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Abstract

Non-nested hypothesis tests provide a way to test the specification of an econometric
model against the evidence provided by one or more non-nested alternatives. This
paper surveys the recent literature on non-nested hypothesis testing in the context
of regression and related models. Much of the purely statistical literature which has
evolved from the fundamental work of Cox (1961, 1962) is discussed briefly or not
at all. Instead, emphasis is placed on those techniques which are easy to employ in
practice and are likely to be useful to applied workers.
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1. Introduction

Every careful applied econometrician has had the experience of estimating a regression
model which seemed, at first glance, to be highly satisfactory, but which subsequently
turned out, on closer investigation, to be false and misleading. The nature of economic
data makes this inevitable. Right-hand side variables are very often collinear, and time-
series data usually exhibit trends and respond to the same business cycles, so that
even nonsensical models will often fit well and yield apparently significant parameter
estimates. In this circumstance, it is usual to appeal to economic theory for guidance in
specifying econometric models. But theory rarely suggests only one model to explain
a particular phenomenon. Often there are rival theories, and even when there are not,
a single theory may be compatible with several functional forms and/or stochastic
specifications.

Faced with several rival regression models, what is the applied econometrician to do?
If he or she is convinced that the set of available models include the truth, then it is
simply necessary to choose the model which is “best”. For this, the econometrician
would use some sort of model selection criterion. More realistically, however, and
especially when the investigation is in its early stages, the econometrician may not
know whether any of the available models could conceivably be true. The first order
of business, then, is to test the specification of each of the available models. Tests for
heteroskedasticity, serial correlation, parameter stability, and so on obviously have a
large role to play in this context. But such tests do not make use of the information
that the model being tested is only one of several models to explain the same data.
After all, if model H0 is true, then it follows that any non-nested alternative model,
say H1, must be false, and this proposition can serve as the basis for a test of H0. Such
tests are commonly referred to as non-nested hypothesis tests.

At this point, it is perhaps appropriate to define the term “nonnested hypothesis”.
All econometricians are familiar with nested hypotheses. An econometric model, H0,
is said to be nested within an alternative model, H1, if H1 can be reduced to H0

by imposing one or more restrictions on its parameters. As a classic example, the
Cobb-Douglas production function is nested within the C.E.S. production function,
because when the elasticity of substitution is unity, the latter reduces to the former.
Thus two models, H0 and H1, may be said to be non-nested if H0 is not nested within
H1 and H1 is not nested within H0. Such models are also sometimes referred to as
separate. If one is to use a non-nested hypothesis test to test the specification of a
model, there must exist at least one non-nested alternative model. Such an alternative
should normally have been suggested by economic theory, but it need not be a model
which the investigator would take seriously.

It is customary in the econometric literature to treat model selection criteria and non-
nested hypothesis tests as being very closely related, perhaps even as rival procedures.
That is a very misleading point of view. Model selection criteria are appropriate when
one wishes to choose one out of a group of rival models. The objective is to choose the
“best” model, explicitly trading off goodness of fit and parsimony in parametrization.
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Either one assumes in advance that one of the models must be “true”, or one simply
does not care whether any of the models is satisfactory.

Non-nested hypothesis tests, on the other hand, are tests of model specification, just
like tests for serial correlation or omitted variables. The only real difference between
them and more classical procedures is that they rely on the existence of non-nested
alternative models. The results of applying such tests to, for simplicity, two rival
models may be that one model can be rejected while the other cannot; but it may
just as well be that both models, or neither model, can be rejected. Thus testing
each model against the evidence provided by the other cannot, in general, allow the
investigator to choose one of the two. What it can do is to provide evidence that one
of the models, or perhaps both models, are misspecified.

As the preceding discussion implies, the term “non-nested hypothesis test” is perhaps
an unfortunate one. Indeed, many econometricians would regard it as a contradiction
in terms, since, in the classical theory, testing a hypothesis is synonymous with testing
restrictions on a general model. It would be more accurate to refer to these procedures
as “model specification tests using the evidence provided by non-nested alternative
hypotheses”. As the remainder of this paper will, I hope, make clear, these tests
are in fact perfectly classical ones. I will, however, continue to use the term “non-
nested hypothesis test” because it is well established in the literature and reasonably
convenient.

In this paper, I survey the recent literature on non-nested hypothesis testing in the
context of regression models. The emphasis throughout will be on techniques that
are likely to prove useful in practice to applied econometricians. The literature on
model selection criteria will not be discussed at all. Readers who are interested in
this rapidly growing field might wish to look at Gaver and Geisel (1974), Sawa (1978),
Leamer (1979), Amemiya (1980), Sawyer (1980), or Chapter 11 of Judge et al. (1980).

2. The Cox Test
All of the theoretical literature on non-nested hypothesis testing derives, to a greater or
lesser extent, from two fundamental papers by Cox (1961, 1962). One of the principal
achievements of these papers is the development of a very general, but not always
easily implemented, procedure which has since come to be known as the Cox test. The
basic idea of this procedure is that one may test the validity of a null hypothesis, H0,
about how a set of data was generated by comparing the observed ratio of the values
of the likelihood functions for H0 and for some non-nested alternative hypothesis, H1,
with an estimate of the expected value of this likelihood ratio if H0 were true. If H1

fits either better or worse than it should if H0 were true, then H0 must be false.

The numerator of the Cox test statistic may be written as

T0 = L(θ̂0)− L(θ̂1)− T
(

plim
n→∞

0
1−
T

(
L(θ̂0)− L(θ̂1)

))
θ0=θ̂0

. (1)

Here θ0 and θ1 are the vectors of parameters under H0 and H1, respectively, T is the
number of observations, and L(θ̂k), for k = 0, 1, denotes the value of the loglikelihood
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function for Hk evaluated at the maximum likelihood estimates θ̂k. The notation
“plim0” denotes the probability limit under H0. Since this limit will in general depend
on θ0, the notation “θ0 = θ̂0” indicates that θ0 is to be evaluated at its maximum like-
lihood estimate θ̂0. Thus the first two terms in (1) are simply the log of the likelihood
ratio for the two models, while the third term is an estimate of the expectation of the
log of that ratio, assuming that H0 is true. Cox demonstrates that T0 is asymptotically
normally distributed, with mean zero and variance that can be consistently estimated
according to a formula he provides. Thus an estimate of T0, divided by the square root
of this consistent estimate of its variance, will be asymptotically N(0, 1). A rigorous
discussion of this proposition for the i.i.d. case may be found in White (1982b).

