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Abstract 

The goal of this paper is to empirically test for structural breaks of world mean temperatures that 

may have ignited at some date the phenomenon known as “Climate Change” or “Global Warming”. 

Estimation by means of the dynamic Generalized Method of Moments is conducted on a large 

dataset spanning the recordable period from 1850 until present, and different tests and selection 

procedures among competing model specifications are utilized, such as Principal Component and 

Principal Factor Analysis, instrument validity, overtime changes in parameters and in shares of both 

natural and anthropogenic forcings. The results of estimation unmistakably show no involvement of 

anthropogenic forcings and no occurrence of significant breaks in world mean temperatures. Hence 

the hypothesis of a climate change in the last 150 years, suggested by the advocates of Global 

Warming, is rejected. Pacific Decadal Oscillations, sunspots and the major volcanic eruptions play 

the lion’s share in determining world temperatures, the first being a dimmer and the others 

substantial warmers.  
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1. Introduction 

This paper combines several aspects of modern econometric methods: Structural Breaks 

Analysis (SBA), Principal Component Analysis (PCA), estimation by the Generalized Method of 

Moments (GMM), instrument validity and coefficient hypothesis testing in the presence of weak 

instruments or weak identification (WI). In particular, it develops a novel SBA method to detect 

level and trend breaks of time series occurring at unknown dates, it introduces a recent method 

based on PCA and Principal Factor Analysis (PFA) to select the true forcing regressors (henceforth 

defined as forcings) within a large dataset, and it utilizes several recent procedures to assess 

instrument validity in a context characterized by (possible) weakness and nonexogeneity. 

Specifically, this composite methodology is employed at different stages of an econometric 

analysis of climate-related natural and anthropogenic variables that run from 1850 to present. The 

purpose of this methodology is to perform a series of tests regarding the timely behavior of world 

average temperatures during that period: the possibility of structural breaks, which is a test of the 

hypothesis of any significant climate change that may have occurred at some date in the past, the 

taxonomy of its forcings and in particular the role of anthropogenic variables, the validity 

(exogeneity and relevance) of the instruments utilized, the Wald-type hypothesis testing of 

estimated coefficients in the presence of weakness and, finally, time-varying coefficients and PCA 

shares of the forcings. 

The plan of the paper is the following. Section 2 formulates the theoretical null and 

alternative hypotheses of the proposed SBA testing procedure, and empirically computes its 

corresponding critical values by producing their finite-sample Monte Carlo (MC) simulations. 

Appendix 1 contains some related off-text material on this account. 

Section 3 synthetically explains the characteristics and properties of the GMM (Hansen, 

1982), a classical toolkit of Instrumental Variables (IV) estimation necessary to circumvent 

problems arising from errors in variables, endogeneity and omitted variables. Parametric and 

nonparametric tests for selecting the ‘best’ GMM model specification among alternative sizes of the 

instrument and regressor sets, even in the presence of WI, are introduced and explained. Finally, its 

dynamic counterpart is briefly examined and a procedure for computing time-varying PCA and 

significance-weighted shares is introduced. Appendix 2 contains some basic information regarding 

the PCA and PFA procedures utilized to compute the true number of factors. 

Section 4 is addressed at testing a red-hot topic that represents the center stage of many 

recent top-level discussions: the phenomenon known as ‘Global Warming’ (GW) and its 

anthropogenic origin, supposedly determined by the rapid pace of industrialization and the ensuing 

worldwide development of productive and commercial activities. The time series of world average 

temperatures and of a large set of human and natural forcings for the period 1850-2006 are 

introduced and then filtered by means of the Hodrick-Prescott (HP) procedure. After selection of 

the ‘best’ GMM model specification, dynamic GMM estimation results producing the time series of 

the regression coefficients, their t statistics and the significance-weighted shares are obtained and 

further examined.  

Section 5 concludes by showing that there exist no significant breaks in world temperatures 

and that anthropogenic forcings play no role in climate changes which are instead attributable to 

Pacific Decadal Oscillations, sunspots and intense volcanic activity.  

 

2. Structural Breaks Analysis (SBA) 

As to the first topic considered in this paper, the literature on time-series SBA originates 

from Perron’s seminal article (1989) that has modified for good the traditional approach of Unit 

Root (UR) testing (Dickey and Fuller, 1979). By departing from different null hypotheses that 

include UR with or without drift, trending series with I(0) or I(1) errors, with or without Additive 

Outliers (AO), the alternative hypotheses formulated have accordingly included different 

combinations that range from one single level and/or trend break (Zivot and Andrews, 1992) to 
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multiple structural breaks of unknown date (Banerjee et al., 1992; Bai and Perron, 2003; Perron and 

Zhu, 2005; Perron and Yabu, 2009, Kim and Perron, 2009). 

 

2.1. Testing for Structural Breaks: the Null and the Alternative Hypotheses 

 

By drawing from this vast and knowledgeable experience, and especially from a chief 

contribution in the field (Perron and Zhu, 2005), a novel t-statistic testing procedure for multiple 

level and trend breaks occurring at unknown dates (Vogelsang, 1997) is here proposed. This 

procedure is easy and fast at identifying break dates, as it compares the critical t statistic, obtained 

by MC simulation under the null hypothesis of a time series with stationary noise, with the actual t 

statistic obtained under the alternative represented by a time-series model with a constant, a trend 

term, the two structural breaks and one or more stationary noise components.  

The departing point to test for the existence of structural breaks in a time series function is 

the null hypothesis given by the series with I(0) errors, namely 

 

   1)                           
1  = 

t t t t
y y y e−∆ ≡ −    

 

where 
t

y  is nonstationary and spans the period [ ]1,t T∈ ,  and 2. . .(0, )
t

e I I D σ∼  corresponds to a 

standard Data Generating Process (DGP) with draws from a random normal distribution whose  

underlying true process is a driftless random walk. 

Let the field of fractional real numbers be { }0 0,1λ λΛ = − , where 
00 1λ< <  is the preselect 

trimming factor, normally required to avoid endpoint spurious estimation in the presence of 

unknown-date breaks (Andrews, 1993). Let the true break fraction be λ ∈ Λ  for 

0 00 (1 )λ λ λ< < < −  and 0 0(1 )T T Tλ λ λ≤ ≤ −  the field of integers wherein the true break date 

occurs.  

Given the null hypothesis of eq. (1), the simplest available alternative is provided by a series 

with a constant and a trend, their respective breaks, and a time vector of noise. Specifically, the 

alternative is represented by an augmented AO model (Perron, 1997), usually estimated by 

Ordinary Least Squares (OLS). In Sect. 3.1, the alternative will be augmented with a vector of 

exogenous I(0) series and estimated by GMM in order to account for heteroskedasticity, 

autocorrelation and endogeneity. 

Formally, the alternative specification of eq. (1) is represented by a extension of the null that 

includes a set of deterministic variables, namely, a constant, a linear trend and their corresponding 

SB dummies. The result is  

 

2)        
1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( );  

t t t t
y DU t DTµ λ µ λ λ τ λ τ λ λ ε λ λ∆ = + + + + ∀ ∈ Λ  

 

where the λ  notation refers to the time-changing coefficients and variables of the dynamic 

equation estimation. 

  The disturbance 
2( ) . . .(0, )t I I Dε λ σ=  is I(0) with ( )( ) ' ( ) 0;  ,t sE t sλ λε ε = ∀ , s t≠  

(Perron and Zhu, 2005; Perron and Yabu, 2009). Thus, eq. (2) is expected to be stationary and to 

exhibit no autocorrelation. 

Specifically, the two differently defined unknown-date break dummies included in eq. (2)  

t
DU  and 

t
DT  are defined as follows: 

A) 1( )
t t

DU t TB= > , a change in the intercept  of 
t

y∆ , 1 0( )µ µ− , namely a break in the 

mean level of 
t

y∆ ;  
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B)  ( )1( )
t t t

DT t TB t TB= − > , a change in the trend slope 1 0( )τ τ− , namely a change in the 

inclination of 
t

y∆  around the deterministic time trend.  

By stacking for [ ]1,t T∈  both dummy series, we obtain the following T T× matrices: 

  DU  = 

0 1 1 ... 1

0 0 1 ... 1

... ... ... ... ...

0 0 0 ... 1

 
 
 
 
 
 

,       DT  =   

0 1 2 ... 1

0 0 1 ... 2

... ... ... ... ...

0 0 0 ...

T

T

T T

− 
 − 
 
 

− 
 

 

where each row of DU and DT  respectively represents 
t

DU  and 
t

DT , [1, ]t T∀ ∈ . The trimming 

factor, usually set to 10-15%, is made compulsory by the existence of zeros in both matrices that 

causes spurious regression estimates. Theoretically, since unknown-date structural breaks are a 

nuisance in regression analysis (this is not the case of standard dummies), endpoint loss of power 

against alternatives occurs (Andrews, 1993) because of the trailing zeros in DU and DT. In practice, 

however, the endpoint cuts can be asymmetric and endogenously computed by simply detecting the 

length of both trailing zero sets. Fortunately enough, in most cases, the trimming factor is found to 

be much shorter at the end of the sample, thereby letting room for the inclusion and evaluation of 

more recent data. For expositional simplicity, however, the notation 
0λ  valid for both endpoints is 

retained in the present context. 

The coefficients 
0µ  and 

0τ  are the respective pre-change values. As a general rule there 

follows, from the above notation, that any of the two structural breaks is represented by a vector of 

integers { }0 0 , (1 )
t

TB T Tλ λ∀ ∈ −  (Banerjee et al., 1992). From eqs. (1) and (2), ( ) 0tE y∆ ≡  and 

( )1 0 1 0, ( ) 0E µ − µ τ − τ λ = , that is, breaks in mean and in trend slope are a temporary 

phenomenon. Therefore, case A corresponds to unknown-date structural breaks in terms of 

temporary change(s) in the level of the endogenous variable (the "crash" model). Similarly, case B 

corresponds to temporary shifts in its trend slope (the "changing growth" model) (Perron 1997; 

Banerjee et al., 1992; Vogelsang and Perron, 1998). Eq. (2), by using both cases together, is defined 

by Perron and Zhu (2005) as a “local disjoint broken trend” model with I(0) errors (their “Model 

IIb”).  

In addition, for ( ) 0
t

E y∆ ≡  in eq. (2), ( )1 1( ), ( ) 0E µ λ τ λ ≠ , i.e. the coefficients are 

expected not to equal zero. Appendix 1 demonstrates that 0β  holds only for a non-breaks 

alternative model, namely, when 1λ = . If this is not the case, i.e. when time series are characterized 

by a broken trend, both breaks are likely to occur. 

As usual in the break literature, eq. (2) is estimated sequentially for all λ ∈ Λ . After 

dropping the λ  notation for ease of reading from the single coefficients, we obtain a time series of 

length 01 (1 )Tλ+ −  of the coefficient vector [ ]1 2 1 2
ˆ( ) , , ,β λ µ µ τ τ≡ which is closely akin to the 

Kalman filter ‘changing coefficients’ procedure. As a by-product, the t statistics of ˆ( )β λ  for the 

same trimmed interval are obtained and defined as ˆ ( )ttµ λ  and ˆ ( )ttτ λ , respectively. They are 

nonstandard-distributed since the corresponding breaks are associated to unknown dates and thus 

appear as a nuisance in eq. (2), (Andrews, 1993; Vogelsang, 1999).  

These t statistics can be exploited to separately detect time breaks of type A and/or of type 

B, just as with the nonstandard F, Wald, Lagrange and Likelihood Ratio tests for single breaks 

(Andrews, 1993; Vogelsang, 1997, 1999; Hansen, 2000) and for multiple breaks (Bai and Perron, 

2003). However, different from these methods that identify the break(s) when a supremum or 



 6 

weighted average is achieved and tested for (e.g. Andrews, 1993), all that is required is to 

sequentially find as many t statistics that exceed in absolute terms the appropriately tabulated 

critical value for a preselect magnitude of λ .  

In practice, after producing the critical values for different magnitudes of λ  by MC 

simulation, respectively denoted as ( , )
T

t Lλ  and ( , )
T

t Tλ , any 1n ≥  occurrence for a given 

confidence level (e.g. 95%) whereby ˆ ( ) ( , )
t T

t t Lµ λ λ>  and ˆ ( ) ( , )
t T

t t Tτ λ λ>  indicates the 

existence of 1n ≥  level and trend breaks, respectively, just as with standard t-statistic testing
1
.  

 

2.2. Theoretical and Finite-sample Critical t Statistics 

To achieve the above-stated goal, some additional notation is required. Let the 
1K -sized 

vector of the deterministic variables of eq. (2) be specified as [ ]1, , ( ), ( )
t t t

X t DU DTλ λ= , and let 

the Ordinary Least Squares (OLS) estimated coefficient vector be   

3)   
0 0

0 0

(1 ) (1 )

ˆ( ) '
T T

t t t t

t T t

y X X X
λ λ

λ λ

β λ
− −

= =

= ∆∑ ∑   

with variance 
0

1

0

1
(1 )

2I '
T

K t t

t

X X
λ

λ

σ

−
−

=

 
 
 
∑ , where 

1
I

K
 is the 1 1K K×  identity matrix. Let also the 

estimated and the true parameter vectors be formally defined as [ ]1 1 2 2
ˆ ˆ ˆ ˆ ˆ( ) , , ,β λ µ τ µ τ≡   

and * * * * *

1 1 2 2, , ,β µ τ µ τ ≡   , respectively, such that the scaling matrix of the different rates of 

convergence of ˆ( )β λ  with respect to 
*β  is given by 1/2 3/2 1/2 3/2, , ,

t
diag T T T T ϒ =    which ensures 

the asymptotics of the estimated parameters. 

