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GRADIENT METHODS IN FIML ESTIMATION OF
ECONOMETRIC MODELS

Giorgio Calzolan and Lorenzo Panattoni
IBM Scientific Center, Pisa, Italy

1. Introduction

Efficient computational algorithms, to produce full information
maximum likelihood estimates of the structural form coefficients in
a system of simultaneous equations, have worried for a long time
and are still worrying econometricians.

Several optimization techniques have been proposed in the last
few years and experimented with on linear and nonlinear models of
increasing size. While some techniques are search algorithms which
do not make use of information on first and second derivatives (e.g.,
Parke, 1982), it is generally acknowledged that gradient methods,
and more specifically Newton-like methods, which make use of such
information, should be superior to the others, at least near the
optimum. The drawback of Newton-like methods, as well pointed
out in Belsley (1980, p. 222), lies in the excessive cost required in the
calculation of the Hessian matrix. Therefore, methods have been
proposed in the literature which replace the Hessian matrix with
other matrices, like those adopted in Berndt, Hall, Hall and Haus-
man (1974), Amemiya (1977), or in Dagenais (1978).

Belsley's findings, after comparing the computational optimiz-
ation performances of different matrices, placed the algorithm
which uses the “‘exact’”” Hessian in a dominant position for optimiz-
ation of the FIML objective function. On the other hand Dagenais’
experiments showed that a gradient method in which the Hessian is
replaced by a suitable approximation can be computationally more
efficient that a Newton-like algorithm, at least as long as the robust-
ness with respect to the initial guess of the coefficients is concerned.



In our Monte Carlo study, the performances of the Newton-like
method are compared with the performances of gradient algorithms
in which more easily obtainable matrices are used: the outer product
matrix proposed in Berndt et al. (1974), and the generalized least
squares type matrix discussed in Amemiya (1977, p. 963) and exper-
imented with in Dagenais (1978).

A large set of Monte Carlo experiments is performed on models
of different size and with different sample period lengths. A sys-
tematic average behavior is derived from the Monte Carlo exper-
iments and evidenced in the paper.

Convergence with the outer product matrix is usually slow, at
least as the number of iterations is concerned; simplicity in the
computation of the matrix provides only a partial compensation in
terms of computation time. This result is in agreement with Belsley
(1980).

The convergence with the Hessian is usually faster near the
optimum, again in agreement with Belsley (1980), while the
generalized least squares type matrix works better far from it, and
this is not only in terms of “‘robustness” (less chance of false con-
vergence to a saddle point rather than a maximum), as already
Dagenais (1978) noticed, but also in terms of “‘gain” inside the
iterative gradient procedures. This result, which motivated this
paper, was observed and measured across a large set of Monte
Carlo replications on models with short sample period lengths (like
models with annual data) and might be approximately quantified as
follows. Whichever “good’ starting point of the iterative maximiz-
ation process was adopted, such as the point obtained from single
equation estimation (least squares or instrumental variables), only
when most of the distance (99% or more, on the average) between
the initial point and the optimum had been covered. the convergence
became faster using the Hessian.

This suggests first of all that, although the Hessian as expected
performs better near the optimum, this “‘near the optimum’ should
be interpreted in a much mor restrictive sense than usually believed
in practical applications.

On the other hand, the fact that the generalized least squares type
matrix ‘“‘gains” usually more than the Hessian near the starting
point and less near the optimum might be quite useful for
implementing FIML procedures. A good improvement of the com-
putational efficiency has in fact been obtained by using a mixed



gradient algorithm based on the generalized least squares type
matrix in the first iterations and on Hessian in the last iterations.

2. Three Gradient Methods

Let the system of simultaneous equations be represented as
filyox,a) = w,, i=12,....m t=12...,T, (1

where y, is the m x 1 vector of endogenous vanables at time ¢, x,
is the vector of predetermined variables at time ¢ and g, is the vector
of unknown structural coefficients in the i th equation. The m x 1
vector of random error terms at time ¢, ¥, = (U, Uz, - - - 5 Up) 5 1S
assumed to be independently and identically distributed as N(0, X),
with ¥ completely unknown, apart from being symmetric and
positive definite. The complete n x 1 vector of unknown structural
coefficients of the system will be indicated as a = (a}, a3, . . .,

a,).
The concentrated log-likelihood function is
I = Y log |laf,/dyill — T/2log |T' Y f.f/|. )
t { .
where f, = (fi,» fors - - - » fe) = u, and the Jacobian determinant

|0f,/0y;| is taken in absolute value.
A gradient iterative procedure to maximize the log-likelihood
function can be represented by the formula:

a0 = =Y 4+ 100l,/da, (3)

where 4%~ " is the estimate of the coefficients vector obtained after
k — 1 iterations, Q is some n X n matrix, and 4 is a real number
(scalar).