The major difficulty with applying the Cox test to problems in econometrics is to
find a way to estimate the third term in (1). Walker (1967) applied the test to time-
series models, and Amemiya (1973) used it to test alternative specifications of the
distribution of the error term in regression models, but it seems fair to say that the
apparent difficulties of employing the Cox test discouraged most econometricians from
paying much attention to it. Indeed, Dhrymes et al. (1972) actually implied that the
Cox test was impractical in most econometric applications. The test first attracted
substantial interest among econometricians when Pesaran (1974) showed how it could
be applied to the case of non-nested univariate linear regression models. Subsequently,
Pesaran and Deaton (1978) extended Pesaran’s derivation to the case of nonlinear and
possibly multivariate regression models. For simplicity, I will restrict attention for the
moment to the nonlinear univariate case of Pesaran and Deaton.

The model to be tested is

H0 : y = f(β) + u0, u0 ∼ NID(0, σ2
0I), (2)

where y is a vector of observations on a dependent variable, f(β) is a vector of functions
ft(β) which depend in a suitably continuous manner on an unknown parameter vector
β and on exogenous and/or lagged dependent variables, and u0 is a white noise error
vector if H0 is true. The alternative model is

H1 : y = g(γ) + u1, u1 ∼ NID(0, σ2
1I), (3)

where the notation is analogous to that for H0 and once again the error vector is only
assumed to follow the normal law if H1 happens to be true. The models H0 and H1

are assumed to be nonnested.

The obvious estimator of
T plim

n→∞
0

1−
T

L(θ̂0),

evaluated at θ̂0, is simply L(θ̂0). Thus (1) reduces to

T0 = −L(θ̂1) + T
(

plim
n→∞

0
1−
T

L(θ̂1)
)
θ0=θ̂0

. (4)
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Except for an additive constant, the (concentrated) loglikelihood function for H1 is

L(θ̂1) = −T−
2

log σ̂2
1 , (5)

where
σ̂2

1 ≡
1−
T

(y − ĝ)>(y − ĝ). (6)

Here ĝ denotes g(γ̂), that is, the fitted values under H1 evaluated at the maximum
likelihood estimates γ̂.

Since L(θ̂1) depends only on σ̂2
1 , it is merely necessary to find the plim of σ̂2

1 under
H0 in order to calculate the second term in (4). Let us denote by γ̃ an estimate of γ
under H0 which tends in the limit to the plim of γ̂ under H0, and let g̃ ≡ g(γ̃). There
will in general be many choices for γ̃; see below. Then, by definition,

σ̃2
1 ≡

1−
T

(y − g̃)>(y − g̃) (7)

=
1−
T

(y − f + f − g̃)>(y − f + f − g̃) (8)

=
1−
T

(
(y − f)>(y − f) + (f − g̃)>(f − g̃) + 2(y − f)>(f − g̃)

)
, (9)

here f denotes f(β), that is, the fitted values under H0 evaluated at the true parameter
vector β. Under H0, the vector y − f is simply a vector of normal random variates
with mean zero and variance σ2

0 , which must certainly be asymptotically independent
of the vector f − g̃, because f − g̃ is asymptotically nonstochastic. Thus an estimate
of the plim of σ̂2

1 is

σ̃2
10 = σ̂2

0 +
1−
T

(f̂ − g̃)>(f̂ − g̃). (10)

This estimate has two parts: an estimate of the variance of the true model, σ̂2
0 , and

an estimate of the additional variance due to the difference between H0 and H1.

Combining (4), (5), and (10), we find the numerator of the Cox test statistic is simply

T0 = T−
2

log
σ̂2

1

σ̃2
10

. (11)

If the alternative model H1 fits better than it should, this statistic will be negative,
and if H1 fits worse than it should, this statistic will be positive.

The estimate γ̃ is obtained by Pesaran and Deaton (1978) from the nonlinear regression

f̂ = g(γ) + e, (12)

that is, the model H1 re-estimated using f as the dependent variable. An estimate of
the variance of T0 is obtained from the formula

V̂0(T0) =
σ̂2

0

σ̃4
10

(f̂ − g̃)>
(
I− F̂ (F̂>F̂ )−1F̂>

)
(f̂ − g̃), (13)
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where F̂ is the matrix of derivatives of f(β) with respect to β, evaluated at β̂. This
formula is derived by applying a general result of Cox (1962). Thus the Cox test
statistic, as implemented for the nonlinear regression problem by Pesaran and Deaton
(1978), is just

N0 =
T0

V̂
1/2
0 (T0)

. (14)

It should be stressed at this point that N0 provides a test of H0 and tells us nothing
whatsoever about the validity of H1. If N0 is significantly less than zero, we may
conclude that H0 is rejected in the direction of H1, and if it is significantly greater
than zero, we may conclude that H0 is rejected in a direction away from H1. But we
can never conclude from N0 alone that H0 is rejected in favor of H1, as some early
authors have misleadingly asserted (see, e.g., Pesaran (1974, p. 158)). If we wish to
test the validity of H1, we must reverse the roles of the two models and compute the
test statistic N1. On the other hand, it is true that the Cox test will reject H0 with
probability one asymptotically if H1 is true; thus the test may be said to be consistent.
For a general proof, see Pereira (1977a).

Unfortunately, the implementation of the Cox test by Pesaran (1974) and Pesaran and
Deaton (1978) is unnecessarily complicated. The first thing to observe is that, under
H0, the plim of γ̃ is equal to the plim of γ̂. Thus the artificial nonlinear regression
(12) is unnecessary, and it is possible to replace g̃ by ĝ in (7), (8), (9), (10), and (13).
The resulting test statistic will also be a valid Cox test, asymptotically the same as
N0 under H0 but generally different under H1 and in small samples.

It is straightforward to show that ĝ and g̃ tend to the same probability limit under
H0. The normal equations which define ĝ are

1−
T

(
y − g(γ̂)

)>G(γ̂) = 0, (15)

where G(γ̂) denotes the matrix with typical element

Gij =
∂gi(γ)
∂γj

evaluated at γ̂. Under H0, y = f + u0, so that (15) may be rewritten as

1−
T

(
f − g(γ̂)

)>G(γ̂) +
1−
T

u0
>G(γ̂) = 0. (16)

The second term of (16) clearly tends to zero as T tends to infinity. Thus, in the limit,
γ̂ is defined by

1−
T

(
f − g(γ̂)

)>G(γ̂) = 0. (17)

Similarly, the normal equations which define γ̃ are

1−
T

(
f̂ − g(γ̃)

)>G(γ̃) = 0. (18)
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The only difference between (17) and (18) is that f appears in the former and f̂ in
the latter. But the consistency of β̂ ensures that f̂ tends to f asymptotically. Thus
γ̂ and γ̃ must tend to the same probability limit.