Then, by generating 
t

y∆  according to eq. (1) we have, for 0 1λ< <  

  4)   ( )
1*ˆ( )   ( ) ( )

L

T T Tβ λ β λ λ
− ϒ − → Θ Ψ  , 

whereby, for ( )W r  a standard Brownian motion in the plane [0,1]r ∈ , the following expressions 

ensue:  

  5)   
1 1

0 0

( ) (1), (1) ( ) , (1 ) (1), (1 ) (1) ( )
T

W W W r dr W W W r drλ σ λ λ
  

Ψ = − − − −  
   

∫ ∫  

and 

6)     

2

2 3

2

3

(1 )
1 1/ 2 1

2

(1 ) (2 3 )
1/ 3

2 6
( )

(1 )
1

2

(1 )

3

T

λ
λ

λ λ λ

λ
λ

λ

λ

 −
− 

 
− − + 

 
Θ =  

− 
− 

 
− 

  

 . 

The elements of eqs. (5) and (6) are explained in detail in Appendix 1.  From eqs. (4)  to (6) 

the limit distribution of the coefficient vector is the same as that reported by Perron and Zhu for 

Model IIb (2005, p.81) for a given break date, namely 
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7)   

( ) ( )

( )

2 2

3 2 3

* 2

22

2

33

4 6 2 6

12 6 120

0ˆ( )   N ,  4 2 1
0 6

1 1
0

3 3 1
12

1

T

λ λ λ λ

λ λ λ
β λ β σ λ

λ λ λ λ

λ λ

λ λ

  
−  

  
    − −   
    ϒ − −     
  −  −
    
 − + 
   −  

∼  

where the square matrix corresponds to ( )
1

( )T λ
−

Θ . 

The corresponding asymptotic t statistics of the coefficient vector for testing the null 

hypothesis that ( ) *ˆ 0β λ β− =  are computed as follows: 

  8)      ( ) ( )
1/21( ) ( ) ( ) ( )

T T T T
t λ λ λ λ−= Θ Ψ Ω   

where ( )
12

4( ) I ( )T Tλ σ λ
−

Ω = Θ . The ensuing theoretical t statistic values regarding the level break 

( , )
T

t Lλ  and the trend break ( , )
T

t Tλ  are thus 

  8.1)    
[ ]

1

0

1/2

(1) ( )

( , ) 3
(1 )

T

W W r dr

t L

λ

λ
λ λ

−

=
−

∫
 

  8.2)    

1

1/2 0

1/2
2

(3 1) (1) 2(2 1) ( )

( , ) 3
(1 )(3 3 1)

T

W W r dr

t T

λ λ λ

λ
λ λ λ λ

− − −

=
 − − + 

∫
       

while the other two non-break statistics are reported in Appendix 1. The empirical critical values of 

the above-shown t statistics are obtained by MC simulation of the values of the null provided by eq. 

(1)
2
. For select magnitudes of λ  running from 0.10 to 0.90, and for a reasonable sample size (T = 

200), the 1%, 5% and 10% finite-sample absolute critical values of eqs. (8.1) and (8.2) are reported 

in Table 1 together with their 10% upper and lower confidence bands.  

The critical values, after selecting the sample size and the number of draws (N=1,000), are 

obtained by means of the following steps:   

(i) computing a T T× matrix of the standard Gaussian random variates 

( ). . . 0, , 
j j

w N I D Tν∼ where ( ) [ ]0,1 ,  1,j N j Tν ∈∼ ;  

(ii) computing each value of 
t

e  in eq. (1) as the algebraic  sum of each column of the random 

variate matrix. Therefore 
1

 
T

t j

j

e w
=

=∑ is a 1-sizedT × matrix of artificial discrete realizations;  

(iii) integrating 
t

e  over the time span 1,...,t T=  by computing the rolling partial sums of 
t

e  and 

obtain the 1-sizedT × matrix of nonstationary series 
t

y ;  

(iv) exploiting the values 
1 and 

t t
e y −  to approximate the scalar-sized Brownian functionals  

1

0

(1) and ( )W W r dr∫  of eq. (5) with the corresponding discrete sums exhibited in Appendix 1; 

(v) repeating all of the foregoing steps N times to obtain 1-sizedN × vectors of  functionals, and 

finally computing eqs. (8.1) and (8.2)
3
.  



 8 

From Table 1 the absolute critical values can be seen to achieve minimal absolutes at 

λ =0.50 and larger values at both ends of λ . Finally, except for λ =0.50, ( , )
T

t Lλ  is smaller than 

( , )
T

t Tλ  by a factor that reaches 1.2 at both ends
4
.  In addition, the reported t statistics are 

nonstandard. In fact, though exhibiting zero mean, they have non-unit variances that strictly hinge 

on the values of λ  and of σ . As shown in Appendix 1, this is applicable also to the other two non-

break statistics.  

Descriptive statistics of the t statistic of a break in level, eq. (8.1), and of the t statistic of a 

break in trend, eq. (8.2) for 1,000 MC draws of eq. (1) for a sample size T=200 and break 

fractions 0.10 0.90λ≤ ≤ are supplied in Table 2. As expected, the means hover around zero for 

any value of λ , while the variances attain a minimal value in correspondence of λ =0.50, where 

they share an almost equal value and then increase by eight and ten times at both ends, respectively. 

Specifically, the estimated variance of the first statistic is on average 40% smaller than the second, 

reflecting the similar gap in their critical values reported in Table 1. Similar gaps are recorded also 

for the extrema and for the 1% and 99% fractile values. 

 

3. The Generalized Method of Moments (GMM) 

The time series of length 
01 (1 )Tλ+ −  of the coefficients and of the t-statistics may be 

estimated sequentially by means of GMM which exhibits the following characteristics:  

1) the model used by the GMM method perfectly suits eq. (2) so that the estimated relevant t 

statistics are easily comparable to their simulated critical values of Table 1; 

2) the estimated coefficients are scale-free relative to equations in levels as the regressors in 

origin are often differently indexed with the risk of producing, otherwise, spurious coefficient 

results; 

3)  the autocorrelation and heteroskedasticity of the error term are corrected for by using the 

Heteroskedasticity and Autocorrelation Consistent (HAC) covariance estimator (Newey and West, 

1987); 

4) By accordingly selecting the optimal instrument vector, GMM disposes of parameter 

inconsistency deriving from left-out variables, errors in variables (i.e. mismeasurement) and/or 

endogeneity.  

In addition, the GMM method may be exploited to compute time-varying standard and 

significance-weighted PCA shares, a useful tool to assess the relevance of the regressors in 

determining the causative behavior of the endogenous variable. By including time changes in the 

parameters of eq. (2), the method is more properly defined as Dynamic GMM. This technique is 

described in detail in Sect. 3.2. 

 

3.1. Properties of the GMM Estimator and Weak Instruments Robust Testing 

 

Before delving into the dynamic version of the GMM method, some aspects of the static 

standard GMM estimation method must be introduced. GMM uses sample moments derived from 

first-stage (possibly consistent) IV estimation, usually Two-Stage Least Squares (TSLS). In turn, IV 

estimation requires an appropriate model setting where the major features tying the endogenous 

variable, the regressors and the instruments are explicitly formalized.  

The departing point to construct the GMM model is represented by eq. (2) which, for ease of 

reading and of treatment, is simplified by removing the dynamic λ  notation from therein in order 

to operate in a static environment. In addition, the t
X  vector of deterministics of Sect. 2.2 may be 

made to include without any loss of generality, if desired, additional nondeterministic explanatory 

variables. Consider a 
2K -sized vector of stationary stochastic components 

2
,1 ,,...,

Kt t tX x x =
 

ɶ ɶ ɶ  
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which extends the vector of regressors to a K-sized vector X
t t t

X X ≡  
ɶ⋮ , where 1 2K K K= + . 

Therefore, the IV setup is represented by a standard structural form and its reduced-form 

counterpart 

9.1)      X
t t t

y eβ∆ = +  

9.2)      t t tX Z v= Π +  

 

where  ( )X :t T K×  is defined as above, ( ) :  tZ T L× is a matrix of L K≥  instrumental variables, 

( ): 1  Kβ × and ( ): L KΠ ×  are a coefficient vector and matrix, respectively, 

( ) ( )2: 1 . . . 0,
t e

e T N I D σ× ∼  and ( ) ( ): . . . 0,tv T K N I D× Σ∼  are the disturbance terms, and 

( )X ' 0t tE e = , ( )' 0t tE e v = , ( )' 0t tE X Z ≠  and finally Π  is of full rank
5
. 

The requirement of stationarity of eqs. (9.1) and (9.2) is crucial. In fact, nonstationary series 

unless cointegrated notoriously produce spurious coefficient t statistics, error autocorrelation and a 

bloated 
2

R  (Granger and Newbold, 1974; Phillips, 1986). Spuriousness is also found between 

series generated as independent stationary series with or without linear trends and with seasonality 

(Granger et al., 2001) or with structural breaks (Noriega and Ventosa-Santaulària, 2005). These 

occurrences are found in this literature with OLS regressions where the t statistics – in particular 

those of the deterministic components – diverge as the number of observations gets large
6
, although 

HAC-based correction methods are available (Sun, 2004).  

 In practice, the requirements that 2. . .(0, )
t e

e I I D σ= , ( )E ' 0,  t se e t s= ≠  and also, given p a 

preselect lag integer, 2

1

E 0
p

t i

i

e −
=

 
= 

 
∑  for no heteroskedasticity must be met as from eq. (9.1). Tests 

to check for such occurrences are available in great numbers and kinds, e.g. the Durbin-Watson and 

the Breusch–Godfrey statistics, the ARCH test for heteroskedasticity, etc., and may be exploited to 

perform first-hand model selection. First differencing, centering-and-scaling and Hodrick-Prescott 

(HP) smoothed filtering (Hodrick and Prescott, 1997) are the major competitors addressed at 

performing the necessary data transformation to attain a stationary environment. 

Recently, standard two-step GMM has undergone mounting criticism on accounts of 

parameter consistency and HAC optimal bandwidth selection in a small-sample setting, and 

especially in the presence of (many) WI (e.g. Newey and Smith, 2004; Sun et al., 2008; Newey and 

Windmeijer, 2009). It has been in fact demonstrated that the efficiency of the IV and of the  GMM  

estimators can be improved by using a large instrument set at the cost – however – of heavy biases. 

This occurs especially in the presence of WI, which distorts standard parameter Wald-based test 

results culminating in the “weak IV asymptotics” in which the coefficient vector in the first-stage 

regression shrinks to zero as the sample size goes to infinity (Staiger and Stock, 1997; Stock and 

Wright, 2000; Andrews and Stock, 2007).   

The Wald-type hypothesis testing considered is framed as the standard null, 

namely 0 0:H β β= , where 0β  is some theoretical value, or the first-stage estimated 

coefficient ( )TSLSβ , or even zero for the entire K-sized coefficient vector or for an R-sized subset 

thereof ( )1 R K≤ < . In the presence of WI such tests are found to be heavily distorted and 

characterized by low power. Moreover, in the many-WI case, GMM estimates are biased toward 

OLS estimates (Newey and Windmeijer, 2009), while the J test statistic of overidentifying 

restrictions (Hansen, 1982) has low power and produces spurious identification results (Kleibergen 

and Mavroeidis, 2009).  

In turn, tests for detecting WI are renowned (Cragg and Donald, 1993; Stock and Yogo, 

2003) and remedies are feasible by selecting the appropriate instruments, although in many 
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empirical cases a full set of strong instruments may be unavailable
7
. Elsewise, as Yogo correctly 

points out (2004), researchers may be still interested at parameter estimation even in the presence of 

a detected WI, and size-robust parameter tests for a given null hypothesis may be employed and 

confidence intervals (CI) may be constructed by “inversion” of the appropriately supplied non-

Wald test statistics (Moreira, 2003; Cruz and Moreira, 2005; Andrews et al. 2006; Kleibergen, 

2002, 2005, 2008; Kleibergen and Mavroeidis, 2009).  

The tests proposed by the mentioned authors are intended to replace the traditional testing 

methodology that depends on nuisance parameters (e.g. the reduced-form coefficients of eq. (9.2)). 

To eliminate these effects, the mentioned authors have devised these novel test statistics that are 

pivotal, invariant and similar
8
 and thus have good size properties under both strong and WI, 

although not all have optimal power properties and in several cases CI might not even be 

constructed.  

The proposed tests belong to the classes of the Anderson-Rubin (AR, Anderson and Rubin, 

1949), of the score Lagrange Multiplier (LM) and of the Likelihood-Ratio (LR) test statistics. These 

tests originate in the field of IV estimation test (Stock and Wright, 2000; Stock et al., 2002; Stock 

and Yogo, 2003; Moreira, 2003) but have been recently extended to GMM (Kleibergen, 2005; 

Kleibergen and Mavroeidis, 2009). For ease of space, only these versions are reported in the present 

context, together with the corrected J test statistic for overidentification and the Jacobian rank 

statistic. They are denoted by the authors respectively as: S, KLM, MQLR, JKLM and RK, and 

fully described in Kleibergen (2005) and in Kleibergen and Mavroeidis (2009). Under the null they 

are all distributed as a 
2χ  statistic with (L-K+R), R, R, (L-K) and (L-K) degrees of freedom, 

respectively. 

The first three GMM-based statistics behave much as their IV counterparts and are similarly 

constructed, although with some specific differences (Kleibergen, 2005; Kleibergen and 

Mavroeidis, 2009). For instance, the S statistic is different from the AR test (Stock and Wright, 

2000; Stock et al., 2002; Stock and Yogo, 2003) since it is represented by the value function of the 

Continuous Updating Estimator (CUE) (Hansen et al., 1996), but it shares with AR the asymptotic 

distribution which does not depend on nuisance parameters even when the instruments are 

arbitrarily weak. Therefore, S is pivotal and can be used for inference and for constructing valid 

confidence sets (i.e. CI) by inversion as with the AR statistic (Staiger and Stock, 1997). However, it 

has however low power under overidentification and is outperformed by KLM and MQLR, and 

especially by the latter (Andrews et al., 2006). 

