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13002 Marseille, France

email: russell.davidson@mcgill.ca

and

James G. MacKinnon

Department of Economics
Queen’s University

Kingston, Ontario, Canada
K7L 3N6

email: jgm@econ.queensu.ca

Abstract

We introduce the concept of the bootstrap discrepancy, which measures the difference
in rejection probabilities between a bootstrap test based on a given test statistic and
that of a (usually infeasible) test based on the true distribution of the statistic. We
show that the bootstrap discrepancy is of the same order of magnitude under the
null hypothesis and under non-null processes described by a Pitman drift. However,
complications arise in the measurement of power. If the test statistic is not an exact
pivot, critical values depend on which data-generating process (DGP) is used to de-
termine the distribution under the null hypothesis. We propose as the proper choice
the DGP which minimizes the bootstrap discrepancy. We also show that, under an
asymptotic independence condition, the power of both bootstrap and asymptotic tests
can be estimated cheaply by simulation. The theory of the paper and the proposed
simulation method are illustrated by Monte Carlo experiments using the logit model.
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1. Introduction

In recent years, it has become common to use the bootstrap to perform hypothesis
tests in econometrics. Its use for this purpose has been advocated by Horowitz (1994,
1997), Davidson and MacKinnon (1999), and several others. If the bootstrap is to
benefit from asymptotic refinements, the original test statistic must be asymptotically
pivotal under the null hypothesis, that is, its asymptotic distribution under the null
must not depend on any unknown features of the data generating process (DGP).
With such a test statistic, the errors committed by using the bootstrap are generally
of an order lower by a factor of either n−1/2 or n−1, where n is the sample size, than
the errors committed by relying on asymptotic theory; see Beran (1988), Hall (1992,
Section 3.12), or Davidson and MacKinnon (1999).

A convenient way to perform bootstrap inference is to compute bootstrap P values.
After computing a test statistic, say τ , in the usual way, one uses a random bootstrap
DGP, denoted by µ∗ and constructed so as to satisfy the null hypothesis under test,
to generate B bootstrap samples, each of which is used to compute a bootstrap test
statistic τ∗j , j = 1, . . . , B. The bootstrap P value may then be estimated by the
proportion of bootstrap statistics that are more extreme than τ . As B → ∞, this
estimated bootstrap P value will tend to the “ideal” bootstrap P value p∗(τ), which
is defined as

p∗(τ) ≡ Prµ∗
(
Rej(τ)

)
,

where Rej(τ) is the rejection region for a test for which the critical value is τ . For
a one-tailed test that rejects in the upper tail, for instance, Rej(τ) is just the set
of real numbers greater than τ . In this paper, we ignore the fact that p∗(τ) has to
be estimated. The effect of the estimation error can be made as small as desired by
appropriate choice of B; see Davidson and MacKinnon (2000).

If the original data are generated by a DGP µ, the “true” P value p(τ) ≡ Prµ

(
Rej(τ)

)
,

which is just a deterministic function of τ , is by construction a drawing from the
uniform distribution U(0, 1). But, since the bootstrap DGP µ∗ is a function of the
data, the bootstrap P value p∗(τ) is in general drawn from a different distribution.
Consequently, the rejection probability (RP) of a bootstrap test at nominal level α is
in general different from α, even when µ satisfies the null hypothesis under test.

It is natural to ask whether bootstrapping a test has any effect on its power. An-
swering this question is complicated by the fact that asymptotic tests often suffer
from substantial size distortion. In simulation studies, it is common to adjust for this
distortion by using critical values for which the RP under some DGP µ0 that satisfies
the null hypothesis is exactly equal to the desired nominal level. With statistics that
are not exactly pivotal, the adjustment depends on the specific choice of µ0.

Conventional asymptotic power analysis relies on the notion of a drifting DGP , which,
as the sample size tends to infinity, drifts to µ0. In order to study the difference
between the power of a bootstrap test and the adjusted power of the asymptotic test
on which it is based, which we call the bootstrap discrepancy , a suitable drifting DGP
must be chosen. We demonstrate in Section 2 that, for any choice of drifting DGP,
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the bootstrap discrepancy may be of either sign and is, in general, of the same order
in n as the size distortion of the bootstrap test.

In Section 3, we consider how best to choose the drifting DGP. We argue that the
objective should be minimization of the bootstrap discrepancy, and we show that this
is feasible only if τ and µ∗ are asymptotically independent in a sense that we make
precise. In Davidson and MacKinnon (1999), we showed that asymptotic indepen-
dence of this sort leads to a reduction in the order of bootstrap size distortion. We
characterize a class of drifting DGPs that serves to extend this result to the bootstrap
discrepancy.

In Section 4, we propose an extension to power analysis of a procedure given in David-
son and MacKinnon (2001) for estimating the RP of a bootstrap test by simulation.
This procedure, which is conceptually simple and computationally inexpensive, allows
one to estimate the power of bootstrap and asymptotic tests inexpensively in Monte
Carlo experiments. In Section 5, we present some Monte Carlo results for tests of
omitted variables in a logit model. Section 6 concludes.

2. The Power of Bootstrap and Asymptotic Tests

Suppose that a test statistic t has a fixed known asymptotic distribution under the
null hypothesis, represented by a probability measure P∞ defined on the real line and
absolutely continuous with respect to Lebesgue measure. It is convenient to replace t
by another test statistic, which we denote by τ , of which the nominal asymptotic
distribution is uniform on [0, 1]. This is most conveniently done by replacing t by its
asymptotic P value, so that τ is given by P∞(Rej(t)), the probability mass in the
part of the asymptotic distribution that is more extreme than t. The asymptotic test
based on t rejects the null hypothesis at level α whenever τ < α. In the remainder of
this section, without loss of generality, we consider statistics in this P value form.

To discuss power, we must consider DGPs that do not satisfy the null hypothesis. The
asymptotic theory of power makes use of nonnull drifting DGPs, which are determined
by a DGP belonging to the null, plus a perturbation that is usually O(n−1/2); see
Davidson and MacKinnon (1993, Chapter 12). The appropriate rate, usually n−1/2,
at which a nonnull DGP µ drifts towards the null is chosen so that the RP of the test
associated with τ tends neither to 0 nor to 1 as n → ∞ for levels α different from 0
or 1. Note that, even if the test is associated with a specific alternative hypothesis,
an asymptotic power analysis does not require that a nonnull drifting DGP should
belong to it; see Davidson and MacKinnon (1987).1

In what follows, we limit ourselves to parametric null hypotheses. By this, we mean
that the set of DGPs M0 that satisfy the null are in one-one correspondence with the
elements of a k --dimensional parameter space Θ. We assume that the drifting DGP of
interest to us can be embedded in a (k+1)--dimensional model, comprised of the DGPs

1 In that paper, we used the term “sequence of local DGPs” instead of “drifting DGP”.
We much prefer the newer terminology, which has the advantage of making clear the
link with Pitman drift.
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in the set M1, parametrized by Θ× U, where U is an interval in R with the origin as
an interior point. The DGP that corresponds to the parameter vector (θ, δ) ∈ Θ×U
belongs to the null model if and only if δ = 0. The drifting DGP itself is such that,
for sample size n, it is characterized by the parameters (θ0 + n−1/2t, n−1/2δ0), for
some θ0 ∈ Θ and δ0 ∈ U , and some k --vector t. This drifting DGP drifts towards the
DGP in M0, denoted µ0, that corresponds to the parameters (θ0, 0) for all n. Such a
DGP, where the parameters are independent of n, will be called a fixed DGP.

