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1. Introduction 

 Since Adam Smith there has been little doubt that the wealth of nations is driven 

by the degree of specialization. The amount of specialization in a modern economy is 

remarkable – Seabright’s [2004] description of the number of ingredients and countries 

involved in the production of an item so humble as a shirt is a beautiful illustration of this 

point. It is illustrated as well by the number of parts in a modern good: according to 

Boeing, for example, there are over 6,000,000 parts in a 747. 

 Specialization in turn implies many stages of production, an aspect of the 

production function not present in most economic models. The goal of this paper is to 

give a simple account of how the number of stages of production are determined – the 

determinants of the degree of specialization – and the implications for growth and 

development. 

 The key motivating idea is that long “chains” of production are vulnerable to 

failure of a single link. Hence while long chains permit a high degree of specialization 

and so a large quantity of output, they are also more prone to failure. Consequently, 

production chains form a natural basis for an economy in which there are low risk low 

reward projects and high risk high reward projects, a common notion in the study of 

financial market imperfections. 

 This idea that failure of a single link may cause a “cascade” of failures is not a 

new one. It is implicit in the idea of a Keynesian multiplier – employing or unemploying 

a single person reverberates through the economy much as the unemployment of a single 

person in a production chain unravels the entire chain. Similarly, Leijonhufvud’s [1976] 

notion of the vulnerability of long chains of credit to a single bankruptcy has a flavor 

similar to the disruption of a long chain of production by the failure of a single producer. 

Moreover the spirit of the model here is similar to that of Becker and Murphy [1992] who 

also argue that the degree of specialization is limited to a large extent by the problem that 

long chains of production are more inclined to failure. 

The notion of stages of production is not new either. In industrial organization 

short production chains have been studied in the context of vertical versus horizontal 

integration, such as, for example, in Grossman and Hart [1986], but the issue of chain 

fragility is not addressed. A part of the macroeconomics literature has studied economies 
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made up of a single broad production chain.  Such models have been used in international 

trade, for example by Dixit and Grossman [1982] and to study how the pricing 

consequences of monetary policy feed down the supply chain, for example by Huang and 

Liu [2001].  

More relevant is the multi-sectoral work of Horvath [1998, 2000] who shows how 

independent shocks across sectors can be magnified by linkages across sectors. However, 

unlike the model here where there are many narrow parallel chains, the issue of fragility 

does not arise with a single broad chain. Horvath’s work has been recently generalized by 

Acemoglu, Ozdaglar and Tahbaz-Salehi [2010] who examine many interacting sectors, 

addressing the question of when shocks spread across many sectors tend to average out as 

opposed to creating aggregate fluctuations. Grossman and Rossi-Hansberg [2008] appear 

to have long chains of fixed length in their study of off-shoring. Their production 

technology is difficult to infer from their paper, and their focus in any case is on the 

location of chains links, not the fragility of chains. 

The issue of fragility is the key idea in Kremer’s [1993] o-ring theory of 

development, but he focuses on assortive matching of workers in the presence of 

complementaries. Recently, no doubt inspired by the current crisis, there has been a 

resurgence of interest in the fragility of chains. Jones [2010] studies a broad intermediate 

goods sector producing many different kinds of inputs all used in intermediate goods 

production with a one-period lag. The distribution of productivity across sectors and the 

level of complementarities determine the multiplier effect of resource misallocation 

across sectors. It acts much like the parameter determining the correlation of shocks 

across chains does in this model. Two recent papers build on this work by adopting a 

network perspective. Carvalho [2010] advances Jones work by using data on direct inputs 

rather than just the input output table data. Oberfield [2011] traces the dynamics of 

shocks across sectors. In a sense the model in this paper simplifies matters by adopting a 

Leontief specification for technology. The advantage is that this makes it possible to 

address the depth of chains and the determination of the degree of specialization as well 

as the role of capital market imperfections.  

In a sense the central question addressed by this paper is “Are capitalist 

economies prone to crises?” There is a long history of conjecture that this might be the 

case, running from Marx to Keynes. What the alternative to a “capitalist economy” is and 
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whether this is an empirical fact have not to my knowledge been resolved. However, the 

notion of production chains leads to a more specific and testable conjecture – capitalist 

economies by virtue of being efficient employ longer and more specialized production 

chains than more poorly organized economies. This raises output, welfare and utility, but 

it also leads to more “crises” than shorter less efficient production chains in the sense that 

output is more volatile. One might summarize by saying: capitalist economies are more 

subject to crises than less efficient economies – and this is a good thing. 

The model has several related implications. First, suppose the measure of the size 

of a real shock is the number of links that fail. The consequence of such a shock depends 

heavily on how the failures are distributed. If they are concentrated in particular chains, 

the resulting unemployment and output loss is small. If they are spread across many 

chains, the resulting unemployment and output loss is large. So the model is consistent 

with the idea that a small real shock may have either large or small consequences – the 

magnitude of a shock is not properly measured by the number of links that fail, but rather 

by the number of chains that fail. 

We are also interested in the role of financial markets. We model a simple 

financial market imperfection where insurance is limited by repayment constraints as in 

Kehoe and Levine [1993]. Better insurance markets mean that the second best will have 

longer chains, and higher output and welfare. We examine also the role of government 

policy.  

2. The Technology 

There is an infinite sequence of different intermediate goods 1,2,j    and one 

final good 0 . There is a continuum of individuals. Each individual is endowed with one 

unit of labor. Anyone can use x  units of labor to produce xb  units of any type of 

intermediate good or the final good. 

