �g�� which is in turn

dominated by �f�g� f�� �� �g� followed by �f�� �g� f�g�� The latter is again dominated by

�f�� �� �g� f�g� followed by �f�g� f�� �g� for player �� The claim follows�

Case c�� �f�� �g� f�� �g� is dominated by �f�� �� �g� f�g�� The argument is the same as the

one in case b��

Case d�� As for �f�� �� �g� f�g� and �f�� �� �g� f�g�� the joint separation of f�� �g and f�� �g�

respectively� to join the individual player increases the deviators� �as a group� and therefore

their individual winning probability� Further increase in winning probability for � and �

occurs as � and � will form a coalition when f�� �� �g wins�

The second step is to show that players � and � can achieve the maximum probability of

winning from �f�� �� �g� f�g� in the following way� They can �rst join a coalition when the

partition implying subset f�� �g is proposed� Given this coalition� it follows from Proposition

� that � will join it when the partition implying subset f�� �� �g is proposed since A� �

A� � A�� Players � and � welcome �� because A� � A�� and if the coalition wins� � and �

will form a coalition against �� Given this� both players � and � prefer forming the coalition

f�� �� �g� Therefore� �f�� �� �g� f�g� is an equilibrium coalition structure�

The �nal step is to show the uniqueness� Note that f�� �g is the only coalition players

can form without the participation of � and �� Suppose that f�� �g is �rst formed� Then�

by Lemma �� player � refuses to let either � or � to join his coalition f�� �g� Consequently�

� and � will form a coalition f�� �g� The resulting coalition structure �f�� �g� f�� �g� is not

as good as �f�� �� �g� f�g� for player �� Therefore� � will not form a coalition with �� This

means that there is no other equilibrium coalition�

We now prove part �ii�� The condition A� � A��A� assures that the combined strength
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of any two players must be larger than the strength of any individual player� It follows from

Proposition � that a coalition of three players against the fourth can never be an equilibrium

coalition structure� since the largest among the three allied players would deviate and join the

fourth� Hence� the remaining possible equilibrium structures are in the form of �
against
��

Look for the highest number in the modi�ed payo�s across all �
against
� coalition struc


tures among all players� This payo� must be shared by two players� say i and j� We now

show that� after i and j join a coalition� either k does not join fi� jg� or one of i and j does

not welcome k to join their coalition�

Suppose that k join fi� jg� There are two cases to consider� In the �rst case� i and j form

a coalition against k when fi� j� kg wins� Since Ai �Aj � Al by assumption� Proposition �

implies that k should join l instead of joining fi� jg� In the second case� fi� kg forms a coalition

against j when fi� j� kg wins� Again� sinceAi�Ak � Al by assumption� Proposition � implies

that j prefers coalition structure �fi� kg� fj� lg� to �fi� k� jg� flg�� Since �fi� jg� fk� lg� gives i

and j the highest modi�ed payo�s among all �
and
� coalitions� j must prefer �fi� jg� fk� lg�

to �fi� kg� fj� lg�� It follows that j prefers �fi� jg� fk� lg� to �fi� k� jg� flg�� Hence� in this case�

j does not welcome k to join his coalition with i�

Finally� �fi� jg� fk� lg� which gives the highest modi�ed payo� across all �
against
� coali


tion structures is the unique equilibrium coalition� If� for instance� �fi� kg� fj� lg� generates

the highest modi�ed payo�� say� for player k� then player i gets the same highest number�

This violates the fact that player i�s highest number is obtained in �fi� jg� fk� lg�� Therefore�

�fi� jg� fk� lg� must be the equilibrium coalition structure� �

There is no doubt that �f�� �� �g� f�g� gives players � and � the highest probability of

winning� since they collude with as many players as possible in the most favorable way� This

coalition structure can be achieved only if A� � A� � A�� since players � and � can form

an early coalition and induce player � to join� If A� � A� � A�� however� player � refuses

to join the coalition of � and �� Anticipating this� players � and � may not want to form a

coalition� The following proposition shows that� for some special h�A� function� the unique

equilibrium coalition structure is actually �f�� �g� f�� �g��

��



Proposition � Suppose h�A� � A�� A� � A� � A� � A�� and A� � A� � A�� Then

�f�� �g� f�� �g� is the unique equilibrium coalition structure�

Proof First� it follows from the proof of Proposition ��ii�� the �
against
� coalition