The parametric bootstrap DGP µ∗ is the DGP whose parameters are given by an
estimator θ̂ that is consistent under the null, and δ = 0, so that µ∗ ∈M0 by construc-
tion. The maximum likelihood estimator of the model M0 is asymptotically efficient,
and so it is a sensible choice for θ̂, but other consistent estimators, for instance the
MLE for a model that represents the alternative hypothesis for the test, can be used
without affecting the results to be developed in this section. Since θ̂ depends on n, so
does µ∗, which is thus a drifting DGP that drifts entirely within M0. Under a fixed
DGP µ ∈M0 with parameter vector θ0, plim θ̂ = θ0, and so µ∗ drifts towards µ0. In
fact, under weak regularity conditions to be specified later, θ̂ also has a plim of θ0

under DGPs that drift to θ0, from which it follows that µ∗ drifts to µ0 in this case as
well.

We can analyze the performance of a test based on τ for a given sample size n by use
of two functions that depend on the nominal level α of the test and the DGP µ. The
first of these is the rejection probability function, or RPF. This function, which gives
the true rejection probability under µ of a test at nominal level α, is defined as

R(α, µ) ≡ Prµ(τ ≤ α). (1)

In this definition, everything except α should properly be indexed by n, but we prefer
an uncluttered notation without this explicit indexing. Throughout, we assume that,
under any DGP µ we consider, the distribution of τ has support [0, 1] and is absolutely
continuous with respect to the uniform distribution on that interval.

For given µ and n, R(α, µ) is just the CDF of τ evaluated at α. The inverse of the
RPF is the critical value function, or CVF, which is defined implicitly by the equation

Prµ

(
τ ≤ Q(α, µ)

)
= α. (2)

It is clear from (2) that Q(α, µ) is the α quantile of the distribution of τ under µ. In
addition, the definitions (1) and (2) imply that

R
(
Q(α, µ), µ

)
= Q

(
R(α, µ), µ

)
= α (3)

for all α and µ. As n → ∞, R(α, µ) and Q(α, µ) both tend to α for all DGPs µ ∈
M0. If an asymptotic test is exact in finite samples, then we have R(α, µ) = α and
Q(α, µ) = α for all α, for all n, and for all µ in the null.

The bootstrap critical value for τ at nominal level α is Q(α, µ∗). This is a random
variable which is asymptotically nonrandom and equal to α, since, whether or not the
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true DGP belongs to the null hypothesis, the parametric bootstrap DGP µ∗ does so.
Any size distortion of the bootstrap test under a DGP µ in the null arises from the
possibility that, in a finite sample, Q(α, µ∗) 6= Q(α, µ).

A bootstrap test based on τ rejects at nominal level α if τ < Q(α, µ∗). Therefore,
applying the increasing transformation R(·, µ∗) to both sides and using (3), we see
that the bootstrap test rejects whenever

R(τ, µ∗) < R
(
Q(α, µ∗), µ∗

)
= α. (4)

Thus the bootstrap P value is just R(τ, µ∗). This can be interpreted as a bootstrap
test statistic. The probability under µ that the bootstrap test rejects at nominal
level α is

Prµ

(
τ < Q(α, µ∗)

)
= Prµ

(
R(τ, µ∗) < α

)
. (5)

For all sample sizes, and for all DGPs, fixed or drifting, in M1, let the random
variable p be defined by

p = R(τ, µ). (6)

Since R(·, µ) is the CDF of τ under µ, p is distributed as U(0, 1) for all n and for all µ.
Further, define the random variable q as

q = R
(
Q(α, µ∗), µ

)−R
(
Q(α, µ0), µ

)
, (7)

where, if µ is a fixed DGP in M0, µ0 = µ. If instead µ is a drifting DGP, then µ0

is the fixed DGP in M0 to which it drifts. Instead of applying the transformation
R(·, µ∗) to both sides of the inequality τ < Q(α, µ∗), as we did to obtain (4), we can
apply the transformation R(·, µ) to both sides of this inequality. When we do this
and use (6), we see that rejection by the bootstrap test is equivalent to the inequality

p < R
(
Q(α, µ0), µ

)
+ q. (8)

The first term on the right-hand side of (8) is the RP under µ of the asymptotic test
when the true α-level critical value of the DGP µ0 is used. If µ = µ0, it is equal to α.
If not, it is what would usually be called the size-corrected, or level-adjusted,2 power
of the asymptotic test under µ at level α.

From equation (7), it is clear that q is just the difference in the RPs under µ according
to whether the bootstrap critical value or the critical value correct for µ0 is used. Since
µ∗ converges to µ0 as n →∞, it follows that q tends to zero asymptotically. The rate
at which q → 0 depends on the extent of bootstrap refinements.

2 The former term is probably more common in the econometrics literature, even if its
use of the word “size” is incorrect in most contexts. Horowitz and Savin (2000) use
the expression “Type I critical value” to refer to Q(α, µ0).
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In the analysis that follows, we abbreviate R(Q(α, µ0), µ) to just R. The marginal
distribution of p under µ is, by construction, just U(0, 1). Let F (q | p) denote the CDF
of q conditional on p. The RP of the bootstrap test under µ is then

Prµ(p < R + q) = Eµ

(
Prµ(q > p−R|p)

)

= Eµ

(
1− F (p−R | p)

)

= 1−
∫ 1

0

F (p−R | p) dp, (9)

where the last line follows because p ∼ U(0, 1).

The values of R(·, ·) must belong to the interval [0, 1], and so the support of the
random variable q is the interval [−R, 1−R]. This implies that, for any p ∈ [0, 1],

F (−R | p) = 0 and F (1−R | p) = 1. (10)

On integrating by parts in (9) and changing variables, we find using (10) that the RP
of the bootstrap test is

1−
[
pF (p−R | p)

]1

0
+

∫ 1

0

p dF (p−R | p) =
∫ 1−R

−R

(x + R) dF (x |R + x)

= R +
∫ ∞

−∞
x dF (x |R + x). (11)

We refer to the integral in (11) as the bootstrap discrepancy . When µ belongs to
the null, the bootstrap discrepancy is the error in rejection probability (ERP) of the
bootstrap test, and so it tends to zero as n → ∞ at least as fast as q. When µ is a
nonnull drifting DGP, the bootstrap discrepancy is the difference between the RP of
the bootstrap test at nominal level α and that of the level-adjusted asymptotic test.

