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Abstract

Methods based on linear regression provide an easy way to use the information in
control variates to improve the efficiency with which certain features of the distributions
of estimators and test statistics are estimated in Monte Carlo experiments. We propose
a new technique that allows these methods to be used when the quantities of interest are
quantiles. We also propose new ways to obtain approximately optimal control variates in
many cases of interest. These methods seem to work well in practice, and can greatly reduce
the number of replications required to obtain a given level of accuracy.
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1. Introduction
Monte Carlo methods are widely used to study the finite-sample properties of esti-

mators and test statistics. Hendry (1984) provides a survey of Monte Carlo methods in
econometrics, and Ripley (1987) and Lewis and Orav (1989) provide recent treatments
from the perspectives of statistics and operations research respectively. The results of
Monte Carlo experiments are inevitably random, since they depend on the particular set
of pseudo-random numbers used. To reduce this randomness to acceptable levels it is often
necessary to perform many replications. A less costly way to reduce experimental random-
ness is to use variance reduction techniques, such as control variates. These are random
variables that are correlated with the estimator or test statistic being studied, and of which
certain properties of the distribution are known. Control variates can be calculated only
in the context of Monte Carlo experiments, because they depend on things that cannot be
observed in actual statistical investigations. The primary property that a control variate
must have is a known (population) mean. The divergence between the sample mean of the
control variate in the experiment and its known population mean is then used to improve
the estimates from the Monte Carlo experiment. This works best if the control variate is
highly correlated with the estimators or test statistics with which the experiment is con-
cerned. For examples of control variates in econometric problems, see Hendry (1984) and
Nankervis and Savin (1988).

In this paper we discuss a widely applicable, and yet very simple, procedure for using
control variates to analyze the results of Monte Carlo experiments. The heart of this
procedure is a least squares regression. This procedure has been discussed elsewhere—Ripley
(1987) and Lavenberg and Welch (1981) are two good references—but it is not covered in
Hendry’s survey and appears to be unfamiliar to most econometricians. In the next section
we therefore discuss it briefly. The principal results of the paper are then introduced in
sections 3 and 4. In the former, a modified version of the regression procedure is introduced
that can be used to estimate quantiles. In the latter, we discuss how to choose control
variates in an (approximately) optimal fashion. In Section 5, we present some evidence on
how well these techniques actually work, and in Section 6 we present an example of how
useful they can be in practice.

2. Regression-based Methods for Using Control Variates
Suppose that a Monte Carlo experiment involves N replications, on each of which is

obtained an estimate tj , j = 1, . . . , N , of some scalar quantity θ. Except when discussing
quantile estimation, we shall suppose that θ is capable of being estimated as the mean of the
N tj ’s calculated during the experiment. Obvious examples of θ include the bias, variance,
skewness or kurtosis of a particular parameter estimate or test statistic. If, for example, θ
were the bias of some estimator, tj would be the estimate obtained on the jth replication,
minus its true value. Another possibility is that θ might be the size or power of a test
statistic, that is, the probability that it exceeds a certain critical value. In such a case tj
would be unity if the test rejected the null hypothesis and zero otherwise. Since quantiles
(such as medians, or critical values for test statistics) cannot be estimated as the mean
of anything, they do not seem to fit into this general scheme. They require a somewhat
different treatment, as we explain in Section 3.
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It is always possible to estimate θ without using control variates. The obvious estimator
is the sample mean of the tj ’s,

θ̄ ≡ 1
N

N∑

j=1

tj ,

which has variance V (θ̄) = N−1V (t). Now suppose that, for each replication, a control
variate τj is computed along with the estimate tj . The two primary requirements for τj

are that it be correlated with tj and that it have mean zero. Any random variable that is
correlated with tj and has known mean can be transformed so as to have mean zero, and
could thus be used for τj . This suggests that there may often be several candidates for τj ,
but for the moment we shall assume that just one is to be used.

One way to write the control variate (CV) estimator for this case is

θ̈(λ) ≡ θ̄ − λτ̄ , (1)

where τ̄ is the sample mean of the τj ’s and λ is a scalar that has to be determined. The
choice of λ is crucial. It seems natural to choose it so as to minimize the variance of (1):

V
(
θ̈(λ)

)
= N−1

(
V (t) + λ2V (τ)− 2λCov(t, τ)

)
. (2)

Minimizing (2) with respect to λ, we find that the optimal value of λ is

λ∗ =
Cov(t, τ)

V (τ)
, (3)

so that (1) becomes

θ̈(λ∗) ≡ θ̄ − λ∗τ̄ = θ̄ − Cov(t, τ)
V (τ)

τ̄ . (4)

In much of the literature on control variates (e.g. Hendry, 1984) λ is set to unity. This
may seem reasonable if the control variate is based on an asymptotic expansion, and in fact
λ = 1 will be a good choice if tj and τj are highly correlated and have similar variances.
But it is clearly not the best choice in general. Unless N is very small, so that λ̂ (defined
below) may be a poor estimate of λ∗, or λ∗ is very close to unity, we are likely to be better
off estimating λ∗ than simply using λ = 1.

The naive estimator θ̄ could have been obtained by regressing t, an N−vector with
typical element tj , on ι, an N−vector of ones. Let τ denote an N−vector with typical
element τj . Then a better way to estimate θ is to run the regression

t = θι + λτ + u. (5)

This regression bears a striking resemblance to the artificial regression proposed by Tauchen
(1985) for computing certain test statistics. The error terms uj in (5) will be independent
as long as each replication is independent. The estimate of λ from regression (5) is

λ̂ = (τ>Mιτ )−1τ>Mιt,

where Mι is the matrix I − ι(ι>ι)−1ι> that takes deviations from the mean. Evidently λ̂
is just the sample covariance of t and τ , divided by the sample variance of τ , so that it is
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the empirical counterpart of λ∗ defined in (3). Provided that N−1τ>Mιτ and N−1τ>Mιt

obey laws of large numbers, it is clear that λ̂ will converge to λ∗.
What we are really interested in is the OLS estimate of θ from regression (5). From

standard results for linear regressions with a constant term, this is θ̂ = θ̄− λ̂τ̄ . Subtracting
the true value θ0 and multiplying by N1/2, we find that

N1/2(θ̂ − θ0) = N1/2(θ̄ − θ0)− λ̂(N1/2τ̄).

Since λ̂ converges to λ∗, θ̂ must be asymptotically equivalent to the optimal CV estima-
tor defined in (4). Moreover, since N1/2(θ̄ − θ0) and N1/2τ̄ are asymptotically normally
distributed, θ̂ must be as well.

The variance of θ̂ can be estimated in at least two ways. The usual OLS estimate is

ω̂2(ι>Mτ ι)−1,

where ω̂ is the standard error of the regression.1 The second factor here must tend to N−1,
since τ asymptotically has no explanatory power for ι, so that we could simply use N−1ω̂2

to estimate the variance of θ̂. This makes it clear that the better regression (5) fits (at
least asymptotically), the more accurate θ̂ will be as an estimate of θ. Thus we want to
choose control variates to make it fit as well as possible. In fact, the ratio of the asymptotic
variance of θ̂ to the asymptotic variance of θ̄ is simply equal to 1 − R2, where R2 is the
asymptotic R2 from regression (5).

As we remarked above, there may well be more than one natural choice for τ in many
situations. Luckily, formulating the problem as a linear regression makes it obvious how to
handle multiple control variates. The appropriate generalization of (5) is

t = θι + Tλ + u, (6)

where T is an N × c matrix, each column of which consists of observations on one of c
control variates. Since all the columns of T have expectation zero, it is clear that the OLS
estimate of θ from this regression will once again provide the estimate we are seeking. If
MT denotes I− T (T>T )−1T>, this estimate is

θ̂ = (ι>MT ι)−1ι>MT t.

The error terms in regressions (5) and (6) will often not be conditionally homoskedastic.
Thus it might be thought better to use as an estimate of the standard error of θ̂, not the
usual OLS estimate, but rather a heteroskedasticity-consistent one of the sort proposed by
White (1980). In fact this is unnecessary, and may actually be harmful when N is small. We
are concerned here only with the variance of the estimate of the constant. Since the other
regressors are all by construction orthogonal to the constant in the population, this variance
is in fact estimated consistently by the appropriate element of the ordinary OLS covariance
matrix; see White (1980). Of course, the OLS standard errors for the remaining coefficients
in (5) and (6) will not, in general, be consistent when the error terms are heteroskedastic,
but these coefficients are generally not of interest.

1 The reason we use ω rather than σ here will become apparent in Section 4.
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The regression technique we have described can be used with antithetic variates as well
as control variates. The idea of antithetic variates is to generate two different estimates of
θ, say tj1 and tj2, on each replication, in such a way that they will be highly negatively
correlated; see Hammersley and Handscomb (1964) or Ripley (1987). For example, if one
were interested in the bias of the least squares estimates of a nonlinear regression model,
one could use each set of generated error terms twice, with all signs reversed the second
time. This would create strong negative correlation between the two sets of least squares
estimates, so that their average would have much less variance than either one alone.

By definition, tj1 and tj2 both have mean θ. Hence their difference must have mean zero,
and can be treated like a control variate in regressions (5) or (6). One simply treats either
t1 or t2 as the regressand (it does not matter which), and treats t2− t1 as a control variate.
However, the simpler approach of just averaging the tj1’s and tj2’s, which is equivalent to
setting λ = 1

2 , is optimal whenever the two antithetic variates have the same variance, as
will generally be the case; see Hendry and Trivedi (1972). Thus it probably does not make
sense to employ the regression technique with antithetic variates unless one wishes to use
both control and antithetic variates at the same time.

One aspect of the regression approach may be troubling in a few cases. It is that θ̂
is only asymptotically equal to θ̈(λ∗), and is only one of many asymptotically equivalent
ways to approximate the latter. This should rarely be of concern, since in practice N will
generally be quite large. In Section 5, we describe some experimental results on how well
this procedure works for finite N .

3. Quantile Estimation
The estimation of quantiles is often one of the objects of a Monte Carlo experiment.

For example, one may wish to characterize a distribution by its estimated quantiles, or to
estimate critical values for a test statistic. Since a quantile cannot be expressed as a mean,
control variates cannot be used directly in the way discussed above to improve the precision
of quantile estimates. In this section we propose a control variate regression that does much
the same for quantiles as regression (6) does for means, variances, tail areas and so on.

Suppose that we generate observations on a random variable y with a distribution
characterized by the (unknown) distribution function F (y), and wish to estimate the α
quantile of the distribution F . By this we mean the value qα that satisfies

F (qα) = α. (7)

In the absence of any information about F , the sample quantile q̄α is the most efficient
consistent estimator of qα available. It is defined by replacing F in (7) by the empirical
distribution of the generated y’s:

N−1
N∑

j=1

I(q̄α − yj) = α, (8)

where the indicator function I is defined to be equal to one if its argument is positive, and
zero otherwise. If q̄α is not uniquely defined by (8), we may take for q̄α the mean of the set
of numbers that satisfy (8). If αN is not an integer, there will be no q̄α that exactly satisfies
(8). This problem can easily be dealt with, but since N is chosen by the investigator, we
shall simply assume that αN is an integer.
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Suppose that we have some estimate q̈α, independent of y, which approaches qα at a
rate proportional to N−1/2. Now consider the random variable I(q̈α− y)−α. The mean of
this variable conditional on q̈α, using (7), is

E
(
I(q̈α − y)

)− α = F (q̈α)− F (qα). (9)

If the density f(qα) ≡ F ′(qα) exists and is nonzero, the mean (9) becomes, by Taylor’s
Theorem,

f(q̈α)(q̈α − qα) + o(N−1/2). (10)

The quantity f(q̈α) is not known in advance, but it may be estimated in a variety of
ways; see Silverman (1986). One approach that seems to work well is kernel estimation
(Rosenblatt, 1956). Since the density has to be estimated at a single point only, the calcu-
lations are not very demanding. Let us denote the estimate of f(q̈α) by f̈ . Provided it has
the property that f̈ = f(qα) + o(1), we see from (10) that

(1/f̈)E
(
I(q̈α − y)− α

)
= q̈α − qα + o(N−1/2),

or, equivalently,
q̈α − (1/f̈)E

(
I(q̈α − y)− α

)
= qα + o(N−1/2). (11)

This result allows us to construct a regression. The jth observation on the regressand is

q̈α − (1/f̈)
(
I(q̈α − yj)− α

)
. (12)

The regressors must include a constant and one or more control variates, of which it need
be known merely that their expectations are zero. All of the arguments of the preceding
section go through unaltered, and the estimated constant from the regression will, by (11),
be an estimate of qα correct to the leading asymptotic order of N−1/2. We shall call this
control variate estimator q̂α.

The above analysis supposed the independence of the yj ’s and the preliminary estimate
q̈α, but since the argument is an asymptotic one, it is admissible to replace strict indepen-
dence with asymptotic independence. Thus it is possible in practice to use the ordinary
quantile estimate q̄α for q̈α.

If the regressand (12) with q̈α = q̄α is regressed on a constant only, the estimate q̂α will
be equal to q̄α, because what is subtracted from q̄α in (12) is orthogonal to a constant. The
estimated variance of q̂α will be N−1 times the estimated error variance from the regression,
that is (

1
N(N − 1)f̄2

) N∑

j=1

(
I(q̄α − yj)− α

)2

.

For large N this tends to
α(1− α)
Nf2(qα)

, (13)

which is the standard formula for the variance of a sample quantile. When the regression
includes one or more control variates that have some explanatory power, the variance of q̂α

will of course be less than (13).
An alternative approach has been used in the operations research literature (Lewis and

Orav, 1989, Chapter 11). The N replications are sectioned into m groups, each consisting
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of M replications. One then calculates quantile estimates, and control variates, for each
of the m groups, and adjusts the average quantile estimate by regressing it on a constant
and the average value of the control variate, using a regression with m observations. This
approach avoids the need to estimate 1/f̄ , but requires that both m and M (rather than
just N = mM) be reasonably large. If M is too small, the individual quantile estimates
may be seriously biased, while if m is too small, the estimates from the control variate
regression may be unreliable.

4. Choosing Control Variates Optimally
So far we have said little about how to choose the control variate(s) to be used as

regressors in regression (6) or its analog for quantile estimation. In this section we consider
a special, but not unrealistic, case in which it is possible to obtain strong results on how to
choose control variates optimally. These results are of considerable interest, especially for
the estimation of tail areas, where they shed light on the properties of earlier procedures
for the use of control variates.

Let t denote the random variable that has expectation θ, and T the set of random vari-
ables with known distributions from which control variates are to be constructed. Consider
the following generalization of (6):

tj = θ + g(Tj , γ) + residuals, (14)

where the nonlinear regression function g(T, γ) is restricted to have mean zero, and γ is a
vector of parameters. Estimation of (14) by nonlinear least squares would yield γ̂ and θ̂,
the latter being a consistent estimator of θ. One way of defining the conditional expectation
E(t|T ) is as the function g(T ) that minimizes the variance of t− g(T ). Hence the variance
of the residuals in (14) will be minimized by using a control variate that is proportional to
τ∗ ≡ E(t|T )− θ, and consequently the precision of the estimate of θ will be maximized by
this choice. This argument implies that the theoretical lower bound to the variance of a
control-variate estimate of θ is proportional to the variance of t− τ∗.

Of course, if E(t|T ) were known there would be no need to estimate θ by Monte Carlo:
it would be enough just to calculate E(t) = E

(
E(t|T )

)
. Further, in order to compute

τ∗ we need to know θ, which is precisely what the Monte Carlo experiment is trying to
estimate! Thus in practice τ∗ will not be available. Instead, we want to find functions of T
that approximate τ∗ as closely as possible. Thus we should make use of as much a priori
information as possible about the relationship between t and T when specifying g(T, γ). In
cases where not much is known about that relationship, it may make sense to use several
control variates in an effort to make g(T, γ) provide a good approximation to τ∗.

In the remainder of this section we consider several related examples. We assume
that the random variable of interest is normally distributed, and that another normally
distributed random variable is available to provide control variates. These assumptions
are not as unrealistic as they may seem, since in many cases asymptotic theory provides
a control variate that is normally distributed and tells us that the variable of interest will
be approximately normal; see Section 6 for an example. We shall let x denote the random
variable from which we calculate control variates, and y denote the random variable of
interest; various functions of x and y will later be denoted τ∗ and t. We shall assume that
x is distributed as N(0, 1), that y is distributed as N(µ, σ2), and that x and y are bivariate
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normal. In this case T consists of all possible functions of x that have mean zero. Given
our assumptions about x and y, we can write

y = µ + ρσx + v, v ∼ N
(
0, (1− ρ2)σ2

)
, (15)

where ρ is the correlation between y and x. Using (15), we can find optimally-chosen control
variates, as functions of x, for several cases of interest.

Suppose first that we wish to estimate µ, the mean of y. From (15) we see that
E(t|x) = µ + ρσx, which implies that τ∗ = ρσx, so that the optimal regressor in this case
must be proportional to x. Thus we want tj to equal yj in regression (6). We also see that
the variance of µ̂ will be 1/N times the variance of v, i.e. N−1(1− ρ2)σ2. In contrast, the
naive estimator of µ is the sample mean ȳ, and its variance is N−1σ2. Thus for any degree
of accuracy, N could be smaller by a factor of (1−ρ2) if the optimally-chosen CV estimator
were used instead of the naive estimator.

Now suppose that we wish to estimate σ2. The obvious choice for t is (y − µ̂)2. From
(15) we see that

(y − µ)2 = (ρσx + v)2 = ρ2σ2x2 + 2ρσxv + v2, (16)

which implies that
E

(
(y − µ)2|x)

= ρ2σ2x2 + (1− ρ2)σ2. (17)

The optimal regressor, adjusted to have mean zero, is evidently (x2 − 1). From (16) and
(17), the variance of the optimally-chosen CV estimator σ̂2 will be

N−1E
((

ρ2σ2x2 + 2ρσxv + v2
)− (

ρ2σ2x2 + (1− ρ2)σ2
))2

= 2N−1(1− ρ4)σ4. (18)

In contrast, the variance of the naive estimator is 2N−1σ4. Thus for any degree of accuracy,
N could be smaller by a factor of (1 − ρ4) if the optimally-chosen CV estimate were used
instead of the naive estimate. Note that the gain from using control variates is less when
estimating the variance than when estimating the mean, since (1−ρ4) is greater than (1−ρ2)
for all |ρ| < 1. This is true for estimating the standard deviation as well, since the variance
of σ̂ will be 1

2N−1σ2(1− ρ4).
Now suppose that we are interested in the size or power of a test statistic. In this case

θ is the probability that y exceeds a certain critical value, say yc. Let tj = 1 if yj exceeds
yc and tj = 0 otherwise. The naive estimate of θ is just the mean of the tj ’s. Davidson
and MacKinnon (1981) and Rothery (1982) independently studied this problem under the
assumption that the control variate, like the tj ’s, can take on only two possible values, and
proposed a technique based on the method of maximum likelihood; see also Fieller and
Hartley (1954). These authors did not use a regression framework, but the estimator they
proposed turns out to be numerically identical to the OLS estimator of θ from regression
(5), when τj is defined as

τj = I(x− q1−γ)− γ. (19)

Thus τj is a binary variable that is equal to 1− γ when xj exceeds q1−γ , and −γ otherwise,
for some γ that should be as close to θ as possible. Since the probability that xj will exceed
q1−γ is γ, (19) clearly has population mean zero. There are various ways in which γ can be
chosen. The simplest one is to pick it in advance, for example by setting γ = 0.05 when θ
is the size of a test with an asymptotic size of 0.05. However, this method can be improved
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upon, at least for large N , by choosing γ to be θ̄. The dependence of θ̄ on the data does
not matter if N is large enough; see Davidson and MacKinnon (1981).

The expectation of I(y − yc) conditional on x is not a step function like (19). Thus
the binary control variate proposed by ourselves and Rothery clearly cannot be optimal. In
fact, when y is N(µ, σ2) and x is N(0, 1), we see that

E(t|x) = Prob(v > yc − µ− ρσx) = Φ

(
µ + ρσx− yc

σ(1− ρ2)1/2

)

= Φ
(
(µ + ρσx− yc)/ω

)
= Φ(a + bx),

where a = (µ− yc)/
(
σ(1− ρ2)1/2

)
, b = ρ/(1− ρ2)1/2, ω = σ(1− ρ2)1/2 and Φ denotes the

standard normal distribution function. There are many ways to estimate Φ(a + bx). The
easiest is probably to recognize that the fitted values from the regression of yj on xj and a
constant, which is the optimal CV regression for estimating the mean of the yj ’s, provide
consistent estimates of (µ+ρσx), and the standard error provides a consistent estimate of ω.
These estimates, along with the CV estimates of µ and σ, can then be used to construct a
zero-mean control variate:

Φ(â + b̂xj)− Φ
(
(µ̂− yc)/σ̂

)
. (20)

The second term in (20) is an estimate of the unconditional mean of t; if µ and σ were
known, it would be θ ≡ E(t). The fact that â, b̂, µ̂, and σ̂ are estimates does not prevent
expression (20) from having expectation zero if â and b̂ are defined as above in terms of µ̂
and σ̂, provided only that the xj ’s are normally distributed. Even if the assumption that
y is normally distributed is not quite correct, (20) provides a valid control variate, and
regressing the tj ’s on it and a constant should give a reasonably good estimate of θ. If we
are interested in tail areas for two-tail tests, the approximately optimal regressor will be
the sum of (20) and its analog for the other tail.

For large N , the variance of θ̂ will be

N−1E
(
tj − Φ(a + bxj)

)2
.

Since the expectation of tj conditional on xj is Φ(a + bxj), this expression reduces to

N−1E
(
Φ(a + bx)

(
1− Φ(a + bx)

))
, (21)

which can easily be evaluated numerically. The corresponding expression for the naive
estimator is N−1θ(1− θ).

Finally, consider quantile estimation. The optimal regressor is the conditional expec-
tation of (1/f̈)

(
I(q̈α − yj)−α

)
. Since 1/f̄ is just a constant, it is unnecessary to include it

in the optimal regressor, which is therefore

E
((

I(q̄α − y)− α
)|x

)
.

This regressor would never be available in practice, but it may be approximated by

Φ

(
q̄α − µ̂− ρ̂σ̂x

σ̂(1− ρ̂2)1/2

)
− Φ

(
q̄α − µ̂

σ̂

)
. (22)
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This control variate is very similar to (20), the approximately optimal one for tail-area
estimation, with q̄α replacing yc and the signs of the arguments of Φ(·) changed because
we are now interested in a lower rather than an upper tail. Asymptotically, using (22) as a
control variate when estimating qα will produce the same proportional gain in efficiency as
using (20) when estimating α.

In many cases, notably for tail areas and quantiles, regressions (6) and (14) will have
error terms that are conditionally heteroskedastic. It might therefore seem appropriate to
correct for this heteroskedasticity by using some form of weighted least squares. However,
this turns out not to be the case. The problem is that weighted least squares will in general
be consistent only if the regression model is correctly specified, that is if g(T, γ) in (14)
is equal to τ∗ for some γ. If g(T, γ) is not specified correctly, the error terms will not
be orthogonal to all possible functions of T . Since the weights will necessarily be chosen
as functions of T , they may well be correlated with the error terms, thereby biasing the
estimate of θ. In contrast, as we showed in Section 2, OLS yields a consistent estimate of
θ under very weak conditions. Unless one knows enough about y to construct a regressor
that is actually optimal, OLS appears to be the procedure of choice.

How much the number of replications can be reduced by the use of control variates,
while maintaining a given level of accuracy, varies considerably. Table 1 presents some
illustrative results for the case where x and y are both N(0, 1). Each entry in the table is
the ratio of the (asymptotic) variance for the naive estimator to that for a control variate
estimator. This ratio is the factor by which the number of replications needed by the former
exceeds the number needed by the latter. For µ and σ2, only the ratio for the optimally-
chosen control variate (OCV) estimator is reported, and these entries are simply (1− ρ2)−1

and (1 − ρ4)−1 respectively. For the tail areas and quantiles (the same results apply to
both), the ratio for the OCV estimator is reported first, followed by the ratio for the binary
control variate (BCV) estimator discussed above.2 Entries for the OCV estimator for tail
areas (and quantiles) are the ratio of Φ(α)

(
1−Φ(α)

)
to expression (21), which was evaluated

numerically. Entries for the BCV estimator were calculated in a similar fashion.
It is evident from Table 1 that the gains from using control variates can be very

substantial when y and x are highly correlated. They are greatest when estimating the
mean and least when estimating small-probability tail areas and quantiles, where the OCV
estimators do however always outperform the BCV ones quite handily. Provided that
ρ2 ≥ .9, a level of correlation between the control variate and the variable of interest that is
not unrealistic, there is always a gain of at least a factor of two when the optimally-chosen
control variate is used. Thus it appears that it will often be worthwhile to use control
variates.

2 The results for the binary control variate assume that the value of γ used to construct
it is the same as the probability θ that y > yc. The binary control variate will work less well
when this assumption is not satisfied. It is always approximately satisfied when estimating
quantiles, and can be approximately satisfied when estimating tail areas if one sets γ = θ̄.
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5. Simulation Evidence
Since the theoretical arguments of this paper have all been asymptotic, one may well

wonder whether the various CV estimators that we have discussed are in fact reliable for
reasonable values of N . By “reliable” we mean that δ% confidence intervals based on normal
theory and the estimated standard errors for θ̂ should cover the true values approximately
δ% of the time. One may also wonder whether the gains from the use of control variates
implied by the theory of Section 4 can actually be realized in practice.

To investigate these questions, we performed several Monte Carlo experiments designed
to simulate the commonly encountered situation in which y is an estimator or test statistic
and x is the random variable to which it tends asymptotically. Each replication in one
of these experiments corresponds to a Monte Carlo experiment with N replications, in
which various properties of y are estimated using functions of x as control variates. In
the experiments x was distributed as N(0, 1) and y was distributed as Student’s t with
numerator equal to x and number of degrees of freedom d equal to 5, 10 or 30. As d
increases, the correlation between x and y increases, and the distribution of y becomes
closer to N(0, 1). We performed 10,000 replications for N = 500 and 5000 replications for
each of N = 1000 and N = 2000. Some of the results are shown in Table 2.

Regression-based control variate methods evidently work extremely well for estimation
of the mean. The 95% confidence intervals always cover the true value just about 95%
of the time, with the CV confidence intervals just as reliable as the naive ones. The CV
estimates are however much more efficient than the naive ones, by factors that are almost
exactly what the theory of Section 4 predicts given the observed correlations between x and
y. (For ρ2 = .850, .940 and .982 respectively, 1/(1− ρ2) is 6.67, 16.67 and 55.56.) Thus in
this case, the fact that y is Student’s t rather than normal does not seem to matter at all.

The results for estimation of the variance are not so good. The 95% confidence intervals
now tend to cover the true value somewhat less than 95% of the time, especially when d is
small. This is true for both the naive and CV estimates, but is more pronounced for the
latter. The efficiency gains are also much less than one would expect given the observed
correlations between x and y. For example, if y were normally distributed, a ρ2 of .982 (for
the case where d = 30) should imply that the CV estimate of variance is about 28 times as
efficient as the naive estimate, while in fact it is about 9.5 times as efficient. Nevertheless,
the gains from using control variates are substantial except when d = 5.

The results for tail area estimation depend on what tail is being estimated. Every
technique works better as θ gets closer to 1

2 , and no technique works well when θ is very
close to zero or one, unless N is extremely large. The table shows results for what is called
the 2.5% tail, but is really the tail area corresponding to the .025 critical value for the
standard normal distribution. Thus the quantities actually being estimated are .0536 when
d = 5, .0392 when d = 10, and .0297 when d = 30. In addition to the naive estimator,
there are three different control variate estimators: BCV1 uses a binary control variate with
γ = .025, BCV2 uses a binary control variate with γ = θ̄, and OCV uses the approximately
optimal control variate (20). OCV and BCV1 are about equally reliable, and BCV2 slightly
less so. They all have a tendency to cover the true value less than 95% of the time when
N = 500, especially for d = 30, presumably because the tail area being estimated is smallest
in that case. The gains from using control variates are not as great as Table 1 would suggest,
but are by no means negligible. As expected, the OCV always works best, followed in all
but one case by BCV2, then BCV1, and finally the naive estimator.
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Finally, we come to quantile estimation. The principal determinant of the performance
of quantile estimators seems to be min

(
α, (1− α)

)
N , the number of replications for which

y lies below (or above, if α > 0.5) the quantile being estimated. None of the estimators is
very reliable when estimating quantiles far from 0.5, perhaps because the kernel estimates
of f̄ are not very accurate. In every case shown in the table, the 95% confidence interval
covers the true value less than 95% of the time, sometimes quite a lot less. However, the
CV estimators are generally only a little bit worse than the naive estimator in this respect.

For the .05 quantile, the OCV estimator always outperforms the BCV and naive esti-
mators, but not by as much as Table 1 suggests that it should. It may be worth using the
OCV estimator in this case, but one must be a little cautious in drawing inferences even
when N is several thousand. For the .01 quantile, the OCV estimator actually performs
worse than the naive estimator in three cases, and worse than the BCV estimator in four.
Remember that when α = .01, min

(
α, (1−α)

)
N is only 5 when N = 500 and only 10 when

N = 1000, so it is not surprising that asymptotic theory does not work very well. Part of
the problem is that for small values of αN the OCV estimator is sometimes quite severely
biased away from zero. Thus when min

(
α, (1 − α)

)
N is less than about 20, these results

suggest that it is probably better to use the BCV estimator instead of the OCV one. Since
the former has the additional advantage of being easier to compute, some may prefer to use
it all the time.

6. An Example
In this section, we illustrate some of the techniques discussed in this paper by using

them in a small Monte Carlo experiment. The experiment concerns pseudo-t statistics for
OLS estimators based on a heteroskedasticity-consistent covariance matrix estimator, or
HCCME for short; see White (1980). The model considered is

y = Xβ + u, E(uu>) = Ω (23)

where X is n × k and Ω is an n × n diagonal matrix that is known to the experimenter
but is treated as unknown for the purpose of estimation and inference. The true covariance
matrix of the OLS estimates is

V (β̂) = (X>X)−1X>ΩX(X>X)−1.

There are various HCCME’s for this model, which all take the form

V̂ (β̂) = (X>X)−1X>Ω̂X(X>X)−1, (24)

but differ in how Ω̂ is calculated. For the present experiment, we define Ω̂ as a diagonal
matrix with typical diagonal element equal to

(
n/(n − k)

)
û2

t , where ût is the tth residual
from OLS estimation of (23). Other choices for Ω̂ may work better in finite samples; see
MacKinnon and White (1985).