structure which yields the highest modi�ed payo� across all �
against
� coalition structures

is the unique equilibrium structure� We want to show that �f�� �g� f�� �g� maximizes the

modi�ed payo�s for both players � and �� Equivalently� we need to prove the following two

inequalities for player � and two similar ones for player ��

�A� �A���

�A� �A��� � �A� �A���
�

�

A�
� �A�

�

�
�A� �A���

�A� �A��� � �A� �A���
�

�

A�
� �A�

�

� ���

and

�A� �A���

�A� �A��� � �A� �A���
�

�

A�
� �A�

�

�
�A� �A���

�A� �A��� � �A� �A���
�

�

A�
� �A�

�

� ���

Inequality ��� holds because

�A� �A��
���A� �A��

� � �A� �A��
���A�

� �A�
��

���A� �A��
� � �A� �A��

���A�
� �A�

���A� �A��
�

� ��A� �A���A�A� �A�A��

���A� �A��A��A� �A�� �A��A� �A��
� �A��A� �A���A� �A���

� 
� �	�

Inequality ��� can be obtained by switching subscripts � and � in ���� and it holds because

�	� is also true when we switch subscripts � and � in it�

�A� �A��
���A� �A��

� � �A� �A��
���A�

� �A�
��

��



���A� �A��
� � �A� �A��

���A�
� �A�

���A� �A��
�

� ��A� �A���A�A� �A�A��

���A� �A��A��A� �A�� �A��A� �A��
� �A��A� �A���A� �A���

� ��A� �A���A�A� �A�A��

��A�A���A� �A� �A�� �A��A� �A��
� �A��A

�
� �A�A���

� 
� ���

For player �� we can just switch � and � in the above two inequalities� Obviously� �	� contin


ues to hold� Equation ��� holds if A�A���A��A��A���A��A��A��
��A��A

�
��A�A�� � 
�

which is implied by assumption A� � A��A�� Therefore� the proposed structure maximizes

players � and ��s probabilities of winning and thus is the unique equilibrium coalition struc


ture� �

The equilibrium structures in Propositions � and � imply a rule of balance� The equi


librium coalition in part �i� is the most evenly balanced one among all �
and
� coalition

structures� Likewise� the equilibrium coalition in part �ii� in the case of h�A� � A� is also

the most evenly balanced one among all �
and
� coalition structures� As a principle� the

combined strength of each con�icting side is likely to be close� Of course� a word of caution

is in order� since strategic considerations have also to be taken into account� For example�

when A� � �
� A� � �� A� � �� and A� � �� the equilibrium structure is �f�g� f�� �� �g��

instead of the more evenly balanced �f�� �g� f�� �g�� In this case� � and � form a coalition

�rst� and then force � to join them�

It should be noted that �f�� �g� f�� �g� may not be the equilibrium coalition for other h���

functions� For example� for h�A� � eA � �� if A�� A�� and A� are close� then player � would

prefer to form a coalition with player �� not with player �� By forming a coalition with

player �� player � will have a greater probability of winning against the coalition f�� �g� but

a lesser probability of winning against player �� Given the exponential functional form of

h�A�� the gain for player � by forming a coalition with � can outweigh the loss� What will

be the equilibrium coalition structure In the case of A� � �� A� � 
�	�� A� � 
�	�� and

�




A� � 
�	
� �f�� �g� f�� �g� o�ers the highest modi�ed payo�s for players � and �� Therefore�

it is the unique equilibrium coalition structure� Note that this equilibrium structure does

not imply any balance of power�

We now discuss the existence issue for a general h�A� function� In the case of three

players� Proposition � shows that there always exists an equilibrium coalition structure�

This may not be the case when there are four players� With four players in the game� there

are more possibilities of deviations� We are able to construct such an example in which there

is always a deviation�

Suppose h�A� � A���� � A�� A� � 
��� A� � 
�	� A� � 
���� and A� � 
��	� With

four players we need to consider three �
against
� coalition structures and four �
against
�

coalition structures in the initial stage of coalition formation� For each �
against
� structure�

there are three sub
coalition structures in the next stage� The modi�ed payo�s for all the

players under di�erent structures including the sub
coalition structures are presented in