Now observe that

σ̂2
1 =

1−
T

(
(y − f̂)>(y − f̂) + (f̂ − ĝ)>(f̂ − ĝ) + 2(y − f̂)>(f̂ − ĝ)

)
(19)

while a valid alternative to σ̃2
10 is

σ̂2
10 =

1−
T

(
(y − f̂)>(y − f̂) + (f̂ − ĝ)>(f̂ − ĝ). (20)

If we formulate a Cox test using γ̂ instead of γ̃, it simply tests the proposition that
the ratio of (19) to (20) is unity. But the only difference between (19) and (20) is that
in the latter the term (2/T )(y− f̂)>(f̂− ĝ)

)
has been replaced by its probability limit,

which is zero. Thus what the Cox test is really testing, in this case, is whether y − f̂
is asymptotically uncorrelated with f̂ − ĝ. That is, of course, a very natural thing to
test. If H0 is a true model, its residuals should be uncorrelated with the difference
between the fitted values from H0 and H1. But instead of doing so via the Cox test,
why not simply test this proposition directly? That is precisely what the tests to be
discussed in the next section do.

3. Tests Based on Artificial Regressions

The simplest way to test the proposition that y− f̂ is orthogonal to f̂ − ĝ would seem
to be to run the artificial linear regression

y − f̂ = α(f̂ − ĝ) + u (21)

or, equivalently,
y = (1− α)f̂ + αĝ + u. (22)

Davidson and MacKinnon (1981) call this the C test, because (21) is conditional on β̂
and γ̂. They find, however, that the t statistic on α is not asymptotically distributed
as N(0, 1); rather, it is asymptotically normal with variance less than unity. It is not
difficult to obtain a valid estimate of the variance of α, and so make use of a corrected
C test, but that turns out to be an unnecessarily complicated way to proceed.

Instead, it is most fruitful to consider a comprehensive model analogous to (22):

HC : y = (1− α)f(β) + αg(γ) + u. (23)

This is an artificial model, in which H0 and H1 are combined with weights 1− α and
α, respectively. As it stands, this model is perfectly useless, since one normally cannot
hope to estimate α, β, and γ jointly. To make (23) useful for testing H0, one has to
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recognize the crucial fact that, under H0, γ may validly be replaced by γ̂. Thus the
compound model (23) becomes

y = (1− α)f(β) + αĝ + u. (24)

Davidson and MacKinnon (1981) prove that, under H0, the vector ĝ converges to a
nonstochastic plim, so that ĝ may validly be used as a right-hand side variable in (24),
and the t statistic on α̂ is asymptotically N(0, 1). They call this procedure the J test,
because α and β are estimated jointly.

If H0 is a nonlinear model, then (24) is also a nonlinear regression, and one which may
be computationally intractable if H0 and H1 are very similar. There is, however, a
simple way to overcome this problem. We simply linearize equation (24) around the
point α = 0, β = β̂, so as to obtain the linear regression

y − f̂ = F̂ b + α(ĝ − f̂) + u, (25)

where F̂ is the matrix of derivatives of f(β) with respect to β, evaluated at β̂. It
is a consequence of standard results for maximum likelihood and/or least squares
estimation, together with the previous result that ĝ is asymptotically non-stochastic,
that the t statistic on α̂ from regression (25) is asymptotically N(0, 1) when H0 is
true. See in particular Durbin (1970). Results in that paper can also be used to show
that the C test t statistic based on (22) is asymptotically normal with mean zero
and variance less than unity. Thus testing H0 against the evidence provided by H1

merely requires one artificial linear regression, a procedure that was called the P test
by Davidson and MacKinnon (1981).

The t statistic on α̂ from equation (25) is

(y − f̂)>MF̂ (ĝ − f̂)

σ̂
(
(ĝ − f̂)>MF̂ (ĝ − f̂)

)1/2
, (26)

where
MF̂ ≡ I− F̂ (F̂>F̂ )−1F̂>, (27)

and σ̂ is the estimate of the standard error from (25). The first-order conditions which
determine β̂ imply that (y − f̂)>F̂ = 0. Thus the numerator of the test statistic (26)
is simply (y − f̂)>(ĝ − f̂). The denominator, of course, is an asymptotically valid
estimate of the standard error of the numerator. Hence what the P test does is to
provide a very simple way of testing what we set out to test in the first place, namely,
the orthogonality of y − f̂ and ĝ − f̂ . In view of this, it is not surprising that the P
test statistic is asymptotically perfectly correlated with the Cox test statistic under
H0, with correlation coefficient minus one. The P test statistic is also asymptotically
equal, under H0, to both the J test statistic and the C test statistic when the latter
uses a valid variance estimate.
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It is worth discussing briefly the case of linear regression models. Suppose that the
two models of interest are

H0 y = Xβ + Wδ0 + u0 (28)

and
H1 y = Zγ + Wδ1 + u1, (29)

where X and Z are matrices of regressors unique to H0 and H1, respectively, and W
is a matrix of regressors common to the two models. The J test amounts to estimating
the linear regression

y = Xβ∗ + Wδ∗0 + α(Zγ̂ + Wδ̂1) + u, (30)

and the t statistic on α̂ is numerically equal to the t statistic from the P test regression
in this case.

A more obvious way to test H0 would be to form the compound model

HC : y = Xβ + Zγ + Wδ + u (31)

and then test the hypothesis that γ = 0 using an F test. If Z has only one column,
this procedure will be numerically identical to the J test. However, if Z has more
than one column, the two procedures will not be the same. The F test will involve
as many degrees of freedom as there are columns in Z, while the J test will involve
only one degree of freedom. This suggests that the latter may have more power than
the former, and that is indeed the case. Pesaran (1982) has recently shown that,
for local alternatives, the F statistic (in chi-squared form) and the square of the J
test statistic are both asymptotically distributed as non-central chi-squared, with the
same non-centrality parameter but different numbers of degrees of freedom. Since the
critical value for the F test will be larger, because there are more degrees of freedom,
the J test must have higher power against H1. On the other hand, if both H0 and H1

are false, the non-centrality parameters would no longer be the same, and the F test
might well have more power than the J test, although that is perhaps unlikely to be
the case if X and Z are highly collinear.

