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Vasco

08. September 2009

Online at http://mpra.ub.uni-muenchen.de/23613/

MPRA Paper No. 23613, posted 02. July 2010 / 13:43

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6493331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://mpra.ub.uni-muenchen.de/
http://mpra.ub.uni-muenchen.de/23613/


 

 

 

 

Evaluating Alternative Methods for Testing  

Asset Pricing Models with Historical Data 

 

 

 

Martín Lozano 

Universidad del País Vasco 

Martin.LozanoBanda@mbs.ac.uk 

 

Gonzalo Rubio 

Universidad CEU Cardenal Herrera 

gonzalo.rubio@uch.ceu.es 

 

 

 

September 8, 2009 

 

 

 

Key Words: Beta Pricing Models, Stochastic Discount Factor, Pricing Errors, Evaluation 

of Factor Models. 

JEL classification: C51, C52, G12 

_________________________________ 

The authors thank participants in the XV Foro de Finanzas at Universidad Islas Baleares, and especially 
Belén Nieto, Rosa Rodríguez and Miguel A. Martínez for helpful comments and suggestions, and 
seminars participants at Universidad del País Vasco. We are especially indebted to an anonymous referee 
for his thoughtful suggestions which greatly improved the paper. Martín Lozano acknowledges financial 
support from Consolidate Research Team 9/UPV-00038.321-15094/2001 and Gonzalo Rubio 
acknowledges financial support from Generalitat Valenciana grant PROMETEO/2008/106, and 
Ministerio de Ciencia e Innovación grant MEC ECO2008-03058/ECON. 
 
 
Corresponding author: Gonzalo Rubio, Departamento de Economía y Empresa, Universidad CEU 
Cardenal Herrera, 03203 Elche, Alicante, Spain (34-965426486) 

 

mailto:Martin.LozanoBanda@mbs.ac.uk
mailto:gonzalo.rubio@uch.ceu.es


 

 

 

 

Abstract 

 

 

We follow the correct Jagannathan and Wang (2002) framework for comparing the 

estimates and specification tests of the classical Beta and Stochastic Discount 

Factor/Generalized Method of Moments (SDF/GMM) methods. We extend previous 

studies by considering not only single but also multifactor models, and by taking into 

account some of the prescriptions for improving empirical tests suggested by Lewellen, 

Nagel and Shanken (2009). Our results reveal that SDF/GMM first-stage estimators 

lead to lower pricing errors than OLS, while SDF/GMM second-stage estimators 

display higher pricing errors than the classical Beta GLS method. While Jagannathan 

and Wang (2002), and Cochrane (2005) conclude that there are no differences when 

estimating and testing by the Beta and SDF/GMM methods for the CAPM, we show 

that their conclusion can not be extensible for multifactor models. Moreover, the Beta 

method (OLS and GLS) seem to dominate the SDF/GMM (first and second-stage) 

procedure in terms of estimators’ properties. These results are consistent across 

benchmark portfolios and sample periods.   

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

Asset pricing literature has been debating between reduced-form portfolio-based models 

or factor models, where marginal utility of consumption is directly measured by the 

returns on a few number of large portfolios, and macroeconomic models, where the 

focus is on understanding the marginal utility that drives asset prices.1 In this paper, we 

concentrate on the former. In particular, we analyze models linking excess returns to the 

returns of orthogonal factor-mimicking portfolios (or simply factors). 

 

Recent empirical evidence tends to find that not only the market but other aggregate risk 

factors seem to be important in describing the cross-sectional variation of average 

returns. Fama and French (1993, FF hereafter) introduce a three-factor model by adding 

a market capitalization (size) and a book-to-market (value) factor to the CAPM excess 

market factor return. Furthermore, Carhart (1997) proposes a four-factor model by 

appending the three FF factors with a momentum factor after the study by Jegadeesh 

and Titman (1993) on returns to momentum strategies. 

 

These risk-return models have been extensively tested in the finance literature by the 

regression based “traditional method” or Beta method, in which a cross-sectional 

regression model is proposed for average stock returns, and the theoretical implications 

are tested as hypothesis on the parameters of the regression model.2 However, it is well 

known that linear asset pricing models such as CAPM or FF, and many others, 

including nonlinear specifications, can be unified in a stochastic discount factor (SDF) 

framework. This involves estimating the asset pricing model using its SDF 

representation and, in most cases, the generalized method of moments (GMM).  

 

The comparison of the two methods (Beta and SDF) is not an easy matter even for 

linear models, since the parameters of interest are different under the two setups. The 

Beta method is formulated to analyze the factor risk premia, and these are the primary 

parameter of interest. In contrast, the SDF representation is formulated to analyze the 

parameters that enter into the imposed SDF. The first formal comparison between the 

two methods is performed by Kan and Zhou (1999). They argue that the SDF is inferior 

                                                 
1 See Cochrane (2008) for a detailed and provocative discussion on these fundamental issues. 
2 The classic two-step cross-sectional regression approach was introduced by Black-Jensen and Scholes 
(1972) and Fama and MacBeth (1973). See Kan, Robotti and Shanken (2009) for a recent evidence. 
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to the traditional maximum likelihood approach, even in a simple test of the CAPM, as 

long as returns are identical and independent normally distributed random variables. 

Jagannathan and Wang (2002, JW hereafter) show, in a very influential paper, that Kan 

and Zhou´s conclusions are incorrect. These authors fail to explicitly incorporate the 

transformation between the risk premium parameters in the two methods, and they 

ignore the information about the mean and the variance of the factor while estimating 

the risk premium. Once this is done, JW (2002) analytically show that the SDF method 

is as asymptotically efficient as the Beta method. At the same time, their empirical 

exercise, based on a set of simulations under the CAPM framework, also find similar 

results for both methods. They assume that the returns of 10 size-sorted portfolios and 

the market factor are drawn from a multivariate normal distribution, considering four 

different time horizons. Moreover, they also demonstrate that the SDF method has the 

same power as the Beta method.3 Cochrane (2005) also show that using 10 size-sorted 

portfolios, a given sample period and the simple CAPM case, the two methods produce 

basically the same standard errors, t-statistics, and 2 statistics that the pricing errors 

are jointly zero.  

 

In this paper, we follow the correct JW (2002) framework for comparing the estimates 

and specification tests of the classical Beta and SDF methods, using historical data 

instead of simulations. Furthermore, and contrary to Cochrane (2005), we test not only 

the single factor model but also the FF three-factor model, and an alternative 

specification based on the excess market return, and the value and momentum factors 

(the RUH model hereafter). In fact, the main contribution of this paper is the 

performance of a comprehensive extension of the analysis reported by Cochrane (2005). 