The following theorem shows that the bootstrap discrepancy tends to zero as n →∞
at the same rate under drifting DGPs as under the null.

Theorem 1

Let τ be a test statistic with asymptotic distribution U(0, 1) under all DGPs in a
finite-dimensional null hypothesis modelM0, with parameter space Θ ⊆ Rk. Let
M1 be a (k + 1)--dimensional model with parameter space Θ×U , where U ⊆ R
contains the origin as an interior point, for which the set of DGPs characterized
by the parameters (θ, 0) are the DGPs of M0. Let θ̂ be an estimator of θ ∈ Θ
that is root-n consistent under the null. Under regularity conditions specified
in the Appendix, the bootstrap discrepancy, as defined above in (11), for a
parametric bootstrap test based on θ̂, has the same rate of convergence to zero
as the sample size n tends to infinity for all levels α and for all drifting DGPs
in M1 characterized by the sequence of parameters (θ0 + n−1/2t, n−1/2δ0), for
some θ0 ∈ Θ and δ0 ∈ U , and some k --vector t.

All proofs are found in the Appendix.
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Remarks:

1. The bootstrap discrepancy, for a nonnull DGP, is the difference between the RP
of the bootstrap test at nominal level α and the RP of the level-adjusted asymptotic
test. A theoretical comparison of the two tests might better be based on the RP of
the level-adjusted bootstrap test. Let D(α, µ) denote the bootstrap discrepancy at
level α for a DGP µ that drifts to µ0 ∈ M0. The nominal level α′ at which the RP
of the bootstrap test is exactly α under µ0 satisfies the equation α′ + D(α′, µ0) = α.
Thus

α′ − α = −D(α′, µ0), (12)

and so α′−α is of the same order as the bootstrap discrepancy. The bootstrap RP at
nominal level α′ is, by (11), R(Q(α′, µ0), µ) + D(α′, µ). Thus the difference between
this RP and the level-adjusted RP of the asymptotic test, which is R(Q(α, µ0), µ), is

D(α′, µ) +
(
R

(
Q(α′, µ0), µ

)−R
(
Q(α, µ0), µ

))
. (13)

In the regularity conditions for Theorem 1, we assume that both R and Q are continu-
ously differentiable with respect to their first argument. It therefore follows from (12)
that the two terms in expression (13) are of the same order, namely, that of the
bootstrap discrepancy.

2. The preceding remark implies that three quantities all tend to zero at the same rate
as n →∞. They are (i) the ERP of the bootstrap test under the null, (ii) the difference
under a nonnull drifting DGP between the power of the bootstrap test at nominal
level α and the level-adjusted power of the asymptotic test, and (iii) the difference
between the level-adjusted power of the bootstrap test and that of the asymptotic
test. Just what the common rate of convergence is, expressed as a negative power
of n, depends on the extent of bootstrap refinement.

A result similar to part of this result was obtained by Horowitz (1994), who showed
that, if R(·, µ) converges to the asymptotic distribution of τ at rate n−j/2 for DGPs µ
in the null, then the difference R(α, µ∗)−R(α, µ0) is of order n−(j+1)/2 in probability.
This is normally, but not always, also the order of the ERP of the bootstrap test.

3. Explicit expressions for the bootstrap discrepancy to leading order can often be
obtained with the aid of Edgeworth expansions. See Hall (1988) and Hall (1992) for
background. An explicit example is found in Abramovitch and Singh (1985), where
the statistic is the t statistic for the mean of an IID sample. These authors express
the bootstrap discrepancy under a nonnull drifting DGP indirectly in terms of the
Hodges-Lehmann deficiency.

4. Although the bootstrap discrepancy is usually difficult to compute, it has an intu-
itive interpretation. Because the density of q is very small except in a short interval
around 0, the second term in (11) can be approximated by

∫∞
−∞ x dF (x |R), that is,

the expectation of q conditional on p being equal to R. By (6), p = R is equivalent
to τ = Q(α, µ0), that is, to the condition that the statistic is at the margin between
rejection and nonrejection using the critical value correct for µ0. Taylor expansion
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of (7) around µ0 then shows that the bootstrap discrepancy is approximately the
bias of the bootstrap critical value, Q(α, µ∗), thought of as an estimator of the crit-
ical value Q(α, µ0), conditional on being at the margin of rejection, scaled by the
sensitivity of the RP to the critical value.

5. In general, neither the bootstrap discrepancy nor the difference (13) in level-
adjusted powers can be signed. Thus, in any particular finite-sample case, either the
asymptotic test or the bootstrap test could turn out to be more powerful.

6. If the statistic τ is exactly pivotal under the null hypothesis for any sample size,
then Q(α, µ) does not depend on µ if µ is in the null. Since the bootstrap DGP µ∗ is
by construction in the null, it follows that the random variable q of (7) is identically
zero in this case, and so also, therefore, the three quantities of remark 2.

3. The Choice of a Drifting DGP

We are usually interested in practice in a particular sample size, say N, and we conduct
asymptotic analysis as an approximation to what happens for a DGP µN defined
just for that sample size. The drifting DGP used in asymptotic power analysis is a
theoretical construct, but, as we will see in the simulations presented in Section 5,
the bootstrap discrepancy can vary greatly with the specific choice of drifting DGP.

The parametrization (θ, δ) of the extended model M1 is not necessarily well adapted
to the estimator θ̂, since this estimator is not in general consistent for θ except for
DGPs in M0. We therefore introduce the following reparametrization. For each fixed
DGP µ ∈M1, let φ = plimµ θ̂. The model M1 is now to be parametrized by φ and δ.
By construction, θ̂ is consistent for φ over the full extended model M1. For the null
model M0, δ = 0, and the θ and φ parametrizations coincide.

Consider a drifting DGP µ constructed as follows. We start with a DGP µN ∈ M1

defined for sample size N . We require first that the parameters of µ for sample size N
should be those, say (φ, δ), that characterize µN in the new parametrization. Then,
for any sample size n, the parameters are specified as

(φ, (n/N)−1/2δ). (14)

An important property of such a drifting DGP is given in the following theorem.

Theorem 2
Assume the regularity conditions of Theorem 1. Under a drifting DGP with
parameters as specified in (14), the asymptotic distribution of n1/2(θ̂ − φ) is
normal, and is the same as under the fixed DGP with parameters (φ, 0). There
is a positive integer j such that, for the random variable q of (7), n(j+1)/2q is
asymptotically normal with asymptotic expectation of zero.