Anybody can choose to be a specialist of any type. A specialist of type j  

produces jxl  units of 1j   from x  units of j  where 1jl   and 1j  .  Utility is only 

for consumption c  of the final good, and is represented by a strictly increasing, strictly 

concave function and smooth function ( )u c .  

A k -production chain for 1k   consists of one generalist and specialists 

1, 1j k  . The generalist produces intermediate good 1k  . The labor of the chain 



 4 

must be used exclusively within the chain, and the output of the chain is equally divided 

among chain members. Consequently, the per capita output of the chain is 
1
1( ) k

j jf k l b
   if 1k  , and (1)f b . 

After a chain is formed and specialties chosen, there is a probability 0 1p   

that each individual “fails.” Any chain with one or more failed individuals is unable to 

produce any output. We imagine that the producer may be sick, be involved in an 

accident, have a specialized machine that breaks, go bankrupt, or otherwise be 

unavailable. The critical feature of the model is that if a chain has one failure then the 

entire chain cannot produce. 

Critical to the analysis is the correlation of failures across chains. It may be that 

failures are independent across individuals. It may also be that the probability of failure is 

higher if another individual in the same chain fails: that is, shocks may be more likely to 

occur to individuals working in the same chain. Moreover, it may be possible to swap 

individuals between chains. If specialist j  in one chain fails, it is natural to try to obtain a 

j  specialist from another chain.  

It is tempting here to think in terms of large mass markets forgetting social 

feasibility constraints. That is, if I am a car manufacturer and my tire supplier fails, I just 

go to another supplier to get tires. But in general equilibrium, the other supplier was 

supplying tires to someone – and if I get those tires, some other automobile manufacturer 

does not. However: if another automobile making chain has a piston maker who has 

failed, then the tire manufacturer in that chain is unemployed and happy to provide me 

with tires. Hence when there are failures, some reduction in output must be accepted, but 

it is best to try to concentrate the failures all in the same chain. A simple example with 

three chains of length three and three failures makes the point.  

  Suppose there are three chains producing cars: Jaguars, BMWs, and Toyotas. 

Each chain has three links: tires, pistons, and unspecialized. Suppose there are three 

failures. Consider three different patterns of failure: labeled good, intermediate and bad. 
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Type of shock Jaguar BMW Toyota 

good Tires x   

Pistons x   

Unspecialized x   

 

intermediate Tires x   

Pistons  x  

Unspecialized   x 

 

bad Tires x x x 

Pistons    

Unspecialized    

 

In the good case only the Jaguar chain fails. This is the best outcome – with three 

failures, at most two chains can produce output. In the bad case all the tire producers fail: 

in this case it is impossible to produce any cars. Finally, in the intermediate case one link 

of each type fails. If it is possible to reorganize the chains to move all the failures to one 

chain, then two chains can produce output. Whether this is possible depends on market 

organization, the availability of information, the quality of business connections, and the 

degree of substitutability between specialists. With a high degree of substitutability and 

good market organization, two chains may be able to produce. With poor substitutability 

or poor market organization, none of the chains will be able to produce. 

We can think of the situation in terms of the reliability of a chain ( )R k , that is, 

the probability a chain of length k  succeeds, as well as the per capita output ( )y f k  of 

a chain of length k . If shocks are highly correlated, then ( )R k  falls slowly with chain 

length. If shocks are largely independent, then ( )R k  falls rapidly with chain length. 

Expected output is given by ( ) ( )R k f k . Notice that it is easy to construct models in which 

expected output is maximized as k   : if, for example, if ( )f k    much more 

quickly than ( ) 0R k  , or if ( )R k  is bounded away from zero and ( )f k  is not bounded 

away from infinity. However, such models predict that chains produce very rarely – that 

they have very high failure probabilities – but on those rare occasions when they do 

produce, they produce gigantic amounts. As we do not observe such technologies being 
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used,1

There are two simple models that capture a positive correlation of failures. One is 

to assume that there is a positive probability that an individual is in a chain consisting 

entirely of successes. This leads to a model in which the probability of failure is bounded 

away from zero independent of 

 our goal in designing a model will be to choose functional forms for which this is 

not the case. 

k , and as we observed, this leads to the implausible 

prediction that there is rarely any output, but occasionally there are bursts of 

exceptionally large levels of output. In addition, it seems unlikely that intermediate goods 

are perfect substitutes: while final goods, such as Jaguar automobiles and BMW 

automobiles may be good substitutes, the pistons for their engines are not.  

Here we make the opposite assumption: we assume that there is a positive 

probability that an individual is in a chain consisting entirely of failures. Specifically, we 

assume that there is a probability r p  that an individual is in such a chain; with 

probability 1 r  she is in a chain in which each individual has an independent 

(1 )/(1 )p r   probability of success. The overall probability of failure for an individual 

is then (1 )(1 (1 )/(1 ))r r p r p      , as desired. The resulting probability a 

chain succeeds is ( ) (1 )((1 )/(1 ))kR k r p r    . 

Next, consider the production process. What happens if jl  is constant? In this 

case as the length of the chain increases the probability of success goes to zero 

exponentially, and the output of the chain increases exponentially. Unless the exponential 

rates are exactly the same, the optimal chain length is either one or infinity. The former 

case is neither interesting nor empirically relevant. The latter case is the one we have just 

argued is also empirically irrelevant.  Hence we seek technologies in which the return to 

specialization is less than exponential. It is convenient to work directly with the function 

( )f k , with the corresponding specialization coefficients given by:  

 ( 1)
( )j

f j
f j

l  . 