From our point of view this covers an important gap in the empirical asset pricing 

literature. A relevant added value is the high number of sample and estimation 

technique combinations we employ in our research. We estimate three models, thirteen 

test portfolios, six time periods and eight econometric techniques. This turns out to be 

an appropriate approach to better understand the differences between the Beta and 

SDF/GMM methods. On the basis of the previous papers by JW (2002) and Cochrane 

(2005), it is generally accepted that the differences between the Beta and SDF/GMM 

methods are practically irrelevant in terms of specification tests and properties of 
                                                 
3 Recent works such as Grauer and Janmaat (2009) examine power tests for competing beta pricing 
models. 
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estimators. However, we show that this is not the case, once we generalize the evidence 

to multifactor models. For example, when estimating risk premia, the Beta method has 

better properties in multifactor models across test portfolios and sample periods than the 

SDF/GMM method, while the main consensus is that there no differences between both 

methods. Moreover, our results are not driven by a simulation calibrated from a single 

factor structure, as in JW (2002); they are obtained from actual realizations of historical 

data. This allows us testing the methodologies under more complex set-ups other than 

varying according to a known distribution. The closest paper is probably due to 

Shanken and Zhou (2007). However, once again, although the objective of the paper is 

similar, they report empirical results based only on simulations rather than on real data 

sets. 

 

It is also the case that, in order to address the tight factor structure problem advocated 

by Lewellen, Nagel and Shanken (2009, LNS hereafter), it becomes very important to 

extend previous papers with similar objectives by adding a large number of test assets 

and time periods. LNS (2009) provide an interesting empirical exercise showing how 

asset pricing tests are often highly misleading. They demonstrate that if the set of test 

assets has returns with a strong factor structure, like size or book-to-market-sorted 

portfolios, almost any proposed factor weakly correlated with the FF factors is likely to 

produce betas that line up with average returns generating a high cross-sectional R2. 

 

Our paper use six families of N test portfolios: 5 and 10 formed on ME (size); 5 and 10 

formed on BE/ME (value); 6, 25 and 100 formed by the intersections of ME and 

BE/ME (FF portfolios); 6 and 25 formed on ME and MOM (size and momentum); 5, 17 

and 30 industry portfolios, and an extended test assets case in which we simultaneously 

combine the 25 FF portfolios and 17 industry portfolios. In this way, we can be 

confident that our results are not driven by the factor structure argument of LNS (2009). 

We also conduct our analysis using 6 time horizons T of US tests portfolios: 60, 120, 

240, 360, 480 (all of them to cover the post-1963 data) and 948 monthly observations 

(the longest time-series used in this paper which goes from January 1927 to December 

2005).  

 

Moreover, we calculate three kinds of the beta model estimators: OLS, GLS and WLS; 

and five SDF estimators: first and second-stage returns on second moments, following 
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Hansen and Jagannathan (1997, HJ hereafter); first and second-stage returns on 

covariances, following Cochrane (2005); and the continuous updating estimate 

following Hansen, Heaton and Yaron (1996, HHY hereafter). We are therefore 

interested on evaluating how (and if) the Jagannathan and Wang (2002) and Cochrane 

(2005) results change in this richer framework. 

 

Our results provide new evidence about finite-sample setups in which SDF/GMM 

formulation lead to almost the same results as the Beta method and also others in which 

there are significant discrepancies. These differences emerge even in linear models. 

Therefore, it may not be necessary to have a hard set up such as highly nonlinearity in 

order to anticipate differences between the two methods. In particular, our evidence 

reveals that SDF/GMM first-stage estimators lead to lower pricing errors than OLS, 

while SDF/GMM second-stage estimators display higher pricing errors than the 

classical Beta GLS method. Moreover, the Beta method (OLS and GLS) seem to 

dominate the SDF/GMM (first and second-stage) procedure in terms of estimators’ 

properties. This implies that the Beta method tends to find risk premia estimates closer 

to the observed (ex-post) risk premia. In this sense we also follow the LNS (2009) 

recommendation about taking seriously the economic implications of the risk premia 

estimators. These results are consistent across benchmark portfolios and sample periods.   

 

This paper is organized as follows. Section 2 briefly reviews the econometrics of 

estimating and evaluating asset pricing models. A full description of the data employed 

in the paper is presented in Section 3. Section 4 discusses the empirical results and a 

detailed analysis of different comparisons, while Section 5 concludes. 

 

2. A Brief Description of the Beta and SDF/GMM Methods 

There is a large literature on econometric techniques to estimate and evaluate asset 

pricing models. As pointed out by Cochrane (2005), each technique looks for answers 

on the same questions: how to estimate parameters, how to calculate standard errors of 

the estimated parameters, how to calculate standard errors of the pricing errors, and how 

to test the model, usually with a test statistic of the form 1V  , where   is a vector 
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of pricing errors and V is some weighting matrix.4 We now briefly describe the beta and 

the SDF procedures. 

 

2.1 The Beta Method 

We want to fit the following simple regression model  

                                                      e
j jE R j                                                         (1) 

where e
jR  is the excess return over the risk-free rate for any stock j, j  is a K-vector of 

sensitivities of stock j with respect to a set of aggregate risk factors,   is the vector of 

risk premia, j  is the pricing error, and E is the expectation operator. The idea is of 

course to learn why average returns vary across assets. 

 

In this paper, this is done by running an OLS, WLS and GLS cross-sectional regressions 

of average returns on the betas. Since betas in (1) are estimated in a time-series 

regression, we correct asymptotic standard errors by applying the Shanken (1992) 

multiplicative correction  1
f

ˆ ˆˆ1    , where f̂  is the variance-covariance matrix of 

the factors. We finally test whether all pricing errors are jointly zero with the asymptotic 

OLS, WLS and GLS 2  test of pricing errors. 

 

2.2 The SDF Method 

It is well known that the first order pricing equation from the intertemporal optimization 

of the representative agent can be written as  

                                                      t t t 1 t 1p E m x                                                    (2) 

where tp  is the price of any stock, t 1m   is the SDF which is the intertemporal marginal 

rate of substitution of consumption, t 1x   is the future payoff of the stock and is the 

conditional expectation operator. An asset pricing model identifies a particular SDF (a 

proxy for the marginal rate of substitution of aggregate consumption) that is a function 

of observable variables and the model parameters. The SDF method involves estimating 

the asset pricing model using its SDF representation and the GMM procedure.  

tE

 

                                                 
4 For a full description of the econometric techniques used in this paper, see Cochrane (2005). 
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The development of the GMM by Hansen (1982) has had a major impact on empirical 

research in finance because it allows for conditional heteroskedasticity, serial 

correlation and non-normal distributions. In this section, we review the estimation and 

testing of linear discount factor models expressed as,5 

                                              
   p E mx   or  1 E mR

m b f

 


                                            (3) 

This pricing expressions lead naturally to the GMM when testing asset pricing models, 

where the pricing errors are precisely the moments used in the estimation. 

 

2.2.1 First and Second-stage GMM Estimators 

The idea is to choose b to make the pricing errors  Tg b  as small as possible, by 

minimizing the quadratic form, 

                                                                                                  (4) 
 

   T T
b

min g b Wg b 





When imposing W = I, GMM treats all test assets symmetrically, and we just minimize 

the sum of squared pricing errors. The result of making such simplification is what we 

call first-stage estimators. This estimator is consistent and asymptotically normal. 

 

The second-stage estimate makes a formal statistical choice of the weighting matrix W. 

Since returns are correlated, the usual procedure chooses the variance-covariance matrix 

of      T TE m( b )R 1 E u( b ) g b   T , so that the matrix pays more attention to linear 

combinations of moments for which the available data is more informative. Hansen 

(1982) shows formally that the choice 1W S , where  t tS E u u 



  is the 

optimal weighting matrix in the sense of having the lowest asymptotic variance. 

 

2.2.2 Hansen and Jagannathan (1997): AGMM  Estimators 

Another example of prespecified economically interesting weighting matrix is the 

second moment matrix of returns suggested by HJ (1997). In this subsection, we will 

refer to S as the second moment matrix of returns. They also introduce the Hansen-

Jagannathan distance, which measure specification errors of SDF models by least 

                                                 
5 For notational convention, time subscripts are usually deleted. 
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squares distances between an SDF model and the set of admissible SDFs that can 

correctly price a set of test assets.  

 

Cochrane (2005) points out that when writing the model as m a b f  , it is not 

possible to separately identify a and b, so we choose first the easiest normalization in 

which a = 1. Then,      e e
T T Tg ( b ) E mR E R E R fe b    

 

. We employ the usual 

notation,  eg b
E R f

b
Td


 





, to get the second moment matrix of returns and 

factors. The first order condition to minimize (4) is  e db 0
Td W E R   

. The first 

stage imposes W I , while the second stage uses 1W S . Since the parameter b 

enters linearly in the minimization, we can find their estimates analytically: 

                                
   
  

1 e
1 T

11 1
2 T

ˆFirst Stage: b d d d E R

ˆ ˆSecond Stage: b d S d d S E R



 

 

  e
                           (5) 

Hence, the AGMM  estimate is a cross-sectional regression of mean excess return on 

second moment matrix with factors. The standard errors of  and  and the 

covariance matrix of the pricing errors 

1b̂ 2b̂

 T
ˆg b  are calculated following Hansen (1982). 

 

The model test is a quadratic form in the vector of pricing errors  Tg b . Note that there 

are two ways to get a small value of the test statistic, usually denoted by . First and 

desirable, we can generate small pricing errors with a high degree of precision or, and 

this is not desirable, we can generate large pricing errors with even higher standard 

errors of those errors. Thus, in this paper we would care not only on specifications test 

results but also on the pricing errors themselves. Thus, in this paper we would care not 

only on specifications test results but also on the pricing errors in order to avoid this 

trap. 

TJ

 

 

 

 

7 



2.2.3 Cochrane (2005):  Estimators BGMM

Alternatively, we can run a cross-sectional regression of mean excess returns on 

covariances by choosing a normalization  a 1 b E f   rather than a = 1. Then, the 

model is  m 1 b f E f      with mean  E m 1 . The pricing errors are, 

                                      e e e
T T T Tg b E mR E R E R f b                                    (6) 

where  f f E f   . We have 
   T eg b

d E
b


R f  


 , which now denotes the 

covariance matrix of returns and factors. We must bear in mind that the mean of the 

factor  E f  is estimated in  (as well as b), and the distribution theory should 

recognize sampling variation induced by this fact as we usually do in the cross-sectional 

regressions. Second-stage estimators comes from the minimization of the following 

expression, 

BGMM

                                                                   (7) 
 

  1
T T

b,E( f )
ˆmin g b,E( f ) S g b,E( f ) 

  


which can be solved using a numeric method.6 

 

2.2.4 Hansen, Heaton and Yaron (1996):  (Continuous Updating) Estimators CUGMM

Another possibility is estimating the spectral density matrix or, in other words, use the 

optimal weighting matrix instead of taking the prespecified weighting matrix on the 

second-stage estimators, as we advocate in AGMM  and . The iterated 

 estimator using the optimal weighting matrix may present two related 

problems. First, if the variance-covariance matrix for the iterated  estimator is 

poorly measured, then the estimator will put too much weight on moments that 

spuriously appear to be measured precisely. Moreover, the iterated estimator may place 

too much weight on test assets that are economically uninteresting, in the sense of being 

extreme short and long positions in some of the stocks. 

BGMM

GMM

CUGMM

CU

 

Furthermore, the fact that the S matrix changes with the model, may improve the 

statistic because it blows up the estimate of S, rather than by lowering the pricing TJ

                                                 
6 In the empirical application, we use the MATLAB fminsearch function in order to minimize this 
function. 
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errors. As Cochrane (2005) emphasizes we should not compare formally tests across 

models. This is one of the reasons why it is recommended to use a common weighting 

matrix for comparing models like those discussed above. There are several alternatives 

to the second-stage procedure. We use the continuous updating estimator which states 

that it is not true that S must be held fixed as one searches for b. Instead, one can use a 

new for each value of b, and estimate b by 

TJ

 S b

                                             
 

      bgbSbg TT
b

1ˆ'min                                                    (8) 

The estimates produced by this simultaneous search will not be numerically the same in 

a finite sample as the two-step or iterated estimates. 

 

To wrap up, we have three econometric specifications in the beta method: OLS, GLS 

and WLS. And five in the SDF/GMM method: First and second stages of AGMM , 

, and the continuous updating . When estimating, we collect the 

central parameter (lambda for beta method and b for SDF method), standard errors and 

bias from the factor mean. On the other hand, when testing, we collect the pricing error 

and the p-value of the model specification test.  

BGMM CUGMM

 

3. The Data 

Three single (size, value, and industry), two double-sorted (size-value and size-

momentum), and one combined (size-value plus industry) test portfolios are taken from 

the data library of Kenneth French because of familiarity and availability to the general 

readership.7 In sum, we take six types of N test portfolios: 5 and 10 formed on ME; 5 

and 10 formed on BE/ME; 6, 25 and 100 formed by the intersections of ME and BE/ME 

(FF portfolios); 6 and 25 formed on ME and MOM; and 5, 17 and 30 industry 

portfolios. LNS (2009) suggest that one could expand the set of test portfolios to price 

all of them at the same time. In this paper, besides the previous five types of test assets, 

we use an extended set formed by 25 Fama-French portfolios plus 17 industry 

portfolios, resulting in a total of 42 test portfolios. Note that we take at least two 

different values of N within each test assets in order to provide the robustness checks.  

 

                                                 
7 The aggregate risk factors contain the excess market return, the “small minus big” (SMB) portfolio, the 
“high minus low” (HML) portfolio, and the “up minus down” (UMD) portfolio. They are also taken from 
the same web-page. 

9 



We conduct our analysis using six values for the time length monthly observations T: 60 

(January 2001-December 2005), 240 (January 1986-December 2005); 360 (January 

1976-December 2005); 480 (January 1966-December 2005) and 948 (January 1927-

December 2005). The choice for a monthly interval reflects the trade-off between the 

sampling error of a sufficiently large sample, and a realistic evaluation horizon. 

Increasing the return interval (e.g. yearly) would lead to a small data set, while 

decreasing it (e.g. daily) to an unrealistically short evaluation horizon. Further, the use 

of high-frequency data introduces well known microstructure problems which may 

distort the empirical results. Therefore, we adhere to the common approach of using 

monthly returns. 

 

Taking into account the three models, thirteen test portfolios, six time periods and eight 

econometric specifications, we end up with 1636 and 2730 observations of lambda and 

b estimators with their corresponding standard errors and bias from the factor mean. On 

the other hand, we have 702 beta and 1170 SDF observations of pricing errors with their 

corresponding p-values of the model specification test.8 This amount of results is a 

considerable expansion to similar previous works like Cochrane (2005) or Shanken and 

Zhou (2007), and thus we are clearly able to broaden the comparisons between the two 

methods. Our datasets include not only low but also high dispersion of tests assets 

returns,  this imply that methods and models will be forced to price tests assets with 

high variance and low factor structure. 

 

4. The Empirical Results 

In this section, we first compare the pricing errors and model specifications of the Beta 

method with respect to the SDF/GMM method across models, test assets and time 

periods. Then, we perform the analysis regarding the properties of estimators. As in JW 

(2002) and Cochrane (2005), our results from testing and estimating the CAPM in the 

simple and classic set up illustrate that the differences between both methods are 

practically irrelevant.9 However, the key point is that we show how the differences 

become significant in a more complex setup.  

 

                                                 
8 Note that the number of outcomes from the beta method is always less than from the SDF procedure. 
This is because we have three specifications for beta, and five for the SDF. However, most of the 
comparisons conducted are based on similar numbers of observations. 
9 The specific results are available upon request. 
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4.1 A Comparison of Pricing Errors and Specification Tests.  

In this subsection, we are concerned with two key issues. The first one regarding which 

method leads to lower pricing errors, while the second one analyzes how well that 

method does when testing the three models. 

 

4.1.1 Which Method Leads to Lower Pricing Errors? 

Let us begin analyzing which method leads to lower pricing errors by confronting first 

OLS and first-stage AGMM SDF and, secondly, by making comparisons between GLS 

and the second-stage AGMM SDF . We perform the analysis for CAPM, FF and RUH 

models and the test portfolios described on section 3; that is 360 pricing error 

observations for each method.  

 

Table 1 summarize the results of comparing Beta versus GMM/SDF pricing errors, 

using four time periods from T = 240 to T = 948. Our results suggest that first-stage 

AGMM SDF  dominates OLS, while GLS dominates second-stage AGMM SDF  at 

minimizing pricing errors, and this result is consistent across test portfolios and sample 

periods.10 

 

The OLS and first-stage GMM estimators are intended to minimize the root mean 

square errors since there is no weighting matrix, but first-stage estimators do it better 

than OLS. The results contained in the second column of Table 1 tells us a different 

story; in this case Beta method does it better in achieving lower pricing errors than 

second-stage GMM estimators, even though these methods do not have the pure 

objective of minimizing the sum of square errors, as first-stage and OLS do. 

Interestingly, both results are obtained independently of the test assets employed. As an 

example, when using the extended set of 25 FF portfolios and 17 industry portfolios, the 

Beta/OLS method generates higher pricing errors than first-stage AGMM SDF  in all 

cases. On the other hand, only in 11 percent of the cases, the Beta/GLS method 

generates higher errors relative to second-stage AGMM SDF . 

                                                 
10 Using simulations, Shanken and Zhou (2007) show that first-stage does it better in Beta representation 
models. However, they do not analyze SDF models. Furthermore, in Shanken and Zhou (2007) there is no 
conclusive answer for the second stage estimators in this sense. Thus, we consider that analyzing which 
method leads to lower pricing errors by confronting first OLS and first-stage GMM with historical data 
represent an issue that has been not fully explored yet. 
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4.1.2 Testing the Alternative Pricing Model Specifications  

First-stage AGMM SDF  does a good job at minimizing squared pricing errors; hence 

we can now look at the test statistics with more confidence. A new question that arises 

is how different are the specification test results from first-stage AGMM SDF  when 

applied to three models, four time periods, and six families of test portfolios.  In order to 

summarize the results, let us focus on the p-values and group them in quartiles by test 

portfolios and by models. 

 

Our test results are summarized in Table 2. Each panel represents a particular asset 

pricing model: CAPM (upper), FF (middle) and RUH (lower). Columns from left to 

right in each panel are families of N tests portfolios formed by ME, BE/ME, ME & 

BE/ME, Industry, and the extended set of ME & BE/ME (or FF portfolios) plus 

Industry respectively. It should be recalled that each column is formed by at least two 

different values of N and four time-lengths. Rows are the probability intervals of not 

rejecting the null. Therefore, a column with larger proportion of the last interval 76-100 

implies that the null will not be rejected in most cases for that model and test portfolio. 

 

Table 2 shows the CAPM is rejected for all test portfolios more often than any other 

competing model. In particular, for the ME & BE/ME, ME & MOM, and the extended 

test assets, the rejection of the CAPM is absolute in the sense that all their tests have (1-

p-values) between 0 and 25 percent. Our results show that when testing the CAPM with 

size-sorted portfolios, as in Cochrane (2005), only in 17 percent of the cases we report 

high probability of not rejecting the null. 