Davidson and MacKinnon (1999) show that, if, under a DGP µ0 ∈M0 associated with
the parameter vector θ0, the estimator θ̂ which determines the bootstrap DGP µ∗ is
such that n1/2(θ̂ − θ0) and τ are independent under their joint asymptotic distribu-
tion, then the ERP of the bootstrap test, which is the bootstrap discrepancy under
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the null, converges to zero at a rate faster by at least n−1/2 than when this asymp-
totic independence does not hold. It is natural to enquire whether this more rapid
convergence extends to drifting DGPs. The next theorem shows that it does if the
drifting DGP is of the type given by (14).

Theorem 3

Under the regularity conditions of Theorem 1, if n1/2(θ̂ − θ0) and τ are indepen-
dent under their joint asymptotic distribution for all DGPs in M0, then the rate
of convergence to zero of the bootstrap discrepancy as the sample size n → ∞
is faster than that of the random variable q defined in (7) by a factor of n−1/2

or better for all DGPs in M0 and for all drifting DGPs in M1 of type (14).

A special case of particular interest arises if the estimator θ̂ is the MLE for modelM0.
In this case, it is well known that, under any DGP in M0, θ̂ is asymptotically inde-
pendent of any classical test statistic that tests whether M0 is correctly specified.

It is possible in this case to give a meaningful characterization of the (φ, δ) parametriz-
ation of the extended model M1. Consider a DGP µ1 ∈ M1 associated with para-
meters (θ, δ). Let (φ, δ) be the corresponding parameters in the reparametrization
induced by the MLE for M0. Thus φ is the probability limit under µ1 of the quasi-
maximum likelihood estimator (QMLE) for M0. The Kullback-Leibler information
criterion (KLIC) is an asymmetric measure of the distance from one DGP, defined
for a given sample size, to another. Let the first DGP be µ1 for some sample size n,
and consider the problem of minimizing the KLIC from µ1 to a DGP in M0 for the
same n. By definition of the KLIC, the parameters of the minimizing DGP maximize
the expectation under µ1 of the loglikelihood function of the null model for sample
size n. Let these parameters be φn. The reason for this notation is that White (1982)
showed that plim φn = φ.

The parameters φ are usually called the pseudo-true parameters for µ1. We refer to
the fixed DGP µ0 ∈M0 with parameters φ as the pseudo-true DGP. Theorem 3 tells
us that the more rapid convergence to zero of the bootstrap discrepancy for classical
test statistics, resulting from their asymptotic independence of the MLE for the null
model, extends to DGPs that drift from a given nonnull DGP for sample size N to
the corresponding pseudo-true DGP according to the drift scheme (14).

A slight modification of the scheme (14) leads to a drifting DGP starting from µ1

for sample size N with the property that the endpoint µ0 is the pseudo-true DGP
not only for sample size N but for all sample sizes. Quite generally, let the pseudo-
true parameters associated with the DGP with parameters (θ, δ) be (Πn(θ, δ), 0) for
sample size n. Clearly, Πn(θ, 0) = θ for all n. Let Φn(θ, δ) be the inverse of Πn for
given δ, so that Πn(Φn(θ, δ), δ) = θ and Φn(Πn(θ, δ), δ) = θ. Then, for sample size n,
the drifting DGP has parameters

(Φn(φ, (n/N)−1/2δ), (n/N)−1/2δ), (15)

where (φ, δ) are the parameters in the φ parametrization for µ1 at the reference
sample size N . It is clear that, as n →∞, (15) drifts towards (φ, 0).
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Although the drifting DGP (15) does not follow scheme (14), the following corollary
shows that the result of Theorem 3 continue to hold for (15). Moreover, the bootstrap
discrepancy is the same to leading order for (15) and the DGP that drifts from µ1

for sample size N to µ0 according to (14). Drifting DGPs for which the bootstrap
discrepancy is the same to leading order will be called asymptotically equivalent.

Corollary
The bootstrap discrepancy is the same to leading order for the drifting DGP with
φ parameters (φ, n−1/2δ) for sample size n and for drifting DGPs for which the
parameters are (φ + n−1/2pn, n−1/2δ), if pn tends to zero as n →∞.

The question of what null DGP µ0 is most appropriate for the level adjustment of
either a bootstrap or an asymptotic test does not seem to have an unambiguous answer
in general. If, for a given nominal level α, there exists a µ0 ∈M0 which maximizes the
RP of the test based on τ , then there are good arguments for basing level adjustment
on this µ0, in which case one can legitimately speak of “size adjustment.” However,
as pointed out by Horowitz and Savin (2000), such a µ0 may not exist, or, if it does,
it may be intractable to compute its parameters, or it may lead to a size-adjusted
power no greater than the size. In addition, µ0 will in general depend on α, µ1, and n,
thereby making such size adjustment essentially impossible in practice.

Study of the power of asymptotic tests is usually based on Monte Carlo experiments.
As Horowitz and Savin (2000) point out, it is common for such studies to perform
some sort of level adjustment, but most do so on the basis of an essentially arbitrary
choice of the null DGP µ0 used to generate critical values. Horowitz and Savin are
critical of level adjustment in Monte Carlo experiments based on anything other than
the µ0 ∈M0 with parameters given by the plim of θ̂ under the DGP µ1 for which power
is to be studied. The thrust of their argument is that, since only the bootstrap offers
any hope of performing level adjustment with any reasonable accuracy in practice,
level adjustment in Monte Carlo experiments, to be meaningful, should in the large-
sample limit coincide with the bootstrap level adjustment. This is the case for a
parametric bootstrap based on θ̂ if µ1 is thought of as a fixed DGP, since then the
parameters of the bootstrap DGP converge as n →∞ to those of µ0.

It is illuminating to examine this argument in the light of the results of this paper.
Asymptotic analysis of power is not feasible with fixed nonnull DGPs, which is why
we have considered drifting DGPs. But if all that is required of these is that they start
at µ1 for a given sample size, and drift to some DGP in the null, then the bootstrap
DGP will also drift to that null DGP, which might therefore seem to be indicated for
level adjustment. Such a conclusion would clearly be unsatisfactory.

The bootstrap is usually the best way to do level adjustment in practice. Therefore,
if Monte Carlo experiments on level-adjusted power are to be informative, we should
try to do level adjustment in experiments using a null DGP µ0 that in some sense
minimizes the bootstrap discrepancy for DGPs that drift to it from µ1. In this way,
one would minimize the difference between the rejection probability R(Q(α, µ0), µ1),
which can be estimated with arbitrary accuracy by simulation for any given µ1 and µ0,
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and the RP of the bootstrap test. Finite-sample simulation results would then be as
close as possible to the actual behavior of the bootstrap.