To state our assumption on ( )f k , notice that the reliability function 

( ) (1 )((1 )/(1 ))kR k r p r     is strictly increasing in k  and for 1R r   can be 

inverted as  

                                                 
1 Invention of pharmaceuticals and movies would seem to come the closest. 
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 log(1 ) log
log(1 ) log(1 )

r Rk
r p
 

  
. 

This enables us to write expected output as a function of the reliability rate: 

 log(1 ) log( )
log(1 ) log(1 )

r RY F R Rf
r p

         
. 

Although in principle R  is restricted to the grid induced by discrete values of k  it will 

often be convenient to treat it as a continuous variable, which we will do without further 

comment. 

Our basic assumption is 

Assumption 1: ( )F R  is continuous, strictly concave and (0) 0F  . 

 To better understand assumption 1, consider the family of technologies 

( ) ( )f k b k a   where 0a  , 0b   and  1b ab   . Notice that is an increasing 

function and that a  measures the return to specialization. In addition it is apparent that 

( )F R  is continuous and (0) 0F  . We also have 

Lemma 2: ( )F R  is strictly concave if and only if either 1a   or 

 1
log(1 ) log(1 )

b
r p

a
  

 

Remark 1: In the case 1a   we have ( )f k  concave, which we refer to as diminishing 

returns to specialization. When there are increasing returns to specialization, the gains to 

increasing the length of small chains may be so great that ( )F R  fails to be concave. 

However, this is not the case if we choose b  sufficiently large.   

Proof: Define log(1 ) log(1 ) 0r pl      . We may compute the second derivative 

 
1 1log(1 ) log 1 log(1 ) log( ) 1RR

r R r RF R b b
aa a

l l l l

                          
 

Since the second factor is increasing in R , ( )F R  will be strictly concave if and only if 

( )RRF R  is non-negative at the upper bound 1R r  , that is to say 

 111 0ba
l

  . 
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Remark 2: Note that 1R p   corresponds to a 1-chain 1k  . Since (0) 0F   and  

(1 ) 0F p  there is some R  such that for all smaller R  we have ( ) (1 )F R F p  , 

that is, a 1-chain yields higher expected output – as well as greater reliability – than any 

chain of length greater than ( )k R . 

We can characterize the concavity of ( )F R  by a bound on the derivatives of the 

primitive ( )f k  with a Lemma proven in the Appendix. 

Lemma 2: ( )F R  is strictly concave if and only if  

 ( ) log(1 ) log(1 )
( )

kk

k

f k r p
f k

    . 

In particular it is sufficient that ( )f k  be concave. 

 For some results we will also need to insure that ( )f k  not be too concave.  

Definition 3: We say that ( )f k  is moderately concave if 

 1( ) ( )
( ) ( )

kk k

k

f k f k k
f k f k

   

This is satisfied for the class ( ) ( )f k b k a   with 0, 0b a  , in which case 

 1 1( )/ ( ) ( ( )/ ( )) ( ) ( ( )/ ( ))kk k k kf k f k f k f k b k f k f k k        . 

3. An Example 

We start by studying the relationship between expected output and the length of a 

chain k  in the simple case ( )f k ka . In this case expected output is 

 log(1 ) log
log(1 ) log(1 )

r RY R
r p

a        
 

As indicated, we will allow R  to be a continuous variable, so we can maximize 

expected output using calculus. The derivative is 

 

 
 

 
 

 

1

1

log(1 ) loglog(1 ) log
log(1 ) log(1 ) log(1 ) log(1 )

log(1 ) log log(1 ) log
log(1 ) log(1 )

r Rr RY
r p r p

r R r R
r p

a a

a

a

a

a

a
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The sign of the derivative is determined by the term in square brackets, which is 

decreasing in R . This implies that ( )F R  is single peaked2 1a  even for  and has a 

maximum that is determined by a unique solution to the first order condition 

 ˆ (1 )R r e a  . 

From this the optimal chain length is 

 ˆ
log(1 ) log(1 )

k
r p

a
  

. 

This simple formula shows how the optimal degree of specialization is 

determined by the trade off between the increased output of longer chains, and the 

increased failure rate. A greater return to chain length as measured by a  means longer 

chains; higher probability of failure as measured by p  means shorter chains; and higher 

correlation of shocks as measured by r  means longer chains. Notice also that the optimal 

reliability rate R̂  is independent of the failure rate p . It is decreasing in both a  and r , 

so that as correlation increases, chain length increases so much that unemployment goes 

up.  

 We may summarize this as 

Proposition 4: Greater returns to specialization a , lower failure probability p , or 

higher correlation of shocks r  and expected output maximization imply higher expected 

output Y , more specialization k  and no less unemployment U . Greater returns to 

specialization and higher correlation of shocks strictly increase unemployment U , which 

is independent of the failure probability. Optimal chain length is 

 ˆ
log(1 ) log(1 )

k
r p

a
  

 

and optimal unemployment is  ˆ 1 (1 )U r e a   . 

4. An Economy of Chains 

 We now consider a continuum economy. The shocks to chains and individuals are 

taken to be independent, which we interpret as meaning that a certain fraction of chains 
                                                 
2 If k  is restricted to the natural numbers, this means that the expected output maximizing choice of chain 
length must be at one of the grid points adjoining the point k̂  that maximizes expected output over the 
positive real numbers 
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and individuals fail. That is, we assume that there is no aggregate uncertainty caused by 

the failure of individuals or chains. We index the production function by a , so that 

( , )y f k a . 