The KLM test relies on the independence between average moments and their first 

derivatives (the Jacobian matrix), since correlation among them is a major source of bias in 

conventional GMM estimates and test statistics (Newey and Smith, 2004; Kleibergen, 2005; Newey 

and Windmeijer, 2009)
9
. However, this test statistic exhibits a loss of power when the objective 

function is maximal and becomes spurious. It is also size-distorted when such correlation is high 

(Kleibergen and Mavroeidis, 2009).  

MQLR is an extension of the Conditional LR test (Moreira, 2003), so defined because it is 

conditioned on a statistic that is complete and sufficient under the null hypothesis. MQLR has the 

desirable features of having size that is robust to many WI and near-optimal power properties with 

Gaussian errors, and dominates the power of both S and KLM (Andrews et al., 2006; Mikusheva, 

2007). This occurs because MQLR supersedes the assumption of full-column rank of the Jacobian 

matrix (Sect. 3.1) and conditions the LR statistic on a matrix reduced-rank test (Kleibergen, 2005; 

Kleibergen and Paap, 2007). 

The conditioning statistic of MQLR is RK, a statistic that tests the rank of the Jacobian 

under the null hypothesis and is the analog of the Cragg-Donald statistic used in IV. It is a measure 

of the identification of β and can be used as a pretest statistic in its own right. When β is not well 

identified, RK is small and by consequence the bounding distribution of MQLR is similar to that of 

S, but when β is well identified, RK is large and the bounding distribution of MQLR is similar to 

that of KLM. Finally, JKLM is a J statistic evaluated at the null hypothesis of zero coefficient(s), 
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and is different from Hansen’s J statistic, which is evaluated at the parameter estimate. It is given 

by S-KLM, namely, the difference between a value function and an asymptotically independent test 

of the validity of the moment conditions. 

 

3.2. Parametric and Nonparametric Tests for the Selection of Alternative GMM Models 

 

In addition to appropriate data filtering required to remove spuriousness, and to due 

consideration of the possible WI phenomenon,  GMM modeling involves a large variety of choices 

regarding the size of the regressor and instrument sets (given L K≥ ) and the magnitude of the 

bandwidth of the HAC weight matrix of eq. (16). Coefficient estimates and their efficiency and 

significance can in fact be very sensitive to different specification choices even with contiguous 

indicators (Hansen and West, 2002). Pretesting is thus necessary and (hopefully) sufficient to 

extract the “best” GMM model among different specifications, characterized each by different 

regressor and instrument vector sizes, HAC bandwidths and instrument strengths. 

A complete although not exhaustive package of such pretest procedures contemplates three 

categories to be sequentially implemented for each select specification: true factor number and 

shares, first-stage tests, GMM tests. These categories constitute the following list: 

A)  True number of factors (Bai and Ng, 2002, 2007) and total number of instruments;     

B)  Nominal factor shares;       

C)  First-stage tests for endogeneity:  one-lag Granger causality F statistics running from structural 

residuals in eq. (9.1) to forcings and viceversa 
10

 (Granger, 1969);  

D) First-stage WI tests for vector 0 0β =  in eq. (9.1): AR, LM, LR (Yogo, 2004);  

E) First-stage relevance tests: minimum eigenvalues of the Concentration Parameter matrix and 

Cragg-Donald test statistic (Stock and Wright, 2000; Stock et al., 2002);  

F)  First-stage joint instrument exogeneity and relevance LR-type test (Kim and Lee, 2009); 

standard and asymptotic AR tests for overidentifying restrictions (Anatolyev and Gospodinov, 

2010);  

G) GMM standard J statistic (Hansen, 1982) and asymptotic J statistic (Imbens et al., 2003), both 

used to test the validity of the overidentifying restrictions;  

H) GMM standard and asymptotic AR statistics tests for vector 0β  evaluated at the parameter 

estimate and validity of the overidentifying restrictions (Andrews and Stock, 2007); 

I)  GMM key statistics of the estimated residuals;      

J)  GMM coefficient vector and t statistics or WI-CI (e.g. Moreira, 2003; Cruz and Moreira, 2005; 

Kleibergen and Mavroeidis, 2009);  

K) GMM Kleibergen’s tests for vector 0 0β = , namely, the standard Wald test and RK, S, KLM, J 

KLM and MQLR statistics described in Sect. 3.1. 

 The first category of pretesting (A and B) to be implemented is represented by the 

determination of the true number of regressors and of instruments in presence of a large dataset. It 

is a powerful alternative to traditional PCA methods utilized to compute the number of factors, (e.g. 

Anderson, 1984), which are shown by Bai and Ng (2002, 2008) not to produce consistent results as 

,T K → ∞ .   

 This method is based on PFA and PCA, and is unanimously refered to as “factor modeling” 

or Factor IV (FIV) estimation. It can easily cope with many regressors without running into scarce 

degrees of freedom problems or in collinearity, and it is utilized to reduce in a first place the 

number of regressors, chosen among the widest possible available set, including variables that may 

be either  justified or  unjustified on theoretical grounds.  

 In its simplest form, FIV builds upon the common-component static factor model developed 

by Chamberlain and Rothschild (1983), where the true number r of factors  is unknown ex ante and 
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can be endogenously determined by formal statistical procedures characterized by information 

criteria, reported in Appendix 2, that place penalties on large datasets (Bai and Ng, 2002, 2007).  

The few and most relevant factors so obtained, in terms of computed shares, contain most of the 

model’s information and may be supplemented – if necessary – by additional regressors or 

instruments to form the entire available dataset. 

 The second category (C to F) includes first-stage testing of eqs. (9.1) and (9.2). They are 

well renowned in the current practitioner’s literature except for the last ones, which are of recent 

date. The first of these is denoted IV
Q  by its authors (Kim and Lee, 2009), while the second is an 

AR test adjusted for the number of instruments (Anatolyev and Gospodinov, 2010). IV
Q  is a joint 

test for the IV instrument relevance and exogeneity with respect to structural errors, and is derived 

from two competing model specifications: one with exogenous and the other with irrelevant 

instruments. The IV
Q  test is based on the LR of these two models; hence the joint null hypothesis 

is 0 : 0,  0H β = Π =  from eq. (9.1) and (9.2) respectively. In other words the null is represented 

by both exogeneity and irrelevance, and has a peculiar quasi
2χ  distribution whose critical values 

are tabulated by the authors via MC simulation draws, although only for 3K ≤ regressors. If the 

IV
Q  test statistic obtained from sample estimation rejects the null the instruments are deemed of 

good quality, and thus relevant, but not necessarily exactly exogenous. 

 The standard AR test statistic for overidentifying restrictions may be supplemented by a 

statistic bearing an asymptotic corrected size that prevents too frequent overrejections of the null 

hypothesis, determined by (moderately) many instruments. Anatolyev and Gospodinov (2010) 

found a similar occurrence with the standard J statistic, characterized by underrejection, and 

proposed an equivalent asymptotic test statistic. Both corrections build on foregoing work, where 

some authors have devised asymptotic corrected counterparts of the J and AR tests: the 

2
ASY

J L
J

L

−
=   and the 1

ASY

AR
AR L

L

 
= − 

 
 tests, respectively distributed as ( )0,1N  and 

( )0,2N   statistics (Imbens et al., 2003; Andrews and Stock, 2007).  

 Standard GMM-estimated residual statistics (category I) include the following: Standard 

Error (SE), Durbin-Watson statistic for first-order autocorrelation and ARCH test for 

heteroskedasticity (Engle, 1982), as well as the first-order autocorrelation coefficient that has been 

previously used as a selecting device for the appropriate data filtering (Sect. 3.1) and that can here 

perform a similar task on grounds of consistency. 

 

 3.3. The Dynamic GMM and the Construction of Dynamic Principal Components 

Eq. (9.1) can be extended to produce the following dynamic estimating equation: 

10)     X ( ) ' ( )
t t t

y B eλ λ∆ = +  

where 
11 2 1 2 1( ) , , , , ,...,

K
B λ µ µ τ τ ξ ξ =    and 

2, 1,...,
k

k K=ξ  , are the coefficients of 
t

Xɶ , ∀λ ∈ Λ . 

Finally, 2( ) . . .(0, )
t e

e I I Dλ σ=  and ( )E X ( ) ' ( ) 0t teλ λ = .  

Eq. (10), just as eq. (2), enables constructing a time series of length 
01 (1 )Tλ+ −  of the 

coefficient vector ( )B λ  and of the ensuing two t statistics ˆ ( )ttµ λ  and ˆ ( )ttτ λ 11
. GMM estimation 

of ( )B λ  requires the introduction of an L-sized 
t

Z  instrument set ( )L K≥ . In many cases, 
t

Z  is 

represented by lag transformations of the set tXɶ  such that 1,
t t m

Z X −
 =  
ɶ  for 1,...m M=  lags. In 
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other cases, and specifically when expectations are assumed to be the driving cause of the 

behaviour of the endogenous variable (e.g. the Taylor Rule, Clarida et al., 2000), the vector tXɶ  is 

augmented with its own leads and 
2K  may be large. In such case, also the vector of instruments 

t
Z  

must be lengthened with the risk of producing, however, the many WI curse (Stock et al., 2002) 

for L→∞ , even if T→∞ . 

The L-sized vector of sample moments, each being a random process of length ( )01 Tλ− , is  

ˆ ˆ( , ) ( )
t t t

g Z eβ λ λ= ⊗  

where the coefficient vector β̂  and the first-stage residuals 
t̂

e  stem from a (possibly) consistent 

TSLS estimation of  eq. (10). The sample means of the above are 

 

( ) ( ) ( )
0

0

(1 )
1

0
ˆ ˆ, 1 ,

T

t

t T

g T g
λ

λ

β λ λ β λ
−

−

=

= −   ∑  

 

with the orthogonality property that ( )ˆ, 0E g β λ  ≡
 

, a necessary condition for instrument 

exogeneity. Let also the ensuing long-run p.d. weight matrix be 

 

 11)   ( )
0

0

(1 )
1

0
ˆ ˆ ˆ( , ) : (1 ) ( , ) ( , ) '

T

t t

t T

W L L T g g
λ

λ

β λ λ β λ β λ
−

−

=

 × = −  ∑  

such that ( )1ˆ ˆ ˆ ˆ( ) arg min ( , ) ( , ) ( , )GMM g W g
β

β λ β λ β λ β λ−

∈Β
= .  

Computation of the partial first derivatives of the sample moments yields the KL L×  

Jacobian matrix  

12)   
0

0

(1 )

1
0

( ) (1 ) '
T

t t t

t T

G T z x

λ

λ

λ λ

−

−

=

 = −  ∑   

where ,  
t t

z x  respectively are the L.th and the K.th element of vectors 
t

Z  and X
t
. For relevance, we 

expect the Jacobian to be of full rank and no zero minimum Singular Value (SV). Finally the 

efficient GMM estimator, by letting 
0

0

(1 )

'
T

t t

t T

Z y z y
λ

λ

−

=

= ∆∑ , is 

13)      
1

1 1ˆ ˆ ˆ( ) '( ) ( , ) ( ) '( ) ( , ) '
GMM t t t t

G W G G W Z yβ λ λ β λ λ λ β λ
−

− − =     

where, specifically 

 

14)   
11 2 1 2 1

ˆ ˆ ˆˆ ˆ ˆ ˆ( ) , , , , ,...,GMM Kβ λ µ µ τ τ ξ ξ =     

 

whose asymptotic normality property is 

 

  ( )1/2 *ˆ ˆ( )   N 0, ( , )
d

GMMT Sβ λ β β λ − →   

 

where 

 

15)   
0 0

1
1

(1 ) (1 )
ˆ ˆ( , ) '( ) ( , ) ( )

T T
S G W G

λ λ
β λ λ β λ λ

−
−

− −
 =     

 



 14 

is the “sandwich” matrix. 

 In the presence of autocorrelation and/or heteroskedasticity of ( )
t

e λ , that is, of persistence 

in the error term, the weight matrix of eq. (11) must be augmented in the form of the long-run 

covariance matrix 

16)   
0

0

(1 ) 1

(1 ) 1

ˆ( , ) ( , ),
T

s T

s
W k s

b

λ

λ

β λ λ
− −

=− − +

 
= Γ 

 
∑       

 

where k is a preselect kernel function (e.g. Bartlett, Parzen, etc.), b is the bandwidth and 

 

17)    
0

0

(1 )
1

0
ˆ ˆ( , ) (1 ) ( , ) ( , ) '

T

t s t

t T

s T g g
λ

λ

λ λ β λ β λ
−

−
+

=

 Γ = −  ∑  

is the s.th sample autocovariance of ˆ( , )
t

g β λ ; 0, 1,...s = ±  (Newey and West, 1987; Smith, 2005). 

Consistency of eq. (17) requires that 0(1 ) 0T bλ− > >  and that b → ∞ , 0(1 ) 0 b Tλ− → as 

T → ∞  i.e. that downweighting of ( ),s λΓ  operated by the smoother in eq. (16) be such as to 

produce a covariance matrix biased toward zero (Kiefer and Vogelsang, 2002). In common practice, 

the optimal value of b is (automatically) chosen to minimize the asymptotic mean square error of 

eq. (16). 

Let ( )X :t T K×  as defined in Sect. 3.1. By virtue of the Spectral Decomposition Theorem, 

define the symmetric asymptotic covariance matrix X 'X ERE
t t

Τ = , where, for 

[ ]1, , ( ), ( )
t t t

X t DU DTλ λ= , X
t t t

X X =  
ɶ⋮  and 1 2K K K= + , ( ): K KΤ ×  is a rate-of-convergence 

matrix with an upper left matrix ( )1 1K K×   constituted by four 2 2×  submatrices each containing 

2

2 3

T T

T T

 
 
 

, and 2 row and 2 column vectors ( )2 1K ×  of trailing 
3

2T  placed in correspondence of 

the time-related deterministics, that is, at 1 2,4K = . All other entries of matrix T  are given by ones. 