At this point, the possibility of a somewhat pathological special case should be men-
tioned. Suppose that X and Z are orthogonal to each other after they have been
projected off W. This implies that (29) and (31) will yield the same estimates of γ.
It follows that the sums of squared residuals from (30) and (31) must be identical, so
that a one degree of freedom test will not be valid, even asymptotically, unless Z has
only one column. In this situation, incidentally, the second factor in (13) will be iden-
tically zero, so that the Cox test as implemented by Pesaran and Deaton (1978) will
be undefined. Thus non-nested hypothesis tests are not valid in the case of orthogonal
models, and all authors have to make regularity assumptions which rule out this case;
see, for example, Pesaran (1974, p. 156). The F test, of course, remains both valid
and powerful in this case.
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The P test can easily be extended to handle several alternative hypotheses. Let the
null hypothesis still be H0, given by (2), and the alternative hypotheses be

Hj : y = gj(γj) + uj , j = 1, . . . , J. (32)

Then the obvious compound model is

HC :
(
1−

J∑

j=1

αj

)
f(β) +

J∑

j=1

αj g(γj) + u, (33)

and the corresponding P test regression is

y − f̂ = F̂ b +
J∑

j=1

αj(ĝj − f̂) + u. (34)

The appropriate test statistic is then an asymptotic F test of the hypothesis that all
the αj are zero, or some asymptotically equivalent test.

Whether one would want to test a model against several alternative hypotheses si-
multaneously, in practice, is not entirely clear. If one of the alternatives is true, then
highest power will be surely be achieved by testing against that hypothesis alone. On
the other hand, if none of the alternatives is true, testing against several of them jointly
may have higher power than testing against each of them individually.

The tests discussed so far are valid only asymptotically; in small samples, the test
statistics will in general not be normally distributed and will have neither mean zero
nor variance unity. It should be observed, however, that many estimates of γ could be
used in place of γ̂. In particular, Fisher and McAleer (1981), citing Atkinson’s (1970)
suggestion, in connection with the Cox test, that all quantities should be evaluated
under H0, proposed that the J and P tests be modified by using γ̃ instead of γ̂.
Subsequently, Godfrey (1981) and Davidson and MacKinnon (1982) observed that, for
the linear regression case with non-stochastic regressors, the resulting JA test statistic
will actually be distributed as t with the appropriate number of degrees of freedom.
This follows from the fact that γ̃ depends on y only through the fitted values from H0

(that is, the vector X(X>X)−1X>y), which are independent of the error terms; see
Milliken and Graybill (1970).

Thus, for the case in which H0 is a linear regression model with nonstochastic regressors
and normally distributed errors, the JA test provides an exact non-nested hypothesis
test. Unfortunately, this does not mean that the other tests discussed above, which
are valid only asymptotically, are obsolete. Monte Carlo work reported in Davidson
and MacKinnon (1982) suggests that the JA test can be very much less powerful than
the ordinary J test when neither H0 nor H1 is true, a situation that is all too likely to
occur in practice. Simulations reported in Godfrey and Pesaran (1983) suggest that
the JA test can also be seriously lacking in power when H1 has more regressors than
H0. These results imply that it will often be desirable to use both tests in practice.
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4. Multivariate Models
Both the Cox test and several variants of the P test may be applied to the case of
multivariate nonlinear regression models. We may write the null hypothesis as

H0 : yti = fti(β) + u0
ti, u0

t ∼ N(0,Ω0), (35)

and the alternative as

H1 : yti = gti(γ) + u1
ti, u1

t ∼ N(0,Ω1). (36)

Here i indexes the m equations and t indexes the T observations, and Ωj is the m×m
contemporaneous covariance matrix for the error terms corresponding to hypothesis
Hj . Of course, these error terms have the specified distribution only if the respective
hypothesis happens to be true. The hypotheses given in (35) and (36) may be mul-
tivariate, nonlinear non-simultaneous models, such as demand systems or systems of
cost share equations, or they may be the restricted reduced forms of linear simultane-
ous equations models. They may not be the reduced forms of nonlinear simultaneous
equations models, however, because, if the errors adhering to the structural equations
were Gaussian, the errors adhering to the reduced form equations could not be.

Pesaran and Deaton (1978) derive their version of the Cox test for the multivariate
case as well as the univariate one. The numerator of the test statistic is simply

T0 = T−
2

log
|Ω̂1|
|Ω̃10|

, (37)

where Ω̂1 is the ML estimate of Ω1, and Ω̃10 is defined analogously to σ̃10; see equation
(10) above. The calculation of the variance of T0 is quite complicated, and interested
readers should consult the original paper. It should perhaps be noted that the calcu-
lation of γ̃, and hence Ω̃10, requires the solution of two sets of nonlinear equations.
Pesaran and Deaton (1978) give a procedure for doing so, but it is incorrect; see David-
son and MacKinnon (1983). In general, finding γ̃ is a non-trivial calculation. As in
the univariate case, this calculation could be avoided by using Ω̂10 instead of Ω̃10,
which is valid because γ̂ and γ̃ have the same probability limits under H0.

There are several multivariate versions of the P test, which are discussed in Davidson
and MacKinnon (1982, 1983). The simplest artificial compound model, analogous to
(24) in the univariate case, is

HC : yti = (1− α)fti(β) + αĝti + uti, (38)

where, under H0, the vector ut should have covariance matrix Ω0. Linearizing (38)
around the point α = 0, β = β̂ yields the multivariate linear regression

yti − f̂ti = F̂ti
>b + α(ĝti − f̂ti) + uti, (39)
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where fti and gti denote fti(β̂) and gti(γ̂), respectively, and F̂ti denotes the vector
of derivatives of fti(β) with respect to β, evaluated at β̂. This regression is to be
estimated by generalized least squares, using Ω̂ as the assumed covariance matrix,
and is referred to as the P0 test. The test statistic is the t statistic on α̂

The P0 test is particularly simple, but it is not asymptotically equivalent to a Cox
test. One may derive alternative tests by considering alternative compound models.
In particular, it is possible to write down a combined regression model of which the
likelihood function is the same as the likelihood function which results if one combines
the likelihoods of H0 and H1 exponentially, an idea which goes back to Cox (1962).
This model is rather complicated, so it will be omitted here. Linearizing it around
α = 0, β = β̂ yields

yti − f̂ti = F̂ti
>b + αĥti + uti, (40)

where ĥti is an element of the T ×m matrix

ĥ ≡ (ĝ − f̂)Ω̂−1
1 Ω̂0. (41)

Here ĝ and f̂ are T ×m matrices with typical elements ĝti and f̂ti, respectively. Once
again, the regression is to be estimated by GLS using Ω̂0 as the assumed covariance
matrix. The test statistic is again the t statistic on α̂, and Davidson and MacKinnon
(1983) refers to this procedure as the P1 test. In that paper, it is proved that the P1 test
statistic is asymptotically distributed as N(0, 1) under H0 and that it is asymptotically
equivalent to a Cox test.

