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1 Introduction

The gender gap in average math test scores receives a great deal of attention in both

academia and the popular press.1 Without denying the importance of studying the perfor-

mance of millions of students, we feel that the fact that so much less attention is paid to

the gender gap in the upper tail is unfortunate for a couple of reasons. First, upper tail

outcomes are potentially relevant to various important topics including the underrepresen-

tation of women in math and science careers. Second, and more importantly, the gender

gap in mean scores is sufficiently small so as to be of little practical importance, whereas

the gender gap in the upper tail can be quite large. In this paper, we explore the gender gap

among high-achieving high school students using a new data source: the American Mathe-

matics Competitions. Among our findings are that the gender gap widens dramatically at

very high percentiles, that there is some but not a lot of variation in the size of the gender

gap across schools, and that the highest-achieving girls are concentrated in a very small set

of elite schools.

The American Mathematics Competitions are a series of contests sponsored by the

Mathematical Association of America. The annual series begins with two contests, the

AMC 10 and AMC 12, which are held at over 3,000 U.S. high schools. The AMC 12 is open

to any interested high school student and contains 25 multiple-choice questions on precalcu-

lus topics: algebra, probability, geometry, and trigonometry.2 Approximately 125,000 U.S.

students participate. We feel that the AMC contests are a potentially valuable new data

source because they are much better than standard tests at distinguishing among high-

achieving students. (We presents two types of evidence to support this contention: statis-

tical evidence showing that the AMC tests remain calibrated even at very high percentiles;

and sample questions from various tests which we think make the differences evident.) The

AMC contests also have a big disadvantage as a research tool: the participants are a highly

nonrepresentative, self-selected sample. This influences the analyses we do, and leaves us

with multiple potential explanations for some findings.

We begin our analysis of the gender gap in AMC scores in Section 3 by simply graphing

the male-female ratio at different score levels. One basic fact is that the high-achievement
1One statistic on the size of the academic literature is that Hyde and Linn (2006) identified 46 meta-

analyses of the topic which together summarize more than 5000 studies. Stories on Hyde et al. (2008)
and/or Guiso et al. (2008) appeared in the New York Times, Wall Street Journal, National Public Radio,
ABC News and many other outlets.

2The AMC 10 is restricted to students in grade 10 and below. It is similar, but is somewhat less difficult
and avoids trigonometry and pre-calculus topics.
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gender gap in the AMC data is somewhat larger than has been reported in most previous

studies: whereas male-female ratios of about 2:1 have been reported in studies of 99th

percentile performers on several standardized tests, we find a ratio of 4:1 among students

scoring at least 100 on the AMC 12.3 The most striking finding of Section 3 is a new

finding that exploits the AMC’s calibration at higher percentiles: we find that the gender

gap widens dramatically as one moves to higher and higher percentiles and exceeds 10 to 1

at the upper end of our data.

Section 4 examines variation in the gender gap across schools. Differences in the gender

gap across schools (or other student groups) are of interest both because they provide insight

into the causes of the gender gap and because they may help identify policies that might

narrow the gap.4 We focus on students scoring above 100 and 120 on the AMC 12 and

begin with the most basic question: how much variation is there in the gender gap across

schools? Our first analysis, which examines the degree to which female high scorers are

clustered, provides another striking new finding: there is statistically significant variation in

the gender gap across schools, but the magnitude of the variation is moderate and almost

all high achieving high schools appear to have a substantial gender gap.5 We also use

regressions to look for systematic relationships between the magnitude of the gender gap

and school and region demographics like parental education, income, and percent Asian.

These tests yield little evidence of systematic variation.

Section 5 brings in data from other math contests: the U.S. Mathematical Olympiad

(USAMO) and International Mathematical Olympiad (IMO). These contests are of less

intrinsic interest – they require proof-writing skills not taught in most high schools and are

only taken by extreme high achievers – but provide an opportunity to get additional insights

both in the U.S. and worldwide. One potentially important observation from the U.S. data

is that the highest-scoring boys and the highest-scoring girls appear to be drawn from very
3This score is at the 94th percentile in the AMC data, which is probably around the 99th percentile

for the SAT-taking population. See Feingold (1992) and Hedges and Nowell (1995) for discussions of a
number of datasets including the National Assessment of Educational Progress (NAEP) and Hyde et al.
(2008) and Guiso et al. (2008) for recent papers using examining state proficiency tests and Programme for
International Student Assessment (PISA), respectively.