 The sole friction in the economy is an insurance market imperfection. Following 

Kehoe and Levine [1993], we assume that only a fraction g  of output can be used to 

make insurance payments. If 1g   we are in a frictionless full insurance world. If 

0g   no insurance is possible. The economy has several stages: 

 

 Complete contingent insurance markets 

 Determination of chain length. 

 Realization of an aggregate shock ( , , , )p r Sa g  , where S  is a finite set. 

 Realization of individual shocks 

 Output produced and insurance claims paid 

 

This is a public information economy and our notion of equilibrium will be that of 

constrained efficiency – that is maximization of the welfare of the ex ante identical 

individuals in this economy. Note, however, that this is equivalent to a competitive 

equilibrium – that is, the first and second welfare theorems hold in this economy. To see 

this, observe that there are only finitely many relevant production technologies k : as we 

observed production technologies for which ( , , , )max ( ( , , ))p r Sk k R p ra g a  are 

dominated by 1-chains. Second, observe that the insurance market friction may be 

equivalently modeled by a physical production technology. That is, we may imagine that 

the input x  jointly produces two kinds of output: ( )f k xg  units of tradable output, and 

(1 ) ( )f k xg  of untradable output. This economy is completely a classical continuum 

general equilibrium economy, and so satisfies the welfare theorems – the second welfare 

theorem being trivial, as everyone is ex ante identical. Notice, however, that it may be 

efficient to put fractions of the population in different length chains; implicitly we are 

assuming that individual can be allocated to chains by means of lotteries, and that these 

lotteries are traded or that sunspot contingencies are available as in Kehoe, Levine and 

Prescott [2002]. 
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5. No Aggregate Shock 

 We consider the case of an economy with no aggregate shock, so just a single 

aggregate state. We first show that it is not optimal to use lotteries or sunspot contingent 

chain lengths – there is an optimal chain length. Second, we examine when the 

comparative statics of output maximizing chain length in Proposition 1 extend to the 

general case. Throughout we assume that the length of chains are not restricted to integer 

values. 

 As remarked above we can have an economy consisting of chains of many 

different lengths, with individuals assigned to chains by lottery. Specifically, we can have 

a probability measure m  over a space  , with a measurable function ( )k w  describing the 

corresponding length of chain. We may equally well describe the lottery by a measurable 

function ( )R w  rather than ( )k w .  

If a chain at w  is successful it produces ( ( ))/ ( )F R Rw w . It consumes what is left 

over after all seizable output is seized plus an insurance payment 1( )z w , receiving in total 

 1( ) (1 ) ( ( ))/ ( )z F R Rw g w w  . If it is unsuccessful, it consumes just an insurance 

payment 0( )z w . Feasibility for insurance payments requires that 1 0( ), ( ) 0z zw w   and 

that the aggregate amount of insurance payments can be no greater than the seizable 

fraction of expected output 

  1 0( ) ( ) (1 ( )) ( ) ( ) ( ( )) ( )R z R z d F R dw w w w m w g w m w    . 

Proposition 5: The optimal lottery m  is degenerate and places weight one on a single 

value of k . 

The proofs of the Propositions in this section can be found in the Appendix. 

The utility function ( )u c  induces preferences over expected output and reliability. 

We can round-out our picture of the economy be describing these preferences. Let Y  be 

the expected per capita output of the common optimal chain. If the largest possible 

transfer is made from the successful to unsuccessful chains, then a successful chain gets 

(1 ) /Y Rg , and a failed chain gets   / /(1 ) /(1 )Y R R R Y Rg g   . If it is 

feasible for the failed chain to get more output than a successful chain 

(1 )(1 )R Rg g    then it is optimal to provide full insurance. Equivalently, we may 
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write this as 1R g  . For these values of R  only specialized output matters, and 

indifference curves are horizontal. 

 We now consider what happens when there is only partial insurance 1R g  . 

The welfare function – expected utility – is  

    ( , ) (1 ) / (1 ) /(1 )W R Y Ru Y R R u Y Rg g     . 

We observe that ((1 ) / )Ru Y Rg  is homogeneous of degree one, and since u  is 

concave it is also concave. The same is true of (1 ) ( /(1 ))R u Y Rg  . As W  is the sum 

of these two functions, it is also concave. 

Proposition 6: The welfare function is concave in ,R Y  and strictly increasing in Y . 

Indifference curves are for 1R g   smooth and downward sloping, and for 

1R g   horizontal. Indifference curves are differentiable including at 1R g  . 

Comparative Statics 

 In order to do comparative statics, we will need more assumptions about 

functional form. For the given utility function ( )u c  we may define as usual the 

coefficient of relative risk aversion ( )cr .  

Definition 7: We say that risk aversion is moderate if ( ( )/ )[1 ( )] '( ) 0c c c cr r r   . 

In the CRRA aversion case, this is true if and only if 1r  , that is, there is no more risk 

aversion than exhibited by the logarithm. In this case the utility function is 1c r  and 

which we describe as a moderate CRRA. 

 Under moderate risk aversion we can establish the effect of better insurance 

Proposition 8: With moderate risk aversion, if there is partial insurance then increasing 

g  lowers reliability R , raises unemployment 1U R   and increases welfare, 

specialization and chain length k . 

What determines financial sector efficiency g ? This is a static model – to 

properly study insurance requires a dynamic setting since savings, portfolio balancing 

and borrowing along with bankruptcy and traditional unemployment insurance all form 

part of the overall insurance against unemployment. We can identify improved g  broadly 

with an improved financial sector. As we would expect, a better financial sector raises 

welfare. It does so by encouraging investment in riskier projects – that is to say, it 
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encourages greater specialization by spreading the risk of failure. The striking fact is that 

by doing so it also raises the risk of failure: we should expect to find higher 

unemployment associated with better financial markets. 