Little is known about the relative performance of the three tests just described. The
P tests are far easier to implement than the Cox test proposed by Pesaran and Deaton
(1978). The fact that Cox’s procedure is based on likelihood theory suggests that it
should have good power. Thus the P1 test is probably the procedure of choice, since
it is asymptotically a Cox test and requires only one artificial linear regression once
the models have been estimated.

Notice that, in the case of simultaneous linear regression models, it is not necessary
explicitly to solve for the restricted reduced form. Once the models have been esti-
mated to yield β̂ and γ̂, it is possible to calculate f̂ti, ĝti, Ω̂0, and Ω̂1 numerically
by solving the model over the sample period, and F̂ti can be calculated numerically.
We can also calculate F̂ti numerically for non-simultaneous models as well, of course.
The reliability of these calculations can in turn be checked numerically, because if α is
restricted to be zero in (40), then the estimate of b should be identically zero by the
first-order conditions for β̂.

5. Models with Different Error Structures
The non-nested hypothesis tests that have been discussed so far may be used only when
all of the alternative models have the same error structure. In practice, however, it will
often be the case that different models have different error structures. For example, one
model may specify that errors adhere additively to the level of the dependent variable,
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another that they are multiplicative, so that they adhere additively to the log, and a
third that they adhere to the dependent variable multiplied by some weighting factor,
as in share equations. The techniques discussed so far cannot handle models which
differ in these ways.

The case of linear versus logarithmic models is particularly common in applied work. If
the two alternative models are the same except that in one case the dependent variable
and some of the regressors appear as logarithms while in the other they appear as levels,
the situation can easily be handled without recourse to explicit non-nested hypothesis
tests. Suppose the two models are

H0 : log yt =
I∑

i=1

βi log xti +
J∑

j=1

γjztj + ut0, (42)

and

H1 : yt =
I∑

i=1

βixti +
J∑

j=1

γjztj + ut1, (43)

where utk is assumed to be i.i.d. normal if Hk is true, for k = 0, 1. Strictly speaking,
H0 and H1 cannot both be potentially valid models, since H1 implies that yt can be
negative with positive probability while H0 implies that it cannot be. If yt in fact
cannot be negative, then H1 must be false, and if yt in fact can be negative, then
H0 must be false. In many applied cases, however, where yt is typically ten or more
standard errors above zero, the probability that H1 will generate negative values can
surely be neglected, and H0 and H1 may thus often be regarded as plausible rival
models.

One natural way to handle (42) and (43) is to nest them within a comprehensive
hypothesis based on the Box-Cox transformation:

HC : φ(yt, λ) =
I∑

i=1

βiφ(xti, λ) +
J∑

j=1

γjztj + ut, (44)

where
φ(x, λ) = (xλ − 1)/λ if λ 6= 0

= log x if λ = 0.
(45)

Here φ(x, λ) is the famous transformation introduced by Box and Cox (1964); it is
obvious that (44) reduces to (42) if λ = 0 and to (43) if λ = 1, provided in the latter
case that the ztj include a constant term.

The comprehensive model (44) can be used to test the validity of (42) and (43) in
several different ways. Perhaps the simplest one conceptually is just to estimate (44)
and then test the hypotheses that λ = 0 and λ = 1 by likelihood ratio tests, as Box
and Cox (1964) suggested. However, this requires one to estimate (44). Asymptoti-
cally equivalent procedures based on Lagrange multiplier tests are easily developed, of
course; for one such, see Godfrey and Wickens (1981).
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A somewhat more ingenious procedure has been suggested by Andrews (1971). By
taking a Taylor series approximation to (44) around λ = 0 or λ = 1, and then replacing
yt by its fitted value whenever it appears on the right-hand side, Andrews develops a
test which simply requires that one rerun each of regressions (42) and (43) with one
additional regressor. The additional regressor depends on which model is to be tested,
and it is a fairly complicated function of the xti, the ztj , and the estimates of β under
the null. The resulting test statistic is simply the t statistic on the additional regressor,
and it actually has the t distribution in finite samples. For details, see Andrews (1971)
or Godfrey and Wickens (1981).

Procedures based on the Box-Cox transformation are useful only when H0 and H1

take special forms like (42) and (43) and have essentially the same regressors. More
generally, there might be many alternative models, some with the dependent variable
in levels and some with it in logs, perhaps with very different explanatory variables.
In particular, suppose that there are two alternative models, which may be linear or
nonlinear:

H0 : log yt = ft(β) + ut0, u0 ∼ N(0, σ2
0I), (46)

and
H1 : yt = gt(β) + ut1, u1 ∼ N(0, σ2

1I). (47)

Aneuryn-Evans and Deaton (1980) have proposed variants of the Cox test which may
be used to test H0 against the evidence provided by H1, and vice versa. The former
procedure is complicated but not difficult; the latter, however, requires a good deal
of numerical integration, and a special-purpose computer program would have to be
written.

Simpler and more general procedures based on artificial nesting have recently been
suggested by Davidson and MacKinnon (1984). Suppose the model to be tested is

H0 : yt = ft(β) + ut0, u0 ∼ N(0, σ2
0I), (48)

and the alternative is

H0 : ht(yt) = gt(γ) + ut1, u1 ∼ N(0, σ2
1I). (49)

Here ht(yt) may be any twice continuously differentiable transformation which does
not depend on any unknown parameters. Examples include log yt, exp yt, y2

t , yt/zt

(for zt exogenous), and so on. Thus the models (48) and (49) include (46) and (47) as
special cases.

The simplest artificial compound model which nests H0 and H1 is

HC : (1− α)
(
yt − ft(β)

)
+ α

(
ht(yt)− gt(γ)

)
+ ut. (50)

Replacing γ by γ̂ would seem to yield a conceptually straightforward J test procedure.
However, this procedure would not be computationally easy. HC is not a nonlinear
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regression model, because the dependent variable, yt, does not have a coefficient of
unity. The loglikelihood function will include the Jacobian term

T∑
t=1

log
∣∣1− α + αh′t(yt)

∣∣, (51)

where h′t(yt) is the derivative of ht(yt) with respect to yt. Thus standard packaged
programs for nonlinear estimation would probably not be applicable.