It is through the random variable q of (7) that the bootstrap discrepancy depends
on µ0. To leading order, the discrepancy is the expectation of q conditional on the stat-
istic τ being at the margin of rejection. Although Theorem 2 shows that n(j+1)/2q has
asymptotic expectation of 0 under drifting DGPs of type (14), the conditional expec-
tation is different from 0 unless n(j+1)/2q and τ are asymptotically uncorrelated, and
is not in general smaller for DGPs of type (14) than for other drifting DGPs.

If n(j+1)/2q and τ are asymptotically uncorrelated, then, by Theorem 3, the bootstrap
discrepancy is an order of magnitude smaller under (14) than under other drifting
DGPs. However, the DGP µ0 used for level adjustment is still dependent on the
specific estimator θ̂ used to define the bootstrap DGP. If θ̂ is not asymptotically
equivalent to the MLE for M0, then µ0 is not the null DGP that minimizes the KLIC
from µ1. It is still possible that τ is asymptotically independent of an asymptotically
inefficient θ̂, in which case µ0 minimizes the bootstrap discrepancy, and so should
certainly be used in Monte Carlo experiments. There is, however, no unique choice
of µ0 that minimizes the discrepancy for all root-n consistent estimators θ̂. The story
is clean only when θ̂ is the MLE for M0, or is asymptotically equivalent to it. Then
µ0 is uniquely defined in a way that is independent of the parametrization of M0,
since the KLIC and the KLIC-minimizing DGP are parametrization independent.

Many applications of the bootstrap use, not the parametric bootstrap DGP we have
considered, but a DGP that is at least partially nonparametric, based on some sort of
resampling. Although we conjecture that much of the analysis of this section applies
as well to the nonparametric bootstrap, there are technical difficulties in the way of
proving this. For Theorem 1, these arise in connection with the LAN property (see
the Appendix) when DGPs in the null hypothesis are not uniquely characterized by a
finite-dimensional parameter, and for Theorem 2, there are analogous difficulties with
the LAE property. Beran (1997) makes use of an ingenious construction to sidestep the
problem, and it seems likely that a similar technique would work here. For Theorem 3,
the main difficulty is that asymptotic independence of τ and µ∗ cannot, in general,
be achieved simply by using a classical test statistic and an asymptotically efficient
estimator under the null.

4. Approximate Bootstrap Rejection Probabilities

The quantity R(Q(α, µ0), µ), which is the power of an asymptotic test based on τ
against the DGP µ at level α when level adjustment is based on the null DGP µ0, can
be straightforwardly estimated by simulation. For each of M replications, compute
two test statistics, one of them generated by µ and the other by µ0. Find the critical
value τc such that the rejection frequency in the M replications under µ0 is α; τc is
our estimate of Q(α, µ0). R(Q(α, µ0), µ) is then estimated by the rejection frequency
under µ with critical value τc. If desired, we can study how power depends on level
using a “size-power curve,” as suggested by Davidson and MacKinnon (1998).
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Exactly this sort of simulation experiment was suggested by Horowitz (1994) to esti-
mate expression (5), the power of a bootstrap test. However, this ignores the bootstrap
discrepancy. The obvious, but computationally expensive, way to estimate (5) taking
account of the bootstrap discrepancy is to generate M sets of data, indexed by m,
from µ, and for each to compute a test statistic τm and a bootstrap DGP µ∗m. For
each m, generate B statistics from µ∗m and find the critical value Q̂(α, µ∗m) such that
a fraction α of the bootstrap statistics are more extreme than it. Then the estimate
of (5) is

1
M

M∑
m=1

I
(
τm ∈ Rej(Q̂(α, µ∗m))

)
, (16)

the fraction of the M replications for which the bootstrap statistic leads to rejection.
Horowitz also performed some simulations of this sort.

The procedure just described, which, of course, does not require the statistic τ to
have an approximate U(0, 1) distribution, involves the calculation of M(B + 1) test
statistics. Since the power of bootstrap tests is increasing in B (see Davidson and
MacKinnon, 2000), we probably do not want to use B less than about 399, in which
case this procedure is roughly 200 times as expensive as the one described above for
an asymptotic test.

We now propose a method for estimating the power of bootstrap tests that takes
(approximate) account of the bootstrap discrepancy at computational cost similar to
that required for the level-adjusted power of an asymptotic test. The conditions of
Theorem 3 are assumed, namely, that the parameters of the null DGP µ0 are given
by the plim of θ̂ under µ, and that τ and n(j+1)/2q are asymptotically independent.
The method has the further very considerable advantage that it does not require
calculation of the parameters of µ0, which can be extremely difficult for many models.
It is a slight modification of a method proposed in Davidson and MacKinnon (2001)
for approximating the RP of a bootstrap test under the null.

From (11) it can be seen that the RP of a bootstrap test under µ is R(Q(α, µ0), µ) plus
the bootstrap discrepancy, which to leading order is just the expectation of q under
the asymptotic independence assumption. Thus, using (7), the definition of q, the RP
of the bootstrap is Eµ

(
R(Q(α, µ∗), µ)

)
to leading order. Davidson and MacKinnon

(2001) proposed estimating this quantity as follows. For each replication, compute τm

and µ∗m as before, but now generate just one bootstrap sample and use it to compute
a single test statistic, τ∗m. Then calculate Q̂∗(α), the α quantile of the τ∗m. The
approximate rejection probability is then

R̂PA ≡ 1
M

M∑
m=1

I
(
τm ∈ Rej(Q̂∗(α))

)
. (17)

The only difference between (16) and (17) is that the τm are compared to different
estimated critical values inside the indicator functions. If the τm are independent
of the µ∗m, it should not make any difference whether we estimate the α quantile
Q(α, µ∗m) separately for each m, or use the α quantile Q∗(α) of all the τ∗m taken
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together. How well (17) approximates (16) in finite samples depends on how close τ is
to being independent of µ∗. We do not claim that R̂PA works well in all circumstances.
However, numerous simulation experiments, some of which are discussed in the next
section, suggest that it often works very well in practice.

The amount of computation required to compute R̂PA is very similar to that required
for an asymptotic test: Once again, we have to calculate 2M test statistics. But the
R̂PA procedure is often a good deal simpler, because there is no need to calculate
the parameters of µ0 explicitly. When that is difficult, we can use Horowitz’s (1994)
argument in reverse, and claim that, with error no greater than the order of the
bootstrap discrepancy, R̂PA estimates the level-adjusted power of the asymptotic test.

5. Testing for Omitted Variables in a Logit Model

In this section, we present the results of several Monte Carlo experiments, which deal
with Lagrange multiplier tests for omitted variables in the logit model. We chose to
examine the logit model for several reasons: It is not a regression model, the results of
Horowitz (1994) and Davidson and MacKinnon (1998) suggest that, for information
matrix tests in the closely related probit model, bootstrapping may greatly improve
the finite-sample properties of one form of the LM test, and, in contrast to many
other models, it is easy to calculate the pseudo-true DGP for this one.