 In addition, R  is the K K×  diagonal matrix of the eigenvalues ( ), 1,...,ir i K=   in 

descending order, and E the same sized matrix of eigenvectors with column elements 

( )E , 1,...,j j K= . We have ( )E'E
K

E I= , where K
I  is the K K×  identity matrix that ensures 

orthogonality of the principal component scores, which correspond to those in PFA (Appendix 2).  

For each E
j
, define the scalar ( )arg max E ,  ( )

j j
j iη = ≠  such that the static PCA shares, 

corresponding to the eigenvalues in descending order, are described as 

18)     
1

( | )
K

i i j i

i

s r r
=

= η ∑  

where ( )|
i j

r η  denotes the association between the i.th eigenvalue and 
j

η . 

After defining 
j

α  the jth regressor’s marginal significance of the coefficient, the time series 

of length 
01 (1 )Tλ+ − of the jth regressor’s dynamic and significance-weighted share measured 

over the trimmed interval { }0 0, (1 )t T Tλ λ∈ −   may be expressed as 

19)   ( ) ( )
1

(1 ) ( | ) ;  
K

i j i j i

i

s r r
=

 
λ = − α η λ ∀λ ∈ Λ 

 
∑ ,  

where ( )1
j

α−  is the appropriate weight assigned to the ith share. Eq. (19) provides the dynamic 

PCA time series of the shares to be exploited in the following Sections. 
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Apart from the dynamics involved, eq. (19) is preferable to eq. (18) because it weighs each 

component share by the statistical significance appended to its coefficient. Traditional PCA (e.g. 

Anderson, 1984), by ignoring this evidence and by sticking to nominal shares, may overstate in 

quite a few instances the components whose role is empirically found to be virtually close to zero. 

In alternative, the 1
j

− α  weight may be substituted for by the t statistic of the ith coefficient. The 

advantage is represented by a ‘double weighting’ which includes also the absolute magnitude of the 

coefficient involved, and not only its standard error. 

 

4. The Climate-related Dataset and the Empirical Estimations of Global Warming 

 

In this Section all the climate-related data are exhibited together with an index of GW and 

then subjected, after appropriate filtering, to empirical estimation by dynamic GMM. Before 

proceeding, it is worth reminding the gaseous composition of Earth’s atmosphere: Nitrogen (
2N , 

78%), Oxygen (
2O , 20%) and a few more, among which Carbon Dioxide (C

2O ), Methane (C
4H ), 

Nitrous Oxide (
2N O) and Nitrogen Dioxide (N

2O ). For ease of reading, the reported Mendeleyev 

symbols are respectively simplified as follows: N2, O2, CO2, CH4, N2O and NO2. Apart from 

water vapor, Chloro-Fluoro-Carbons (CFCs) and composite anthropogenic and natural aerosols, 

CO2, CH4 and NO2 purportedly reduce or trap the loss of Earth’s heat into space and cause – under 

certain conditions – the renowned “Greenhouse effect” and the consequential GW. 

However, while GW is a minor part of the Earth’s long climatic history, other forcings at 

present and in the past times are held responsible of climate changes, although in many cases the 

data availability and affordability pose a restraint to large-scaled modeling addressed at event 

simulation, prediction or causative analysis. Precisely to this very end, the purpose of this Section is 

to introduce the available dataset and to perform such analysis for the sake of the advancement of 

knowledge. 

 

4.1. Global Warming and Climate Forcings during the Period 1850-2006 

 Planet Earth has passed through many waxing and waning climate episodes during the 

entirety of its life. For instance, the Mid-Cretaceous (120-90 million years ago) and the  Palaeocene 

Eocene Thermal Maximum (PETM, 55 million years ago) have experienced temperatures distinctly 

warmer than today, with animals and plants living at much higher latitudes and with higher carbon 

dioxide (CO2V) levels, roughly two to four times than the present-day ones.  

Abrupt climate changes have occurred also during the more recent Phanerozoic eon (Shaviv 

and Veizer, 2003), like the last glacial period (Alley, 2000), the Medieval Warm Period, centered 

around 1000 A.D., apparently the warmest period so far in the Christian era (Esper and Frank, 

2009), and the Maunder Minimum in Europe during the years 1645-1715 A.D. Fig. 1a provides an 

account of the climatic oscillations that have occurred in the last twelve centuries or so, which are 

significantly proxied by the time series of the North Atlantic Ocean Mode (Trouet et al., 2009). 

Clearly, the Medieval Warm Period and the current GW represent the peaks, as found by other 

researchers too that use different proxies (Bürger, 2007). 

Many of the climate changes have affected human activities, like the disappearance of the 

Neanderthal man and countless population migrations, e.g. the Siberian exodus toward the 

Americas, the Dravidian occupation of Ceylon, and the short-lived experience of the Vikings in 

Greenland. In quite a few cases, climate changes are even held responsible, although not entirely, 

for the collapse of some civilizations like the Akkadians and the Mayans, struck by severe droughts 

respectively in the 22nd century B.C. and 800-900 A.D. (Gill, 2000; Cullen et al., 2000). Many 

more human-driven episodes have directly affected climatic conditions and local environments: for 

instance the desertification of Northern Africa partly commenced since the late Roman Empire and 

that of Australia, caused by extensive slash-and-burn practices of the aboriginals.  
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While the above cited may be casual episodes of the often perverse relationship between 

humans and nature, the by now secular GW phenomenon, more recently dubbed “climate change” 

by the majority of its mentors, is undoubtedly cause of concern. In fact, the last hundred years or so 

have experienced a renewed climate change after the Maunder Minimum by exhibiting a rise in the 

mean global surface temperature by about 0.6 ± 0.2°C since the late 19th century, and by about  

0.35 ±0.05° C over the last 40 years (Chenet et al., 2005). This phenomenon, while not unique in 

Earth’s history  (Baliunas and Soon, 2003) as shown in Fig. 1a, has spurred intense debate on the 

analysis of its causes and is by now a worldwide major issue which involves popular media, 

scientists, corporations, governments and political organizations.  

In fact, while the rise in temperatures is of undisputed evidence, yet at a slower pace in the last 

decade, the search for a main culprit is still in progress and well alive, and is being characterized by 

two opposing fronts regarding its causes: the advocates and the skeptics of its anthropogenic origin. 

Either sides hold on to their own positions since a decade or more and recent scuffles, such as the 

“Climategate” affair and the “hockey-stick” controversy demonstrate the vitality of the 

confrontation. 

Advocates of the human-induced greenhouse effects, purportedly caused by CO2 emissions 

and industrial aerosols, include several scientists (e.g. Hansen et al., 2007), the UN-mandated 

Nobel-prized Intergovernmental Panel on Climate Change (IPCC) and large sections of 

governments and politicians
12

.  

Skeptics, on the other hand, form a scientifically-based consensus that supports and proves 

the prevalence of long-run evolving natural causes, defined as “global forcings”, like solar activity 

(Abdussamatov, 2004), Cosmic Ray Flux (CRF) (Shaviv and Veizer, 2003; Svensmark, 1998; Bard 

and Frank, 2006, Usoskin et al., 2003), volcanic aerosols (Mann et al., 2005) and ocean currents 

(Gray et al., 1997). This consensus builds on reliable paleoclimatological dataset reconstructions 

(e.g. Crowley, 2000; Lean, 2000, 2004; Usoskin et al, 2003, 2004a, 2004b; Mann et al., 2005; 

Krivova et al., 2007), most of which are downloadable from the National Oceanic and Atmospheric 

Administration (NOAA) website.  

The consensus share going to either group is not undisputed: according to a recent research 

(Doran and Zimmerman, 2009) the large-public opinion of Americans goes fifty/fifty, while more 

than 75% of peer-reviewed academic research papers  backs the view that Earth's climate is affected 

by human activities. Other more recent sources of different origin express only little consensus on 

the anthropogenic causes of GW, and this has certainly dominated the choices made at the last 

IPCC Conference held in Copenhagen, December 2009.  

 One thing, however, stands clear to almost anybody: the analysis of the interaction of the 

variables implied in the secular GW process is very complex, as it requires countless and valuable 

in-depth experimenting stemming from different scientific fields, such as astrophysics, climatology, 

biology and chemistry. Statistics and econometrics may contribute to the current state of knowledge 

by supplying interesting insights into causality occurring in a casual environment. Not much work 

has been produced hitherto in this field, except for few though valuable contributions (e.g. Lanne 

and Liski, 2004; Kaufmann et al., 2006). Certainly more will come in the future.   

 GW is identifiable with data sets on land and sea temperature recordings collected by 

different agencies for select periods, areas, altitudes, hemispheres, etc. The Best Estimated 

Anomaly (BEA) of the updated HADCRUT3 dataset (Brohan et al., 2006), available for the period 

1850-2006 on an annual basis, was selected due both to its space and time breadth. Therefore, the 

BEA index represents the endogenous variable used in eq. (10), whose GMM estimated parameter 

vector is given by eq. (14).  

In line with BEA, which constitutes a time series of 157 observations and is used as 

synonym of GW and climate change
13

, an ample dataset of climate forcings was retrieved from 

different sources worldwide available over the internet, and especially from the NOAA website. 

The list of forcings which play the role of regressors and instruments in GMM estimation is 

exhibited in the Data Description and Sources, and is made of the following two main categories: 
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anthropogenic and natural forcings. Their tally is 37, of which 14 of anthropogenic origin and the 

others of natural or mixed origin.  

The anthropogenic forcings include average real GDP percapita of the total 12 Western 

Europe major countries and of its overseas offshoots (U.S.A., Canada, Australia and New Zealand), 

and their total population (Maddison, 2007)
14

. They are respectively labeled INCOME_E, 

INCOME_O, POP_E and POP_O. Anthropogenic forcings also include the components of trace or 

greenhouse gases (GHG) that characterize air pollution. They are given by four measures of 

emissions: carbon dioxide (CO2) expressed in terms of global volume, which includes emissions 

from fossil-fuel burning, cement manufacture, and gas flaring (Marland et al., 2007), and final 

emissions of CO2, methane (CH4) and nitrous oxide (N2O), expressed in terms of Radiative 

Forcing (RF) measured in Watts per square meter (W/m2) (Robertson et al., 2001). Global sulphur 

emissions, expressed in thousands of metric tons, are also available (Stern, 2002). These forcings 

are respectively labeled as: CO2V, FCO2, FCH4, FN2O and GSULFEM. While the first and the 

last variable may be considered as a stock, the other three are a flow. 

Needless to say, a part of the CO2-based emissions derive from the Global (oceans and land) 

Carbon Cycle, whose emissions and suspension in the atmosphere absorb radiation emitted from the 

Earth, trapping heat and contributing to GW, but at the same time shield the Earth from the Sun’s 

radiation, volcanic and geothermal activity, large forests, and man-made fermentation processes 

(e.g. beer and whiskey). Similarly, a part of CH4-based emissions derive from natural decay present 

in wetlands (e.g. swamps and marshes), urban landfills and waste treatment, livestock, volcanic 

activity, etc. Mostly man-made are instead N2O-based emissions deriving from internal combustion 

of engines, rocket motors, aerosol spray propellants, as well as analgesic & anesthetic products. 

The category of natural forcings includes measures related to solar, volcanic and combined 

activities, as well as to cosmic rays and oceanic modes. As far as solar activity is concerned, there 

are 9 indicators: the average yearly number of monthly sunspot series (NGDC, 2007), a measure of 

total solar irradiance received at the outer surface of Earth's atmosphere in terms of RF (Krivova et 

al., 2007), tropical solar RF (Mann et al., 2005), composite solar RF, composite volcanic RF, and a 

total of four measures of Beryllium 10 (BE10) and Radiocarbon 14 (C14) that proxy solar RF 

(Crowley, 2000). In sequence, these forcings are labeled as: SUNSPOTS, SOL, SIR, TSI, 

COMPSOL, C14RLS, C14BLS, BE10BS and BE10LS. 

Volcanic activity is represented by tropical and composite volcanic RF (Mann et al., 2005), 

and by a binary index that dates the major tropical eruptions (Ammann and Naveau, 2003), while 

oceanic modes are represented by Pacific Decadal Oscillations (Shen et al., 2006) and the North 

Atlantic Ocean Mode (Trouet et al., 2009). They are sequentially labeled as: VOL, COMPVOL, 

VOLER, PDO and NAOM. In addition, cosmic ray activity is proxied by the CRI flux (Usoskin et 

al., 2003; Alanko-Huotari et al., 2006), while the combined effects of volcanic and solar activities 

are proxied by the RF of the VOLSOL indicator (Mann et al., 2005). Natural and anthropogenic 

combined effects in the form of tropospheric aerosols are represented by sulphur and fossil-fuel 

black carbon emissions in volume and in RF (Crowley, 2000), respectively labeled as AEROSOL 

and AERF.   

Finally, a climate-related valuable database (Stern, 2002, 2004) is added. It includes several 

indicators of human and natural origin, mostly adjusted variants of above-listed forcings. These are 

the world total sulphur emissions expressed in megatons, labeled as GSULFEM, and the radiative 

forcings from carbon dioxide, methane, nitrous oxide, two measures of chlorofluorocarbons 

responsible for ozone depletion, anthropogenic sulphur emissions, and two measures of volcanic 

and solar activities, respectively. All these variables are labelled as:  CO2, CH4, N2O, CFC11, 

CFC12, SOX, VOLGL and SOLS.     

When unavailable for the more recent years, the data series of the 37 forcings are all updated 

to the year 2006 by means of forecasting via the autoregressive method, with lags selected via 

minimum BIC. Table 3 reports some descriptive raw statistics of BEA and of all the given forcings. 

Of interest are the large differences between the minima and the maxima of NAOM, PDO, some 
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anthropogenic forcings and volcanic activity, expressed in terms of their volatility coefficients. 

Also, the CO2-based and some anthropogenic forcings appear to be nonstationary as revealed by 

the p-values of the ADF t-test statistics. Oddly enough, BEA reveals stationarity, a feature 

confirmed also by other findings (fn. 15). 