One way around this problem is to test the hypothesis that α = 0 using a procedure
which requires estimates only under the null hypothesis. MacKinnon, White, and
Davidson (1983) show that a modified version of the P test may be used for this
purpose. The artificial regression is

yt − f̂t = F̂tb + α
(
ĝt − ht(f̂t)

)
+ ut, (52)

and the t statistic on α̂ is once again asymptotically N(0, 1) under H0. A more gen-
eral but somewhat more cumbersome procedure has been suggested by Davidson and
MacKinnon (1984). This procedure requires that one run a double-length artificial
linear regression, that is, one with 2T observations instead of T . The resulting test is
equivalent to a Lagrange Multiplier test, and it will generally have more power than
the modified P test of (52). For details, see the original paper.

At this point, it seems natural to speculate that methods of non-nested hypothesis
testing can be developed for almost all classes of econometric models by a technique
similar to the one just discussed. First, find a way to nest both models within an
artificial composite model. Next, replace the parameters of the alternative by asymp-
totically non-stochastic estimates. Finally, perform a Lagrange Multiplier or similar
test; see Breusch and Pagan (1980). Just how these tests would be related to Cox tests,
if the latter were developed for the same cases, is a matter for conjecture. It would
seem that the two procedures would not, in general, be asymptotically equivalent.

Two interesting applications of the Cox test should be mentioned here. Amemiya
(1973) derived Cox tests for lognormal versus Gamma errors in linear regression mod-
els, assuming that the non-stochastic parts of the models were the same. Morimune
(1979) developed Cox tests, and also modified tests based on the same fundamental
idea, for bivariate dichotomous dependent variable models based on the logistic and
normal distributions. These papers illustrate the wide range of applicability of Cox’s
original idea.

6. Interpreting Non-Nested Hypothesis Tests
When two models are tested against each other, there are four (or perhaps nine) pos-
sible outcomes. The number is larger if one distinguishes between rejection in the
direction of the alternative model and rejection in the opposite direction. Interpreting
the results of such a pair of tests may therefore seem complicated; this matter is dis-
cussed at length by Fisher and McAleer (1979). For most practical purposes, however,
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interpretation is not particularly difficult. If neither model is rejected, then the data
do not allow us to say that either is false. If one model is rejected and the other is not,
then the set of models that are worth further examination has been reduced in size
(a very useful outcome). If both models are rejected, then that set has been reduced
in size even more; indeed, if there are no other models around, we should presumably
try to invent some! In this case, the signs of the test statistics may be useful, since
they will tell us whether we should look for a model that combines features of both
the models we have rejected, or for a model that moves further away from one of the
models.

There are, however, some situations where the results of non-nested hypothesis tests
can be predicted in advance, so that the tests do not tell us very much. Suppose that
H0 and H1 are univariate nonlinear regression models, as in (2) and (3), so that the P
test regression is

y − f̂ = F̂ b + α(ĝ − f̂) + u. (53)

It is clear that, if L(β̂, σ̂2
0) is less than L(γ̂, σ̂2

1) by more than 1.92, then H0 must
be rejected at the .05 level, because 3.84 is the .05 critical value for the chi-squared
distribution with one degree of freedom. After all, if α were unity and b were zero,
regression (53) would reduce to

y = ĝ + u, (54)

which would have the same loglikelihood value as H1, whereas under the null hypothesis
that α = 0, the combined model would have the same likelihood value as H0. Thus the
P test regression (53) must fit at least as well as whichever of H0 and H1 fits better.
Therefore, if H1 fits significantly better than H0 on a one degree of freedom likelihood
ratio test, H0 must be rejected. Essentially the same thing is true for the Cox test
as well. On the other hand, H0 may be rejected in a test against H1 even when H1

fits much worse than H0, and this outcome cannot be predicted in advance. In such a
case, a non-nested test provides genuinely new information.

The above arguments suggest that the results of non-nested hypothesis tests should
be interpreted with caution when the sample size is small. If H1 has more parameters
than H0, it will tend to fit better. By simply adding enough irrelevant variables to an
alternative hypothesis which initially failed to reject H0, one could always eventually
come up with an alternative hypothesis which would reject H0. Thus, in small samples,
it would seem wise to use these tests only when both models have similar numbers of
parameters. Of course, these remarks do not apply to the JA test for linear models.

7. Future Directions
It is now possible to perform non-nested hypothesis tests of model specification for a
wide variety of econometric models. Nevertheless, a great deal of work remains to be
done in this area. Little is known about the behavior of the tests when neither the null
nor the alternative hypothesis is true, which is of course the situation most likely to be
encountered in practice. Moreover, there are still many empirical problems to which
the tests cannot readily be applied. For example, it is often the case that the variable,
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or set of variables, which is treated as endogenous by one theory differs from the set
of variables which is treated as endogenous by an alternative theory. At present, it is
not at all clear how non-nested hypothesis tests could be used in such a case.

Empirical work using non-nested hypothesis tests is still all but non-existent. Pesaran
and Deaton (1978) estimated five models of consumption behavior and tested them
against each other, but the models were deliberately kept very simple for purposes of
illustration, and cannot be taken seriously; they all suffer from numerous econometric
problems, so that all could easily be rejected without recourse to non-nested hypothesis
tests. The only serious published paper which utilizes these tests is Deaton (1978),
in which two competing demand systems are tested against each other; both systems
are rejected. Some unpublished work exists, but by and large it is fair to say that the
literature on non-nested hypothesis testing has had no impact whatsoever on empirical
work in economics. Economists continue to estimate models, and to draw policy
conclusions on the basis of them, without ever testing them against alternative models,
or (in most cases) even making any serious effort to test their specifications at all.

Should non-nested hypothesis tests play a major role in applied work? No doubt
some econometricians would argue that they should not. In many practical cases, a
specification error that could be detected by application of such a test could also be
detected by application of one of many currently available tests for different types of
model misspecification. After all, it must surely be rare that misspecification fails to
cause serial correlation, heteroskedasticity, failure of linear or nonlinear restrictions
to hold, unstable parameter estimates, correlation between error terms and powers
of the fitted values (Ramsey, 1969; Ramsey and Schmidt, 1976), divergence between
alternative estimators of the covariance matrix (White, 1982), or some other observable
misbehavior of the model. Thus, in principle, econometricians may rarely need non-
nested hypothesis tests to detect misspecified models.

In practice, however, many of those who do applied econometric work are very sloppy
about testing their models. Anything that forces them to test models a bit more
rigorously is therefore highly desirable. Thus I would argue that, even if non-nested
hypothesis tests never had greater power than alternative tests for model misspeci-
fication, the former would still be a very useful part of the applied econometrician’s
kit of tools. Moreover, these tests often will have good power, especially when the
alternative hypothesis, or another model which resembles it, does happen to be true.