 

The Fama-French model is originally suggested to explain the pricing errors of the 

CAPM. It is therefore interesting to compare this model with the CAPM. In particular, 

Table 2 provides evidence favorable to multifactor models since the probability of not 

rejecting the null substantially improves in the FF and RUH specifications. Most 

notably, the number of cases in which the probability that the pricing errors are zero on 

the highest interval using the BE/ME portfolios goes from 17 percent for the CAPM to 

67 and 75 percent for the FF and RUH models (for the industry portfolios these 

numbers go from 8 percent to 25 and 42 percent). As in the CAPM, the FF model is not 
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able to price the ME & BE/ME, ME & MOM portfolios, and the expanded set of assets. 

Although the pricing errors are in fact lower, they are not enough for getting at least a 

portion of any other interval. Only the RUH specification is capable of successfully 

pricing 25 percent of the cases for the FF portfolios, and also reduces to 50 percent the 

cases in which the model can not price these portfolios at all.  

 

Generally speaking, this evidence suggests that multifactor models help rather than hurt 

for all these test portfolios' valuations. The evidence seems to be slightly better for the 

RUH model relative to the FF model. The RUH model performance is particular 

remarkable since there is no track of this specification in previous literature. The 

probability of not rejecting the null is higher for every test portfolio and model tested 

under the RUH specification. However, it fails to price the set of extended assets. 

 

Table 2 also suggest that the specification testing results depend on the test portfolios 

employed. It seems that portfolios' characteristics are driving the rejection of the null 

hypothesis. In particular, the dispersion of average returns across portfolios seems to be 

positively correlated with the pricing success of any given model. Returns on portfolios 

formed by ME has a cross-sectional standard deviation of 12 percent, 16 percent for 

BE/ME and Industry portfolios, 23 percent for the extended set of assets, 27 percent for 

ME & BE/ME, and 45 percent for ME & MOM. The double-sorted portfolios (e.g. FF, 

size-momentum, and the combined set) seem to be harder to price because they have 

significant higher dispersion than single-sorted portfolios. Note, for example, that when 

testing size and momentum sorted portfolios (ME & MOM), or the extended set, we 

cannot reject the null in any case. Their associated pricing errors are all statistically 

different from zero. They are, together with the FF portfolios, the test assets with higher 

cross-sectional dispersion. 

 

The industry classification is a special case because is not motivated by known patterns 

in historical return series. Additionally, these portfolios are independent of financial 

ratios such as BE/ME. Hence, it may seem surprising to observe that their results are not 

particularly different from the other test portfolios as long as they are single-sorted 

portfolios. On the other hand, one may argue that their low dispersion on average 

returns explain these results.  
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One may always think that the results reported in Table 2 are being drive by some 

particular characteristics of the historical data on a given time-period. Thus, we perform 

a robustness check by changing the perspective view over the same results. In Table 3, 

we now control for the sample period T  r

as 

                                                

ather than controlling for the test portfolios N  

we did on Table 2. Then, the columns in Table 3 now represent time periods (instead 

of portfolios), and the rest is exactly the same as in Table 2.  

 

This alternative representation of Table 2 allows us to analyze whether the evidence in 

favor of multifactor models reported before is independent of the time length. In this 

regard, it should be pointed out that some studies suggest that the choice of the sample 

period and size segment are important for judging the empirical validity of the CAPM.11 

Our evidence suggest that the choice of the sample period is not relevant for evaluating 

the empirical validity of the CAPM and multifactor models, at least in tests of over 

identifying restrictions. It is true, however, that pricing errors diminish for longer time 

horizons. In this sense, our results are also consistent with those on Shanken and Zhou 

(2007). 

 

4.2 A Comparison of Estimators’ properties.          

We now turn from tests on pricing errors to evaluate the estimators' properties. 

Remember we are dealing with historical datasets. We understand that an estimator has 

desirable properties if it satisfies the following three conditions (1) it has low standard 

error, (2) it is statistically different from zero, and (3) it has low bias (measured as the 

percentage error) relative to the observable factor. In this subsection we follow the 

correct framework for comparing estimates presented on JW (2002). 

 

We are now concerned with the following two questions: Which method leads to better 

estimators' properties within methods (OLS versus GLS, and first versus second-stage)? 

Which method leads to better estimators' properties intra methods (OLS versus first-

stage, and GLS versus second-stage)? We will answer these questions by aggregating 

by models, test portfolios and sample periods. Then, we are actually comparing 2184 

estimators with their corresponding standard errors, t-statistics and percentage bias. Our 

 
11 See Loughrahn (1997) or Ang and Chen (2007). 
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results suggest that, in general, the Beta method leads to better properties than the 

SDF/GMM method. 

 

Due to the large number of lambda and b estimates, it is useful to classify their 

properties into three categories, in a similar way as we did before. For this purpose, we 

define the category A in Tables 4, 5 and 6 for those estimators who are less than 50 

percent biased from the observable risk factor and are statistically different from zero. 

The category B corresponds to those estimators with biases between 51 percent and 100 

percent whether or not they are statistically different from zero. Finally, the category C 

is for estimates with 101 percent to 1000 percent biases whether or not they are 

statistically different from zero. Few observations with a bias even higher than 1000 

percent are dropped out from the analysis; it is worthwhile to mention that 95 percent of 

these dropped values correspond to SDF estimators. Naturally, the category A 

represents the best properties. By restricting to be statistically different to zero we 

guarantee that the standard error is relatively small, and the bias condition assures that 

the estimate is reasonable as LNS (2009) emphasize. In the category B, we are not 

interested on the size of the standard error; the only condition is the bias interval. Thus, 

the unreasonable estimates will fall into this category. The category C represents 

obviously the worst properties because their bias is extremely high; these estimators 

become not only unreasonable but also unreliable. 

 

Table 4 shows that GLS leads to better properties than OLS, except for the industry 

portfolios in which category A goes from 48 percent in OLS to 41 percent in GLS. The 

rest of portfolios increase the category A between 4 to 10 percentage points. Thus, in 

general, GLS is actually doing its job at providing better properties by giving up some 

pricing errors. Furthermore, the category C is actually smaller for the GLS, 

strengthening the fact that GLS has better properties than OLS. This is true for all 

portfolios except again for the industry classification in which the category C goes from 

27 percent in OLS to 32 percent in GLS. The rest show a decrease from 3 to 26 

percentage points.12 

 

                                                 
12 The extended set actually obtains the same result. 
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On the other hand, the results regarding the second-stage relative to the first-stage 

estimators are less clear in achieving better properties. The second-stage estimators 

obtain better properties, except for the double-sorted portfolios in which the category A 

decreases from 27 percent (FF), 40 percent (size-momentum), and 29 percent (extended 

assets) in first-stage to 18, 17, and 8 percent respectively in second-stage. The rest have 

a modest improvement between 1 and 6 percentage points. The category C in second-

stage is lower than in first-stage, except again for the double sorted portfolios which 

goes from 50 percent (FF), 32 percent (size-momentum), and 50 percent (extended 

assets) to 71, 59, and 80 percent in second-stage. The rest of them have a tiny 

improvement of 1 percentage point each. Note that the Beta method can achieve better 

estimators’ properties even in portfolios with high dispersion, while the SDF method 

cannot. This is consistent with the idea that GMM has difficulties in small samples. In 

our case this difficulty is associated with the higher dispersion in the portfolios’ 

expected returns. In other words, GMM seems to have difficulties in pricing assets 

when changing from single-sorted to double-sorted portfolios (including the set of 

extended test assets). 

 

Regarding the second question, the Beta method dominates SDF in terms of estimators’ 

properties. The category A consistently becomes larger from first-stage to OLS and 

from second-stage to GLS. In particular, the increases go from 11 (size-momentum 

portfolios) to 45 (FF portfolios) percentage points. On the other hand, there is also a 

substantial decrease of the category C between 10 (value portfolios) to 68 (extended test 

assets) percentage points; in this case the only exception is the industry portfolios which 

slightly increases from 31 percent (second-stage) to 32 percent (GLS). 

 

Jagannathan and Wang (2002) show that asymptotically no method dominates in terms 

of estimators’ properties, but their findings are supported on the analysis of the single 

factor model under artificial data. So far however, we report evidence showing that the 

Beta method dominates the SDF framework. Now, we would like to split the data on 

Table 4 in order to analyze differences among the single and multifactor models. Once 

we do that, we could further compare our results with those on Jagannathan and Wang 

(2002). 
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Our next task is therefore to compare the estimators' properties across models. Given 

that the Beta method dominates SDF, then, the next question is whether this evidence is 

consistent for each model and for all methods. For this purpose, we use an even broader 

set of estimators than before: we now calculate three kinds of estimators in a beta 

formulation: OLS, GLS and WLS; and five estimators in a SDF formulation: returns on 

second moments of HJ (1997); returns on covariances of Cochrane (2005); and the 

continuous updating estimate of HHY (1996). These estimations were obtained by 

taking our full sample on T and N. We finally end up with about 1636 lambda and 2730 

b estimators. 

 

The evidence is summarized in Table 5. Each panel represents the alternative factor 

models, while columns are lambda and b estimates’ properties. In each column we 

report the frequency of each category by factor (market, size, value and momentum). 

We drop some estimators with more than 1,000 percent bias from the factor mean. As 

before, it is worthwhile to point out that 95 percent of the 151 total dropped values 

correspond to the SDF. This already suggests which method is more likely to deliver an 

estimator with worst properties. 

 

Let us focus on the first panel (CAPM) of Table 5. As in Jagannathan and Wang (2002) 

and Cochrane (2005), we find that the lambda and b associated with the market factor 

have almost identical properties in both methods, even in a more complex setup than the 

simple CAPM with 10 size-sorted portfolios. In particular, we find that the probability 

of having good properties is 83 and 75 percent for the Beta and SDF respectively. This 

result is remarkable because it is actually what JW (2002) show in their empirical 

results with simulated data, and we find very similar results using historical datasets.  

 

Now, let us analyze the lambda and b associated with the market factor in the rest of the 

models. We argue that we are actually assessing a gap in the previous literature by 

extending the current well known result in the first panel of Table 5 to the second and 

third panels which show the results for multifactor models. The results are stunning; the 

lambda from the Beta method has much better properties than the b from SDF method. 

In particular, the category A is 79 percent versus 24 percent for the FF model and 81 

percent versus 12 percent for the RUH. It seems clear then that we cannot say that Beta 

and SDF methods lead to the same estimators’ properties. 
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In any case, why does the lambda and b estimates associated with the market factor 

have so similar properties in the CAPM and so different in multifactor models? One 

plausible answer is that b gives a multiple regression coefficient of m on the factor 

given the other factors; while lambda gives the single regression coefficient. In the 

CAPM model of course, there is no difference between single or multiple regression 

coefficient since there is only one factor. So, lambda and b behave in a very similar way 

as long as both report single regression coefficients, but things change when adding 

more factors. 

 

The size factor from FF model and the momentum factor from RUH model are priced, 

and help pricing assets given the other factors, in a similar magnitude. That is, even 

though we find that Beta method lead to better estimators' properties than SDF, the 

difference is not as large as when comparing the market factor in the FF and RUH 

models. Finally, the results regarding the lambda and b associated with the value factor 

show similar results.  The Beta method does achieve better properties than the SDF 

procedure. In the FF model, the category A is twice for lambda (41 percent versus 19 

percent), and it is three times larger in the RUH specification (42 percent versus 12 

percent). 

 

As Amsler and Schmidt (1985) and Shanken and Zhou (2007), we find that when T is 

small (say 60 or 120), these estimators can be very volatile across different test 

portfolios. Thus, in Table 6 we exclude time lengths equal to 60, 120 and 240. When 

taking away the three smaller sample periods, we are actually dropping off the 

estimators with higher bias and standard errors, and then our conclusions about Table 5 

strengthen. The properties regarding the multifactor models get better when dropping 

out the smallest time-periods. The category A is now consistently larger and the 

category C smaller than in Table 5. 

 

5. Conclusions 

Our objective is to contribute to the current knowledge about the differences between 

Beta and SDF methods when estimating factor pricing models. Previous papers have 

shown that no differences arise in simple setups, but there is a gap of empirical evidence 

regarding the conditions and consequences of using more complex setups. It is also well 
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known that GMM has difficulties in finite samples, when dealing with extreme 

nonlinearities; nonetheless we find that their difficulties can arise even in linear models. 

 

We find that HJ (1997) first-stage GMM achieve lower pricing errors than OLS Beta 

method for all test portfolios and time-lengths. On the other hand, their specifications 

tests show evidence in favor of multifactor models such as RUH because the likeliness 

of not rejecting the null is greater than in FF and CAPM models. We also find that 

double-sorted portfolios are hardest to price compared with single-sorted portfolios, and 

this difference is correlated with the higher dispersion on the test portfolios’ average 

returns. 

 

Theory indicates that GLS should lead to better estimators’ properties than OLS, and 

this should also apply to second and first-stage GMM estimators. Our results suggest 

that the beta method actually do better than the SDF method. Moreover, when pricing 

double-sorted portfolios, the properties on second-stage are actually worse than in first-

stage. 

 

We are capable to reproduce JW (2002) results for the CAPM even in a finite-sample 

framework, which reinforce the strength of the fact that there is no difference between 

Beta and SDF methods when comparing lambda and b properties under the simple 

CAPM. Our main contribution relies on extending the comparison for the FF and the 

RUH specifications. Our results imply that differences between the performance of the 

methods arises in more complex setups such as the ones suggested by LNS (2009). In 

particular lambda from the beta method has better properties in multifactor models such 

as FF and RUH than b from the SDF method across tests portfolios and sample periods. 

 

We are also capable to reproduce most of the results on Shanken and Zhou (2007), 

which analyze models under the Beta representation. Our contribution here is to extend 

the analysis to SDF methods as well. In particular, we demonstrate that first-stage 

GMM estimators are in general superior than Beta estimators in order to achieve lower 

pricing errors. Our results confirm that multi-factor models perform best in our model 

comparison tests than the single-factor model. This result has been documented in 

similar and very recent works such as in Kan and Robotti and Shanken (2009). 
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Further work may address the implications for using simulated data (e.g. from 

multivariate normal and t distributions). This benefits the analysis in terms of providing 

size and power tests, and also may go deeper into the analysis of estimators’ properties. 
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Table 1 
The Comparison of Pricing Errors 

 
Portfolio 

Classification 
OLS vs. First-Stage GMMA GLS vs. Second-Stage GMMA 

Size  
(ME) 

0.83 0.33 

Value  
(BE/ME) 

0.71 0.42 

Size and Value  
(ME & BE/ME) 

1.00 0.33 

Size and Momentum  
(ME & MOM) 

0.83 0.21 

Industry  
(5, 17, 30 industry portfolios) 

0.89 0.17 

Size, Value and Industry 
(25 ME & BE/ME and 17 

industry portfolios) 

1.00 0.11 

The numbers denote the frequency in which Beta method (OLS or GLS) leads to higher pricing errors 
compared with SDF/GMMA method (first and second stage). For example, 0.83 means that 83 percent of 
the times, the Beta method present a higher pricing error relative to the SDF/GMMA method. We employ 
four time-periods, T = 240, T = 360, T = 480, and T = 948. Size includes 5 and 10 size-sorted portfolios; 
Value has 5 and 10 BE/ME-sorted assets; Size and Value are the 6, 25 and 100 Fama-French portfolios; 
Size and Momentum includes 6 and 25 portfolios formed on ME and MOM; Industry incorporates 5, 17 
and 30 industry-sorted assets, and Size, Value and Industry has the 25 Fama-French extended with 17 
industry portfolios. 
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Table 2 
Probability Intervals of Not Rejecting the Null Hypothesis 

First-Stage GMMA 
 

1 - p-value ME BE/ME ME&BE/ME ME&MOM Industry 25 
ME&BE/ME 
+17 Industry 

PANEL A: CAPM 
0-25 0.42 0.42 1.00 1.00 0.25 1.00 

26-50 0.17 0.25 0.00 0.00 0.42 0.00 
51-75 0.25 0.17 0.00 0.00 0.25 0.00 

76-100 0.17 0.17 0.00 0.00 0.08 0.00 
PANEL B: FAMA-FRENCH 

0-25 0.33 0.08 1.00 1.00 0.08 1.00 
26-50 0.25 0.00 0.00 0.00 0.42 0.00 
51-75 0.17 0.25 0.00 0.00 0.25 0.00 

76-100 0.25 0.67 0.00 0.00 0.25 0.00 
PANEL C: RUH  

0-25 0.08 0.00 0.50 1.00 0.00 1.00 
26-50 0.00 0.08 0.08 0.00 0.17 0.00 
51-75 0.25 0.17 0.17 0.00 0.42 0.00 

76-100 0.67 0.75 0.25 0.00 0.42 0.00 
The numbers denote the frequency in which each p-value falls into each probability interval. The 
probability intervals are given in the first column for the three alternative panels which correspond to the 
CAPM, the three-factor Fama-French model, and the three-factor model with the excess marker return, 
the momentum factor and the value factor (RUH). High frequencies in the first interval (0-25) and low 
frequencies in the last interval (76-100) means that the model has a bad performance in terms of pricing 
errors obtained under the SDF/GMMA method. We employ four time-periods, T = 240, T = 360, T = 480, 
and T = 948. Size includes 5 and 10 size-sorted portfolios; Value has 5 and 10 BE/ME-sorted assets; Size 
and Value are the 6, 25 and 100 Fama-French portfolios; Size and Momentum includes 6 and 25 
portfolios formed on ME and MOM; Industry incorporates 5, 17 and 30 industry-sorted assets, and Size, 
Value and Industry has the 25 Fama-French extended with 17 industry portfolios. 
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Table 3 
Probability Intervals of Not Rejecting the Null Hypothesis 

First-Stage GMMA 
 

1 - p-value T = 240 T =360 T = 480 T = 948 
PANEL A: CAPM 

0-25 0.44 0.56 0.56 0.56 
26-50 0.33 0.22 0.11 0.22 
51-75 0.11 0.22 0.33 0.00 

76-100 0.11 0.00 0.00 0.22 
PANEL B: FAMA-FRENCH 

0-25 0.44 0.33 0.33 0.44 
26-50 0.22 0.11 0.11 0.11 
51-75 0.00 0.11 0.22 0.33 

76-100 0.33 0.44 0.33 0.11 
PANEL C: RUH 

0-25 0.22 0.22 0.11 0.44 
26-50 0.00 0.00 0.11 0.11 
51-75 0.22 0.22 0.33 0.11 

76-100 0.56 0.56 0.44 0.33 
The numbers denote the frequency in which each p-value falls into each probability interval. The 
probability intervals are given in the first column for the four alternative time periods (T = 240, T = 360, 
T = 480, T = 948) and the three panels which correspond to the CAPM, the three-factor Fama-French 
model, and the three-factor model with the excess marker return, the momentum factor and the value 
factor (RUH). High frequencies in the first interval (0-25) and low frequencies in the last interval (76-
100) means that the model has a bad performance in terms of pricing errors obtained under the 
SDF/GMMA method.  
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Table 4 
Properties of Estimators 

Beta Method: OLS and GLS; SDF/GMM Method: First- and Second-Stage GMMA 
 

Category ME BE/ME ME&BE/ME ME&MOM Industry 25 
ME&BE/ME 
+17 Industry 

PANEL A: OLS Estimates 
C 0.30 0.16 0.14 0.30 0.27 0.12 
B 0.28 0.35 0.13 0.20 0.25 0.21 
A 0.42 0.49 0.72 0.51 0.48 0.67 