Gradient methods differ in the way in which the matrix Q and the
scalar/ are selected at each iteration. The selection of the matrix Q

" determines the choice of the direction along which the search for the

maximization of the log-likelihood function will be made. The
choice of 1 determines the step size in this direction to obtain the
new values of the coefficients.

As long as the choice of Q 1s concerned, three different approach-
es have been tried.



2.1

The matrix Q is given by the inverse of the Hessian of the
log-likelihood function. The analytical expression of the i, jth
block of the Hessian is given in Amemiya (1977, eq. 3.5)
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where g, = Jf,/0a; (in practice the vector g, contains the values of
the explanatory variables appearing in the ith equation, if the
model is linear in the coefficients), dg, /0w, = (dg,/dy,)(df,/dy); ",
0gj./0u;, = (0g,-/-,/6yj)(6f,/6y;),~", and a single subscript i represents

the ith column of the matrix. In this case the gradient method
becomes a Newton-like algorithm.

4)

2.2

The matrix Q is given by the inverse of the generalized least
squares type matrix introduced in Amemiya (1977, p. 963) and
experimented with in Dagenais (1978). Such a matrix is obtained as
follows. We first introduce the 7' x m matrix F, whose ¢, ith
elementis f;(y,, x,, @) = u, (the matrix of residuals) and the matrix
G,, whose tth row is g/ (in practice, for models linear in the
coefficients, the matrix with the values of the explanatory variables
appearing in the ith equation). We define, now,

G = G — T 'FY (0g,/ou))y (5)
and build the block diagonal matrix G, whose m diagonal blocks are

G,. The generalized least squares type matrix used in the gradient
procedure is the inverse of the matrix

[G'E' ® NG] | (6)



(for linear models, G has the form of the matrix used in Aitken—
Zellner estimation, containing the values of the explanatory vari-
ables, but with the historical values of the endogenous vanables
replaced by the computed values).

2.3

The matrix Q is given by the inverse of the outer product matrix
proposed in Berndt et al. (1974) whose i, jth block is
—1

T~ Z{ag,-,/auu ~ Teut)) (Zm) }
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The choice of the step size A has been performed following an
optimality criterion, i.e., trying to maximize the log-likelihood
function by means of an univariate search in the selected direction
(see also Eisenpress and Greenstadt, 1966, or Dagenais, 1978). Of
course, the procedure is only based on heuristic considerations and
" there is no assurance that such a strategy for the selection of the
value of A is an optimal one; however, it appeared in practice to
accelerate the calculations and to assure the convergence in most
cases, and, therefore, it gave a good common basis for performing
comparisons of the gradient algorithms using the three matrices.

For the univariate search we used a part of Powell’s algorithm,
as described in Pierre (1969, pp. 277-280), which does not involve
the use of derivatives, but is quadratic convergent all the same.
Particular care had to be used in the choice of the tolerance for the
convergence in this univariate search because, although the maxi-
mization process improved the computational efficiency of the
whole algorithm, this implied the evaluation of several values of the
log-likelihood function. These computations, for medium and large
size models, are rather time consuming and it can happen that with
a too tight tolerance the algorithm requires a high number of such
computations without a corresponding improvement in the efficiency
of the whole algorithm. For the experimented models we found that
values 0.01-0.001 of the relative tolerance on A are usually good
values for the overall computational efficiency of the maximization
algorithm.



3. Experimental Comparison

Monte Carlo Experiments have been performed on four models
of small medium size. Two models are linear, and two are nonlinear
in variables.

(1) A multiplier-accelerator model, with three linear equations, two
of which stochastic, and 6 unknown structural coefficients; the
equations and empirical data can be found in Dhrymes (1970,
pp- 533-534).

(2) A model for the Italian economy proposed in Sitzia and Tivegna
(1975), consisting of 7 linear equations, 5 of which stochastic,
and 19 unknown structural coefficients.

(3) A mildly nonlinear version of Klein-I mode! (six equations,
three of which stochastic, and 12 unknown coefficients),
obtained by replacing the linear equation for consumption with
a log-linear equation (see Belsley, 1980, model 3B).

(4) The Klein-Goldberger model (Klein, 1969), which is nonlinear
in variables and consists of 20 equations, 16 of which stochastic,
with 54 unknown structural coefficients.

Monte Carlo experiments on all models are based on a few
hundred replications, each of which has been performed as follows.
Starting from the model with a given set of parameters (‘‘true”
coefficients and covariance matrix of the structural disturbances,
held fixed in all replications), random values of the endogenous
variables over the sample period are generated by means of stochas-
tic simulation and are used for FIML estimation with the three
methods.

To reproduce as much as possible the conditions under which
FIML estimation is performed in practice, we choose a “good”
starting point for each estimation by getting a preliminary single
equation estimate (least squares or instrumental variables).