Table �� We �rst select the equilibrium coalition structures in all the subgames� and use star

to indicate these structures in Table �� Therefore� we only have seven coalition structures

to be considered� Notice that� when a coalition with three players wins� a further coalition

formation in the next stage may not involve two weakest against the strongest�

Consider �f�� �� �g� f�g� for instance� Player � would like to join � and � will accept ��

Both players prefer �f�� �� �g� f�g� to �f�� �g� f�� �g� and hence there is deviation� However�

in �f�� �g� f�� �g�� player � would like to join the other coalition f�� �g and both � and �

will accept �� Similarly� given �f�� �� �g� f�g�� player � will join � and � accept � as well� In

�f�� �g� f�� �g�� player � will join the coalition f�� �g� We are back to the original structure

where we started� This implies that there is a cycle of deviation within the four coalition

structures� It is easy to check that� if we start with one of the remaining three coalition

structures then some players will deviate as well and �nally enter the cycle� Therefore�

there is no subgame perfect equilibrium in pure strategy that is independent of the order of

partitions proposed�
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Coalition Sub
Coalitions Player � Player � Player � Player �

Structures

�f�����g�f�g� �f��f���gg�f�g�� ���
�� ��	��	 ��	��	 �����


�f��f���gg�f�g� 
����� 
��
	� 
����� 
��	��

�f��f���gg�f�g� 
�	��
 
�	��
 
����� 
��	��

�f�����g�f�g� �f��f���gg�f�g�� ���
�� ��	��
 ���	�� ��	��


�f��f���gg�f�g� 
����� 
����� 
����� 
�����

�f��f���gg�f�g� 
�	��� 
�	��� 
����� 
����	

�f�����g�f�g� �f��f���gg�f�g�� ���		� ������ ��	�	� ��	�	�

�f��f���gg�f�g� 
����� 
��		� 
����� 
�����

�f��f���gg�f�g� 
����� 
��		� 
����� 
�����

�f�����g�f�g� �f��f���gg�f�g� 
����� 
��
		 
����� 
�����

�f��f���gg�f�g�� �����	 ��	��
 ����

 ��	��


�f��f���gg�f�g� 
����� 
���
	 
���
	 
�	���

�f���g�f���g� ���	�� ���	�� ������ ������

�f���g�f���g� ������ ����
� ������ ����
�

�f���g�f���g� ������ ���		� ���		� ������

Table �� Modi�ed Payo�s �A� � 
��� A� � 
�	� A� � 
���� A� � 
��	�

�� indicates equilibrium in subgame�
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VI Discussions

When there are more than four players in the game� characterizing the equilibrium coalition

structures is more di�cult� Nevertheless� the results in the previous sections can help us

to narrow down the set of possible equilibrium candidates and search for the equilibrium

coalition structures in general cases� since the cases of n � � and n � � are subgames of the

game with players more than four�

We can extend Lemma � to the case of n players� Let � � �C�� C�� C�� ���� Cm� be a

coalition structure in certain stage of coalition formation process� Suppose that the players

from C� and C� form a coalition� denoted by C�
S
C� �the union coalition�� If �C�� C�� is an

equilibrium coalition structure in the subsequent stage after C�
S
C� wins� then the proof of

Lemma � implies that all the players in C� and C� have incentives to form such a coalition�

This argument works for any subset of � and therefore� we have the following lemma�

Lemma � Suppose �R�� holds� Then any subset of an equilibrium coalition structure

cannot be an equilibrium coalition structure of the union of the coalitions in the subset�

Proof� The proof is a minor modi�cation of the proof of Lemma �� �

When there are more players� the equilibrium coalition structure is much more compli


cated to analyze� since there are many more possible deviations� In what follows� we consider

a special case� If we index the players� strengths from the strongest to the weakest by �� ��

���� n� then each player�s strength is greater than the strength of all higher indexed players

combined� In this case� the equilibrium coalition structure for any subset of the players is

the strongest against the rest of the players�

This result is an extension to Propositions � and ��

Proposition � Suppose �R�� holds and and Ai �
Pn

k�i��Ak for i � �� � � � � n��� Then

the equilibrium coalition structure is �f�g� f�� �� ���� ng�� If ft� t� �� � � � � ng wins� t � �� then

the equilibrium coalition structure for the next stage is �ftg� ft� �� � � � � ng�� The game lasts