 Thereafter, all level forcings – logged when applicable
15

 – are made to undergo appropriate 

HP filtering (excluding VOLER which is a dummy) and their cyclical components are extracted for 

the purposes of empirical estimation. The smoothing parameter chosen for the entire dataset is 6.25 

as suggested by Ravn and Uhlig (2001). The rationale for this choice is based on the ARCH and 

autocorrelation coefficient results of the pretesting conducted on the structural equation (9.1) along 

the lines suggested in Sect. 3.1. 

Therefore, alternative specifications of the equation include different sizes of the vector of 

forcings (K), ranging from a minimum of two to a maximum of eight true factors selected from the 

37 forcings available (Bai and Ng, 2002, 2007, 2008), and of the instruments, whose size is chosen 

in all cases to be L=2K. For each specification, larger HP smoothing parameters (100 and 400), first 

differencing, and centering and scaling have also been applied to all variables. The latter 

alternatives, however, produced unsatisfactory or less satisfactory results and were therefore 

dismissed as candidates for data transformation
16

. 

Fig. 1b illustrates the levels and the HP-filtered values of the logs of BEA and of all 

forcings. From the left panel, GW can be shown to exhibit a trending behavior since 1850
17

, which 

is ostensibly stationary when appropriately filtered. The human forcings exhibit a trend, but 

methane (FCH4) seems to taper off in the last decade. On the other hand, the natural forcings are 

mostly cyclical, with SUNSPOTS exhibiting a known regularity of around 11 years. While 

retaining their labels, all of the variables used in calculations and estimations that will follow are 

henceforth understood, unless otherwise defined, to be represented by their HP-filtered magnitudes 

(see fn. 12). 

4.2. Expected Effects of Forcings over Global Warming 

 

The 37 listed forcings by means of ongoing research are expected to bear specific effects 

over the World temperature changes represented by BEA. Of the human forcings, economic activity 

and the size of population (INCOME and POPULATION) are expected to raise BEA via GHG 

emissions, extensive deforestation and generalized use of inefficient technologies. The United 

States and China nowadays appear by some estimates to be the main responsible for CO2V volume 

emissions, and especially the second is poised to double its GHG emissions within a decade or so. 

 Solar activity manifests itself in different forms that may significantly affect climate 

variability. Sunspot numbers (SUNSPOTS), total solar irradiance (TSI) and solar cosmic rays (CRI) 

are highly correlated and constitute the ensemble of “solar forcings”. Their long-run reconstructions 

stem from direct measurements, like the sunspot numbers supplied since Galileo, or from solar 

proxy variables like the accumulated layers of BE10 in ice cores and C14 in tree rings. Whether 

directly or through cloud formation or by changes in the Earth’s albedo, solar forcings are in many 

cases shown to sizably affect the Earth’s climate (Usoskin et al., 2003, 2006; Solanki et al., 2004; 

Shaviv and Veizer, 2003; Svensmark, 1998). In particular, increased sunspot activity – according to 

some theories – causes a cooling of the Sun’s surface by trapping its energy output. This was 

evidenced by telescope measurements made from 1976 to 1980, which showed that the Sun's 

surface had cooled by about 6° C as the number and size of sunspots increased. However, the 

matter is debated, since according to other theories the correlation between climate changes and 

sunspot numbers is positive (Baliunas and Soon, 2003) although mediated through measured TSI. 

Some authors (Solanki et al., 2004) have recognized that the level of solar activity during 

the past 70 years is exceptional, and that the previous period of equally high and prolonged activity 

had occurred more than 8,000 years ago. They found that during the past 11,000 years the Sun has 

produced, on average, only 10% of the time a similarly high level of magnetic activity and that 



 19 

almost all of the earlier high-activity periods have been shorter than the present episode. In spite of 

the rarity of the current episode of high average sunspot numbers, however, the authors point out 

that solar variability is unlikely to have been the dominant cause of the recent climate changes, and 

especially of those occurred during the past thirty years. A similar conclusion is reached by other 

authors (Rind et al., 2008) who make use of complex modeling supplied by the Goddard Institute 

for Space Studies (GISS). 

TSI is expected to raise the Earth’s temperatures via increased luminosity, although there is 

no general agreement on its size and significance, since its variability (only 0.1%-0.2% over the 11-

year cycle) is so low as to deserve the nickname of ‘solar constant’ (Fouka et al., 2006). TSI is 

likely to operate in conjunction with the CRF by negatively affecting climate via low-altitude cloud 

cover and increased rainfalls (Svensmark, 1998; Svensmark and Frijs-Christensen, 2007; Shaviv, 

2005). Finally, the effects of PDO and similar oceanic currents on the overall climate are uncertain 

insofar as this variable appears to be driven, partly, by solar forcing fluctuations (Shen et al., 2006) 

and partly by the El Niño-Southern Oscillation (ENSO) while its cycling magnitude has not yet 

been ascertained (Gray et al., 1997; McDonald and Case, 2005). 

Volcanic activity is also poised to affect climate, especially in the Northern Hemisphere 

(Shindell et al., 2004). The release of aerosols rich of sulphates and CO2V reflects sunlight away 

from the surface of the Earth causing a climate cooling due to dust veils (tephra) suspended in the 

atmosphere. At the same time, however, aerosols absorb solar and infrared radiation leading to 

warming of the surrounding air masses. This applies in particular to large volcanic eruptions whose 

effects may last for years, as in occasion of the eruptions of Krakatoa in 1883, El Chichón in 1982 

and Pinatubo in 1991. The net effect on overall climate is therefore still matter of dispute (Shindell 

et al., 2004; Mann et al., 2005; Chenet et al., 2005).  

The IPCC defends since at least a decade the anthropogenic hypothesis by stating in its 

Third Assessment Report (AR3 2001) that: "Forcing due to changes in the Sun's output over the 

past century has been considerably smaller than anthropogenic forcing…Its level of scientific 

understanding [is] very low, whereas GHGs forcing continues to enjoy the highest confidence 

level….[and] the temporal evolution indicates that the net natural forcing has been negative over the 

past two and possibly even the past four decades….[It is therefore] unlikely that natural forcing can 

explain the warming in the latter half of this century".    

In its Fourth Assessment Report (AR4, 2007) the IPCC, while maintaining  that: “There is 

very high confidence that the net effect of human activities since 1750 has been one of warming”, 

issues severe warnings about melting glaciers and Polar ice sheets, increased hurricane intensity due 

to substantial changes in wind patterns, average sea level rise, worsening droughts and heavier 

precipitations and, finally, a growing gap between human-driven and solar RFs. Warming would 

thus be attributed to solar forcing by a 10% share with the remaining 90% attributable to human 

forcing in terms of GHG emissions, supposedly capable of absorbing infrared energy within the 

troposphere
18

. 

 

4.3. Static GMM Model Selection and Preliminary Empirical Results 

 

As advanced in the Introduction, testing for breaks in the time series of GW and its causes is 

equivalent to testing for the null hypothesis of its anthropogenic nature. Natural causes during the 

period 1850-2006, in fact, do not exhibit any known substantial break worldwide. Moreover, as will 

be found shortly, anthropogenic forcings do not even enter significantly the determination of GW. 

The detection of single and multiple breaks obtained by means of popular methods for SBA, 

e.g. the Zivot-Andrews (1992) and of the Bai-Perron (2003) procedures, produces conflicting 

results which are very sensitive to both the lags of the endogenous variable (BEA) and of the 

forcings included
19

. This is an additional reason for proceeding, after performing the optimal static 

GMM model selection, along the lines of the proposed dynamic method so as to analyze the time 

series of breaks, coefficient and shares of the forcings that determine GW. 
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Table 4 supplies the pretest battery of results introduced in Sect. 3.2 that is utilized for the 

optimal static GMM model selection, i.e., for the ‘best’ specification suitable for estimating the 

structural equation (9.1) and for proceeding in the next Section to the Dynamic GMM estimation. 

All the variables, including the endogenous BEA but excluding VOLER, are understood to have 

been HP-filtered by a smoothing factor of 6.25 (Sect. 4.1). The procedure adopted for such 

selection utilizes several specifications of eq. (9.1), with the number of true factors ranging from 

two to eight, found among all the 37 forcings. A linear trend and a constant are included in the 

estimation but are not exhibited, and the instruments are the 1-2 lags of the true forcings, including 

a linear trend and a constant.  

The true factors retain the original labels of the associated HP-filtered variables and their list 

is exhibited in the first pane of Table 4.What immediately shows up even by cursory inspection is 

the inclusion of natural forcings only, and specifically those related to oceanic current cycles, as 

well as to solar and volcanic activity. No anthropogenic or mixed forcing appears in the sequence. 

The procedure here adopted for model selection is the same as the one previously adopted for data 

filtering (Sect. 4.1), but in addition the model selected should be characterized by the following: 

i) the endogeneity of some or all forcings should be significantly detected, or else GMM estimation 

collapses to OLS; 

ii) the null hypothesis 0 : 0H β =  under possible WI in both the first-stage TSLS and even more so 

in the two-step GMM estimation should be significantly rejected;  

iii) the relevance and exogeneity of the selected instruments should be proven, elsewise all standard 

tests fail to deliver the appropriate inferential information; 

iv) the true factors selected (Bai and Ng, 2002, 2007, 2008) should exhibit in most cases significant 

t statistics. 

The results reported in Table 4 suggest in panel C that endogeneity of some forcings is 

present, namely, SUNSPOTS and VOLER when assuming causality is running from the residuals 

to the forcings and PDO, COMPVOL and VOLSOL when assuming the opposite direction of 

causality. At least intuitively, the latter appears to better represent the phenomenon of endogeneity 

and, strictly speaking, the last three variables should be instrumented. 

While the minimum eigenvalues of the Concentration Parameter matrix and the Cragg-

Donald test statistics point to first-stage relevance of the instruments for all specifications (panel E), 

the first three specifications do not pass,  below a p-value of 10% , the null hypothesis  0 : 0H β =
 

for the first-stage (panel D) and for the GMM AR test statistics (panel H), nor the tests of joint 

exogeneity and relevance (panel F), nor even the standard and asymptotic J test statistics for 

exogeneity (panel G). This outcome is revealing of the fact that small-sized vectors ( )3K ≤  of true 

factors are inappropriate for estimation in the present context, as they definitely entail weak and/or 

endogenous instruments. Larger-sized specifications ( )4 8K≤ ≤  involve instead highly significant 

test statistics, an evidence that is confirmed for GMM by Kleibergen’s test battery (panel K) which 

involves rejection of 0 : 0H β = for specifications where 3K > , although somewhat below the p-

value of 10% on average. 

On the other hand, the poor result of the J test statistic for instrument exogeneity with 

8K =  (line 7, panel G) indicates the existence of too many instruments, and the p-value of its 

asymptotic counterpart does not fare better than smaller-sized specifications. While from panel I 

heteroskedasticity as measured by the ARCH(1) statistics seems unavoidable for all specifications, 

the Durbin-Watson statistic points to some level of error negative autocorrelation with 5K =  

and 8K = , although not much more significantly than the other specifications. The JKLM statistic 

for the above null and for instrument exogeneity produces a comparatively interesting result with 

7K =  insofar as the other specifications have been ruled out for the reasons above mentioned. 

In summary, after assigning due weight to each selection method, the GMM model 

specification with 7K =  is selected. Panel J of Table 4 exhibits the coefficients and related t-
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statistics output, which is reproduced for ease of reading in Table 5. The weighted shares therein 

shown are constructed according to eq. (19), the weights being the t statistics of the coefficients. 

The most striking results are the coefficient signs: negative for PDO and moderate volcanic activity, 

and positive for SUNSPOTS and intense volcanic activity. Hence, world average temperature 

trends are the result of mutually outweighing natural forces related to both Earth and Sun, with 

almost equal coefficient sign-based weighted shares. In practice, negative and positive effects over 

climate changes participate each by 50%. 

 

4.4. Time Series of Breaks, Coefficients and Weighted Shares of the Selected GMM Model 

 

The selected specification is then estimated according to eq. (10) and produces eq. (14). The 

trimming factor is different for each end: 0 0.10λ =  and 01 0.05λ− = , so that after rounding the 

estimated period span is 1865-2000. Fig. 3 shows for this period the time series of the t statistics of 

the two structural breaks: the level break ( , )
T

t Lλ  and the trend break ( , )
T

t Tλ , namely, eqs. (8.1) 

and (8.2). They exhibit a jagged behavior around a zero mean, as expected from Sect. 2, and the 

minima and maxima of the former and of the latter are well beneath the critical values tabulated in 

Table 1, indicating that no significant break whatsoever has occurred during the period under 

scrutiny
20

.  

The variances of the t statistics of the constant, of the trend and of the respective breaks are: 

0.6022, 0.3373, 1.7031, and 1.1105, while the corresponding estimated volatilities are: -1.0054, 

0.6442, 3.7868, and 2.0968, while the mean variance and volatility of the other coefficient t 

statistics are close to zero. These results confirm the theoretical findings of Sect. 2 where the 

variance of the break statistics is proven to exceed unity even if they stem from unit-variance 

DGPs. 

The coefficients of the forcings are essentially constant overtime and need not even be 

graphically illustrated. They retain the signs exhibited in Table 5, and the magnitudes of their own t 

statistics behave similarly. This constancy of the parameters implies stability of the causative 

effects of the forcings, as evidenced also by the above reported variances and volatilities. Then, 

SUNSPOTS and intense volcanic activity are constant warmers, each providing its role from above 

and beneath the troposphere, respectively. In particular, sunspot numbers are on average warmers 

because they raise total solar output and negatively affect mean cloudiness (Baliunas and Soon, 

2003; Usoskin et al., 2003). In addition, large volcanic eruptions (e.g. Krakatoa and Pinatubo) are 

found to determine stratospheric heating due to ash spewing, lava emission and sulphur dioxide 

release which condensates in the atmosphere and traps the Earth’s heat. Tropospheric cooling may 

ensue in the longer term causing “winter warming” via the tephra effect, thereby offsetting the 

initial rise in temperatures (Shindell et al., 2004). 