When he or she decides to make use of non-nested hypothesis tests, an investigator
is forced to recognize that there are usually many models to explain any given phe-
nomenon, and that most of these models must be false. The investigator is then obliged
to estimate several non-nested alternative models, and to give each of them several
chances to show that it is not true by confronting it with the evidence provided by
the data and by the other models. Doing this must increase greatly the probability
that the model finally selected will not be thoroughly false. Even if that is the only
contribution of nonnested hypothesis tests, it will be a very valuable one.
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8. Postscript
This paper was published along with comments by Roger W. Klein, Michael McAleer
and Anil Bera, Grayham Mizon and Jean-François Richard, Kimio Murimune, and
M. Hashem Pesaran. There was also a reply by the author. One of the points made
in the reply is of some interest and should really have been made in the paper. It is
therefore included here. I have also cited a few more recent papers, which are listed
in a separate “Additional References” section at the end of the paper.

In the case of linear regression models, there is much less diversity of test statistics
than may at first appear to be the case. The numerator of the J statistic is

y>(I−M1)M0y, (55)

and the numerator of the JA statistic is

y>(I−M0)(I−M1)M0y. (56)

Here M0 denotes the matrix that projects orthogonally off the subspace spanned by all
the regressors in the H0 model, and M1 denotes the matrix that projects orthogonally
off the subspace spanned by all the regressors in the H1 model. Thus, if the regressor
matrix for H0 were X, then M0 = I−X(X>X)−1X>.

If we linearize T0, the numerator of the Cox test statistic, which is given in equation
(11), around zero, we obtain

σ̂2
1 − σ̂2

0 − σ̃2
a

σ̂2
1

, (57)

where σ̃2
a is the estimated variance from the auxiliary regression (12). In the linear

case, T times the numerator of (57) is

y>M1y − y>M0y − y>(I−M0)(I−M1)(I−M0)y. (58)

Notice that (58) is just the sum of squared residuals, or SSR, from H1, minus the SSR
from H0, minus an estimate of the amount by which the SSR from H1 should exceed
the one from H0. After a few manipulations, (58) can be rewritten as

−y>(I−M1)M0y − y>(I−M0)(I−M1)M0y, (59)

which is simply minus the sum of the numerators of the J and JA statistics. Thus
there are really only two quantities that matter, namely, the numerators of the J and
JA statistics. Other test statistics, such as the Cox test (14), simply depend on them.

In Godfrey and Pesaran (1983), an estimate of the mean of (58) under H0 is subtracted
from (58), and that adjusted quantity, divided by the square root of an appropriate
variance estimate, is used as a test statistic. The objective is to obtain good small-
sample properties without the poor power properties of the JA test. This is a very
good idea, but it is odd to begin with (58) rather than (55), because one term of the
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former already has mean zero. Moreover, since the only merit of the JA numerator is
that it has mean zero, it is pointless to include it in a numerator of which the mean is
to be adjusted anyway.

The Godfrey-Pesaran idea can be applied directly to (55), the mean of which is

σ2
0 Tr

(
(I−M1)M0

)
. (60)

Thus a statistic which will have mean zero is

y>(I−M1)M0y − y>M0y

n− k0
Tr

(
(I−M1)M0

)
. (61)

The variance of this statistic under H0 is

σ2
0 β>X>(I−M1)M0(I−M1)Xβ + σ4

0

(
Tr

(
(I−M1)M0

)

+ Tr
(
(I−M1)M0(I−M1)M0

)− 2
n− k0

(
Tr

(
(I−M1)M0

))2
)

,

(62)

which can be estimated straightforwardly. The adjusted J statistic suggested here will
be much harder to compute than the ordinary J statistic, but it should be a little easier
to compute than the similar statistic suggested by Godfrey and Pesaran. However,
the success of the bootstrap in correcting the tendency of the J test to overreject (see
below) has made this sort of adjustment much less attractive.

In the paper, it was remarked that the J test is invalid when certain orthogonality
conditions hold. This is also true for the Cox and JA tests. Near orthogonality also
causes serious problems for all these tests. See Michelis (1999) for an illuminating
analysis of this case.

Since this paper was published, it has become apparent that the test of Andrews (1971)
for linear versus loglinear models can be seriously deficient in power and that the test
of Godfrey and Wickens (1981) often overrejects severely in finite samples. Better tests
of linear versus loglinear models are available. See Davidson and MacKinnon (1985,
1988) and Godfrey, McAleer, and McKenzie (1988).

During the past ten years, much has been learned about the finite-sample properties of
non-nested hypothesis tests. The most important result is that these can be dramat-
ically improved by using a parametric or semiparametric bootstrap. Early evidence
on this point may be found in Godfrey (1998). Davidson and MacKinnon (2002a)
provide a detailed discussion of how to bootstrap the J test and a theoretical expla-
nation of why doing so works so well. The bootstrap, when implemented properly,
almost entirely solves the problem of finite-sample overrejection by the J test, a prob-
lem that is especially acute when H1 has more parameters than H0. In particularly
ill-behaved cases, it may be desirable to use the fast double bootstrap instead of more
straightforward bootstrap procedures; see Davidson and MacKinnon (2002b).

–18–



References

Amemiya, T. (1973). “Regression analysis when the variance of the dependent
variable is proportional to the square of its expectation,” Journal of the American
Statistical Association, 68, 928–934.

Amemiya, T. (1980). “Selection of regressors,” International Economic Review, 21,
331–354.

Andrews, D. F. (1971). “A note on the selection of data transformations,”
Biometrika, 58, 249–254.

Aneuryn-Evans, G., and A. S. Deaton (1980). “Testing linear versus logarithmic
regression models,” Review of Economic Studies, 47, 275–291.

Atkinson, A. C. (1969). “A test for discriminating between models,” Biometrika, 56,
337–347.

Atkinson, A. C. (1970). “A method for discriminating between models,” Journal of
the Royal Statistical Society, Series B, 32, 323–353.

Box, G. E. P., and D. R. Cox (1964). “An analysis of transformations,” Journal of
the Royal Statistical Society, Series B, 26, 211–252.

Breusch, T. S., and A. R. Pagan (1980). “The Lagrange Multiplier test and its
applications to model specification in econometrics,“ Review of Economic Studies,
47, 239–253.

Cox, D. R. (1961). “Tests of separate families of hypotheses,” Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1,
105–123.