��



for at most n� � stages�

Proof We use mathematical induction� By Propositions � and �� the claim holds for

n � � and n � �� The proposed coalition structure gives players n�� and n the highest

modi�ed payo�s�

Suppose that the claim holds n � k and that the proposed coalition structure gives

players n�� and n the highest modi�ed payo�s� We want to show that it also holds for

n � k � ��

First� for n � k � � the proposed coalition structure still gives players n�� and n the

highest payo�s� Indeed� by induction hypothesis� if n�� and n belong to the same coalition

in any other coalition structure� they will be together until they are the only two winners left

and we can treat them as one player� If they belong to di�erent coalitions� then they each

earn higher payo� in the proposed coalition structure� since player � is the biggest player

�relative to any coalition without player �� in this game and two smaller coalitions joining

together improve the winning probability of each coalition as a whole� Further increase

in winning probability occurs for players n�� and n as the united coalition �when it wins

against player �� restructures in favor of players n�� and n�

Players n�� and n can achieve the proposed equilibriumoutcome by simply stick together

and form a coalition when it is presented� Players n�� and n certainly do not want to initiate

any deviation from the proposed equilibriumstructure �in which they get the highest payo�s��

Suppose that a coalition that exclude players n�� and n is formed �rst� Then the strongest

player �the player with the lowest index� in that coalition will reject any player with an index

higher than the highest index in the coalition �The proof is parallel to that of Proposition

���� This means that players n�� and n will not be accepted by any existing coalition�

Hence� in the subgame after a deviation coalition is formed� both players n�� and n will

belong to some new coalition �by induction�� This means that players n�� and n will stick

together until they are the �nal winners �again by induction�� Given that n�� and n will

form a coalition no matter what happen� they can be treated as one individual player� By

induction� the unique equilibrium coalition structure is the one proposed by the proposition�

��



From the above arguments� we conclude that the proposition is true for any n� �

The above equilibrium coalition structure exhibits the rule of balance of power� In each

stage of the game� the weaker players form a coalition against the strongest� This is the

most balanced structure since the strongest is stronger than the strength of the rest of the

players combined� Note that in the above structure� there are always exactly two coalitions

in each stage� We conjecture that this is always the case in general settings� That is� there

are always two coalitions �ghting against each other in any stage of the game given any

number of players� Unfortunately� we are still unable to prove it�

VII Conclusions

This paper analyzes a model of endogenous coalition formation in a situation where players

can pool their resources together to compete for a �nal prize� We look for coalition structures

that do not depend on the order of proposals for such structures� Therefore� the resulting

coalition structures are stable�

We show that� given the synergy assumption� two individual players always have the

incentive to cooperate in �ghting against other players� When there are three players� the

equilibrium coalition must be in the form of two players against one� For many probability

functions of winning� the weakest two players form a coalition and �ght against the strongest�

Similar results are obtained when there are four players� The weakest three players form

a coalition and �ght against the strongest� as long as the strongest is signi�cantly stronger

than the remaining three players� When the players� strengths are comparable� however� the

equilibrium coalition structure is always in the form of two players against two players� where

the weakest and strongest form one coalition� We have also illustrated how these results can

help us search for the equilibrium coalition structures when the number of players is large�

However� we have constructed an example in a game of four players in which the equilibrium

coalition structure does not exist� This also implies the di�culties of characterizing the

equilibrium outcomes for a game of more than four players�

�	



The analysis is intended to shed some lights on the problem of temporary cooperation

between players who are rivals in nature� Examples include war among di�erent nations�

political party members �ghting for leadership� and �rms competing for monopoly powers�

The model provided in the paper can also be used to analyze long
term cooperation� as it

gives a means for how the surplus generated from cooperation is shared when players are

asymmetric�

��
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Appendix

Proof of Lemma �� First� by the assumption and Proposition �� j and k will form

a coalition when fi� j� kg wins in �fi� j� kg� flg�� Thus� we need to show that the following