 Bankruptcy may perhaps be overlooked as a form of insurance in this context – 

but one of the major causes of bankruptcy is job loss, and the ability to repudiate debt is 

an important form of insurance. You may recall that before the current crisis bankruptcy 

laws in the U.S. were tightened making it harder to go bankrupt. This lowers g  by 

making it more difficult to transfer resources from the employed – the lenders – to the 

unemployed, and of course lowers welfare. Why would anyone lobby for the government 

to take actions that lower g ? The thing to bear in mind is that when the law was changed 

there was already a great deal of outstanding debt that was made more difficult to 

discharge. Hence there was a one-time transfer from borrowers who might like to default 

to lenders. Clearly the credit companies – the lenders – took the view that their short-term 

gain more than offset the long-term loss caused by the fact that less debt – and insurance 

– would be acquired in the future. Hence the pursuit of a one-time transfer payment led to 

a decreased efficiency of the economy. 

 As our last result on the economy without shocks, we extend can extend the 

comparative statics of the example in Proposition 3.  We parametrize the 

production function, considering ( , )f k a .  

Definition 9: We say that a  increases returns to specialization if ( ) 0y ka   and 

 ( ( , )/ ( , )) 0kd f k f k
d
a a
a   

This says output increases but that the marginal product of specialization is increased 

more.  

Proposition 10: Suppose that preferences are a moderate CRRA. (i) If a  increases 

returns to specialization then higher a  leads to higher expected output Y  more 

specialization k  and more unemployment U . (ii) Under moderate concavity of the 

production function a lower failure probability p  or a higher correlation of shocks r  

leads to higher expected output Y  more specialization k  and no less unemployment U ; 

higher correlation of shocks leads to strictly more unemployment. 
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Optimal reliability under full insurance given by the unique solution R̂  to  

 
 

ˆlog(1 ) log
ˆ log(1 ) log(1 )log(1 ) logˆ( ) 0

log(1 ) log(1 ) log(1 ) log(1 )

k

R

r Rf
r pr RF R f

r p r p

                       
 

If ˆ 1R g   there is full insurance. Otherwise there is partial insurance and optimal 

reliability is determined as the unique solution to 

1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ(1 ) (1 ) (1 ) (1 ) (1 ) ( ( )/ ( ))

0
RR R R R F R F Rr r r r r r r rr g r g r g g                     


 

Notice that the optimal reliability is a strictly decreasing function of chain length, so the 

optimal chain length is given by  

 
ˆlog(1 ) logˆ

log(1 ) log(1 )
r Rk

r p
 

  
 

and optimal unemployment by ˆ ˆ1U R  . 

 One question is whether there is any empirical sense to the idea that poor 

countries have lower unemployment rates than rich countries. Using data from the CIA 

World Factbook, and eliminating tiny countries such as Monaco, and oil-producing 

countries such as Qatar, the countries with lowest unemployment are 

 

Uzbekistan 1.1% 

Thailand  1.5% 

Cuba  1.7% 

Papua New Guinea  1.8% 

Bermuda  2.1% 

Tajikistan  2.2% 

Laos  2.5% 

Mongolia  2.8% 

 

which are not only poor countries, but include a large number of communist or formerly 

communist countries, a point we will return to. However, the countries with the highest 
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unemployment are also very poor: Zimbabwe with 95% unemployment and Liberia with 

85% unemployment being the extreme cases. However, in those cases unemployment 

seems to have less to do with specialization than with the absence of functioning political 

systems – which is to say, real unemployment and economic success is not explained 

only by long production chains, but the absence of civil wars and other civil disruptions 

also play a crucial role. 

7. A Low Probability Negative Shock 

 We now turn to the impact of a shock. We examine the simplest case of a single 

negative shock. The crucial fact is that the shock hits after chain length has been 

determined. Our main goal is to establish how longer chains and lower correlation 

function as multipliers increasing the impact of a particular shock. 

We will parametrize the production function, taking a  as a parameter that 

increases output y . We consider the situation where there is a low probability of a 

negative shock.  Specifically, we suppose that there is a baseline shock 0 0 0 0( ,1 , , )p ra g  

with probability 1 p  and a negative shock 0 0 0 0( ,1 , , ) ( ,1 , , )p r p ra g a g    with 

probability p . We suppose that the probability of the negative shock is sufficiently small 

that the optimal chain length k̂  is approximately what it would be when 0p  .  

 Fixing the chain length k  what is the impact of a negative shock on welfare, 

aggregate output, total factor productivity (TFP) and unemployment? 

Production Function Shocks 

A reduction in the benefits of the specialization technology a  lowers welfare and 

aggregate output and has no effect on unemployment. Since the same amount of 

employment produces less aggregate output, TFP falls. Since the condition for full 

insurance is 1R g   and R  is not changed, with a fixed chain length k  and a change 

only in a , the financial constraint will be binding if and only if it was binding in the base 

state. Notice that the impact of a  on aggregate output is fa . This is increasing in k  if 

0kf a  ; in particular this is the case if a  increases the returns to specialization. 

Failure Rate Shocks 

An increase in the failure rate p  lowers welfare, lowers aggregate output and 

either raises unemployment or leaves it unchanged. It has no effect on TFP since the 
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output per employed worker does not change. Since R  declines, a financial constraint 

that does not bind in the base state may bind in the bad state further lowering welfare. 