The logit model that we are dealing with may be written as

E(yt |Xt, Zt) = F (Xtβ + Ztγ) ≡ (
1 + exp(−Xtβ −Ztγ)

)−1
, (18)

where yt is an observation on a 0-1 dependent variable, Xt and Zt are, respectively,
a 1×k vector and a 1× r vector of regressors, and β and γ are corresponding vectors
of unknown parameters. The null hypothesis that γ = 0 may be tested in several
ways. Two of the easiest are to use tests based on artificial regressions. The first of
these is the outer product of the gradient, or OPG, variant of the LM test, and the
second is the efficient score, or ES, variant. No sensible person would use the OPG
variant in preference to the ES variant without bootstrapping, since the asymptotic
form of the OPG variant has considerably worse finite-sample properties under the
null (Davidson and MacKinnon, 1984). However, in the related context of information
matrix tests for probit models, Horowitz (1994) found that the OPG variant worked
well when bootstrapped, although he did not compare it with the ES variant.

Suppose that we estimate the logit model (18) under the null hypothesis to obtain
restricted ML estimates β̃ and use them to calculate F̃t ≡ F (Xtβ̃) and f̃t ≡ f(Xtβ̃),
where f(·) is the first derivative of F (·). Then the OPG test statistic is n minus the
sum of squared residuals from the artificial regression with typical observation

1 =
f̃t(yt − F̃t)
F̃t(1− F̃t)

(
k∑

i=1

Xtibi +
r∑

i=1

Ztigi

)
+ residual, (19)
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and the ES test statistic is the explained sum of squares from the artificial regression
with typical observation

yt − F̃t(
F̃t(1− F̃t)

)1/2
=

f̃t(
F̃t(1− F̃t)

)1/2

(
k∑

i=1

Xtibi +
r∑

i=1

Ztigi

)
+ residual. (20)

In regressions (19) and (20), the bi and gi are parameters to be estimated, and the
first factors on the right-hand side are weights that multiply all the regressors.

In order to level-adjust the tests, it is necessary to compute the parameters of the
pseudo-true DGP that corresponds to whatever nonnull DGP actually generated the
data. If log h(y, β) denotes the loglikelihood evaluated at the parameters of a DGP in
the null, and log g(y, β1, γ1) the loglikelihood at the parameters of the nonnull DGP,
then the KLIC is

E
(
log g(y, β1, γ1)− log h(y,β)

)
, (21)

where the expectation is computed under the nonnull DGP. The parameter vector
for the pseudo-true DGP is the β0 that minimizes (21) with respect to β. For the
model (18), this is just the vector that maximizes the expectation of log h(y,β),
namely,

n∑
t=1

(
F (Xtβ1 + Ztγ1) log F (Xtβ) +

(
1− F (Xtβ1 + Ztγ1)

)
log

(
1− F (Xtβ)

))
. (22)

Here we have used the fact that E(yt |Xt,Zt) = F (Xtβ1 + Ztγ1).

The first-order conditions for maximizing expression (22) are

n∑
t=1

f(Xtβ0)Xt

F (Xtβ0)
(
1− F (Xtβ0)

)(
F (Xtβ0)− F (Xtβ1 + Ztγ1)

)
= 0. (23)

These equations give us the relationship between the nonnull DGP, which is char-
acterized by β = β1 and γ = γ1, the pseudo-true DGP, which is characterized by
β = β0 and γ = 0, and what we may call the naive null DGP, which is characterized
by β = β1 and γ = 0. Given γ1 and either β0 from the pseudo-true DGP or β1 from
the naive null, we can solve equations (23) for the other β vector.

In our experiments, the vector Xt consisted of a constant term and two regressors
that were distributed as N(0, 1), and the vector Zt consisted of eight regressors that
were also N(0, 1). The two non-constant regressors in Xt were uncorrelated, and
the regressors in Zt were correlated with one or the other of these, with correlation
coefficient ρ. The number of regressors in Zt was chosen to be quite large in order to
make the tests, especially the OPG test, work relatively poorly. In order to allow us to
plot one-dimensional power functions, we set γ1 = δι, where ι is a vector of 1s. Thus
the only parameter of the DGP that we changed was δ. Because the pseudo-true DGP
depends on the regressors, we used a single set of regressors in all the experiments,
and all our experimental results are conditional on them.
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In the experiments we report, we held the pseudo-true DGP constant and used equa-
tion (23) to vary β1 as δ, and hence γ1, varied. This procedure makes it relatively
inexpensive to level-adjust the bootstrap test, since there is only one pseudo-true
DGP to be concerned with. In a second set of experiments, of more conventional
design, we held the naive null DGP constant and varied β0 as δ varied. Both sets
of experiments yielded similar results, and we therefore do not report those from the
second set.

In both sets of experiments, we set ρ = −0.8. By making ρ fairly large, we ensure
that the pseudo-true and naive null DGPs will be quite different, except when the
nonnull DGP is very close to the null hypothesis. Changing the sign of ρ would change
the results in a predictable way: The figures would be roughly mirror images of the
ones presented here. In our experiments, the constant term in either β0 or β1 is set
to 0, and the two slope coefficients are set to 1. Thus, under the null hypothesis,
approximately half of the yt would be 0 and half would be 1. The sample size was
125. This relatively large sample size was used in order to avoid having more than a
few replications for which the logit routine failed to converge. Nonconvergence, which
is caused by perfect classifiers, is more of a problem for smaller sample sizes and for
larger values of δ.

Figures 1 and 2 show estimated power functions for asymptotic and bootstrap tests
at the .05 level, the former for the ES tests, and the latter for the OPG tests. These
power functions are based on 200,000 replications for a large number of values of
δ between −0.8 and 0.8 at intervals of 0.025. The unadjusted power function (the
solid line) shows the power of the asymptotic test at the nominal .05 level. The two
adjusted power functions (the dotted lines) show adjusted test power, calculated in two
different ways. For all values of δ, the naive adjustment method uses test performance
for (β1,0) as a benchmark. In contrast, the pseudo-true adjustment method uses test
performance for (β0,0) as a benchmark. The power function estimated by the R̂PA

procedure is shown as a dashed line.

Figures 1 and 2 also show the results of nine Monte Carlo experiments for bootstrap
tests. Each experiment involved 50,000 replications. We generated the data in exactly
the same way as before, using the DGP with parameters (β1, δι), computed both test
statistics, and then used the parametric bootstrap based on 399 bootstrap samples to
estimate a P value for each of them. The bootstrap DGP was simply the logit model
with parameters β = β̃ and γ = 0, and the bootstrap test rejected the null hypothesis
whenever the estimated P value was less than .05. The bullets in the figures show
the proportion of replications for which this procedure led to rejection. Figure 2 also
shows the level-adjusted power of the bootstrap OPG test, based on the pseudo-true
DGP.