Several convergence criteria (on coefficients, on the likelihood
and on the gradient) have been experimented with. While some
differences have been encountered in several cases, the overall
behavior did not change very much with the different criteria, apart
from the obvious lengthening of convergence *‘tails’’ when adopting
a very tight tolerance. The same can be said about the choice of the
sample period length; the overall behavior did not change, apart
from the obvious shortening of convergence *‘fails” with all methods
when the sample period becomes longer. Again the overall
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behavior did not change with the different choice of the predeter-
mined variables in the sample period (exogenous variables have
been either kept fixed in all experiments, or randomly generated
with given means and covariance matrix, and lagged endogenous
variables have also been kept fixed in all experiments, or randomly
generated using dynamic stochastic simulation), and with the dif-
ferent choice of the “true” parameters of the model, on which

Monte Carlo generations are based.

The simple computation of the number of iterations required to
get convergence with the three matrices is not particularly illumi-
nating (some more details can be found in Calzolari and Panattoni,
1983). The only sure indications which were obtained are the fol-
lowing.

(1) The use of the Hessian never requires very long tails for the
convergence, while the other two matrices (the outer product
matrix, in particular) often do.

(2) The Hessian, apart from the computational burden, rises more
often than the other problems of false convergence to saddle
points when it is used for the estimation of rather complex
models (about one out of five cases with the Klein—Goldberger
model with less than 50 observations).

Much more interesting considerations are obtained if we have a
better insight in the convergence process. For each Monte Carlo
replication, we first compute the maximum with a very high pre-
cision, then we measure the fraction of the distance between the
starting point and the maximum covered at each iteration, with the
three methods. The distance is measured both on the values of the
log-likelihood and as length of the difference between the cur-
rent and the final coefficient vectors. As before, in some cases the
two measures give different results, but the overall behavior is
practically the same. In Figure | results related to the distances
measured on the values of the log-likelihood function are displayed
on a log-scale. If we call D(k) the distance which, after & iterations,
still remains to get to the maximum, the value which is calculated
is

dlk) = —log [D(k)/D(0)]. (8)

The value of this variable is equal to zero at the starting point,
increases at any new (kth) iteration, as we move monotonically
“uphill”, and would be infinite at the optimum (in practice it
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Figure 1. Average rate of convergence of the three gradient algorithms.

assumes a value of a few units, depending on the choice of the
tolerance in the convergence criterion). For example, a value 4
means that the distance from the maximum of the point obtained
after k iterations is 10™* of the distance between the starting point

and the maximum.

For each model, and for each iteration number (k), the value
which is displayed in Figure | is the average value of all d(k), across
a few hundred Monte Carlo replications, obtained from using the

three matrices.

An interesting systematic behavior of the three methods can be



observed for the models in Figure 1, where the length of the sample
periods are those of the historical data originally proposed for the
models themselves (only for the Klein—-Goldberger model the
sample had to be enlarged of a few observations). The gradient
algorithm, which makes use of the generalized least squares type
matrix is considerably faster in the first iterations and, on average,
it allows to cover a good deal of the distance from a “good”’ starting
point up to the maximum (more than 99.9% for these experiments
based on rather short samples) in a smaller number of iterations
that the same algorithm which makes use of the other two matrices.
The dominance of the Hessian matrix becomes effective only in a
very tight neighborhood of the optimum, where it allows a con-
siderable reduction of the number of iterations.
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Figure 2. Average rate of convergence of the three gradient algorithms and of the
mixed gradient algorithm on the Klein—-Goldberger model.



This average behavior, which systematically occurs with minor
variations in all the models and under all the different conditions
experimented with, might be interesting for improving the com-
putational efficiency of FIML algorithms. The use of the
generalized least squares type matrix seems recommendable in the
first iterations (1t becomes even more recommendable when con-
sidering that its computation is rather simple and fast even for
medium-large size models and is, in any case, considerably simpler
and faster than computation of the Hessian). After a few iterations,
the use of the Hessian should be preferred.

For example, since the slope of the curve related to the Hessian
in Figure | becomes the highest when, on the average, d(k) = 2
(1072 of the total distance still remains to get the maximum), a
two-step mixed iterative algorithm would produce a good improve-
ment of the computational efficiency. We first adopt a convergence
criterion with a wide tolerance (for example a relative tolerance
1072 on coefficients). Starting from a “‘good’ initial value of the
coeflicients vector, we first apply iteratively the gradient method
using the generalized least squares type matrix, until convergence is
reached. We then adopt a tighter tolerance for the convergence
criterion and apply iteratively the gradient method using the Hess-
1an. A mixed gradient method of this kind, applied to the Klein—
Goldberger model with a sample period of 50 observations, gave,
on the average, the improvement of the computational efficiency
evidenced in Figure 2.
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