Opposite to the warmers, PDO and moderate volcanic activity are constant temperature 

dimmers. The former, on average, is accompanied by negative sea surface temperatures related to 

the ENSO (Gray et al., 1997), while the latter cause limited gaseous emissions that do not 

determine greenhouse effects but prevent solar radiance to reach the Earth’s surface. 

Fig. 4 shows the HP-smoothed forcings weighted shares obtained by applying the dynamic 

PCA criterion introduced in Sect. 3.3
21

. While letting the explanatory role of coefficients unabated, 

the time-varying shares gauge the size of the contribution of each forcing in the variance of climate 

changes. Technically, the weighted shares are computed by using the asymptotic variance of the 

regressors X
t
 in the dynamic GMM, namely, the four deterministic variables and the given 

forcings as in eq. (19) where the weights are represented by the t statistics of the coefficients.  

In Fig. 4 the weighted shares of the deterministics are not shown since they are very modest 

in magnitude, yet the share tally is somewhat smaller than unity. The largest weighted share found 

pertains to PDO, always above 40% and slightly increasing overtime, followed by SUNSPOTS, 

which averages 27% and is slightly decreasing, and by VOLER, which is close to 12% and rapidly 
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increasing in the Nineties. The remaining shares tally around 10% and include VOL, VOLGL and 

VOLSOL. In sum, the contribution of volcanic activity is on average 27% and is slightly increasing 

overtime while, in spite of these evolutions, the weighted shares of dimmers and warmers are 

approximately equal in size as found in the above-reported statistics contained in Table 5. 

 

5. Conclusions 

 

The first and foremost finding of this paper is the following: human forcings of whatever 

nature are by no means responsible for the climate changes that have occurred on Planet Earth 

during the past 150 years. Moreover, along this period no significant break has ever occurred in the 

mean world temperatures that may be attributable to natural forcings either. While global warming 

is a phenomenon of undisputable evidence, although subject to a progressive tapering off, the 

current climatological science must acknowledge the negative impact of oceanic currents (PDO) 

and moderate volcanic activity, and the positive impact of sunspots and intense volcanic activity.  

By consequence, mean world temperatures are the result of mutually outweighing natural 

forces related to both Earth and Sun. The role played in terms of weighted shares by each of these 

forces in climate trends determination is almost constant overtime, but exhibits a rise (fall) for PDO 

and most of volcanic activity (sunspots) since the last few decades or so. This performance, 

however, may not be utilized for predictive purposes, unless further research was produced.  

These results demonstrate that the much-vaunted and daunting IPCC thesis of human 

forcing over climate change is seriously ungrounded by any empirical means and that its activity 

should be more seriously scrutinized and improved to avoid the dissemination of unjustified 

collective scares all around the Globe. 

Data Description and Sources 

1) BEA: Best Estimated Anomaly of global temperature records scaled to 14 degrees Celsius, 

HADCRUT3 dataset, Brohan et al., 2006. 

2) SUNSPOTS: Yearly averages of monthly sunspot numbers, National Geophysical Data Center 

(NGDC), 2007. 

3) SIR: Solar Irradiance Reconstruction, 11yrCYCLE, Lean, 2004. 

4) TSI:  Total Solar Irradiance RF reconstruction, Krivova et al., 2007. 

5) CO2V: CO2 total emissions measured in million metric tons of carbon:  Gas + Liquid and solid 

fuels + CO2 emissions from cement production + CO2 emissions from gas flaring, Marland et al., 

2007. 

6) CO2RF: Splice of CO2 Radiative Forcing post-1850 anthropogenic changes in equivalent 

greenhouse gas forcing, Crowley, 2000. 

7) AERF: Tropospheric aerosols, Crowley, 2000. 

8) INCOME_E, INCOME_O: Average of real GDP percapita of total 12 Western Europe, and its 

offshoots (GDDPC, 1990 International Geary-Khamis dollars), Maddison, 2007. 

9) POP_E, POP_O: total population in Western Europe and its offshoots, Maddison, 2007. 

10) Solar and volcanic forcings of the Tropical Pacific, Mann et al., 2005: 



 23 

a) SOL: Solar RF, Mann et al; 

b) VOL: Tropical Volcanic RF; 

c) VOLSOL: Combined solar and volcanic natural RF, Model result estimates (Niño-3 index, 

anomalies in degrees C); 

d) COMPSOL: Composite solar RF only, Model result estimates (Niño-3 index, anomalies in 

degrees C); 

e) COMPVOL: Composite volcanic RF only, Model result estimates (Niño-3 index, anomalies in 

degrees C). 

11) VOLER: Binary index of the major explosive volcanic eruptions, Ammann and Naveau, 2003. 

12) PDO: Pacific Decadal Oscillation Reconstruction, Shen et al., 2006. 

13) Trace Gases, Robertson et al., 2001:  

a) FCO2: Carbon Dioxide, final globally averaged volumetric concentration in ppmv*; 

b) FCH4: Methane, final globally averaged volumetric concentration in ppbv**; 

c)  FN2O: Nitrous Oxide, final globally averaged volumetric concentration in ppbv**.  

14) GHG: Greenhouse gases, Crowley, 2000. 

15) Solar variability reconstructions, Crowley, 2000: 

a)  C14RLS: C14 residuals /Lean splice; 

b)  C14BLS: C14 residuals Bard/Lean splice; 

c) BE10BS: Be10/Bard splice, irradiance reconstruction of Bard et al., 2000; 

d) BE10LS: Be10/Lean splice, irradiance reconstruction of Lean et al., 2000. 

16) CRI: Cosmic Ray Intensity index, Polar Region Neutron Monitor count rate, Alanko-Huotari et 

al., 2006. 

17) NAOM: North Atlantic Oscillation Mode (Multi-decadal Winter North Atlantic Oscillation 

Reconstruction), Trouet et al., 2009. 

18) GSULFEM: Global sulfur emissions, millions of metric tons, Stern 2002, 2004 and updates 

from the author. 

19) Radiative forcings, Stern, 2002, 2004: 

a) CO2: Carbon dioxide; 

b) CH4: Methane; 

c) N2O: Nitrous oxide; 

d) CFC11: Trichlorofluoromethane, and CFC12: Dichloro-difluoromethane; 
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e) SOX: Sulphur aerosols; 

f) VOLGL: Volcanic aerosols; 

g) SOLS: Solar irradiance.     

 
* Parts per million in volume; ** Parts per billion in volume. 

 

Appendix 1 

 

Limit Distributions of the t Statistics of Level and Trend Breaks with Different Alternatives 
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Finally, in eqs. (8.1) and (8.2 )  
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These two Brownian functionals are distributed as follows: 
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namely as a standard normal and as a doubly truncated normal with extrema close to 5% and to 

95%, respectively. Hence, insofar as 
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which implies that the two functionals tend to zero with different rates of convergence as T grows. 

Specifically, the Central Limit Theorem applies independent of λ .  

Given the null and the alternative models represented by eqs. (1) and (2) in the text, here 

both replicated 
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the coefficients’ limit distributions (Perron and Zhu, 2005) for 
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. These are indeed the diagonals of the square matrix in eq. (4.1). 

The non-break t statistics of the constant (
1µ ) and of the trend (

1τ ) of eq. (A.2), 

respectively denoted as 
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The differences between the break and the non-break t statistics respectively are: 
*( , ) ( , )

T T
t L t Lλ λ− → ∞ , and 

*( , ) ( , ) 0
T T

t T t Tλ λ− <> .  The first tends to infinity for 1λ → , 

while the second is negative for low values of λ  and otherwise positive. In other words, the t 

statistic of the constant is always smaller than that of its break, and the t statistic of the trend is 

larger (smaller) than that of its break if λ  is small (large). 

The nonstandard distribution of the two non-breaks and of the two break statistics is 

obtained by dividing the above-shown coefficients’ limit distributions by ( )
1/2
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for specific frequency windows. In particular, for the last two we have:  
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where 
*λ  is a modified triangular window 

*
w  such that ( )

*

.5 .5  | ,  1 |
2

w
λ λλ λ≤ >= − , and 

( ) ( )
1

2 ** ** **2  ( , ) 0, 12 ;  1 3Tt T N wλ σ λ λ Φ = + 
 

∼  

where 
**

w  is a standard flattop window. Clearly, both distributions heavily hinge on  and σ λ but 

not on the sample size. Moreover, the values reported are approximations of the true values 

obtained by numerical experimentation, which are exhibited in Table 2 together with the extreme 

values of eqs. (8.1) and (8.2). 

As an exercise, after dropping henceforth for ease of reading the notation λ , suppose now 

that the alternative I(0) non-break model with constant and trend were given by  

 

A.3)     
1 1t t

y tµ τ ε∆ = + +   

 

so that, for 
2. . .(0, )t I I Dε σ∼ , the coefficients’ limit distributions are 1/2 * 2

1 1
ˆ( ) (0, 4 )T Nµ µ σ− ∼  

and 3/2 * 2

1 1
ˆ( ) (0,12 )T Nτ τ σ− ∼ . 

The variances of 
1 1

ˆ ˆ and µ τ are lower than their break counterparts derived from eq. (A.2), 

since they are: 2 2 2 2 34  and 12  vs.  4 /  and 12 /σ σ σ λ σ λ , respectively. By consequence their 

standard errors are also smaller. 

The standard t statistics of eq. (A.3), respectively denoted as 
* ( )Tt L  and 

* ( )Tt T  are 

A.3.1)   

1

*

0

( ) (1) 3 ( )Tt L W W r dr
 

= − − 
 

∫  

A.3.2)   

1

* 1/2

0

( ) 3 (1) 2 ( )Tt T W W r dr
 

= − 
 

∫ , 

which respectively correspond to those of eqs. A.2.1 and A.2.2 if 1λ = . They are smaller than 

these and of those reported in eqs. (8.1) and (8.2). Incidentally, for both statistics to be 

asymptotically equal to the standard value of 1.96, the 95% fractile values of W(1) and 

1

0

( )W r dr∫  

must respectively equal 7.31 and 3.09. 

The coefficients of eq. (A.3) are:  
1

1

0

2 (1) 3 ( )W W r drµ
 

= − − 
 

∫ , 

1

2

0

6 (1) 2 ( )W W r drµ
 

= − 
 

∫  

which may be confronted with those of eq. (A.2): 
1

1

0

2 (1) 3 ( )W W r drµ λ λ
 

= − − 
 

∫ , 

1

2

2

0

6 (1) 2 ( )W W r drµ λ λ
 

= − 
 

∫ . 

If 
1 1 2 21,   and λ µ µ µ µ= = = . Instead, for

1 1 2 20,    and  λ µ µ µ µ→ < < , namely, the 

coefficients of the non-break alternative model are smaller than those of the break model, especially 

if the true breaks occur at early dates. 

As a further exercise, we assume now that the alternative I(0) model is made of the two 

breaks only , i.e.   

 

 A.4)   
2 2( ) ( ) ( ) ( )

t t t t
y DU DTλ µ λ τ λ ε λ∆ = + +  

 

The resulting t statistics, respectively denoted as 
**( , )
T

t Lλ  and 
**( , )
T

t Tλ , are  
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A.4.1)   

1

0**

1/2

(1 2 ) (1) 3 ( )

( , )
(1 )

T

W W r dr

t L

λ

λ
λ

 
+ − 

 =
−

∫
     

A.4.2)   

1

0** 1/2

1/2

(1 ) (1) 2 ( )

( , ) 3
(1 )

T

W W r dr

t T

λ

λ
λ

 
+ − 

 =
−

∫
  

which correspond to those of eqs. (A.3.1) and (A.3.2), respectively, if 0λ = . 

Finally, if the disturbance 
t

ε  in eq. (2) is I(1) as in Perron and Zhu (2005), then eq. (6) is 

 

    

2 /15 1/10 / 30 1/10

6 / 5 1/10 6 / 5

( ) 2 /15 0

6

5 (1 )

T

λ λ

λ λ

λ

λ λ

− − 
 − − 

Θ =  
 
 
 − 

 

whereby the t-statistics of the breaks, the counterparts of eqs. (8.1) and (8.2), are given by 

the following 

  A.5.1)   

1

1/2

0

30 (1) ( )

( , ) 3
( 1)

T

W W r dr

t L

λ

λ
λ λ

 
− 

 =
−

∫
 

  A.5.2)   
[ ]

1

0

1/2

(3 1) (1) 2(2 1) ( )

( , ) 30
( 1) 30 (1 )

T

W W r dr

t T

λ λ λ

λ
λ λ λ λ

− − −

=
− −

∫
 

 

which are, for the same values of λ , distinctively larger than their I(0) counterparts, reflecting the 

spuriousness of the equation they are derived from.  

 

Appendix 2 

PCA, PFA and True Factor Number Selection 

Let ( )X :t T K×  as defined in Sect. 3.1. By virtue of the common-component static PFA 

model (Chamberlain and Rothschild, 1983) the matrix X
t
 can be rewritten as 

 

A.6)    X '
t t t

FC V= +  

where ( ):tF T r×  is the factor matrix and ( ):C K r×  is the matrix of factor loadings. The true 

number r of factors is unknown ex ante and can be endogenously determined by formal statistical 

procedures characterized by information criteria that minimize, under penalization, the variance 

'
t t t

V VΨ = , where ( ):tV T K×  is the idiosyncratic component matrix (Bai and Ng, 2002, 2007). Xt  

is observed, while the other variables and the loadings are unobserved.  

 Specifically, the following hold: '
t t r

F F I=  and ( )'/ :t tF F K K K= Ξ × , which is p.s.d., 

and. ( ) ( ) ( )m.e. ' / ,m.e. / ,m.e. / 0C C K K TKΨ Ξ →  as ,T K → ∞ , where m.e. is the maximum 
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eigenvalue of the given matrix and is employed to gauge the magnitude of a matrix. For K fixed and 

T → ∞ , the first magnitude converges to a constant and the other two toward zero as above.  