From Figure 1, we see that the ES test works so well as an asymptotic test that there
is no need to bootstrap it. There is essentially no difference between any of the power
functions, which suggests that the ES test statistic is nearly pivotal in this case.

In contrast, from Figure 2, we see that the OPG test statistic is far from pivotal.
As the theory predicts, the R̂PA estimated power function is very similar to the one
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adjusted using the pseudo-true DGP. However, both of these are quite different from
the power function adjusted using the naive null. This confirms that the issues raised
in Section 3 are empirically relevant: The null DGP used for level adjustment can have
a substantial effect, and it is the pseudo-true DGP which yields a power function close
to that of the bootstrap test. Use of the naive null in fact leads to the misleading
appearance of greater power for the OPG test for some negative values of δ. It
is misleading because the ES and OPG statistics are based on the same empirical
scores, but the latter uses a noisier estimate of the information matrix, which should
reduce its power.

The theory is also confirmed by the fact that, when the power of the bootstrap test
is level-adjusted (because the test underrejects slightly), the correspondence of the
power function with the R̂PA function is not as good as with no adjustment. This is
as expected, since R̂PA estimates the nominal power of the bootstrap test.

6. Conclusions

Level adjustment of the power of tests based on nonpivotal statistics yields results
that depend on the DGP in the null hypothesis used to provide a critical value. For a
given choice of this null DGP, we show that the power of a bootstrap test differs from
the level-adjusted power of the asymptotic test on which it is based by an amount
that we call the bootstrap discrepancy. This discrepancy is of the same order, in the
sample size n, as the size distortion of the bootstrap test itself.

Since the bootstrap constitutes the best way to do level adjustment in practice, it
makes sense to use critical values from a null DGP that minimizes the bootstrap
discrepancy to do level adjustment in simulation experiments. In this way, power as
measured by simulation in finite samples is a good approximation to the power of a
bootstrap test. The rate of convergence to zero of the bootstrap discrepancy when the
sample size tends to infinity is analyzed in connection with different drifting DGPs,
and we show that convergence is fastest when the test statistic is asymptotically
independent of the bootstrap DGP and when a particular sort of drift towards a
particular null DGP is used. This result serves to extend to the analysis of power a
previous result whereby the ERP of a bootstrap test is of lower order with asymptotic
independence.

Level-adjusted power can be estimated efficiently by simulation if the appropriate null
DGP for providing critical values can readily be characterized. However, this is often
not the case. We propose a new approximate method that requires no such calculation
and yields better estimates of the power of bootstrap tests by taking account of the
bootstrap discrepancy.

Our theoretical results are confirmed and illustrated, for the case of tests for omitted
variables in logit models, by simulation results which show that level adjustment of
our preferred type leads to power estimates close to the power of bootstrap tests,
while a cruder form of level adjustment may give quite different results.
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Appendix

We state the regularity conditions that we make for the proof of Theorem 1. The
first is an assumption about the (k +1)--dimensional model M1 that contains the null
hypothesis model M0.
Assumption 1: The model M1, parametrized by Θ× U, is locally asymptotically

normal (LAN) at all fixed DGPs µ ∈M1.

Local asymptotic normality was introduced by Le Cam (1960). See also Beran (1997)
for a more modern version of the definition. What is required is that, for any sample
size n and for all η = (θ, δ) ∈ Θ × U, the difference `n(a, η) between the log of the
joint density of the dependent variables under the DGP corresponding to parameters
η + n−1/2an, where the sequence {an} converges to a, and that under the DGP η
(the loglikelihood ratio) should take the form

`n(a,η) = a>gn(η)− 2a>I(η)a + op(1)

for all a ∈ Rk+1, where the (k + 1) × (k + 1) matrix I(η) is the information matrix
at η, and the (k + 1)--dimensional random vectors gn(η) are such that

gn(η + n−1/2an) = gn(η)− I(η)a + op(1).

In addition, the expectation of gn(η) is zero for the DGP η, and, as n →∞, it tends
in distribution to N(0, I(η)). As the name suggests, LAN models have the regularity
needed for the usual properties of the MLE, including asymptotic normality.
Assumption 2: The estimator θ̂ is locally asymptotically equivariant (LAE) at all

fixed DGPs µ ∈M0.

The definition of the LAE property is taken from Beran (1997). For a DGP µ0 ∈
M0 with parameter vector θ0, consider a drifting DGP µ with parameters in the
(φ, δ) reparametrization, which was introduced in Section 3, given by the sequence
{(θ0 +n−1/2tn, n−1/2dn)}, where tn converges to a fixed k --vector t, and dn converges
to d ∈ R. The (φ, δ) parametrization is used because θ̂ is consistent for φ for the
extended model M1. The LAE property requires that the random vectors n1/2(θ̂ −
θ0 − n−1/2tn) converge in distribution under this drifting DGP to the asymptotic
distribution of n1/2(θ̂ − θ0) under µ0, namely, N(0, I(θ0, 0)).

The LAE property is a condition which guarantees the usual desirable properties of
the parametric bootstrap distribution of the estimator θ̂ and excludes the possibility
of bootstrap failure, as explained by Beran. It is likely that a weaker condition would
suffice for our needs, where θ̂ itself is not bootstrapped but simply serves to define
the bootstrap distribution.

In the next assumption, we extend the LAN property to cover the alternative hypo-
thesis against which the test statistic τ has maximal power.
Assumption 3: The test statistic t of which τ is the asymptotic P value is a stat-

istic in either standard normal or χ2 form asymptotically equivalent to a classical
test statistic (LR, LM, or Wald) of the hypothesis represented by the model M0
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against an alternative hypothesis represented by a (k+r)--dimensional LAN model
M2 that includes the modelM0 as a subset. Here r is the number of degrees of free-
dom of the test. Under any DGP µ ∈ M1, the CDF R(α, µ) of τ is a continuously
differentiable function of α.

This assumption allows us to make use of results in Davidson and MacKinnon (1987),
where it is shown that, under weak regularity conditions ensured by the LAN prop-
erty, test statistics in standard normal or χ2 form can always be associated with a
model like M2, for which they are asymptotically equivalent to a classical test of M0

against M2.

Our final assumption is needed in order to be able to speak concretely about rates of
convergence.
Assumption 4: For sample size n, the critical value function Q(α, µ), defined in

equation (2), can be expressed for all DGPs µ ∈M0 as

Q(α, µ) = α + n−j/2γ(α, µ), (24)

where j is a positive integer, and the function γ is O(1) as n →∞ and continuously
differentiable with respect to the parameters of the DGP µ.

Since we assume that the statistic τ is expressed in asymptotic P value form, its
asymptotic distribution is U(0, 1) for all DGPs in M0. It follows that, for µ ∈ M0,
Q(α, µ) = α + o(1). The relation (24) specifies the actual rate of convergence to zero
of the remainder term.