inequality holds�

h�Ai �Aj�

h�Ai �Aj� � h�Ak �Al�
�

�

h�Ai� � h�Aj�

�
h�Ai �Aj �Ak�

h�Ai �Aj �Ak� � h�Al�
�

�

h�Ai� � h�Aj �Ak�
� ���

Using cross multiplications� we can rewrite ��� as

h�Ai �Aj��h�Al�h�Ai� � h�Al�h�Aj �Ak� � h�Ai �Aj �Ak�h�Aj �Ak��

� h�Ai �Aj �Ak��h�Ak �Al�h�Aj� � h�Ak �Al�h�Ai� � h�Ai �Aj�h�Aj��� ���

When h�A� � A�� h�AB� � h�A�h�B�� It follows that ��� can be equivalently rewritten

as

�X
s��

h�xs� �
�X

s��

h�ys� ���

where x� � �Ai�Aj�AlAi� x� � �Ai�Aj�Al�Aj�Ak�� x� � �Ai�Aj��Ai�Aj�Ak��Aj�Ak��

y� � �Ai�Aj�Ak��Ak�Al�Aj� y� � �Ai�Aj�Ak��Ak�Al�Ai� y� � �Ai�Aj�Ak��Ai�Aj�Aj�

Clearly�

�X
s��

xs �
�X

s��

ys � �Ai �Aj��Ai �Ak��Ak �Aj��

and y� � y� � y� � x�� If Ai � Aj � Ak� then x� � x� and x� � y�� If Ai � Aj �Ak� then

x� � x� and x� � y�� Thus� Minsfxsg � ys � Maxsfxsg� Consider two uniformly distributed

��



random variables �x and �y with supports fx�� x�� x�g and fy�� y�� y�g� respectively� Clearly� �x

is a mean
preserving spread of �y� Inequality ��� then follows from the convexity of h�A��

Next� consider the case h�A� � e�A � �� � � 
� Notice that� in this case�

h�A�B� � h�B� � h�A��h�B� � ���

We can rewrite ��� as

h�Ai �Aj �Ak�! � h�Ai �Aj�h�Al��h�Ai� � h�Aj �Ak�� � 
� ��
�

where

! � h�Ai �Aj�h�Ak��h�Aj� � ��� h�Ak �Al��h�Ai� � h�Aj��

� h�Ai�h�Ak��h�Aj�� h�Al�� � h�Aj�h�Ak��h�Ai �Aj�� h�Al��

�h�Al��h�Ai� � h�Aj��

� h�Ak��h�Ai� � h�Aj���h�Aj�� h�Al�� � h�Aj�h�Ak�h�Ai��h�Aj� � ��

�h�Al��h�Ai� � h�Aj��

where the second equality follows from the facts that h�Ai �Aj� � h�Ai� � h�Aj��h�Ai� � ��

and that h�Ak �Al� � h�Al� � h�Ak��h�Al� � ��� Thus� inequality ��
� is equivalent to

h�Ai �Aj �Ak�h�Ak��h�Ai� � h�Aj���h�Aj�� h�Al��

�h�Ai �Aj �Ak�h�Aj�h�Ak�h�Ai��h�Aj� � ��

�h�Ai �Aj �Ak�h�Al��h�Ai� � h�Aj��

�h�Ai �Aj�h�Al��h�Ai� � h�Aj �Ak�� � 
� ����

�




Since h�Ai �Aj �Ak� � h�Ai �Aj� � h�Ak��h�Ai �Aj� � ��� the last two terms of the left

hand side of ���� can be written as

�h�Ai �Aj�h�Al��h�Ai� � h�Aj��� h�Ak�h�Al��h�Ai� � h�Aj���h�Ai �Aj� � ��

�h�Ai �Aj�h�Al��h�Ai� � h�Aj �Ak��

� h�Ai �Aj�h�Al�h�Ak��h�Aj� � ��

�h�Ak�h�Al��h�Ai� � h�Aj���h�Ai �Aj� � ��

� �h�Ak�h�Al�h�Ai�
��h�Aj� � ��� ����

where the �rst equality follows from h�Aj �Ak� � h�Aj� � h�Ak��h�Aj� � �� and the second

equality follows from h�Ai � Aj� � h�Ai� � h�Aj��h�Ai� � ��� Therefore� inequality ���� is

equivalent to

h�Ai �Aj �Ak�h�Ak��h�Ai� � h�Aj���h�Aj�� h�Al��

�h�Ai�h�Ak��h�Aj� � ���h�Ai �Aj �Ak�h�Aj�� h�Ai�h�Al�� � 
�

which holds since Aj � Al� The claim follows� �

��


