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Abstract

We show that the standard results for finitely repeated games do not survive the
combination of two simple variations on the usual model. In particular, we add a small
cost of changing actions and consider the effect of increasing the frequency of repetitions
within a fixed period of time. We show that this can yield multiple subgame perfect
equilibria in games like the Prisoners’ Dilemma which normally have a unique equilibrium.
Also, it can yield uniqueness in games which normally have multiple equilibria. For
example, in a two by two coordination game, if the Pareto dominant and risk dominant
outcomes coincide, the unique subgame perfect equilibrium for small switching costs and
frequent repetition is to repeat this outcome every period. Also, in a generic Battle of
the Sexes game, there is a unique subgame perfect equilibrium for small switching costs.



1 Introduction

The basic facts about subgame perfect equilibria in finitely repeated games are well
known. If, as in the Prisoners’ Dilemma, the stage game has a unique Nash equilibrium,
then the unique subgame perfect equilibrium is to repeat this stage game equilibrium
every period. If, as in coordination or Battle of the Sexes games, the stage game has
multiple equilibria, then it is possible to have periods in which the play does not constitute
a Nash equilibrium of the stage game. In particular, if the stage game equilibria are
Pareto ranked, one obtains a folk theorem as the number of repetitions grows large.!
Also, given the usual focus on total (or average), not discounted, payoffs in such games,
these results depend only on how many times the game is played, not the length of time
over which these repetitions occur.

In this paper, we consider two seemingly small changes from the usual framework and
show that these changes overturn both of these results. First, we add a small cost to
changing actions from one period to another. To keep the analysis as close as possible to
the standard repeated game model, we treat this cost as constant over time and across
players and focus on the case where it is “small.” There are several reasons for studying
such a cost. First, it is a simple way of capturing one type of bounded rationality.
If playing a given action is complex, then changing from one action to another may
be “hard.” Second, in many economic contexts, changing actions involves real costs.
For example, in one of the games we consider, firms choose between investing and not
investing in each period. It seems quite reasonable to believe to switching from not
investing to investing requires a certain fixed set up cost. Similarly, shutting down an
investment may also incur costs. In short, the existence of such costs seems plausible
for many economic settings, so the inclusion of small switching costs seems to be a very
natural “robustness check” for the standard finitely repeated game model.

The switching cost creates a role for the second factor we consider, namely frequent
repetition. To understand the idea, suppose that the game is played in continuous time
but that actions can only be changed at fixed intervals. We fix the length of time the
overall game is played and vary the number of periods (or dates at which actions can be
changed) and hence the length of each period (or the length of time for which actions
are fixed). As the frequency of play increases, the length of a period and hence the
payoffs in a period shrink relative to the switching cost. To see why this is important,
note that if the length of the period is sufficiently small, even a tiny switching cost is
too large to make a change of action worthwhile if it only leads to a one—period gain.
It is important to emphasize that because the total length of time the repeated game
is played is held constant throughout, it is only payoffs per period which shrink relative
to the switching cost, not payoffs over the entire horizon. In fact, as we explain in the

!See Benoit and Krishna [1985] for details.



conclusion, our results continue to hold if we increase the length of time the game is
played while shrinking the length of each period. Hence the switching cost can go to zero
relative to total payoffs without affecting our analysis.

We show that small switching costs in frequently repeated games overturn both of the
standard results for finitely repeated games. In particular, we can have multiple subgame
perfect equilibria in games like the Prisoners’ Dilemma and unique equilibria in games
like coordination or Battle of the Sexes games.

To be more specific, let ¢ be the cost to changing actions and A the length of a
period. The length of time the overall repeated game is played is M, independent of
A, so the number of periods is M/A. Our results all take the form of showing that for
any sufficiently small ¢ > 0, there is a &' > 0 such that our equilibrium results hold for
A € (0, Ke). In other words, as long as the switching costs are small enough, we get a
particular result as long as the game is repeated frequently enough.

In the Prisoners’ Dilemma, the result we get is that under certain conditions on the
payoffs, there are multiple subgame perfect equilibria. In particular, cooperation in each
of the finitely many periods is possible in a subgame perfect equilibrium. In two by two
coordination games, we show that if the Pareto dominant and risk dominant outcomes
coincide, then the unique subgame perfect equilibrium outcome consists of repeating this
one-shot outcome in every period. If the Pareto and risk dominant outcomes differ, this
result is no longer true — there will necessarily be multiple equilibria. In generic Battle
of the Sexes games, we obtain a unique subgame perfect equilibrium outcome. While
we give the precise statement later, loosely, the outcome here is that the player whose
less preferred equilibrium is worse gets his favorite equilibrium every period. Finally, we
show that the coordination game results generalize to an n player coordination game,
the Investment Game, studied by Gale [1995].

To see the intuition, note that for any strictly positive switching cost, there will be
a point near enough to the end of the game that it is not optimal to change actions
regardless of what actions are being played. In this sense, all action profiles become
frozen. As we move further away from the end, certain changes of action become optimal
and so some profiles “melt,” while others remain frozen. In this phase of the game,
the players have an incentive to push play toward frozen profiles which benefit them.
In the repeated Prisoners’ Dilemma, mutual cooperation can be such a profile, while in
coordination games, the Pareto dominant outcome can play this role. In Battle of the
Sexes games, of course, the players will disagree about which profile they favor. The key
is whether such “good” profiles are frozen earlier in the game than less desirable profiles.
If the good profiles are frozen sooner, then the less desirable profiles can be abandoned
in favor of the better payoffs, regardless of whether these better payoffs would be a Nash
equilibrium without switching costs. In the Prisoners’ Dilemma, this means that the
usual backward induction argument breaks down, allowing cooperation throughout the



game. In coordination games, we get uniqueness because the players anticipate that the
“good” equilibrium will eventually dominate and so have an incentive to start there and
avoid switching costs later. Similarly, in generic Battle of the Sexes games, one player
will necessarily be able to push the outcome to his favorite equilibrium.

In addition to the papers mentioned above, there are several strands of the literature
related to our work. First, a number of economic models have studied the effect of
switching costs for consumers on competition between firms. See, for example, Beggs
and Klemperer [1992], Padilla [1995], or Wang and Wen [1996]. Second, the literature on
delay in bargaining and the Coase conjecture (such as Gul and Sonnenschein [1988]) has
studied the effect of shrinking the length of the period. Third, there are many results on
the robustness of the risk dominant outcome in coordination games, often with emphasis
on the case where risk dominance and Pareto dominance coincide. See Carlsson and
van Damme [1993], Kandori, Mailath, and Rob [1993], Young [1993], and Robson [1994],
for example. Fourth, our paper can be seen as studying a particular stochastic game
which is “close” to a repeated game and considering the effect of the dynamic aspect on
the set of equilibrium outcomes. As discussed by Dutta [1995a, 1995b], some standard
repeated game results do not carry over to the broader class of stochastic games, even to
some games arbitrarily close to repeated games. What is new here is the consideration
of finite horizons (instead of infinite repetition), the role of frequent repetition, and the
particularly simple nature of the dynamic aspect (the switching cost). Similarly, it is
well known that the addition of small amounts of incomplete information into a repeated
game can have dramatic effects, potentially enabling one party to obtain Stackelberg
payoffs, as shown by Fudenberg and Levine [1989]. While our results are reminiscent of
theirs, the theorems are very different.

Finally, in more directly related work, Lagunoff and Matsui [1995] consider the effect
of changing the usual timing assumptions of repeated games. However, their prime focus
is on the case where agents cannot change actions simultaneously, the opposite of what
we focus on, and they have no switching costs. Despite this, their results on coordination
games are similar to ours and use similar reasoning in some steps. In Lagunoff and Matsui
[1995], in Gale [1995], and in our coordination game results, the key step is to show that
if one player moves to the risk dominant and Pareto dominant outcome, he can force all
subsequent play to that outcome. The models differ in what drives this conclusion, but
the analysis given this fact is similar.?

The next section contains the model. Section 3 gives our results on obtaining unique
equilibria in games which have multiple equilibria in the absence of switching costs. We
give some reasonably general results for two by two games and one result for a more

2Burdzy, Frankel, and Pauzner [1996], like Lagunoff and Matsui, consider a model without simulta-
neous changes of actions which generates risk dominance in coordination games. While their framework
i1s much more complex than ours, we suspect that the driving force behind the results is related.



“economic” example, namely Gale’s [1995] Investment Game. Section 4 gives our results
on obtaining multiple equilibria in games with a unique equilibrium in the absence of
switching costs. Concluding remarks are offered in Section 5.

2 Model

Fix a finite normal form game, G = (N, A, u) where N = {1,... ,n} is the set of players,
A; the set of pure strategies for 7, and u; : A — R the payoff function for ¢. This game
is finitely repeated during a finite time interval of length M > 0. The length of time
between periods is denoted A, so the number of periods is M/A (hence all references to
A should be understood to involve the assumption that M/A is an integer). Formally,
for any A such that M/A is an integer, G is the game G repeated M/A times where
the payoffs are taken to be total payoffs divided by A. That is, the payoffs in a given
period are A times the payoff from the matrix. Let G% be the same game as G but
where every change of action “costs” ¢. The assumption that both players have the same
switching cost is a normalization and hence is without loss of generality.

Throughout, we number periods from the end, so period 1 is the last period, 2 is the
next to last, etc. We use t to denote a period number, ¢ a length of time, and 7 for the
length of time remaining in the game. In particular, note that tA is the length of time
it takes for ¢ periods to pass while at period ¢, the length of time remaining, 7, is tA.

3 Uniqueness Results

In the first subsection, we consider two by two games with two strict Nash equilibria and
give sufficient and almost necessary conditions for a generic such game to have a unique
equilibrium outcome for small switching costs and frequent repetition. In the following
subsection, we turn to Gale’s [1995] Investment Game as a more economic example.

3.1 Two by Two Games

Let Here n = 2 and A; = {L, R}. We denote the payoffs in the stage game G by

L R
L a1, a2 dlch
R clde blvbQ



Throughout, we wish to characterize equilibria of “generic” games and so will rule out
a variety of linear relationships among these payoffs. Also, because we are interested
in games which have multiple equilibria in the absence of switching costs, we assume ¢
has two strict Nash equilibria, taken to be (L, L) and (R, R) without loss of generality.
Hence we assume a; > ¢; and b; > d; for 1 = 1,2. For generic payoffs, the players cannot
be indifferent between these two equilibria. Without loss of generality, we assume that
player 1 prefers (L, L) to (R, R), so a; > by. Finally, for reasons that will be clear shortly,
we make the further genericity assumption that a; — ¢; # b; — ¢; for any 1, .

We will call this a coordination game if player 2 also prefers (L, L) to (R, R) — that
is, if ay > by — and a Battle of the Sexes game if ay < bs.

Finally, say that L is risk dominant for player ¢ if L is the best reply to a 50-50
mixture by the opponent — that is, if a; — ¢; > b; — d;. Say that R is risk dominant for
¢ if the opposite strict inequality holds. By our genericity assumption, one action must
be risk dominant for each player.

It is easy to see that GGa has many equilibria. In particular, any (rational) convex
combination of the payoffs to (L, L) and (R, R) can be achieved by a subgame perfect
equilibrium of G'o for A sufficiently small. In addition, there are equilibria in which
(L, R) or (R, L) are played for many periods.

On the other hand, we have:

Theorem 1 Assume G is a coordination game. If L is risk dominant for each player,
then there is a € > 0 and K > 0 such that for almost every e € (0,¢), for all A € (0, Ke),
the unique subgame perfect equilibrium outcome of G is (L, L) every period.

Also:

Theorem 2 Assume GG is a Battle of the Sexes game. Then there is a e >0 and K >0
such that for almost every ¢ € (0,€), for all A € (0,Ke), G%\ has a unique subgame
perfect equilibrium outcome. If ay — ¢y > by — dy, this unique outcome is (L, L) every
period. If ay — ey < by —dy, it is (R, R) every period.

Before explaining the proofs, we offer a few comments. First, the restriction to “almost
all” ¢ is used to avoid certain ties in payoffs. We use this only to ensure that we do not
have a player indifferent between paying the switching cost and not doing so at a certain
key juncture. This indifference can create new equilibria under certain conditions and
we simplify matters by eliminating them. To understand this restriction, recall that the



game is played over the time interval [0, 1] but changes of action can only occur every A
units of time. Given ¢, there is a key length of time from the end, say ¢*, such that the
agent would strictly prefer not changing his action when the time remaining is strictly less
than *. Intuitively, it would be surprising if the dates at which actions can be changed
happened to be such that a decision is made when the time remaining is exactly (*. The
restriction to almost all ¢ is used only to ensure that this does not happen.

Second, the theorems do not imply that there is a unique subgame perfect equilibrium,
only a unique outcome. It turns out that we do not need to work out equilibrium strategies
for every possible subgame to characterize the unique outcomes.

Finally, note that our constraint on A is that it is less than some multiple of €. The
proof we give actually shows that given ¢, if A is sufficiently small, then the stated result
holds. To see why “sufficiently small” must actually be below some constant times ¢ as
stated in the theorem, suppose we have shown the result for pair of parameter values,
say ¢; and Ay. Because the argument is based on backward induction, M is irrelevant
and so the result holds for any M such that M/A; is an integer. Suppose we multiply
e1, Ay, and M by a constant k. This cannot affect the result, of course, since this simply
rescales all the payoffs in the game. Again, the irrelevance of M then means that the
result must hold for the original M, switching costs of key, and a period length of kA,.
Consequently, we see that the only relationship between ¢ and A that can be relevant is
their ratio.

Full proofs of these results are contained in the Appendix, but it is not hard to see
the basic intuition. First, consider the coordination game result. For simplicity, suppose
¢ci=d;=0,a;, =2, and b; =1 for 1 = 1,2. It is easy to see that L is risk dominant for
both players. Suppose A is very small so that players can change actions very frequently.
Consider a period near the end of the game for which both players used action L in the
previous period. Clearly, if we are close enough to the end of the game, then even if :
expects the other player to switch actions, he will not change his action. If the length
of time remaining is 7, the maximum payoff gain ¢ can expect for changing actions is 7,
so if 7 < ¢, he will not change actions. Similarly, suppose both players used action R
in the previous period. Again, if the length of time remaining is sufficiently small, ¢ will
not change actions even if he expects his opponent to change. Notice, though, that if 7
is the length of time remaining, the maximum payoff gain is now 27 since switching to
match the opponent would earn 27 while being miscoordinated earns 0. Hence we can
only be sure that neither would switch if 7 < ¢/2. In this sense, both the (L, L) and
(R, R) profiles are eventually frozen in the sense that it cannot be optimal for players to
switch away from either profile, but the (L, L) profile is frozen earlier.

So suppose the length of time remaining is between ¢ and /2. As shown above, if
both played L the previous period, neither will change actions for the rest of the game.
Suppose instead that one player played L the previous period while the other played R.



The argument above shows that 7 < ¢ implies the player who used L will not find it
optimal to change actions, regardless of his beliefs about the opponent. Because of this,
7 > ¢/2 implies that the player who used R in the previous period must switch actions.

To complete the argument, suppose the length of time remaining 7 is slightly more
than e. Suppose one player used L in the previous period. The above establishes that if
he continues with L just a little while longer, till the time remaining falls below ¢, then
the outcome will be (L, L) from then on. This may cause the player to earn zero until
the time left is e, but if the length of time he earns zero is small enough, the saving of
switching costs and the ability to earn 2 for the last part of the game must make this
worthwhile. As a result, we see that the “commitment” to L actually extends earlier in
the game to some point where more time than e is left. Because of this, the conclusion
that when one played L and the other played R the previous period, the latter switches
also extends to earlier in the game. It is not hard to show that this works backward to
the very beginning of the game. That is, a player who plays L in the first period always
plays it thereafter. Consequently, if only one player uses action L in the first period, the
other will certainly match this in the second period and from then on. It is not hard to
show that in light of this, both players must start with action L.

The result for Battle of the Sexes is based on a similar intuition. To understand the
differences, consider the following Battle of the Sexes game:

L R
L 3,2 0,0
R 0,0 1,5
The analysis is more complex than the above, so we give a less detailed explanation.
Intuitively, the outcome hinges on what happens when the profile (L, R) is reached at
a point late in the game but before it is frozen. This profile is critical because it is
reached when each player uses the action associated with his preferred equilibrium and
so reactions here will tell us which player can force the other to his favorite outcome.
Note that if the time remaining is less than ¢, then it will not be worthwhile for player
1 to switch actions even if he knows 2 will not change. On the other hand, if the time
remaining is greater than ¢/2, it will be worthwhile for player 2 to change actions. Hence
if the time remaining is between these two, player 1 can force the outcome to (L, L) by
playing L. Just as above, this effect works backward, enabling him to force this outcome
from outset.

Given that the Battle of the Sexes result needs no additional condition on payoffs, it
is natural to wonder if the risk dominance of L is needed for the coordination game result.
We suspect it is not necessary, but some condition along this line certainly is necessary.
To see the point, consider a symmetric coordination game (that is, a; = ay = «a, etc.)
and suppose R is risk dominant for both players, so b — d > a — ¢. It is not difficult to
construct two subgame perfect equilibria, one with outcome (R, R) every period and the
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other with outcome (L, L) in every period.> The key to the risk dominance condition is
that the risk dominant profile is the one which is frozen first in the sense that no player
would have an incentive to switch away regardless of what the opponent does. Hence
there will necessarily be a point late in the game at which any “mismatch” of actions
leads the players to the risk dominant outcome. That is, in this critical phase of the game,
if one played L and the other played R in the previous period, the one who used the
risk dominant action will never change actions, so the other player must switch. When
risk dominance and Pareto dominance coincide, each player has an incentive to play the
risk dominant action in order to achieve precisely this effect. When risk dominance and
Pareto dominance differ, each has an incentive to avoid the risk dominant action to avoid
this effect. On the other hand, if the opponent is expected to play the risk dominant
action, there is no gain to avoiding it oneself, so there are multiple equilibria in this case.

Hence we find the surprising conclusion that it is easier to get uniqueness when
the players have different preferences over equilibria than when they agree on which
equilibrium is best. One way to understand this is to note that the introduction of
switching costs tends to favor certain outcomes because of the way some profiles are
frozen earlier than others. When players agree on which profile is best, it may be that
the switching costs favor a different outcome. In this case, we cannot obtain uniqueness.
On the other hand, when the players disagree, one of the players must have an incentive
to exploit the effect created by the switching costs, so we do get uniqueness.

It is worth noting that these result do not require a “large” deviation from the usual
finitely repeated game model. Returning to the coordination game payoffs used above for
illustrative purposes, it is not hard to show that the unique subgame perfect equilibrium
outcome is (L, L) in every period whenever ¢ > 2A. In other words, we only require
that periods are short enough that a change of action which increases one’s payoff from
the worst possible (0) to the best possible (2) but does so only for a single period is
not worthwhile. More generally, as both theorems indicate, we only need /A to be
sufficiently large.

3.2 The Investment Game

In this subsection, we turn to a more economic example, an n player coordination game
studied by Gale [1995]. Now there are n players and two actions each, called invest (/)
and wait (W). The payoff to waiting is always 0, while the payoff to investing depends
on the total number investing. Let a(k) be the payoff to an investor when k agents
(including himself) invest. Assume that a(n) > 0 > «(1) and that a(n) > a(k) > a(1)

3In both cases, the strategies are such that each player plays his part of the equilibrium, switching
to this action if need be, for every history which is not too late in the game.



for all £ <n.

This game is very similar to that considered by Gale [1995]. Gale’s model differs
in four ways. First, he considers an infinite horizon with discounting. Second, he has
stronger assumptions on a(-).* Third, he has no switching costs. Finally, he makes the
assumption that once a player invests, he must always invest thereafter. In effect, Gale
assumes that the cost of switching from waiting to investing is zero, while the cost of
switching in the other direction is infinite.

For our purposes, Gale’s main result is the following. Fix any ¢ > 0 and let na(¢)
be the supremum over the set of subgame perfect equilibria of the probability that the
length of time till all agents invest is greater than . Then for any n € (0,1), for all A
sufficiently small, na(¢) < n. That is, if A is sufficiently small, all agents invest almost
immediately almost for sure.

It is important to note that even for very small A, there are equilibria in Gale’s model
with delay. To see this, suppose that the strategies are that every agent invests starting
at the second period regardless of what happens in the first period. Clearly, no agent has
any incentive to invest in the first period since he earns a(1) < 0 in that period, while
simply waiting till the second period avoids this negative return in the first period and
has no effect on subsequent payoffs. Of course, as the length of the period goes to zero,
the length of delay in this equilibrium goes to zero.

When n = 2, the Investment Game is a coordination game as defined in the previous
subsection. It is easy to see that investing is risk dominant if and only if a(2) + a(1) > 0.
Hence in this case, Theorem 1 tells us that if A is sufficiently small relative to e, then
the unique subgame perfect equilibrium outcome is for both players to invest in every
period, a result stronger than Gale’s for his game.

We get a stronger result because of the assumption that there is no switching cost
associated with the first choice of an action. Intuitively, our result, like his, shows that
delay must be small in any subgame perfect equilibrium. In our case, we can then show
that both players must invest immediately because the players will invest soon and so it
is better to avoid the switching cost later by investing now. If we assume that the game
begins with a “default” of not investing, so that there is a cost ¢ of investing even in
the very first period (and no cost to waiting in the first period), then we do not get this
strengthening.

The following theorem, proved in the Appendix, generalizes this result to more than
two agents.

4These assumptions are used only for results unrelated to the issues considered here.



Theorem 3 [fa(n)+a(l) >0, then for almost every sufficiently small ¢ > 0, there is a
A, > 0 such that for all A < A., the unique subgame perfect equilibrium outcome of G
is that every player invests in every period.

The intuition of the result is very simple. Gale’s result does not really require the
infinite horizon (since, after all, the result shows that investment must occur almost
immediately), only the assumption that if a player ever invests, he must invest from then
on. In our model, it is clear that once we are close enough to the end of the game, the
switching costs imply that no investor would have an incentive to stop investing, so we
replicate this feature of Gale’s model late in the game. By itself, this is not enough. If
a(n) is not large enough, then by the time we reach this point, there may be too little
time left for noninvestors to be willing to pay the costs to start investing, even if they
believe everyone else will invest. In particular, the key turns out to be whether a(n)+a(1)
is positive or negative. If it is positive, then when the length of time left is such that
a lone investor is indifferent between shutting down and not, a lone noninvestor would
strictly prefer to start investing. In other words, if a(n)+ a(1) > 0, we have a window of
opportunity where investors are frozen but noninvestors are not. In this window, Gale’s
reasoning shows that the noninvestors must start investing almost immediately with
probability close to one. But this means that just before this window, investors won’t
stop investing because they would start investing again soon anyway, so it is not worth
paying the switching cost twice. Hence we can push back the date at which investors
become frozen. This enables us to push back the date at which noninvestors must start
investing, giving us an induction which brings us back to the beginning of the game. But
then players will invest at the very beginning, rather than wait and incur the switching
cost when they begin investing.

As this intuition also suggests, if a(n) 4+ a(1) < 0, we do not get this result. One can
adapt the examples of the preceding section to show that if a(n) 4 a(1) < 0, then no
player ever investing is a subgame perfect equilibrium outcome.

As noted above, this last statement relies on the assumption that there are no switch-
ing costs in the first period. If we assume that waiting is the “default” action at the
beginning of time, so that “switching” costs are incurred from investing in the first pe-
riod, we do not get the strong result that all agents invest immediately for sure. We
do still get the analog of Gale’s result that the length of the lag till all agents invest is
arbitrarily small with arbitrarily high probability.

10



4 Multiplicity Results

In this section, we show how switching costs can create equilibria, illustrating the point
with the finitely repeated Prisoners’ Dilemma. As we show, the possibility of attaining
multiplicity in this context hinges on an unusual payoff condition similar to that of risk
dominance. So consider the Prisoners’ Dilemma with payoffs

C D
C a,a dc
D c¢,d bb

where ¢ > a > b > d.®* We say that cooperation freezes firstif b — d > ¢ — a. Intuitively,
when this holds, the incentive to defect is larger when the opponent is defecting than
when the opponent is cooperating. In this sense, mutual cooperation can be stable at a
point in the game where one player cooperating and one defecting is not.

In this section, we show that mutual cooperation can be sustained in a subgame
perfect equilibrium for small ¢ and A if cooperation freezes first. On the other hand,
regardless of whether cooperation freezes first or not, mutual defection is always an
equilibrium. When cooperation does not freeze first, we get the standard conclusion that
mutual defection is the unique equilibrium outcome. Hence cooperation can be sustained
in equilibrium if and only if cooperation freezes first.

It is useful to define some notation for these results. Let s¢ = ¢/(¢ — a) and sp =
e/(b—d). Note that s¢ > sp iff cooperation freezes first.

Theorem 4 If cooperation freezes first, then there is a K > 0 such that for all ¢ €
(0, M(c — a)), for all A € (0,Ke), there is a subgame perfect equilibrium where both
players cooperate in every period.

Proof. Assume ¢ < M(c — a), so s < M. By the assumption that cooperation freezes
first, s¢ > sp. Assume that A is sufficiently small that there are periods ¢ satisfying
sp <tA < sc.

Construct a strategy for player 1 as follows. He begins by cooperating and cooperates
in any period in which both players cooperated the previous period. If either player
defected in the previous period, then for any ¢ such that tA > sp, ¢ defects, switching to
this action if need be. Finally, for any later period, ¢« does whatever he did the previous
period.

°It is not difficult to generalize this result to asymmetric versions of the Prisoners’ Dilemma but it

adds lhittle.
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To see that it is an equilibrium for each player to follow this strategy, let us verify that
i’s strategy is optimal given any history. First, consider a history such that tA < sp. At
this point, the opponent is expected to never change strategies again. Hence the optimal
strategy for ¢ must be to play one fixed action for the rest of the game. If ¢ defected in the
previous period, the dominant strategy property obviously implies ¢ should not change
actions. If ¢ cooperated in the previous period, it is optimal to stick with cooperation as
long as either atA > ¢tA — ¢ or dtA > btA — ¢, depending on whether the opponent is
cooperating. But by assumption, tA < e/(b—d) < /(a — ¢), so both inequalities hold.
Hence it is never optimal to change actions at such a period.

Now suppose tA > sp. There are three relevant cases here. First, suppose either
player defected in the previous period. Then the opponent is expected to defect from
this point onward. If ¢ defected in the previous period, it is clearly optimal to continue
defecting. If 2 player cooperated in the previous period, it is optimal to switch to defecting
as tA > ¢/(b— d). Hence the specified strategy is optimal.

Second, suppose both players cooperated in the previous period, that tA > sp, and
(t — 1)A < sp. Player i expects the opponent to cooperate from now on regardless of
what he does because actions will be frozen beginning in the next period. Hence ¢ should
either cooperate from this period onward or defect from this period onward. The former
is better iff tAc— e < tAa or tA < s¢. But since ¢ must be the last period such that
tA > sp, we must have tA < s¢, so this holds.

Finally, suppose we are at a period ¢ such that (¢ — 1)A > sp and both players
cooperated in the previous period. Then if ¢ cooperates at ¢, his payoff will be atA, while
if he defects, his payoff is ¢A + b(t — 1)A — . Hence cooperation is optimal if

e>le—a—(t—1)(a—Db)A.

If the term in brackets on the right is negative, this must hold. If it is positive, then
this holds for A sufficiently small. Hence for small A, these strategies form a subgame
perfect equilibrium. |

So mutual cooperation can be supported as a subgame perfect equilibrium outcome
if cooperation freezes first. On the other hand, it is easy to see that mutual defection can
always be supported also. To see this, construct an equilibrium as follows. Player 7 defects
in every period unless both agents cooperated in the previous period and tA < s¢ or ¢
alone cooperated in the previous period and tA < sp. To see that this is an equilibrium,
first note that it is clearly optimal to cooperate under the circumstances specified for
cooperation. So consider any other history. If both players defected in the previous
period, it is clearly optimal to continue with defection since the opponent is expected to
always defect thereafter. If ¢ cooperated in the previous period and tA is large enough,
then he expects his opponent to defect at ¢ and thereafter. Hence it is optimal for him
to switch to defection. Thus these strategies form a subgame perfect equilibrium.

12



The slightly more difficult result, proven in the Appendix, is that if cooperation does
not freeze first, then mutual defection is the unique subgame perfect equilibrium outcome.
More specifically,

Theorem 5 [f cooperation does not freeze first, then for all A and almost all €, the
unique subgame perfect equilibrium outcome of G is mutual defection in every period.

To understand these results, first note that, regardless of whether cooperation freezes
first or not, mutual cooperation is stable sufficiently late in the game. That is, if there is
sufficiently little time remaining and both players cooperated in the previous period, then
both will cooperate for the rest of the game. Thus it is clear that the usual backward
induction arguments do not apply. This does not explain, however, the role played by
whether cooperation freezes first or not. To understand this, note that if cooperation
freezes first, then at the point where cooperation first freezes, a player is willing to
switch to defection if the opponent is defecting. This means that a deviation from
mutual cooperation will lead the opponent to switch to defection. On the other hand, if
cooperation does not freeze first, then at the time cooperation freezes, deviations from
cooperation will not be punished. As a result, each player has an incentive to switch to
defection just before cooperation freezes. Once we know that there is a date at which
both players will defect, the usual backward induction reasoning applies and shows that
both will always defect.

5 Conclusion

In summary, two seemingly minor variations on finitely repeated games overturn the stan-
dard results. Small switching costs in games that are repeated sufficiently frequently can
lead to multiple equilibrium outcomes in games which usually have a unique equilibrium
or uniqueness in games which usually have many equilibria.

An interesting open question concerns games where the equilibrium outcome set with
small switching costs and frequent repetition is actually disjoint from the usual equilib-
rium outcome set. While we show by example below that such games exist, we have no
real characterization of such games or their equilibria.

For such an example, suppose the stage game G is given by

L R
L 10,2 1,0
R 9,10 0,4
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Note that each player has a dominant strategy of L. Hence the unique subgame perfect
equilibrium of the usual finitely repeated game has (L, L) played in every period. It is
not hard to show that this is not an equilibrium outcome of the game with small ¢ and
A. To see this, fix a small . If A is sufficiently small, there must be a point late in
the game where there are no further changes of actions. Given that the largest payoff
gain to either player from a unilateral change of action is 6 and is generated by player 2
switching to L from (R, R), we see that when tA < £/6, no one changes actions. Let ¢*
be the smallest ¢ such that tA > ¢/6 and assume that

(" —1)A < /6.

Assume A is small, so that (¢* + 3)A is very close to /6. Then at period t*, no one
changes actions unless (R, R) were played at t* + 1 and only player 2 changes actions in

this case.®

In light of this, consider period t*+1. It is easy to show that no one changes actions if
(L, L) or (R, L) were played the previous period and that, again, only 2 changes actions if
(R, R) were played. Suppose, though, that (L, R) were played. If neither player changes
actions, then they will remain at this point for the rest of the game. This cannot be an
equilibrium in the subgame as player 1 would prefer to switch to R to induce player 2
to switch in the subsequent period. This change gives player 1 a gain of 9 per remaining
period, which is certainly worthwhile. It is also not an equilibrium for both players to
switch actions at this point. If 2 does change, 1 prefers to not change his action in
order to get a payoff of 10 per remaining period and avoid the switching cost. It is not an
equilibrium for 1 only to change action since if 1 is changing, 2 will change simultaneously
to begin earning 10 sooner. Finally, it is not an equilibrium for 2 only to change action
since there would be no further changes and he would only gain 2 per remaining period.
In short, the players must randomize at this point.

It is tedious but not difficult to calculate the unique mixed strategies which must be
used at this point. One can use this to show that at ¢* 4 2, if (L, L) were played in the
previous period, it is not an equilibrium for the subgame for no one to change actions. If
1 does not change at this point, it is optimal for 2 to unilaterally change to induce the
mixed strategy continuation from (L, R) at ¢* + 1. Roughly, if A is small, these mixed
strategies have player 1 changing action with very high probability so 2 has a very good
chance of obtaining 10 per period from t* 4+ 1 onward, well worth the switching cost.

We do not have a complete characterization of the equilibria of this game as the ran-
domization makes the analysis quite complex. However, this example clearly shows that
the equilibrium set under small switching costs and frequent repetition can be completely
disjoint from the equilibrium without switching costs, further underscoring our message.

5Tt is not optimal for 1 to also change actions because given player 2’s behavior, the change only
increases 1’s payoff per remaining period from 9 to 10.
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A natural question to ask is whether it is important that we have fixed the total
length of time the game is played. It is not hard to see that this assumption is simply
not relevant to the analysis. More concretely, recall that the total length of time the
game is played is M and the number of periods is M/A. M is not relevant to any of
the proofs of our results as these are all based on induction from the end of the game.
One surprising implication of this fact is that the switching cost can be arbitrarily small
relative to total game payoffs and still have the strong effects shown above. To be more
concrete, consider, for example, the two—by—two coordination game results in Theorem
1. We fix ¢ and characterize an interval (0, A.) such that for any A in this interval, the
unique subgame perfect equilibrium outcome is the risk dominant and Pareto dominant
outcome repeated every period. It is not hard to see that the interval is independent
of M, so we can fix any A in the interval and let M — oo. All along this sequence of
games, we obtain the same equilibrium result even though the switching cost relative to
total payoffs is going to zero. On the other hand, we do not know whether the results
carry over in any natural way to infinitely repeated games.
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Appendix

A Proof of Theorem 1

Because L is risk dominant for each ¢, we have a; — ¢; > b; — d; for 1 = 1,2. Fix any
e € (0, M min{b, — dy,by — dy}). Clearly, if A is sufficiently small, then no player changes
his action in the last period, ¢t = 1, since the gain to doing so is proportional to A. Fix
any period t and suppose that whatever action either player uses at ¢, he will play that
action from then onward. (We know this is true at ¢ = 2 for A sufficiently small so such
values of ¢ exist.) Then ¢ will play the same action at ¢ that he played at the previous
period ¢t + 1 iff the change in payoff is strictly less than . To be more precise, suppose
1 used L at t + 1. Let ¢ be the probability that j plays L at ¢t. Then ¢’s unique best
strategy i1s L if
qa A + (1 — q)dtA > gt A+ (1 — q)btA — ¢
or
e > lq(ci — ai) + (1 — q)(bi — di)JtA.

By risk dominance, the right—hand side is strictly decreasing in q. Hence this holds for
all ¢ if

tA <

b; — d;’
Let 82 = 5/(()2 — dz)
Similarly, again letting ¢ be the probability that j plays L at ¢, suppose that whatever

either player plays at ¢ is what he will play from then on. Suppose i played R at ¢ + 1.
Then his unique best strategy is R at ¢ if

et A+ (1 — @)bitA > qatA + (1 — q)ditA — ¢

or

> [q(ai — Ci) + (1 — Q)(dz — bz)]tA
Since the right-hand side is strictly increasing in ¢, this holds if

tA<€.

a; — ¢

Let si, = &/(a; — ¢;). Summarizing this discussion, then, we see that whenever tA <
min{sj, s?,sh,s%}, then whatever action player ¢ used at ¢ + 1 is played at ¢ in every
subgame perfect equilibrium.

Recall that we are assuming that a; —¢; > b; —d;, so S% < 32 for2 =1,2. So for every
tA < min{sk, s%}, both players use the same actions they used at ¢ + 1. In other words,
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for all such ¢, all action profiles are frozen in the sense that no player changes actions
under any circumstances. Recall that we have assumed ¢ < M(b; — d;), so M > s% > sb
for i = 1,2.7 For concreteness, assume s% > sk though it is straightforward to rewrite
the proof for the opposite inequality. Given this, s > s% for 7 = 1,2 implies st > sk for
1 =1,2.

Assume for the remainder of the proof that A is sufficiently small that there are values

of t satisfying
81,87 > 1A > sp.

Also, assume that ¢ is such that there is no integer ¢ satisfying tA = sk. Obviously,
almost all ¢ satisfy this requirement. So consider any period ¢ such that tA > sk We
claim that three facts are true for any such . First, if player 2 used L in period ¢+ 1, he
never changes actions again. Second, because of this, if both players 1 and 2 used L in
period ¢t + 1, neither ever changes actions again. In this sense, the action profile (L, L) is
frozen. Finally, if (R, L) were played at ¢ + 1, then 1 switches to L at ¢ and the two play
(L, L) from then on.

We show all three facts by induction. Fix the smallest ¢ such that tA > sk. By our
choice of ¢, then, (t — 1)A < sk, so we know that whatever actions are used at ¢ are used
in every later period. Also, by assumption, tA < s for ¢ = 1,2. Hence precisely the
argument above shows that if player 7 used L at period ¢ + 1, he must play L at period t.
This establishes the first two facts for this initial value of ¢. To show the third, suppose
player 2 used L and player 1 used R at period ¢t 4+ 1. From the previous argument, 2 will
not change actions ever again. Hence 1 will switch to L if ajtA — & > ¢;tA or tA > sp,
which is true by assumption.

To complete the induction, suppose our claim is true when the length of time remain-
ing is 7 or smaller. We now show that there is a length of time, £ > 0, such that if the
time remaining is less than ¢ 4+ 7, then if player 2 played L at the previous date, then
he must play L from then on. To see this, note that the worst payoff 2 could get from
playing L for the rest of the game is approximately dyf 4+ ay7 since 1 will necessarily
switch to R at the first date such that the time remaining is less than 7. This is an
approximation because £ + 7 remaining may not be a point at which a change of actions
is possible and 7 remaining may not be either. However, this approximation becomes
exact as A | 0. Suppose instead that 2 uses R at this period. His payoff certainly cannot
exceed max{cy, by} A + ay({ 47— A) — ¢ since this calculation gives him the highest pos-
sible payoff for this period, the highest payoff in the matrix thereafter, and only charges
him the switching cost once (even though he’d have to switch actions twice to earn as!).
For A small enough, this is strictly worse if

dol 4 agm > ay({ +7) — &,

“One can weaken our assumption on ¢ to ¢ < M min{a; — ¢1,as — ¢c2} at the cost of some notation
but with no change in the proof technique.
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or [ < (ay— dy)/e. For A sufficiently small, there will necessarily be periods between the
point where ¢ + 7 is left and where the time remaining is 7.

To show the second fact, then, is simple. Consider any period with strictly less time
remaining than ¢ + 7. From the above, we see that if player 2 played L in the previous
period, he plays L from then on. Clearly, then, if both players played L in the previous
period, it cannot be optimal for player 1 to ever change actions. Hence both will play
(L, L) for the rest of the game. Establishing the third fact is also easy. From the above,
we see that if player 2 used L in the previous period, he plays L from then on. Because
the time remaining strictly exceeds s}, if 2 played L and 1 played R in the previous
period, 1 will switch to L and (L, L) is played from then on.

By induction, then, we see that the three facts above are true for the entire game.

Finally, consider the first period of the game. If 2 plays L, his payoff must be at least
da A 4+ az(M — A). For A close to zero, this is close to Mas. If 2 plays R instead, his
payoff cannot be larger than

max{bz, baA + asy(M — A) — e, c0A + as(M — A) — £},

which converges to M max{by,az — e} as A | 0. Clearly, Ma, is strictly larger than this,
so for A sufficiently small, 2 must play L in the first period. Since the unique best reply
to this is to play L every period, we see that the outcome must be (L, L) every period if
A is sufficiently small. |

B Proof of Theorem 2

For concreteness, assume ay — ¢ > by — dy. The case where the reverse strict inequality
holds is entirely symmetric.

Fix any ¢ € (0, M min{ay — ¢1,b1 — dy,by — d2}). We show by induction that if A is
sufficiently small, then for all ¢ such that tA < ¢/(as — ¢2), no one changes actions at ¢
if the action profile at ¢t + 1 was (L, L), (R, R), or (L, R). Obviously, if A is sufficiently
small, this is true at £ = 1. So consider any period ¢ satisfying this inequality and suppose
the result has been shown for all smaller ¢.

First, suppose player 1 used L at ¢t + 1. If he uses L again at ¢, his payoff against
L by 2 is tAay, which is the largest continuation payoff he can get. Hence L at t is a
best reply to L by player 2. 1’s payoff to L if 2 plays R is tAd;, while his payoff to R is
tAby — ¢. Hence 1 must play L if tAdy > tAby — e or tA < ¢/(by — dy). By assumption,
tA <e/(ay —¢2) < /(by — dy), so this holds. Hence 1 certainly plays L at t if he played
it at t + 1. Given this, if (L, L) was played at ¢ + 1, 2’s best reply is to play L at ¢ 4 1.
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Next, suppose player 2 used R at ¢t + 1. Clearly, his best reply to R by player 1 at ¢
is to play R since this yields his highest possible continuation payoft of byt A. His best
reply to L is also R if tAcy > tAay — e or tA < ¢/(az — ¢3) which holds by assumption.
Hence player 2 plays R if he played it at ¢ + 1. This implies that if (R, R) were played
at t 4 1, then 1’s equilibrium strategy is to play R at ¢t. In short, no one changes actions

at tif (L, L), (R, R), or (L, R) were played at ¢t + 1.

Assume ¢ is such that there is no ¢ such that tA = ¢/(ay — ¢2). (Obviously, almost
all e will satisfy this condition.) Assume A is small enough that there are values of ¢
satisfying

in{ — - 1A
mln{al—cl7bg—d2}> >a2—02'

We claim that if A is sufficiently small, then for all ¢ such that tA > ¢/(ay — ¢2), if player
1 used L at t+1, then the outcome is (L, L) at t. The proof of this is again by induction.
So first consider the smallest ¢ in this range. By the above assumptions, we know that
(t—1)A < ¢/(az—¢z), so no one will ever change actions again if the profile at ¢ is (L, L),
(L,R), or (R, R). Suppose 1 played L at ¢t + 1. The same calculations as above show
that his best reply to either action by 2 at ¢ is to play L. Hence 1 plays L at ¢. Clearly, if
both played L at ¢t + 1, 2’s best reply is to play L as well. So suppose (L, R) was played

at t + 1. Then 2’s best reply is L iff ast A — ¢ > ¢t A, which is true by assumption.

To complete the induction, then, consider any ¢ such that tA > ¢/(ay—cy) and suppose
we have demonstrated the result for all smaller ¢. Suppose 1 played L at ¢4 1. If he plays
L at t, his payoff is, at worst, Ad; 4 (¢ — 1)Aay. If he plays R instead, his payoff certainly
cannot be larger than A max{by, ¢;} + max{(t — 1)Aby, (t — 1)Acy, (t — 1)Aay — e} —e.
(Recall that a; > b; > d;.) Hence L is certainly optimal if

Ady > Amax{by,c;} — 2¢

and

Ady + (t — 1)Aa; > tAmax{b, 1} —e.

The former holds iff A < 2¢/[max{b;,c1} — d1]. Note that the denominator of this
expresssion is strictly positive. The latter holds trivially if dy + (¢t — 1)a; > t max{by, ¢1 }.
Otherwise, it holds iff A < e/[t max{by,¢;} —d; — (t — 1)a1]. Note that a; > max{by,c;}
implies
tmax{b,c1} —dy — (t — 1)ay > max{b., c1} — dj.

Hence L is certainly optimal if A < e/[max{b.,c;} — di]. (Note that this condition is
independent of ¢.) Clearly, given that 1 plays L at ¢, 2 will certainly play L at ¢ if he
played it at £ + 1 since otherwise he will switch back to L at ¢ — 1 anyway. L must be
better since it saves the 2¢ in switching costs and earns a higher payoff in period ¢. If 2
played R at t 4+ 1, he switches to L at ¢. If he did not, he would switch at ¢ — 1 anyway, so
the only difference in his payoff from not switching at ¢ is that he earns a lower payoff at
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t if he does not switch. Hence the outcome at ¢t must be (L, L), completing the induction
argument.

To complete the proof then, we see that if 1 plays L at the first period, his payoff
must be at least Ad; + (M — A)ay, while playing R at the first period cannot give a
higher payoff than max{Mb;, Mcy, Aby + (M — A)ay — e, Acy + (M — A)ay — e}. For A
close to zero, his payoff to L. must be close to May, while his payoff to R cannot be larger
than max{Mb,, Mc;, Ma; —e}. Clearly, a; > by, ¢; implies that 1’s equilibrium strategy
must be to play L in the first period. Given this, 2 must play L in the first period as
well and the outcome is (L, L) in every period. |

C Proof of Theorem 3

Clearly, if A is sufficiently small, no player will change actions in the last period since the
gain cannot be worth the switching cost. So fix any ¢ such that tA < e/a(n). Suppose
that every player expects no player to change strategies from ¢ onward. Then it is easy
to see that it cannot be optimal for ¢ to change strategies. If ¢ is investing and & — 1
other agents are, then it is certainly not optimal for ¢ to stop investing if a(k) > 0. If
a(k) < 0, it is optimal for ¢ to stop investing if and only if —a(k)tA > ¢ or tA > —c/a(k).
By assumption, a(1) < a(k), so —a(l) > —a(k). But a(n) > —a(l) > —a(k). Hence
ela(n) < —e/a(k). So the fact that tA < e/a(n) implies that it cannot be optimal to
stop investing. Similarly, suppose ¢ did not invest at the previous period and suppose
k—1 others did invest. Then if a(k) < 0, it cannot be optimal for 7 to invest. If a(k) > 0,
it is only optimal if tA > ¢/a(k), but this implies tA > £/a(n), a contradiction.

Hence in every subgame perfect equilibrium, for all ¢ such that tA < e/a(n), all
action profiles are frozen in the sense that no player changes his action. Let s4 = ¢/a(n).
Throughout, restriction attention to values of A such that there is no integer ¢ such that
tA = s4. Almost all € satisfy this requirement.

We now show that a player who invested at ¢t + 1 always invests at ¢ for all ¢ such that

o mm{a(n) : a<1>"a<11>} -

To see this, consider an agent who invested at ¢t + 1. Clearly, if he does not invest at
t, his payoff cannot be larger than —e 4+ max{0,tAa(n) — ¢}. Hence if tAa(1) is larger
than this, he must invest at ¢ and all subsequent dates. Rearranging yields the inequality
above. Just as before, there can be no ¢ such that we have equality in the equation above.
Again, assume ¢ is such that there is no integer ¢ with {A = s;. Assume ¢ is sufficiently
small that s; <1 and s4 < 1.
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The critical implication of a(n) 4 a(1) > 0 is that s; > s4. To see that this holds,
note that if the minimum defining s; is the first term, this is true if 2a(n) > a(n) — a(1)
or a(n) + a(l) > 0. If the minimum is the second term, this holds iff —a(n) < a(1) or,
again, a(n) 4+ a(1) > 0. Hence for any ¢ such that s; > tA > s4, any player who invested
at t + 1 invests thereafter, but other changes of action might occur. Assume that A is
sufficiently small that there are values of ¢ in this range.

For any length of time till the end of the game 7, any number of agents k, and any
length of time ¢ < 7, let n(7, k,{, A) denote the supremum probability that the length of
time till all agents invest exceeds ¢ where this supremum is taken over the set of subgame
perfect equilibria and the set of histories such that n — k£ agents invested at the previous
date.

We now show that for all 7 between sy and s4, all ¢ € (0,7), and all k&, n(7,k,(,A) =0
as A — 0.

To see this, fix any 7 and / in this range. We know from the above that whatever
agents invested at the previous period will invest in all subsequent periods. Clearly, then,
for any history such that n—1 agents invested at the previous period, then n(7,1,/,A) =0
for all £ > A — that is, with probability 1, the remaining agent will invest at his first
possible opportunity (which must come within a length of time equal to A), so the result
is clearly true for k = 1.

So suppose we have shown that the result is true for any k = 1,..., k—1. We complete
the proof by showing that the result is true for £ = k. So consider any history such that
the number of agents who invested in the previous period is n — k. Suppose, contrary to
the claim, that n(r,k, ¢, A) > n* > 0 for all A. The payoff to any agent who has not yet
invested in such an equilibrium must be no greater than (1 —n*)ra(n)+n*(1—{)a(n)—e.
If, instead, the agent invests at the next possible opportunity, his payoff must be no worse
than

la(1) +n(r bk — 1,0, A) (7 — Oa(l) +[1 —n(r,k — 1,4, A)](7 — )a(n) — ¢.

To see this, note that if all agents invest with a length of time less than or equal to £, the
worst case is that no other agents invest until after a lag of exactly /. Furthermore, this
calculation gives the largest possible probability to the lag exceeding ¢ and assumes that
no one else ever invests if the lag is greater than /. Clearly, then, the equilibrium payoff
to an agent who has not yet invested must exceed this. But the induction hypothesis
tells us that for any ¢ > 0, we can choose A sufficiently small that this is arbitrarily close
to
ra(n)—e > (1 —=n")ra(n) + n*(r — O)a(n) — e,

a contradiction.
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Hence the claim is proved. Thus we see that for every subgame perfect equilibrium,
for every £ > 0 and n € (0,1), we can choose A small enough to make the probability
that every agent invests by the time there is s; — £ remaining in the game at least 1 — 7.
Note that the only important aspect of s; was the fact that it is strictly earlier than
s4 and that for every later date ¢, no agent who invested at ¢ + 1 ever stops investing.
Hence we have shown that if any length of time remaining, 7, has this property, then for
an appropriate choice of A, every agent invests by time there is 7 — ¢ remaining with
probability at least 1 — n and always invests thereafter.

We now use this to show that every length of time remaining 7 < 1 has this property.
To see this, note that we have seen that all agents who invest when the length of time
remaining is less than sj, necessarily invest in all later periods and that, as a result, for
any ¢ > 0, if A is sufficently small, then every agent invests from time remaining of sy —/
onward with arbitrarily high probability.

So consider a length of time ¢’ before s; remaining and an agent who invested in the
previous period. If this agent does not invest at s; + ¢’ remaining, the largest his payoff
can be is if he and all other agents immediately begin investing in the following period.
Hence his payoff to not investing must be smaller than

—e+ [sr+ a(n) —e.

If instead he invests through time remaining of s; — ¢, his payoff must be at least
(approximately®)
(' + Oa(1) + [s; = f][a(1) + (1 = n)a(n)]

where 7 is the probability that all agents invest by time s; — ¢ remaining. Since we can
choose A to make ¢ and n arbitrarily close to zero, this must hold for A sufficiently small
if
2e

a(n) —a(l)

So choose any ¢ € (0,2¢/[a(n) — a(1)]) and any A small enough. Then we know that
from the point where the time remaining is 7 = s; 4+ /' onward, any agent who invests
once invests in every subsequent period. Using this, we know that all agents must invest

<

by the time there is 71 — ¢ remaining with probability at least 1 — 1. Hence from the
point where the time remaining is 7, = 7, — ' onward, any agent who invests must always
invest thereafter, etc. Hence from the beginning of the game, any agent who invests in
any period always invests thereafter. Hence every agent invests no later than ¢ after the
beginning of the game with probability at least 1 — 7.

So consider any agent at the beginning of the game. If he does not invest right away,
his payoff certainly cannot be larger than Ma(n) — e, while if he does invest right away,

8As in the proof of Theorem 1, there is an approximation here in that we are not being careful about
when the periods are. As A | 0, the approximations become exact.
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his payoff must be greater than (1 — ¢)[na(l) + (M — n)a(n)]. Clearly, for ¢ and n close
enough to zero, it must be optimal to invest from the beginning. ||

D Proof of Theorem 5

Clearly, ¢ — a > b — d implies that sp > s¢. Also, it is easy to show that for any ¢ such
that tA < s¢, every player uses whatever action he used at the previous period ¢ + 1.
Finally, restrict attention to ¢ such that there is no integer ¢ satisfying tA = sp.

The first claim to establish is that for the last ¢ such that tA > sp, unless ¢ is the
first period, both players defect at ¢ and thereafter. Let t* denote this period. There are
two cases to consider. First, suppose A is such that there are no values of ¢ satisfying
sp > tA > s¢ (including, of course, the possibility that sp = s¢). In this case, we must
have (t* —1)A < s¢. Hence whatever actions are played at ¢ are played in all subsequent
periods. So suppose ¢ defected at ¢t*+ 1. Clearly, the dominant strategy property implies
that it cannot be optimal for him to pay to switch to cooperating, so ¢ will defect at
t*. Suppose then that ¢ cooperated at ¢t* + 1. If his opponent cooperates at t*, ¢ should
defect at ¢* as long as

ct" A —e > at™A,

or t*A > s¢ which holds by assumption. Similarly, if his opponent defects at t*, ¢ should
defect at t* as long as t*A > sp which also holds. Hence i should defect at ¢*. Hence
both players defect at t* and every subsequent period.

The case where A is small enough that there are values of ¢ such that sp > tA > s¢.
is slightly more complex. To show the statement claimed, we must first characterize
behavior in this interval. We claim that for any period ¢ such that sp > tA > s¢, any
player who defected at the previous period ¢t + 1 must defect at ¢ and from then on.
Furthermore, if ¢ cooperated at the previous period and his opponent defected, then ¢
continues to cooperate. We show this by induction, so first consider the last ¢ in this
interval. By definition, (t — 1)A < s¢, so whatever actions are played at ¢ will be played
in all succeeding periods. Hence i’s action at ¢ cannot affect his opponent’s action in
subsequent periods. So suppose i defected at ¢ + 1. Clearly, the dominant strategy
property implies that it cannot be optimal for him to pay to switch to cooperating, so ¢
will defect at ¢. Suppose instead that ¢ cooperated at ¢t + 1 and his opponent defected.
We have just shown that his opponent will continue to defect. So it is optimal for ¢ to
cooperate if dtA > btA — ¢ or tA < sp which holds by assumption.

To complete the induction, suppose we are at a period ¢ such that sp > tA > s¢ and

that we know that at all future periods, any player who defected in the past will continue
to do so and that any player who cooperates against a defector will continue to do so
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(so the next period need not be inside this interval). Suppose i defected at ¢ + 1. If the
opponent defects at ¢, ¢ is clearly best off defecting as well because whatever actions are
played at t will be repeated thereafter. If the opponent cooperates at ¢t and ¢ defects, this
is repeated thereafter, yielding a payoff of ctA for ¢. Clearly, this is the highest possible
payoff ¢ could get, so it must be optimal for ¢ to defect in this case as well. Hence :
defects at . Given this, suppose ¢ cooperated and his opponent defected at the previous
period ¢t + 1. Then the opponent will defect from ¢ onward. Precisely the same reasoning
as above shows that 7 will continue cooperating.

We now use this to show our claim that if t* is the last period ¢ satisfying tA > sp and
is not the first period, then both players defect at ¢* and thereafter in any subgame perfect
equilibrium. The restriction to small values of A such that there is no ¢t with tA = sp
implies that sp > (t*—1)A > sc. Hence unless both players cooperate, whatever actions
are played at t* will be played in every subsequent period. First, suppose ¢ expects his
opponent to defect at t*. Then he expects the actions at ¢* to be repeated in all periods.
Clearly, then, if ¢ defected at t* 41, he should not pay to switch to cooperating. Similarly,
it is easy to use t*A > sp to show that if he cooperated in the previous period, he should
defect at t*. Suppose then that ¢ expects his opponent to cooperate at ¢*. To consider
the worst case for proving ¢ should defect, suppose he cooperated at ¢* + 1. If he defects
at t*, these actions are repeated thereafter so his payoff is ¢t*A — . If he cooperates, his
payoff is certainly no larger than

max{at™ A, aA + c(t" — 1)A — e}.

Hence defection is optimal if ¢t*A — & > at*A (which is implied by t*A > s¢) and
ct*A—e > aA+c(t*—1)A —e (which is implied by ¢ > a). Hence i is better off defecting
at t* regardless of what the opponent is expected to do. Hence both players defect at ¢*
and in every subsequent period.

The induction from here is straightforward. First, if there is at least one period other
than the first such that tA > sp, then at the period before t*, we can use backward
induction to see that both players start by defecting and defect in every subsequent
period. To see how the induction goes, note that by the induction hypothesis, both
players are expected to begin defecting from the next period onward. Hence the dominant
strategy property implies that if ¢ defected at the previous period, he should certainly
defect at the current period. If 7 cooperated at the previous period, he may as well pay
the switching cost now to switch to defection and get the higher payoff today as he will
certainly do so tomorrow otherwise. If this is the first period so there was no previous
period, switching costs are irrelevant and the domination implies that ¢ should defect.
Second, suppose the second period t has tA < s¢. In this case, whatever actions are
played in the first period are played the rest of the game, so it is like there is only one
period. Obviously, in this case, both players defect always. |
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