Recall that reliability is given by 

  1(1 )
1

kpR r
r

 


 

from which we may find the quantitative impact of a shock to p  

   1
11 (1 )

1

k
k

pR k p
r


 


. 

The longer is the chain k  and the higher is the correlation r  the more sensitive is 

reliability and unemployment to changes in p . This is a kind of “reverse Keynesian 

multiplier” where the impact of a shock is greatly increased by the fragility of the chains 

that make up the economy. Notice that there is kind of a double-impact of the base level 

of correlation. If base correlation is high then this implies that the optimal choice of k  is 

large, so that pR  will be very large indeed. 

Since the production function f  and chain length k  do not change in response to 

a failure rate shock, as we observed, TFP does not change. That is, decreased output is 

due entirely to decreased hours worked. It is less apparent that measured TFP will be 

unchanged. Specifically, in the model everyone working for an unproductive chain is 

counted as “unemployed.” In practice this is neither the definition of unemployment used 

in collecting statistics, nor practically what it measures. That is, one specialized firm in a 

failed chain may close down laying off workers who become “unemployed” while 

another specialized firm in the same or a different failed chain may simply work hard 

while failing to produce any useful output. The economic consequences are the same in 

both cases, yet in one case the firm contributes unemployment and a reduction of hours 

worked, while in the other the firm contributes no unemployment or reduction in hours 

worked.  

Specifically, suppose that unemployment U  in the model translates as a fraction 

of workers who are measured as unemployed Uh  and a fraction who are measured as 

employed but who are in fact unproductive (1 )Uh . In this case an increase in the 

underlying variable U  raises unemployment, but it also reduces the hours worked less 

than the reduction in output, that, TFP is output divided by hours worked 
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 (1 ) ( ) ( )
(1 )

U f k f k
Uh

 


 

and so measured TFP falls, although actual TFP does not. This should be a warning 

against paying too much attention to measures such as unemployment or TFP: measured 

employment and hours worked do not distinguish between individuals who play cards at 

home because they have been laid off, and those who play cards at work because their 

production line has been shut down by a shortage of parts. From the overall viewpoint of 

the economy, however, both are equally unproductive.  

Correlation Shocks 

A decrease in the correlation r  lowers welfare, lowers aggregate output and raises 

unemployment. Like a shock to the failure rate, it has no effect on TFP although it may 

reduce measured TFP. Since R  declines, a financial constraint that does not bind in the 

base state may bind in the bad state further lowering welfare. The quantitative impact of a 

shock to r  is 

   21( 1) (1 )
1

k
k

rR k p
r


  


. 

which exhibits the same kind of sensitivity to long chains and a high underlying 

correlation rate as does shocks to the failure rate. 

 A key issue is the correlation of p  and r . That is, when we measure the size of a 

shock, we are likely to measure the change in p . Consider, for example, a shock to a 

resource prices. Suppose we measure the size of shock by the increase in the cost to 

economy of continuing the same level of resource usage as in the base state. This is a 

measure of p : the fraction of the economy that will fail due to these increased costs we 

imagine is roughly proportion to the increase in cost. However, the overall impact of the 

shock is measured by the number of chains that fail, not the number of individuals that 

fail, and this depends on the correlation. Different shocks of the same size p  may have 

different correlations r . For example, crude oil shocks may have a very low r  because 

the failures they cause are spread across chains, while linseed oil shocks may have a very 

high r  because they fall primarily in a single chain, and there are easy substitutes. Hence 

a shock to the price of crude oil and a shock to the price of linseed oil that have the same 
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overall economic cost as measured by change in price times sales will have very different 

economic consequences. 

Dynamic Shocks 

Next, consider the temporal dimension of the shock. The shock here is assumed to 

take place after chain length is determined. When we studied the comparative statics of 

chains without a shock, implicitly we were examining what happens to chain length that 

is determined after a shock. To make this formal, consider three periods. There are no 

temporal connections between the periods – no savings or investment. However we allow 

for a correlation structure in the shocks. In particular, if last period was the base state, the 

probability of the bad state in the current period is small: p . However, if last period was 

the bad state, then in the current period the probability of the base state is also p . That is, 

we assume a high degree of serial correlation in the states. The initial condition is the 

base shock. 

Consider a shock to either p  or r  or both. In the first base period output and TFP 

are high and unemployment is low. In the second period unexpectedly a shock hits. This 

lowers output and possibly TFP and raises unemployment.  In the third period it is now 

very likely that the negative state will remain. This implies a lower optimal chain length, 

further lowering output and definitely lowering TFP. However: it also lowers 

unemployment – below even what it was in the base state as we know from Proposition 

10. In other words, output and TFP fall continually, while unemployment spikes up then 

drops back down. 

Financial Shocks 

A reduction in the efficiency of the financial sector g  can lower welfare, but has 

no effect on measurable variables such as aggregate output, TFP or unemployment. In 

order to have an impact, the financial constraint must bind in the bad state. Notice that if 

it binds in the good state, it necessarily binds in the bad state. 

An important consideration is whether g  is accurately known. Take the case 

where in the base economy the insurance constraint is not binding – there is full 

insurance. The value of g  will only matter when the negative shock hits; this is 

infrequent so wrong beliefs will be slow to be corrected. This can be viewed as a kind of 
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“quasi” self-confirming equilibrium. Self-confirming equilibrium allows wrong beliefs 

about events that are not observed. However, wrong beliefs about events that are rare can 

persist for a long period of time, so are not that different from events that are not 

observed at all. Moreover, the financial sector – which profits by selling more 

“insurance” has a strong incentive to exaggerate the efficacy of that insurance – as was in 

fact done in recent years by issuing numerous loan guarantees not backed by any 

resources that could be used to honor the guarantees. Hence the promised g  may be 

larger than the actual g . This will only be discovered after the negative shock hits, at 

which point there will be a “crisis” in the sense of the existence of many promises 

impossible of fulfillment. At which point there will be a fight over who gets 

shortchanged, and Lloyd Blankfein gets on the phone to Hank Paulson and says “It 

shouldn’t be us – grab 800 billion from the Treasury.” 