Assumption 4 is precisely the assumption made in Beran (1988) in the analysis of
the RP of bootstrap tests under the null.3 It would have been possible to devise
some more primitive conditions that, along with the other assumptions, would imply
Assumption 4, but the clarity of the latter seems preferable.

Proof of Theorem 1: By Assumption 3, the test statistic t of which τ is the
asymptotic P value has a noncentral χ2 asymptotic distribution under DGPs in M1

that drift to M0; this is the conclusion of the Theorem on page 1317 of Davidson and
MacKinnon (1987). This distribution is completely characterized by the number r
of degrees of freedom of the test and a scalar noncentrality parameter (NCP) λ that
depends on the drifting DGP. Thus, for such a DGP µ, R(α, µ) tends as n → ∞ to
P (α, λ), the probability mass in the tail of the χ2

r(λ) distribution beyond the critical
value for a test at level α as defined by the central χ2

r distribution.

If µ is a fixed DGP in M0, then, by Assumption 4 (see also the footnote to it),

R(α, µ) = α + n−j/2ρ(α, µ),

3 Beran makes the assumption about the function we denote as R(α, µ), but, since R
and Q are inverse functions, the assumption can equivalently be made about one or
the other.
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for some O(1) function ρ(α, µ) that is continuously differentiable with respect to α
by Assumption 3. Thus the sequence {τn} of test statistics for finite sample sizes n
converges to a random variable with distribution U(0, 1) under DGPs µ ∈M0.

The model M1 that contains the drifting DGPs of interest to us is LAN, by Assump-
tion 1. A consequence of this is that the probability measures defined on [0, 1] by the
sequence {τn} under a DGP µ ∈ M0 are contiguous to those defined by {τn} under
a DGP that drifts to µ0; see Roussas (1972, Chapter 1) for a discussion of contigu-
ity. Consequently, the sequence {τn} converges to the same limiting random variable
under µ0 and DGPs that drift to µ0. By the argument in the first paragraph of the
proof, under drifting DGPs with NCP λ, this variable has CDF P (α, λ).

By a slight abuse of notation, we write Q(α, θ) for Q(α, µ) when µ ∈ M0 and θ is
the parameter vector associated with µ, and similarly for γ(α, θ). Recall that the
old (θ) and new (φ) parametrizations coincide on M0. Since the bootstrap DGP µ∗

is in M0 and is characterized by the parameter vector θ̂, we have that Q(α, µ∗) =
α+n−j/2γ(α, θ̂). Then, from the definition (7), since the fixed DGP µ0 is also in M0,
the random variable q can be expressed as

q = R(α + n−j/2γ(α, θ̂), µ)−R(α + n−j/2γ(α, θ0), µ). (25)

Since the function R(·, µ) is continuously differentiable with respect to α, we may
perform a Taylor expansion of (25) to obtain

q = n−j/2
(
P ′(α, λ)

(
γ(α, θ̂)− γ(α, θ0)

)
+ op(1)

)
,

where λ is the NCP for µ, and P ′(α, λ) is the derivative of P (α, λ) with respect to α.

Since γ(α, θ) is continuously differentiable with respect to θ by Assumption 4, Taylor’s
Theorem gives

γ(α, θ̂)− γ(α, θ0) = Dθγ(α, θ0)(θ̂ − θ0) + Op(n−1/2).

It follows that n(j+1)/2q is a linear combination of the components of n1/2(θ̂ − θ0)
plus a variable that tends to zero in µ0 --probability, and, by contiguity, also in
µ--probability. By Assumption 2, n1/2(θ̂ − θ0) has an asymptotically normal dis-
tribution, with finite variance and with mean zero under µ0 and finite mean under µ.

The statistic t, if in χ2 form, is a quadratic form in r asymptotically normal variables,
with finite mean and variance, that have an asymptotically normal distribution jointly
with n1/2(θ̂ − θ0); again see Davidson and MacKinnon (1987) for details. If r = 1,
t is itself an asymptotically normal variable. Thus, to leading order asymptotically
under the drifting DGP µ, the joint distribution of the r variables used to construct t
and n(j+1)/2q is multivariate normal. It follows that the distribution of n(j+1)/2q
conditional on t, and so also on τ and on p, which are deterministic functions of t, is
asymptotically normal with finite mean and variance.

Let the CDF of n(j+1)/2q conditional on p be denoted as G(z | p). As n → ∞, this
tends to a normal CDF with finite mean and variance under the drifting DGP µ. By
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performing the change of variable x = n−(j+1)/2z in the expression for the bootstrap
discrepancy given by (11), it can be seen that the discrepancy is

n−(j+1)/2

∫ ∞

−∞
z dG(z |R + n−(j+1)/2z),

which is of order n−(j+1)/2 under both the drifting DGP µ and the fixed null DGP µ0.
This completes the proof.
Proof of Theorem 2: Since the θ and φ parametrizations coincide on M0, the φ
in (14) can be identified with the parameters θ0 of the null DGP to which (14) drifts.
Asymptotic normality of n1/2(θ̂ − θ0) was already shown in the proof of Theorem 1.
That its asymptotic distribution is the same under the drifting DGP (14) as under
the fixed DGP to which it drifts is then an immediate consequence of Assumption 2.

It was shown in the proof of Theorem 1 that, to leading order, n(j+1)/2q is a linear
combination of the components of n1/2(θ̂− θ0) It follows that n(j+1)/2q is asymptot-
ically normal with expectation zero under (14).
Proof of Theorem 3: The theorem supposes that, for any µ0 ∈ M0 with para-
meters θ0, the statistic τ and n−1/2(θ̂−θ0) are independent under their joint asymp-
totic distribution. This independence holds also under DGPs that drift to M0, since,
by contiguity, the joint asymptotic distribution of n−1/2(θ̂− θ0) and the r asymptot-
ically normal variables on which τ depends differs under drifting DGPs from what it
is under DGPs in M0 only in its expectation, not its covariance matrix.

If the conditional CDF F (q | p) is independent of p to leading order, then, from (11),
the bootstrap discrepancy is to that order just the asymptotic expectation of q. The
conclusion of this theorem now follows immediately from Theorem 2.
Proof of Corollary: The bootstrap discrepancy is determined by the joint dis-
tribution of τ and q, and to leading order by the joint asymptotic distribution of τ
and n(j+1)/2q. The latter is determined by the joint asymptotic distribution of τ and
n1/2(θ̂ − θ0), which, by the LAE property, is the same for all drifting DGPs with
parameters (φ + n−1/2pn, n−1/2δ) provided that pn converges to zero.
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Figure 1. Power functions for logit ES tests
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Figure 2. Power functions for logit OPG tests
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