PANEL B: GLS Estimates 
C 0.18 0.13 0.09 0.04 0.32 0.12 
B 0.35 0.35 0.09 0.27 0.27 0.12 
A 0.47 0.53 0.82 0.69 0.41 0.76 

PANEL C: First-Stage GMMA Estimates 
C 0.41 0.24 0.50 0.32 0.32 0.50 
B 0.39 0.44 0.23 0.28 0.40 0.21 
A 0.20 0.33 0.27 0.40 0.28 0.29 

PANEL D: Second-Stage GMMA Estimates 
C 0.40 0.23 0.71 0.59 0.31 0.80 
B 0.35 0.43 0.11 0.23 0.40 0.12 
A 0.26 0.35 0.18 0.17 0.29 0.08 

The numbers denote the percentage bias of the estimators relative to the realized factor for all three 
models simultaneously, the CAPM, the FF-three factor model, and the three-factor model with excess 
market return, the momentum factor and the value factor (RUH). The biases are divided into three 
categories. Category A is for those estimators which are less than 50 percent biased from the realized 
factor, and are statistically different from zero; Category B corresponds to estimators with biases between 
51 and 100 percent, and Category C for estimates with 101 to 1000 percent biases. We employ six time-
periods, T = 60, T = 120, T = 240, T = 360, T = 480, and T = 948. Size includes 5 and 10 size-sorted 
portfolios; Value has 5 and 10 BE/ME-sorted assets; Size and Value are the 6, 25 and 100 Fama-French 
portfolios; Size and Momentum includes 6 and 25 portfolios formed on ME and MOM; Industry 
incorporates 5, 17 and 30 industry-sorted assets, and Size, Value and Industry has the 25 Fama-French 
extended with 17 industry portfolios. 
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Table 5 
Properties of Estimators 

Beta Method: OLS, WLS, and GLS; SDF/GMM Method: First- and Second-Stage 
GMMA, First- and Second-Stage GMMB, and GMMCU 

Full-Time Period Data 
 

Category Market  
Risk Premia 

Size (SMB)  
Risk Premia 

Value (HML) 
Risk Premia 

Momentum 
Risk Premia 

Panel A: CAPM (first column: lambda; second column: b coefficient) 
C 0.08 ; 0.17 - - - 
B 0.09 ; 0.10 - - - 
A 0.83 ; 0.73 - - - 

Panel B: FAMA-FRENCH (first column: lambda; second column: b coefficient) 
C 0.01 ; 0.28 0.33 ; 0.50 0.24 ; 0.44 - 
B 0.20 ; 0.48 0.36 ; 0.30 0.35 ; 0.37 - 
A 0.79 ; 0.24 0.31 ; 0.20 0.41 ; 0.19 - 

Panel C: RUH (first column: lambda; second column: b coefficient) 
C 0.04 ; 0.54 - 0.47 ; 0.62 0.28 ; 0.50 
B 0.15 ; 0.33 - 0.28 ; 0.25 0.30 ; 0.37 
A 0.81 ; 0.12 - 0.25 ; 0.13 0.42 ; 0.12 

The numbers denote the percentage bias of the estimators relative to the realized factor for three models, 
the CAPM, the FF-three factor model, and the three-factor model with excess market return, the 
momentum factor and the value factor (RUH). The biases are divided into three categories. Category A is 
for those estimators which are less than 50 percent biased from the realized factor, and are statistically 
different from zero; Category B corresponds to estimators with biases between 51 and 100 percent, and 
Category C for estimates with 101 to 1000 percent biases. We employ six time-periods, T = 60; T = 120, 
T = 240, T = 360, T = 480, and T = 948, and all N portfolios: Size includes 5 and 10 size-sorted 
portfolios; Value has 5 and 10 BE/ME-sorted assets; Size and Value are the 6, 25 and 100 Fama-French 
portfolios; Size and Momentum includes 6 and 25 portfolios formed on ME and MOM; Industry 
incorporates 5, 17 and 30 industry-sorted assets, and Size, Value and Industry has the 25 Fama-French 
extended with 17 industry portfolios. The estimators are obtained using OLS, WLS, and GLS for the Beta 
method, and First- and Second-Stage GMMA, First- and Second-Stage GMMB, and GMMCU for the 
SDF/GMM method. 
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Table 6 
Properties of Estimators 

Beta Method: OLS, WLS, and GLS; SDF/GMM Method: First- and Second-Stage 
GMMA, First- and Second-Stage GMMB, and GMMCU 

Reduced-Time Period Data 
 

Category Market  
Risk Premia 

Size (SMB)  
Risk Premia 

Value (HML) 
Risk Premia 

Momentum 
Risk Premia 

Panel A: CAPM (first column: lambda; second column: b coefficient) 
C 0.00 ; 0.05 - - - 
B 0.00 ; 0.04 - - - 
A 1.00 ; 0.91 - - - 

Panel B: FAMA-FRENCH (first column: lambda; second column: b coefficient) 
C 0.00 ; 0.12 0.31 ; 0.42 0.29 ; 0.35 - 
B 0.02 ; 0.51 0.31 ; 0.34 0.28 ; 0.42 - 
A 0.98 ; 0.37 0.38 ; 0.24 0.43 ; 0.23 - 

Panel C: RUH (first column: lambda; second column: b coefficient) 
C 0.00 ; 0.35 - 0.34 ; 0.53 0.27 ; 0.41 
B 0.01 ; 0.46 - 0.31 ; 0.31 0.21 ; 0.42 
A 0.99 ; 0.19 - 0.35 ; 0.16 0.52 ; 0.17 

The numbers denote the percentage bias of the estimators relative to the realized factor for three models, 
the CAPM, the FF-three factor model, and the three-factor model with excess market return, the 
momentum factor and the value factor (RUH). The biases are divided into three categories. Category A is 
for those estimators which are less than 50 percent biased from the realized factor, and are statistically 
different from zero; Category B corresponds to estimators with biases between 51 and 100 percent, and 
Category C for estimates with 101 to 1000 percent biases. We employ three time-periods, T = 360, T = 
480, and T = 948, and all N portfolios: Size includes 5 and 10 size-sorted portfolios; Value has 5 and 10 
BE/ME-sorted assets; Size and Value are the 6, 25 and 100 Fama-French portfolios; Size and Momentum 
includes 6 and 25 portfolios formed on ME and MOM; Industry incorporates 5, 17 and 30 industry-sorted 
assets, and Size, Value and Industry has the 25 Fama-French extended with 17 industry portfolios. The 
estimators are obtained using OLS, WLS, and GLS for the Beta method, and First- and Second-Stage 
GMMA, First- and Second-Stage GMMB, and GMMCU for the SDF/GMM method. 
 
 
 
 
 