The key point is: regardless of who winds up bearing the burden of unfulfillable 

promises there will be a strong temptation to say “This should never happen again” and 

tighten up financial regulation – and by doing so reduce the value of g . This of course 

will reduce welfare, and in the future when chain length can adjust, lead to a long-term 

reduction in output and welfare. Japan and the United States seem to have been especially 

proficient at responding to crises by strangling their financial sectors: Both countries have 

allowed large failed banks to pretend to be solvent by holding treasury securities rather 

than lending to the private sector. By way of contrast Chile and Sweden responded to 

crises by explicitly failing their banks, and creating new banks that could carry on a 

normal banking business. 

Short Chains 

Efficient economies with large values of , ,rg a  and 1 p  will have long chains. 

As we observed, long chains are vulnerable chains, and output and welfare will decline 

more in response to shocks – possibly substantially more. This can of course be avoided. 

For example, the capitalist economy can be replaced by a government planned economy, 

and the government may (and probably will) choose the length of chain k  lower than the 

optimal level k̂ . This reduces welfare, but also reduces volatility. It also reduces 

unemployment, both in the base state and following a shock. All of which suggests that 

measures to reduce unemployment should be viewed with a degree of skepticism. If the 
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model of production chains is correct, then high volatility is the price we must pay for 

high welfare.  

Notice also that choosing short chains while it may reduce unemployment 

following a shock, does not necessarily increase welfare even ex post following the 

negative shock. Take the case of a chain of length 1. This exhibits the least volatility, but 

also the least aggregate output in any state. If g  is high, there can be full insurance even 

in the bad state: in this case it is better to be unemployed in the bad state at k̂  than to be 

employed in the “socialist paradise”. Indeed, we may well ask: is it better to be employed 

in Cuba or unemployed in the United States? In fact weekly pay in Cuba is about $187,3 

while unemployment benefits in the United States are about $300.4

 This analysis suggests a natural experiment. From the end of the Second World 

War until it entered the oil market in a large way in the 1970s, the Soviet bloc was a 

closed and planned economy. Did it have shorter production chains than the West? Did it 

have lower unemployment and less volatility? Can this be accounted for by the different 

length of production chains? The first step in applying this type of theory is to develop 

some effective measure both of the length of chains, and the correlation 

 

r . Unfortunately 

there may not be reliable data on the old Soviet block – economic statistics from that 

period consist mostly of lies, but insofar as reliable data can be found, it seems a good 

place to look. Even the very crude examination of unemployment statistics above shows 

the lowest unemployment rates dominated by communist and former communist 

countries. 

International Trade Considerations 

 We have considered a closed economy. What about trade between countries? Two 

considerations come to mind. First, chains can overlap countries. There may be many 

chains in a large country, only a few of which extend to a smaller country. Shocks that 

impact the sector that overlaps will have a large impact on the small country, but only a 

small impact on the large country: when the United States coughs, Mexico catches cold. 

 The other application is Foreign Direct Investment (FDI). FDI has a 

disproportionately beneficial effect on developing countries. These small countries with 
                                                 
3 The CIA World Factbook reports annual per capital income in Cuba of 9700 PPP adjusted 2009 U.S. 
dollars. 
4 U.S. Department of Labor. 
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poorly developed financial sectors and few ties to outside suppliers will find it optimal to 

choose short production chains. A large multinational can create a chain that lies mostly 

outside the country, and has access and connections to supplier worldwide. Hence it has 

an incentive to create longer and more productive chains. After a time, knowledge of 

outside suppliers and business connections will spread to other producers in the 

developing country – effectively increasing their r  and making it efficient for domestic 

producers to create longer and more productive chains. It is widely understood that the 

spread of knowledge is the likely suspect for the disproportionate effect of FDI. The 

model of production chains suggest a possible mechanism through which this acts. 

8. Conclusion 

At the heart of this paper is the importance of understanding whether fluctuations 

are efficient or not. Are they the price we pay for wealth? If so, far from being a problem, 

they are a solution – and policies to mitigate them can be counterproductive. This can be 

seen by the possibility of creating inefficiently short changes in order to mitigate 

volatility.  

The model of chains also helps understand the consequences of technological 

change. For example, better communications – the internet – can potentially increase r . 

This will lead to greater specialization, longer chains, more output, and higher welfare. 

But it will also result in higher unemployment and greater volatility.  

In short – the capitalist economy may indeed be more prone to crisis – and this 

may be a good thing. 
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Appendix 

Define the constant log(1 ) log(1 ) 0r pl      . 

Lemma 2: ( )F R  is strictly concave if and only if  

 ( ) log(1 ) log(1 )
( )

kk

k

f k r p
f k

    . 

Proof: We compute the derivatives of ( )F R : 
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Hence, ( ) 0RRF R   if and only if 0k kkf fl   , which is the desired condition. 

 

Proposition 5: The optimal lottery m  is degenerate and places weight one on a single 

value of k . 

Proof: Consider  

 ( ) ( ) ( )R R R dw w m w   .  

and the insurance scheme 0 0( ) ( )z zw w ,  

 1 1 1( ) ( ) ( ) ( )/ 0z z R z d Rw w w m w   . 