Cox, D. R. (1962). “Further results on tests of separate families of hypotheses,”
Journal of the Royal Statistical Society, Series B, 24, 406–424.

Davidson, R., and J. G. MacKinnon (1980). “On a simple procedure for testing
non-nested regression models,” Economics Letters, 5, 45–48.

Davidson, R., and J. G. MacKinnon (1981). “Several tests for model specification in
the presence of alternative hypotheses,” Econometrica, 49, 781–793.

Davidson, R., and J. G. MacKinnon (1982). “Some non-nested hypothesis tests and
the relations among them,” Review of Economic Studies, 49, 551–565.

Davidson, R., and J. G. MacKinnon (1983). “Testing the specification of
multivariate models in the presence of alternative hypotheses,” Journal of
Econometrics, 23, 301–313.

Davidson, R., and J. G. MacKinnon (1984). “Model specification tests based on
artificial linear regressions,” International Economic Review, 25, 485–502.

–19–



Deaton, A. S. (1978). “Specification and testing in applied demand analysis,”
Economic Journal, 88, 524–536.

Dhrymes, P. J., E. P. Howrey, S. H. Hymans, J. Kmenta, E. E. Leamer, R. E.
Quandt, J. B. Ramsey, H. T. Shapiro, and V. Zarnowitz (1972). “Criteria for
evaluation of econometric models,” Annals of Economic and Social Measurement,
1, 291–324.

Durbin, J. (1970). “Testing for serial correlation in least-squares regression when
some of the regressors are lagged dependent variables,” Econometrica, 38,
410–421.

Fisher, G. R., and M. McAleer (1979). “On the interpretation of the Cox test in
econometrics,” Economics Letters, 4, 145–150.

Fisher, G. R., and M. McAleer (1981). “Alternative procedures and associated tests
of significance for non-nested hypotheses,” Journal of Econometrics, 16, 103–119.

Gaver, K. M., and M. S. Geisel (1974). “Discriminating among alternative models:
Bayesian and non-Bayesian methods,” in Frontiers in Econometrics, ed. P.
Zarembka, New York: Academic Press, 49–77.

Godfrey, L. G. (1983). “Testing non-nested models after estimation by instrumental
variables or least squares,” Econometrica, 51, 355–366.

Godfrey, L. G., and Wickens, M. R. (1981). “Testing linear and log-linear regressions
for functional form,” Review of Economic Studies, 48, 487–496.

Hoel, P. G. (1947). “On the choice of forecasting formulas,” Journal of the American
Statistical Association, 42, 605–611.

Judge, G. G., W. E. Griffiths, R. C. Hill, and T.-C. Lee (1980). The Theory and
Practice of Econometrics, New York: Wiley.

Leamer, E. E. (1979). “Information criteria for choice of regression models: A
comment,” Econometrica, 47, 507–510.

MacKinnon, J. G., H. White, and R. Davidson (1983). “Tests for model specification
in the presence of alternative hypotheses: Some further results,” Journal of
Econometrics, 21, 53–70.

Milliken, G. A., and F. A. Graybill (1970). “Extensions of the general linear
hypothesis model,” Journal of the American Statistical Association, 65, 797–807.

Morimune, K. (1979). “Comparisons of normal and logistic models in the bivariate
dichotomous analysis,” Econometrica, 47, 957–975.

Pereira, B. de B. (1977a). A note on the consistency and on the finite sample
comparisons of some tests of separate families of hypotheses,” Biometrika, 64,
109–113.

–20–



Pereira, B. de B.(1977b). “Discriminating among separate models: A bibliography,”
International Statistics Review, 45, 163–172.

Pesaran, M. H. (1974). “On the general problem of model selection,” Review of
Economic Studies, 41, 153–171.

Pesaran, M. H. (1982). “Comparison of local power of alternative tests of non-nested
regression models,” Econometrica, 50, 1287–1305.

Pesaran, M. H., and A. S. Deaton (1978). “Testing non-nested nonlinear regression
models,” Econometrica, 46, 677–694.

Quandt, R. E. (1974). “A comparison of methods for testing non-nested
hypotheses,” Review of Economics and Statistics, 56, 92–99.

Ramsey, J. B. (1969). “Tests for specification errors in classical linear least-squares
regression analysis,” Journal of the Royal Statistical Society, Series B, 31,
350–371.

Ramsey, J. B., and P. Schmidt (1976). “Some further results on the use of OLS and
BLUS residuals in specification error tests,” Journal of the American Statistical
Association, 71, 389–390.

Sawa, T. (1978). “Information criteria for discriminating among alternative
regression models,” Econometrica, 46, 1273–1291.

Sawyer, K. (1980). The Theory of Econometric Model Selection, Department of
Statistics, Australian National University, Ph.D. Thesis

Walker, A. M. (1967). “Some tests of separate families of hypotheses in time series
analysis,” Biometrika, 54, 39–68.

White, H. (1982a). “Maximum likelihood estimation of misspecified models,”
Econometrica, 50, 1–25.

White, H. (1982b). “Regularity conditions for Cox’s test of non-nested hypotheses,”
Journal of Econometrics, 19, 301–318.

–21–



Additional References

Davidson, R., and J. G. MacKinnon (1985). “Testing linear and loglinear regressions
against Box-Cox alternatives,” Canadian Journal of Economics, 25, 499–517.

Davidson, R., and J. G. MacKinnon (1988). “Double-length artificial regressions,”
Oxford Bulletin of Economics and Statistics, 50, 203–217.

Davidson, R., and J. G. MacKinnon (2002a). “Bootstrap J tests of nonnested linear
regression models,” Journal of Econometrics, 109, 167–193.

Davidson, R., and J. G. MacKinnon (2002b). “Fast double bootstrap tests of
nonnested linear regression models,” Econometric Reviews, 21, 417–427.

Godfrey, L. G. (1998). “Tests of non-nested regression models: Some results on small
sample behaviour and the bootstrap,” Journal of Econometrics, 84, 59–74.

Godfrey, L. G., M. McAleer, and C. R. McKenzie (1988). “Variable addition and
Lagrange Multiplier tests for linear and logarithmic regression models,” Review of
Economics and Statistics, 70, 492–503.

Godfrey, L. G., and M. H. Pesaran (1983). “Tests of non-nested regression models:
Small sample adjustments and Monte Carlo evidence,” Journal of Econometrics,
21, 133–154.

Michelis, L. (1999). “The distributions of the J and Cox non-nested tests in
regression models with weakly correlated regressors,” Journal of Econometrics, 93,
369–401.

–22–