 The symmetric asymptotic covariance matrix of eq. (A.6) is 

 A.7)    X 'X ' '
t t t t t

CF FCΤ = + Ψ  

whose first component matrix, by virtue of the Spectral Decomposition Theorem equals ERE , 

where ( )R : K K×  is the diagonal matrix of the eigenvalues, and ( )E : K K×  is the eigenvector 

matrix (Sect. 3.3). Then: ( )
1

2ER X 't tC F K= =  which are the PCA scores. In PFA, the estimated 

common components (or factor scores) are ( )ˆ '
t t

C FC= , where ( )ˆ :
t

C K T×  and ˆX '
t t t

V C= − . 

The PCA scores are mutually orthogonal but cannot be used to estimate 
t

V  for small T since they 

provide no minimal 
t

Ψ . On the contrary, factor scores can be used to estimate t
V  even for small T 

but are correlated among them since ( )ˆcorr
t

C → ∞  as ,T K → ∞ , whereas ( )ˆcorr op(1)
t

C =  for 

T → ∞  and K fixed. 

 The formal statistical procedures  reported by Bai and Ng (2002) and utilized to compute the 

true number of common factors (r) are eight in total, namely, three “Panel Criteria” (PC), three 

“Information Criteria” (IC), and adjusted versions of  the Akaike and Bayesian Information Criteria 

(AIC and BIC). Of these, one only is selected in the present context for ease of space and also 

because it makes no direct use of the matrix 
t

Ψ  in the penalty function. 

 Let maxk be the maximum number of factors admitted, usually 8, and the sequence 

max1,...,k k= .  Let ,î j
v , ,  i T j K∈ ∈ , the ith and jth element of matrix 

t
V , then 

A.8)     ( ) 1 2

,

1 1

ˆmin
T K

i j

i j

V k TK v−

= =

  =    
∑∑   

is a scalar variance indicator found for each k. The information criterion reported is based on 

detecting the minimum value of ( )V k  plus a penalty for overfitting within the k sequence: 

A.9)     ln ( ) ln
T K TK

IC V k k
TK T K

   +   = +        +
. 

where IC is a maxk -sized vector wherein to find the minimal IC and detect the associated value of k 

that corresponds to the true number r of factors. Other things equal, the penalty term tends to zero 

as ,T K → ∞  and to a constant value for T → ∞  and K fixed. For ( ),
ˆ . . . 0,1i jv N I D∼  IC increases as 

maxk k→  independent of the magnitude of T and K, specifically: IC α→  where 0 1α< < . In 

addition, for any given k, 0IC →  for ,T K → ∞  and IC α→  for  T → ∞  and K fixed. In practice, 

the selection procedure involved by eq. (A.9) favors in the vast majority of cases a small number of 

factors k and is asymptotically efficient for ,T K → ∞ .  
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Endnotes 

                                           
1
 The empirical distribution of the two simulated t statistics is a standard Normal with positives and negatives entering 

with equal probability weights. Obviously, they retain the property of being equal to the square-rooted Wald statistics 

for testing the zero value of the corresponding coefficient. Their variances are further discussed and shown in Table 2.  
2
 By construction, the squares of the two t statistics, for given λ , correspond to their respective limit Wald-test statistics. 

As for the first of them, see for instance Bai and Perron (2003). For both, see Vogelsang (1999) although the simulation 

method adopted therein differs from that of the present paper. 
3
  The procedure for computing the critical values and other specifics included in Table 2 is reliable and fast in a Matlab 

environment, even for large N. For N=10,000 it takes no more than 3 mins. and 40 secs. on a standard PC with a 4 Gb. 

RAM. The code is available upon request to the author. 
4
 Although unreported for ease of space, Montecarlo simulations of eqs. (8.1) and (8.2) were performed also for 

T=100,300 and 500 producing very similar critical values as those reported in Table 1. Therefore, such values are 

independent of T. 
5
  The model  of eqs. (9.1) - (9.2) for expositional simplicity presupposes no exogenous regressors. The expectation that 

matrix Π  be of full rank presupposes instead instrument relevance. Both assumptions are customarily the object of 

empirical testing, see e.g. Kleibergen (2005), Kleibergen and Mavroeidis (2009). 
6
 By means of some applied experimenting with Montecarlo simulation, it is shown that in a standard OLS (T=200) 

model with an I(0)  endogenous variable and 1T K≥ ≥ regressors, the t statistics of the coefficients of the deterministic 

components, by departing from values below unity at K=1, diverge toward a value of 2.00 at a rate of 1/6K . With an 

I(1) endogenous variable, the same t statistics depart at K=1 from values over 8.0 and 15.0 for the constant and the 

trend,  respectively, and are op(1) for increasing K.  
7
 Selection of the appropriate instruments is usually costly and lengthy and often unsatisfactory, since exogeneity and 

relevance must be synchronously met. In fact, the procedure of throwing away the instruments that do not meet this 

requirement (e.g. by using partial F statistics as suggested by Stock and Wright, 2000) may end up with obtaining the 

undesirable result L K< . 
8
 Pivotality (Kleibergen, 2002) implies that parameter inferences are independent of the reduced-form parameters. 

Statistical invariance establishes that parameter inferences remain unchanged when the IVs are subjected to one-to-one 

measurable transformations, e.g. changing their order of appearance. Similarity implies that the distribution of a test 

statistic does not vary if its related parameter is made to vary within a given hypothesis set of values. 
9
 The bias arises when there is endogeneity in the linear model, i.e. when moments and their derivatives (the Jacobian 

matrix elements) are not zero correlated. The bias increases in magnitude by a factor given by the number of 

instruments (Newey and Smith, 2004; Newey and Windmeijer, 2009). 
10

 Regressor endogeneity in eq. (9.1) cannot be tested by simply verifying the correlation or covariance between 

forcings and the structural error, since it is zero by construction. Granger causality testing between these variables is 

definitely more appropriate. 
11

 This feature allows eq. (9.1) to belong to the class of partial structural change models as envisaged, for instance, by 

Bai and Perron (2003). 
12

 The 4th Assessment Report (AR4, 2007) makes use of spurious techniques (see Sect. 3.1) to estimate the trending 

behavior of temperatures over the past 150 years and derives methodologically ungrounded conclusions, shared with 

Nobel Peace Prize Al Gore’s statements (e.g. the Capitol Hill testimony on global warming in March 2007). 
13

 On the subtle, yet very significant difference between climate and temperatures see Baliunas and Soon (2003). In 

addition, global warming and climate change are currently used interchangeably, although recently the first definition 

has become less popular among common media. 
14

 By dating back to 1850, this data subset – albeit limited – is the only available in Maddison’s comprehensive 

statistics that stretches the period chosen. 
15

 All level forcings are loggable, exclusion made for some volcanic activity variables (VOL, VOLSOL and 

COMPVOL) which come in negatives. In such case the raw data were used. The smoothing parameter of the HP filter, 

given annual observations, was chosen to be 6.25, which is the value suggested by Ravn and Uhlig (2001). The 

motivation of this choice stands in the results obtained after using different smoothing values (100 and 400) and the 

standard centering and scaling procedure in alternative regression runs of the endogenous variable. In all cases, 

significant residual autocorrelation and high standard errors of estimation ensued, this not being the case with the 

selected smoother as shown in Table 3.   
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16

 First-order autocorrelation of the structural residuals is low with the prefered smoothing factor, as it never exceeds 

0.05. It is also similarly low, but at times much higher, in the cases of HP filtering of the dataset with smoothing factors 

of 100 and 400. Worse results hold for centering and scaling, and even more so for first differencing, which produce 

autocorrelation coefficients in general no lower than 0.10-0.15 for all of the alternative model specifications. Instead, 

ARCH(1) testing rejects heteroskedasticity at the 5% level in most cases and behaves better than the prefered 

smoothing factor, where rejection requires a much higher level. It should be remarked, however, that detected 

heteroskedasticity can be easily disposed of in GMM estimation, while in that context autocorrelation always 

constitutes a serious problem. 
17

 The logged levels and first differences ( )∆ of the BEA time series can best be represented by the following 

equations: 

 
3 6 2 2

1
(BEA)    1.103 12 10 .578 (BEA) ; R .829,  DW=1.981

                           (6.4)   (2.1)     (3.9)       (8.8)                        

t t
Log T T Log− −

−= − + + =
 

3 6 2 2

1
(BEA)   1.093+10 10 .418 (BEA) ; R .209,  DW=1.984

                                (6.3)    (1.7)     (3.4)       (6.3)                        

t t
Log T T Log− −

−∆ = − − + =
 

where the coefficients’ t-statistics are reported in brackets, and T and 
2T  respectively are the linear and the squared 

trend. DW is Durbin-Watson’s standard test statistic. Although apparently spurious, both equations indicate a tendency 

of mean world temperatures to taper off overtime. In fact the logged levels significantly fall at a rising pace while their 

first differences rise at a decreasing pace. However, the reported effects are small since for instance, coeteris paribus, 

the absolute temperature levels would take over one eighty years to fall by 1% from now. 
18

 According to some IPPC estimates, “a GHG level of 650 ppm would “likely” warm the global climate by around 

3.6°C, while 750 ppm would lead to a 4.3°C warming, 1,000 ppm to 5.5°C and 1,200 ppm to 6.3°C. Future GHG 

concentrations are difficult to predict and will depend on economic growth, new technologies and policies and other 

factors”  (Press conference, Paris, February 2, 2007) 
19

 As to the Zivot-Andrews single-break and UR test, the dates of 1875 and 1877 are selected depending on the lags 

included in the endogenous variable. As to the Bai-Perron multiple-breaks test, which is set to allow a maximum of four 

level breaks, there is a large multiplicity of level breaks depending on the lags attributed to the entirety of the forcings. 

By sticking to the lowest BIC among these alternatives, the break dates range from 1874 to 1975, passing through the 

Fifties and the Sixties. 
20

 The minima of the level and of the trend breaks respectively are -5.2086 and -2.5382, located in the years 1980-81, 

while the respective maxima are 3.4758 and 4.5458, located in the years 1870 and 1982. All of these values are 

associated to extrema of λ and are nonsignificant by the standards established in Table 1. 
21

 The original weighted shares exhibit small jags derived from the corresponding coefficients. For ease of inspection, 

they are trended by means of HP filtering with a smoothing coefficient equal to 400, consistent with yearly observations 

and large enough to produce the continuous lines shown in the graphs.   
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Table 1 

Absolute critical values of ( , )
T

t Lλ  and ( , )
T

t Tλ , eqs. (8.1) and (8.2), for select magnitudes of λ  

and different marginal significance levels (bold) with upper (<) and lower (>) 10% confidence 

bands. T=200*. 

 

 

< 1% > < 5% > < 10% > 

λ =0.10 

( , )
T

t Lλ           12.18  11.53            10.88           8.88 8.23 7.58 7.16 6.51 5.86 

( , )
T

t Tλ           14.50 13.73            12.97          10.41 9.64 8.88 8.29 7.52 6.76 

λ =0.20 

( , )
T

t Lλ  8.14 7.73 7.32 5.67 5.26 4.85 4.53 4.12 3.71 

( , )
T

t Tλ  9.43 8.94 8.44 6.64 6.15 5.65 5.28 4.79 4.29 

λ =0.30 

( , )
T

t Lλ  5.45 5.15 4.85 4.08 3.78 3.48 3.21 2.91 2.61 

( , )
T

t Tλ  6.81 6.46 6.11 4.81 4.46 4.11 3.84 3.49 3.14 

λ =0.40 

( , )
T

t Lλ  4.78 4.53 4.28 3.42 3.17 2.92 2.70 2.45 2.20 

( , )
T

t Tλ  4.98 4.72 4.45 3.58 3.31 3.05 2.82 2.55 2.29 

λ =0.50 

( , )
T

t Lλ  4.38 4.15 3.91 3.18 2.94 2.71 2.54 2.31 2.08 

( , )
T

t Tλ  4.18 3.95 3.72 3.16 2.93 2.70 2.51 2.27 2.04 

λ =0.60 

( , )
T

t Lλ  4.44 4.20 3.95 3.25 3.01 2.77 2.63 2.38 2.14 

( , )
T

t Tλ  4.96 4.70 4.44 3.60 3.34 3.08 2.86 2.60 2.34 
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λ =0.70 

( , )
T

t Lλ  5.83 5.53 5.23 4.02 3.72 3.42 3.22 2.92 2.62 

( , )
T

t Tλ  6.75 6.40 6.05 4.73 4.38 4.03 3.77 3.42 3.07 

λ =0.80 

( , )
T

t Lλ  7.82 7.41 7.00 5.60 5.19 4.78 4.37 3.96 3.56 

( , )
T

t Tλ  9.30 8.81 8.32 6.66 6.17 5.68 5.19 4.70 4.21 

λ =0.90 

( , )
T

t Lλ  11.78 11.13 10.48 8.86 8.21 7.56 7.02 6.37 5.72 

( , )
T

t Tλ  13.97 13.20 12.44 10.43 9.66 8.89 8.27 7.50 6.73 

 

* The marginal significance levels (1%,5% e 10%) represent the unit complements of the fractiles  (99%, 95% and  

90%) of the distribution of the t statistic of an artificial Random Walk of N=10,000 MC replications. The confidence 

bands are obtained by applying 2 standard deviations. 
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Table 2 

Descriptive statistics of the t statistic of a break in level ( , )
T

t Lλ , eq. (8.1), and of the t statistic of a 

break in trend ( , )
T

t Tλ , eq. (8.2). 1,000 MC draws of eq. (1) for sample size T=200 and break 

fractions 0.10 0.90λ≤ ≤ ,1% and 99% fractiles. 