4One closely related paper here is Andreescu et al.’s (2008) study of participants at the International
Mathematics Olympiad which states that “Girls were found to be 12% to 24% of the children identified as
having profound mathematical ability when raised under some conditions; under others, they were 30-fold
or more underrepresented.”

5More formally and precisely, our main statistical model supposes that the number fi of female high
scorers in a school is distributed Binomial(Ni, pi), with pi itself being distributed Beta(α, β), and estimate
the mean and standard deviation of pi. We find a mean of 0.18 and a standard deviation of 0.05 when
using a threshold score of 100 on the AMC 12. An example for the “almost all” fact is that 127 of the 131
schools with eight or more students scoring above 100 on the AMC 12 have more boys than girls reaching
this threshold.
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different pools. Whereas the boys come from a variety of backgrounds, the top-scoring girls

are almost exclusively drawn from a remarkably small set of super-elite schools: as many

girls come from the top 20 AMC schools as from all other high schools in the U.S. combined.

This suggests that almost all girls with extreme mathematical ability are not developing

their talent to the degree necessary to do very well on the Olympiad contests. Our IMO

analysis reexamines a dataset on the gender of IMO participants developed by Andreescu

et al (2008). Here, our main observation is similar to our finding on the gender gap across

schools and quite the opposite of what Andreescu et al. emphasize: we note that there is

strikingly little variation across countries in the (very large) magnitude of the gender gap.

As noted above, there is a large literature on the gender gap in average test scores.

In earlier decades, boys took substantially more math courses in high school and studies

tended to find a nontrivial gender gap in average test scores.6 The gap in coursetaking has

largely gone away and more recent studies on universally administered tests typically find

that there is now a fairly small gap in average test scores.7

The literature on the gender gap among high achievers is smaller. Feingold (1992)

includes a nice survey going back to the 19th century. Benbow and Stanley’s (1980) report

of a 4.5 to 1 male-female ratio among 7th grade “talent search” students scoring at least 600

on the math SAT was highly publicized, but also seems to have hampered further research.8

Several recent studies report male-female ratios of around 2:1 at the 99th percentile: there

is a 2.1:1 male-female ratio among students scoring 800 on the math SAT; Hyde et al.

(2008) report a similar figure using data on state proficiency tests; Xie and Shauman (2003)

present estimates in this range from a number of (older) tests; and studies of more recent
6Hyde et al.’s (1990) meta-analysis of 100 studies from 1963-1988, for example, reported that boys scored

0.29 standard deviations higher on tests of complex problem solving.
7Hyde et al. (2008) report an 0.06 standard deviation gap on 11th grade proficiency tests. The gap on

the NAEP is about 0.1 standard deviations. PISA scores show a gender gap in almost all covered countries
that is usually a little bigger than this. See Freeman (2005), Perie (2005), OECD (2006), and Guiso et al.
(2008) for more on the NAEP and PISA gender gaps. Fryer and Levitt (2009)’s results suggest a somewhat
larger gap: they examine data from another representative test, the Early Childhood Longitudinal Study,
and find that a gender gap of 0.2 standard deviations has already emerged by 5th grade. The SAT gender
gap has not narrowed to the same extent – over the past 40 years the drop is just from 40 points to 34 –
but selection into test-taking makes interpretation of mean scores difficult.

8Science’s editors allowed Benbow and Stanley to state (with essentially no other evidence) that

We favor the hypothesis that sex differences in achievement in and attitude toward mathemat-
ics result from superior male mathematical ability.

Much of the subsequent literature seems more focused on refuting this hypothesis than on understanding
the gender gap. Papers that could discuss male-female ratios among high achievers sometimes seem to shy
away from doing so or to minimize findings. For example, Hyde et al. (2008) say “even at the 99th percentile
the gender ratio favoring males is small for whites . . . ” when the ratio is in fact above 2:1 in their data and
Guiso et al. mention in their text that the male-female ratio is less than 1:1 for 99th percentile students in
Iceland, but do not mention that this ratio is above 1.6:1 in 36 of the 40 countries in their study.
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“talent-search” cohorts also find gender gaps closer to this level.9

Our paper contributes to this literature in a few ways. One of these is to provide a more

detailed look at how the gender gap widens as one moves beyond the 99th percentile. A

number of papers report gender ratios at multiple percentiles such as the 90th and 95th or

95th and 99th, but giving more detail than this is rare and in any case most papers cannot

give meaningful statistics on percentiles above the 99th because the tests they are based on

do not draw meaningful distinctions at such levels.10 Another of our main contributions is to

examine variation in the gender gap across schools and across countries. We are not aware

of any papers presenting analyses of the idiosyncratic variation of the high achievement

gender gap across schools.11 Machin and Pekkarinen (2008) is a recent paper with a similar

message to ours on cross-country differences: they report that there is a greater variance

in the male population on PISA in 34 of 40 countries. A few other cross-country analysis

have emphasized heterogeneity rather than similarity of the gender gap. Feingold (1994)

gathered together results from various studies and noted that findings did not appear to be

consistent across countries. Guiso et al. (2008) say that their finding that the gender gap

is smaller in more gender-equal countries carries over to the tail.12 Andreescu et al. (2008)

is closely related to part of our paper as noted above.