We will show that this scheme does no worse than the original one, and if the original 

one is non-degenerate, strictly better. 

Since ( )Y R  is strictly concave  
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so the proposed scheme satisfies the insurance feasibility constraint. Notice that under the 

new scheme, there are exactly as many unemployed as under the old scheme, and that 



 25 

they get exactly the same insurance payments. The expected payment to an employed 

person under the old scheme is 

 1 1

1

1

( ) ( ) (1 ) ( ( ))/ ( ) ( )/

(1 ) ( ( )) ( )

(1 ) ( )

c R z Y R R d R

z Y R d

z Y R

w w g w w m w

g w m w

g

  

  

  


  

where the inequality follows because ( )Y R  is strictly concave, and is strict if the original 

lottery is non-degenerate. Under the old scheme the employed received utility.  

  1 1 1( ) ( ) (1 ) ( ( ))/ ( ) ( )/ ( ) ( ( ))R u z P R R d R u c u z P Rw w g w w m w      

where the first inequality is Jensen’s inequality. This shows the new scheme is better. 

 

Proposition 6: The welfare function is concave in ,R Y  and strictly increasing in Y . 

Indifference curves are for 1R g   smooth and downward sloping, and for 

1R g   horizontal. Indifference curves are differentiable including at 1R g  . 

Proof: We already observed in the text that ( , )W R Y  is concave. To do the relevant 

computations, set  
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with exact equality if and only if 1R g  . We then compute the partial derivatives of 

the welfare function    ( , ) (1 ) / (1 ) /(1 )W R Y Ru Y R R u Y Rg g      
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We observe that RW  vanishes at the full insurance line 1R g  , and is negative to the 

left since u  is concave. 
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Proposition 8: With moderate risk aversion, if there is partial insurance then increasing 

g  lowers reliability R , raises unemployment 1U R   and increases specialization 

and chain length k . 

Proof: Notice that changes in g  do not change ( )F R . In the proof of Proposition 6 we 

computed the marginal utilities ,R YW W . Differentiating each with respect to g  we find 
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A sufficient condition for 0YW g   is that '( ) ''( )u c cu c  be decreasing in c . Observe 

that 
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Rearranging we find 

  ( ' '') ' ( / )[1 ] 'D u cu u cr r r      

which is negative from the condition of moderate risk aversion. 

 

Proposition 10: Suppose that preferences are a moderate CRRA. (i) If a  increases 

returns to specialization then higher a  leads to higher expected output Y  more 

specialization k  and more unemployment U . (ii) Under moderate concavity a lower 

failure probability p  or a higher correlation of shocks r  leads to higher expected output 

Y  more specialization k  and no less unemployment U ; higher correlation of shocks 

leads to strictly more unemployment. 

Optimal reliability under full insurance given by the unique solution R̂  to  
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If ˆ 1R g   there is full insurance. Otherwise there is partial insurance and optimal 

reliability is determined as the unique solution to 

1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ(1 ) (1 ) (1 ) (1 ) (1 ) ( ( )/ ( ))

0
RR R R R F R F Rr r r r r r r rr g r g r g g                     


 

Proof:  In the case of full insurance, expected output must be maximized, and ( )F R  is 

concave by assumption, so ( ) 0RF R  . The value of ( )RF R  was computed in the proof 

of Lemma 2. Notice that ( )/ ( )RF R F R  has the same sign as ( )RF R , so to prove 

decreased reliability (or increased unemployment) it suffices to show that ( )/ ( )RF R F R  

decreases at ( ) 0RF R  . 

 Now consider (1 ) 1r e a g    and partial insurance. We may substitute 

( )F R  into the utility function to find ex ante welfare as a function solely of reliability 
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and we know that this function is concave. Computing the derivative 
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we then know that the unique optimum has ˆ( ) 0Rw R   and that ( ) 0RRw R  . So to sign 

changes in R̂ , we need only determine whether ˆ( )Rw R  increases or decreases: the 

optimal R̂  must move in the same direction. Equivalently we may divide through by 
1( )F R r  since this is positive. This gives 
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This moves in the same direction as ( )/ ( )RF R F R , so as in the case of full insurance, it 

suffices to determine the direction of change of ( )/ ( )RF R F R . 

 Recall that 

 log(1 ) log( ) r RF R Rf l
      ,  

so 
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 The direction of movement of reliability is determined by the direction of 

movement of ( )/ ( )RF R F R , and only the second term matters. In the case where a  

increases the returns to specialization, the second term decreases by definition, so 

specialization goes down. This forces a higher specialization rate k , and since the 

production possibility frontier shifted up, higher expected output. 

Next observe that the direction of movement of ( )/ ( )RF R F R  is the same as that 

of 
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Increasing p  changes only l  and makes it larger. Differentiating with respect to l  we 

get 

 1 1 1/ /kk k kL kf f kf fl l l l      

which is non-negative by the assumption of moderate concavity of ( )f k , so reliability 

goes up. This is possible with higher p  only if specialization decreases. Also since the 

production possibility frontier moved down, higher reliability also implies less expected 

output. 

Differentiating with respect to r  and noticing that / (1/(1 ))d dr rl     we 

find 
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This has the same sign as  
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 1( 1) / /kk k kk f f f y     . 

Moderate concavity says  10 / /kk k kk f f f f   , and since 1 1( 1)k k   ,  

we conclude that rL  is negative. Hence reliability falls, this requires more specialization  

and also, since the production possibility frontier shifted up, expected output goes up. 
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