λ  mean variance minimum maximum 1% 99% 

 

Break in level 

0.10 -0.349 23.999 -14.997 17.091 -12.092 10.741 

0.20 0.097 8.741 -8.996 9.256 -6.551 6.922 

0.30 -0.033 5.300 -6.859 7.883 -5.250 5.448 

0.40 -0.062 3.740 -5.883 8.370 -4.459 4.510 

0.50 -0.074 2.997 -5.769 4.994 -4.201 4.046 

0.60 0.047 3.567 -5.678 6.095 -4.100 4.257 

0.70 0.035 5.833 -7.211 7.107 -5.873 5.524 

0.80 0.033 11.027 -11.912 10.705 -7.931 8.133 

0.90 -0.080 24.705 -14.462 15.300 -10.645 11.589 

Break in trend 

0.10 0.429 33.599 -19.937 17.487 -12.812 14.235 

0.20 -0.146 12.560 -10.966 11.162 -8.480 7.605 

0.30 0.092 7.349 -9.005 8.430 -6.312 6.260 

0.40 0.080 4.167 -7.438 6.544 -4.745 5.011 

0.50 0.010 2.759 -5.396 5.571 -3.542 4.138 

0.60 0.082 3.917 -6.432 7.589 -4.770 4.665 

0.70 0.036 8.153 -9.421 8.600 -6.149 6.888 

0.80 0.047 15.777 -13.836 12.480 -9.105 9.771 

0.90 -0.101 34.606 -17.207 18.341 -12.593 13.444 
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Table 3 

Major descriptive statistics of BEA and of all the forcings (logged values when applicable)*.(a) list, 

(b) volatility, (c) ADF stationary/nonstationary test result (S/N) within 5% p-value, (d) estimated p-

value of ADF test, (e) achieved min/max date. 

 

a b c d e a b d e 

 

BEA 0.0681   S 0.0071 1911 / 1998 AEROSOL -0.9009  N 0.6820 2006 / 1850 

SUNSPOTS 0.2838 S 0.0010 1913 / 1957 AERF -0.9024  N 0.7681 2006 / 1850 

SOL -0.3556    S 0.0137 1888 / 1989 FCO2 0.0133  N 0.9990 1850 / 2006 

SIR 0.0000 S 0.0010 1902 / 1981 FCH4 0.0371  N 0.7203 1850 / 2003 

TSI 0.0000 S 0.0012 1923 / 1958 FN2O 0.0035  N 0.9990 1850 / 2006 

VOLSOL -0.3768 S 0.0010 1855 / 1993 VOL -2.1790  S 0.0010 1992 / 1850 

COMPSOL -0.4328 S 0.0010 1973 / 1884 COMPVOL -0.4411  S 0.0010 1972 / 1983 

CRI 0.0373 S 0.0010 1990 / 1903 PDO -7.4803  S 0.0010 1917 / 1983 

C14RLS 0.7885 S 0.0010 1888 / 1989 NAOM 3.7261  S 0.0010 1965 / 2000 

C14BLS 0.8964 S 0.0010 1888 / 1989 GSULFEM 0.1315  N 0.9572 1850 / 1980 

BE10BS -0.4411 S 0.0135 1887 / 1989 CO2 0.9123  N 0.9990 1854 / 2006 

BE10LS -0.3613 S 0.0111 1888 / 1989 CH4 0.9286  N 0.5988 1850 / 2006 

CO2V 0.2063 N 0.3619 1850 / 2006 N2O 0.9914  N 0.9990 1850 / 2006 

CO2RF -1.8603 N 0.9562 1850 / 2006 CFC11 1.6671  S 0.0397 1850 / 1987 

INCOME_E 0.0934 N 0.5434 1860 / 2006 CFC12 1.6936  S 0.0052 1850 / 2001 

INCOME_O 0.0921 S 0.0282 1850 / 2006 SOX -0.7578  N 0.9261 1989 / 1850 

POP_E 0.0203 N 0.9222 1850 / 2006 VOLGL -1.6816  S 0.0010 1885 / 1853 

POP_O 0.0618 N 0.3385 1850 / 2006 SOLS 16.7111  S 0.0010 1889 / 1981 

GHG -1.8748 N 0.9888 1850 / 2006 VOLER 3.2062  S 0.0010 1850 / 1861 

 

* The variables listed are contained in the Section entitled Data Description and Sources. Volatility is measured by the 

ratio of the mean and the standard deviation. 
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Table 4 

Major results, of alternative GMM models, ranging from two to eight regressor forcings (Sect. 3.2). 

 

 List of forcings for each specification model 

1)     PDO,    SUNSPOTS      

2)     PDO,    SUNSPOTS,    VOL     

3)     PDO,    SUNSPOTS,    VOL,    VOLGL     

4)     PDO,    SUNSPOTS,    VOL,    VOLGL,    VOLER    

5)     PDO,    SUNSPOTS,    VOL,    VOLGL,    VOLER,    COMPVOL   

6)     PDO,    SUNSPOTS,    VOL,    VOLGL,    VOLER,    COMPVOL,    VOLSOL  

7)     PDO,    SUNSPOTS,    VOL,    VOLGL,    VOLER,    COMPVOL,    VOLSOL,    COMPSOL 

 

A. True number of factors (col. 1) 

and of  instruments (col.2) 
B. Selected nominal factor shares 

1)      2     4      0.3014    0.2411    0.2111     

2)      3     6      0.3014    0.2411    0.2111    0.0789    

3)      4     8      0.3014    0.2411    0.2111    0.0789    0.0524   

4)      5    10      0.3014    0.2411    0.2111    0.0789    0.0524    0.0452   

5)      6    12      0.3014    0.2411    0.2111    0.0789    0.0524    0.0452    0.0411  

6)      7    14      0.3014    0.2411    0.2111    0.0789    0.0524    0.0452    0.0411    0.0129  

7)      8    16      0.3014    0.2411    0.2111    0.0789    0.0524    0.0452    0.0411    0.0129    0.0114 

 

C. Endogeneity tests: Granger causality F stats running from structural residuals to forcings and viceversa, 

and critical values  

1)     2.5470    4.6404    3.9055       

1)     2.5905    0.8930    3.9055       

2)     2.6760    4.7543    0.0008    3.9051      

2)     2.0389    0.2316    2.8499    3.9051      

3)     2.7304    4.6920    0.0091    0.4184    3.9051      

3)     2.6523    0.1518    1.2386    1.1994    3.9051      

4)     2.6620    4.2898    0.0274    0.1472    1.0852    3.9051     

4)     2.3198    0.0857    1.0547    0.7630    0.2080    3.9051     

5)     2.5773    4.6410    0.0030    0.1451    4.2606    1.1638    2.6666    

5)     2.8351    0.1595    1.1485    0.9056    0.5153    5.4783    2.6666    
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6)     2.6878    5.0267    0.0025    0.1351    4.2160    1.2034    2.0958    2.6666    

6)     2.3824    0.2686    0.4855    0.6797    0.2622    5.5313    4.9829    2.6666    

7)     2.6528    5.0900    0.0064    0.1491    4.1555    1.2107    1.8705    3.1756    3.9051   

7)     2.7524    0.4073    0.4882    0.9860    0.1419    5.6389    4.6097    0.4164    3.9051   

 

D. TSLS WI tests for vector β = 0: AR, LM, LR 

and respective p-values       

1)     2.4305    0.6572    0.6587       

1)     0.6571    0.4176    0.4170       

2)     5.7380    1.3178    1.3222       

2)     0.4532    0.2510    0.2502       

3)     7.6988    2.3244    2.3268       

3)     0.4634    0.1274    0.1272       

4)    13.9625   10.9456   10.9505      

4)     0.1747    0.0009    0.0009       

5)    13.9758   10.7394   10.7409      

5)     0.3023    0.0010    0.0010       

6)    16.0940   11.6492   11.6505      

6)     0.3077    0.0006    0.0006       

7)    17.4930   10.5583   10.5587      

7)     0.3544    0.0012    0.0012       

 

E. Relevance tests: Minimum 

eigenvalues of Concentration    

Parameter and Cragg-Donald 

    F. Joint exogeneity and relevance 

tests: Qiv, AR and asymptotic AR for 

TSLS 

1) 27.8404   696.1180  23.1332    1.6404   0.6930 

2) 27.6985   509.0470 21.0896    3.9022   1.5900 

3) 26.7769   385.6488 19.7067    4.9059   2.6496 

4) 22.4131   263.3865 19.9415    1.7154   3.8104 

5) 21.3671   210.6452 19.2356    1.9079   5.0410 

6) 16.9785   143.2601 14.7253    2.7493   6.3224 

7) 16.9382   124.2185 12.5445    4.9634   7.6426 

 

G. GMM standard and asymptotic J statistics (N,0,1) 

and respective  p-values 

H. GMM standard and asymptotic AR statistics 

(N,0,2) and respective p-values 
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1) 1.8940    0.5947   -1.1853    0.8820 1.8432     0.9335    -1.6970    0.8019   

2) 4.4257    0.3515   -0.8936    0.8142 4.3206     0.8271    -1.3009    0.7423   

3) 5.1139    0.4021   -1.0926    0.8627 4.9472     0.8947    -1.5978    0.7878   

4) 1.9913    0.9205   -2.0430    0.9795 1.8610     0.9996    -2.9269    0.9283   

5) 2.2238    0.9464   -2.2255    0.9870 2.0524     0.9999    -3.1931    0.9448   

6) 2.9816    0.9355   -2.3014    0.9893 2.7263     0.9999    -3.3184    0.9515   

7) 5.7299    0.7666   -2.0450    0.9796 5.2589     0.9984    -3.0031    0.9334   

                  I. GMM key statistics: Standard Error, Durbin Watson, ARCH(1), 

ARCH(1) p-value, and  Autocorrelation(1) coefficient      

1)     0.0056    2.0251    0.1963    0.6577   -0.0138       

2)     0.0056    2.0392    0.2176    0.6409   -0.0209       

3)     0.0056    2.0835    0.3567    0.5503   -0.0437       

4)     0.0060    2.1007    1.5482    0.2134   -0.0527       

5)     0.0062    2.0993    1.0838    0.2979   -0.0515       

6)     0.0061    2.0753    1.1227    0.2893   -0.0411       

7)     0.0057    2.1048    1.9268    0.1651   -0.0553       

 J. GMM coefficient vector and t statistics      

1)    -0.0011    0.0011            

1)    -0.6387    1.4098            

2)    -0.0013    0.0011    0.0006           

2)    -1.0899    0.8707    0.2515           

3)    -0.0017    0.0002    0.0012    0.0011           

3)    -1.8989    0.1512    0.4706    0.6557           

4)    -0.0014    0.0017    0.0013    0.0009    0.0112          

4)    -1.1093    1.7678    0.9884    0.6642    3.9752          

5)    -0.0018    0.0015    0.0006   -0.0017    0.0082   -0.0038         

5)    -1.1467    1.6388    0.2521   -0.6775    4.9233   -1.9056         

6)    -0.0027    0.0018   -0.0007   -0.0012    0.0053   -0.0028   -0.0046         

6)    -2.3796    2.4764   -0.5209   -0.7644    4.0221   -1.6423   -2.2653         

7)    -0.0014    0.0009    0.0007   -0.0002    0.0051   -0.0026   -0.0042   -0.0011        

7)    -1.0109    1.0616    0.3838   -0.1526    3.3978   -1.4467   -2.5303   -0.3243        
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K. Kleibergen GMM tests for vector β = 0: values and  p-values (p) of Jacobian rank (RK), Wald (W), 

S, KLM, JKLM and MQLR statistics    

 RK RK p W W p S S p    

1) 64.714 0 0.0465 0.9974 8.807 0.0661    

2) 22.460 0 0.0709 0.9994 11.294 0.0797    

3) 20.251 0 0.1859 0.9993 13.800 0.0871    

4) 208.143 0 3.257 0.7760 27.736 0.0020    

5) 101.640 0 11.581 0.1152 54.818 0.0020    

6) 137.583 0 5.608 0.6911 64.114 0    

7) 152.325 0 0.4584 1.0000 73.489 0    

              KLM KLM p        JKLM JKLM p MQLR MQLR p 

1) 6.092 0.1072 2.715 0.0994 6.334 0.0891 

2) 7.749 0.1012 3.545 0.1699 8.742 0.0518 

3) 9.893 0.0783 3.908 0.2716 11.291 0.0347 

4) 19.126 0.0040 8.610 0.0716 19.877 0.0022 

5) 49.486 0.0040 5.333 0.3767 51.274 0 

6) 54.533 0 9.581 0.1434 57.352 0 

7) 59.246 0 14.243 0.0470 63.434 0 

 

Table 5 

 Coefficients, t statistics and shares of selected static GMM model specification*. 

 

Forcings            PDO       SUNSPOTS     VOL      VOLGL    VOLER    COMPVOL    VOLSOL 

Coefficients         -0.0027       0.0018         -0.0007     -0.0012      0.0053       -0.0028           -0.0046     

t statistics         -2.3796       2.4764         -0.5209     -0.7644      4.0221       -1.6423           -2.2653     

Nominal shares           0.3014       0.2411          0.2111       0.0789      0.0524        0.0452           0.0411     

Weighted shares           0.3851       0.3205          0.0590       0.0324      0.1132        0.0399           0.0500 

 * Figures in the first two rows derive from line (6), panel J, Table 4. Figures in the third row derive from line (6), panel 

B. Figures in the last row are obtained by multiplying the second by the third row and then reweighting. 
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Figure 1a.
North Atlantic Oscillation Mode (NAOM), years 831−2007.
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Figure 1b.
Time series of mean World temperatures (BEA), 1850−2006.
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Figure 2a.
Time series of forcings, 1850−2006.
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Figure 2b.
Time series of forcings cont., 1850−2006.
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Figure 2c.
Time series of forcings cont., 1850−2006.
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Figure 3.
Estimated time series of t−statistics of breaks, 1865−2000.
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Figure 4.
Estimated time series of forcings weighted shares, 1865−2000.
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