The statistics we examine are pseudo-t statistics of the form

β̂i − βi0

(V̂ii)1/2
, (25)

where β̂i is the OLS estimate of βi for some i, βi0 is the value of βi used to generate the
data, and (V̂ii)1/2 is the square root of the ith diagonal element of (24). We assume that
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the ut’s are normally and independently distributed. Thus if (V̂ii)1/2 in (25) were replaced
by (Vii)1/2, the true standard error of β̂i, the statistic (25) would be distributed as N(0, 1).
This infeasible test statistic, which corresponds to what we called x in Section 4, was used
to generate control variates for the actual test statistic (25), which corresponds to what we
called y, and of which the finite-sample distribution is in general unknown.

We performed experiments for a particular case of (23) with two normally and inde-
pendently distributed regressors and a constant term, with heteroskedasticity generated
by a random coefficient model as in MacKinnon and White (1985). In Table 3 we report
results only for one particular βi. These results are of course specific to that parameter
of the particular model and data generating process that we used. What we are primarily
interested in is the relative performance of the CV and naive estimators as a function of
the sample size n. We used 20,000 replications for n = 25 and n = 50, 10,000 for n = 100
and n = 200, 5000 for n = 400 and n = 800 and 2500 for n = 1600 and n = 3200. It makes
sense to consider fairly large values of n, since HCCME’s are most often used in the context
of cross-section data.

The first line of Table 3 shows that the correlation between the test statistic y and the
control variate x increases very substantially as the sample size n increases. This is of course
to be expected, since y is equal to x asymptotically. It means that the efficiency of the CV
estimator increases relative to that of the naive estimator as n increases. That is why we can
get away with reducing the number of replications by a factor of two every time n increases
by a factor of four. In fact, if we were interested only in means and standard deviations,
we could make N proportional to 1/n and still obtain results for large sample sizes that
would be just as accurate as for small ones. Since the cost of a Monte Carlo experiment is
in most cases roughly proportional to N times n, that would be very nice indeed. However,
for estimating test sizes and quantiles it appears that we cannot reduce N that rapidly;
instead, making N approximately proportional to n−1/2, as we have done, seems to work
quite well. For n = 3200, the case for which experimentation is most expensive and the
control variates most useful, it would require between 7.5 and 618 times more replications
to achieve the same accuracy using naive estimation as using control variates.

7. Conclusion
This paper has discussed a very simple, and yet very general, method for using the

information in control variates to improve the efficiency with which quantities of interest
are estimated in Monte Carlo experiments. The information in the control variates can be
extracted simply by running a linear regression and recording the estimate of the constant
term and its standard error. This technique can be used whenever one or more control
variates with a known mean of zero can be computed along with the quantities of interest.
It can also be used when two or more estimates of the latter are available on each replication,
as in the case of antithetic variates.

This regression technique for using control and antithetic variates is not new, although
it does not seem to have been used previously in econometrics. There are several new results
in the paper, however. First of all, we have proposed a new way to estimate quantiles by
modifying this regression procedure. Secondly, we have proposed ways to obtain approxi-
mately optimal control variates in many cases of interest, including the estimation of tail
areas and quantiles. Finally, we have obtained a number of simulation results which suggest
that these methods will generally work quite well in practice, provided the number of repli-
cations is not too small, and that they can dramatically reduce the number of replications
required to obtain a given level of accuracy.
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Table 1

Potential Efficiency Gains from Control Variates

Quantity
Estimated ρ2 : .50 .60 .70 .80 .90 .95 .99

µ 2.00 2.50 3.33 5.00 10.00 20.00 100.00

σ2 1.33 1.56 1.96 2.78 5.26 10.26 50.25

α = .50 1.50 1.69 1.97 2.44 3.48 4.95 11.10
1.33 1.47 1.66 1.99 2.72 3.75 8.12

α = .25 1.45 1.62 1.88 2.32 3.29 4.67 10.45
1.29 1.41 1.59 1.90 2.58 3.55 7.62

α = .10 1.33 1.48 1.69 2.06 2.89 4.08 9.09
1.21 1.31 1.46 1.71 2.30 3.13 6.66

α = .05 1.26 1.38 1.56 1.88 2.62 3.68 8.17
1.16 1.24 1.36 1.59 2.11 2.85 6.05

α = .025 1.20 1.30 1.46 1.74 2.40 3.35 7.41
1.11 1.18 1.29 1.49 1.95 2.62 5.50

α = .01 1.14 1.22 1.35 1.59 2.16 3.00 6.61
1.08 1.13 1.22 1.38 1.78 2.37 4.91

Notes:

Each entry is the ratio of the (asymptotic) variance for the naive estimator to that for the
control variate estimator. When there are two entries, the first is for the optimally-chosen
control variate and the second is for the binary control variate.
Both x and y are assumed to be N(0, 1).
Results for estimation of tail areas apply to quantile estimation as well.
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Table 2

Performance of CV Estimators with Finite N

D.F. 5 10 30
N 500 1000 2000 500 1000 2000 500 1000 2000

ρ2 .853 .851 .850 .940 .940 .940 .982 .982 .982

Mean:
95% naive 94.7 95.0 95.2 95.2 95.4 95.0 94.8 94.9 94.8
95% CV 95.3 94.6 95.2 95.3 95.8 95.3 94.6 95.0 95.5
Ratio 6.72 6.60 6.54 16.70 16.65 17.54 55.08 57.15 58.22

Variance:
95% naive 90.9 92.4 92.9 94.1 94.9 94.9 94.6 94.5 94.6
95% CV 88.7 90.2 91.6 92.5 93.4 93.7 93.2 94.0 94.2
Ratio 1.36 1.28 1.40 2.92 2.91 2.88 9.22 9.59 9.46

2.5% Tail:
95% naive 94.7 94.0 94.3 94.6 96.2 94.8 92.2 95.8 95.2
95% OCV 93.9 94.5 94.6 93.3 95.4 95.1 92.9 94.4 94.4
95% BCV1 94.0 94.5 94.9 93.3 95.1 95.0 93.0 94.5 94.4
95% BCV2 93.7 94.2 94.1 92.7 94.7 95.0 91.3 93.3 93.8
Ratio OCV 1.67 1.69 1.71 2.00 1.99 1.99 2.91 2.93 2.95
Ratio BCV1 1.30 1.31 1.33 1.56 1.54 1.55 2.31 2.29 2.34
Ratio BCV2 1.45 1.45 1.46 1.69 1.70 1.73 2.30 2.35 2.37

5% Quantile:
95% naive 91.3 92.2 93.1 91.6 93.5 93.6 92.4 93.1 93.1
95% OCV 90.4 91.8 91.9 90.7 92.9 93.1 91.8 92.9 93.7
95% BCV 90.4 91.9 92.0 90.8 93.0 92.9 91.3 93.2 93.9
Ratio OCV 1.60 1.63 1.65 2.15 2.15 2.24 3.59 3.66 3.81
Ratio BCV 1.41 1.44 1.43 1.83 1.83 1.85 2.84 3.00 3.04

1% Quantile:
95% naive 86.1 88.4 91.4 86.6 89.1 91.7 87.0 89.9 91.0
95% OCV 82.3 86.9 90.7 83.3 88.0 91.0 84.4 88.9 90.0
95% BCV 84.6 87.8 90.4 84.4 88.1 91.1 84.0 89.3 89.7
Ratio OCV 0.29 0.98 1.08 0.63 1.25 1.30 1.76 1.95 1.99
Ratio BCV 1.00 1.07 1.09 1.19 1.25 1.26 1.71 1.80 1.79

Notes:
OCV means the “optimally chosen” control variate and BCV means the binary control
variate. For tail-area estimation, BCV1 means the binary control variate with γ equal to
the nominal size of the tail, and BCV2 means the binary control variate with γ = θ̄.
Entries opposite “95% naive”, “95% CV”, and so on represent the percentage of the time
that calculated 95% confidence intervals covered the true value.
Entries opposite “Ratio” are the ratios of the mean square error of the naive estimator to
that of the specified CV estimator.
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Table 3

Performance of Pseudo-t Statistics Based on HCCME

n 25 50 100 200 400 800 1600 3200
N 20000 20000 10000 10000 5000 5000 2500 2500

ρ2 0.886 0.938 0.963 0.980 0.988 0.994 0.997 0.998

Mean:
Naive −0.004 −0.002 −0.002 0.002 −0.011 −0.045 −0.003 0.008

(.0093) (.0082) (.0109) (.0105) (.0145) (.0142) (.0202) (.0199)
CV 0.002 0.004 −0.001 0.002 0.005 0.001 0.002 0.000

(.0031) (.0021) (.0021) (.0015) (.0016) (.0011) (.0012) (.0008)

Std. Dev.:
Naive 1.312 1.163 1.092 1.049 1.022 1.001 1.011 0.994

(.0081) (.0063) (.0082) (.0078) (.0102) (.0099) (.0144) (.0135)
CV 1.324 1.161 1.086 1.044 1.029 1.012 1.007 1.003

(.0058) (.0035) (.0037) (.0025) (.0026) (.0019) (.0020) (.0013)

Test size:
Naive 9.845 7.480 6.540 5.980 5.160 5.560 4.880 5.440

(0.211) (0.186) (0.247) (0.237) (0.313) (0.324) (0.431) (0.454)
BCV 9.848 7.560 6.494 6.029 5.127 5.283 5.229 5.252

(0.158) (0.129) (0.159) (0.139) (0.173) (0.148) (0.154) (0.130)
OCV 9.919 7.535 6.325 6.005 5.125 5.197 5.099 5.186

(0.143) (0.117) (0.145) (0.126) (0.155) (0.130) (0.130) (0.111)

Crit. value:
Naive 2.601 2.318 2.149 2.042 1.982 1.956 2.008 1.936

(.0213) (.0172) (.0205) (.0192) (.0255) (.0240) (.0373) (.0325)
BCV 2.610 2.300 2.134 2.058 2.000 1.994 1.979 1.970

(.0193) (.0144) (.0155) (.0128) (.0158) (.0141) (.0172) (.0132)
OCV 2.615 2.305 2.136 2.051 2.005 1.986 1.975 1.973

(.0186) (.0137) (.0144) (.0118) (.0144) (.0124) (.0152) (.0119)

Notes:

Estimated standard errors are in parentheses.
“Test size” is the estimated size of a nominal 5% one-tail test, in per cent.
“Crit. value” is the estimated critical value for a 5% two-tail test.
“BCV” denotes estimates using the binary control variate; when estimating test size, the
naive estimate of test size was used to construct the binary control variate. “OCV” denotes
estimates using the approximately optimal control variate.
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