One motivation for studying the gender gap among high-achieving high school students

is that the phenomenon may be related to the underrepresentation of women in scientific

fields.13 There is a vast literature on this topic motivated both by concern for women – the

fact that the lack of women in technical fields appears to be a significant contributor to the

gender gap in wages – and by concern for scientific progress.14 Xie and Shauman (2003)

provide a nice overview and discuss research into dozens of factors that may be important
9See Brody and Mills (2005).

10One exception is Andreescu et al. (2008): its finding of a 13.5:1 male-female ratio among International
Math Olympiad participants can be thought of as a data point on an extremely high percentile of the
distribution.

11The Hyde et al. (2008) finding that there is no gender gap among 99th percentile Asian Americans in
Minnesota can be seen as a related statistic being used to portray male-female ratios at the high end as not
consistent. Fryer and Levitt (2009) note that the gender gap in their data (which concern mean scores of
fifth graders) is very consistent across demographic groups.

12Their online appendix, however, includes a chart with a message more similar to ours: Figure S2A
appears to indicate that the male-female ratio at the 99th percentile is above 1.6:1 in 36 of the 40 countries
they study.

13See Weinberger (2005) for a contrarian view arguing that technical professionals are not necessarily high
achievers on standardized math tests. Another important caveat is that a gender gap in high school test
scores may not carry over into a gender gap in performance in college courses. Leonard and Jiang (1999),
for example, present evidence that SAT scores underpredict women’s grades.

14See Paglin and Rufolo (1980), Brown and Corcoran (1997), and Blau and Kahn (2000) among others
for discussions of the gender gap in pay.
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here (including differential math preparation in secondary school).15

Our paper is obviously very different from the recent papers that have attracted atten-

tion in the popular press with their “girls are doing great” message. But we do not see our

results as entirely discouraging. Recognizing that there is a larger gender gap among high

achieving students may be an important first step to finding solutions relevant to this part

of the distribution. We won’t have much to say on policies to narrow the gender gap, but

hope that our findings will improve understanding and spur further research.

2 Measuring High Math Achievement: The AMC and Other
Tests

In this section we provide an introduction to the AMC contests and note advantages and dis-

advantages relative to other more commonly used tests of math achievement. The primary

advantage of the AMC tests is that they are designed to identify and distinguish between

students at high achievement levels. The primary drawback is that they are administered

to a self-selected and highly nonrepresentative subset of the population.

2.1 The American Mathematics Competitions

The Mathematical Association of America has sponsored the American Mathematics Com-

petitions (AMC) since 1950. They are given in over 3,000 high schools and at a number of

other locations.16 Some schools have hundreds of students participate, but it is far more

common for the AMC exams to be taken by a couple dozen self-selected students. Our pri-

mary focus will be on the AMC 12, which is taken by about 125,000 students in a typical

year. Test takers are roughly evenly distributed between grades 11 and 12.17 The test is

offered on just two dates each year: the first, in the second week of February, is referred
15A number of well-designed studies examine various potential links. For example, Bettinger and Long

(2005) and Carrel, Page, and West (2009) study the impact of the gender gap in current faculty on student
achievement and future coursetaking.

16Although this is a small fraction of the number of public and private high schools in the U.S. (about
15%), the AMC is much more likely to be offered in high-achieving high schools, which probably makes
it available to a much higher fraction of the top students in the U.S. than a simple count of high schools
would suggest. To provide some evidence on this we gathered data on the distribution of National Merit
Semifinalists and AMC availability in Massachusetts, a state with relatively high AMC participation, and
Oklahoma, a state with relatively low AMC participation. In Massachusetts, we found that nearly 80%
of the 2009 National Merit Semifinalists attend high schools that offered the AMC in 2007. In Oklahoma,
even though a very low percentage of high schools participate in the AMC, we still found that 50% of the
2009 National Merit Semifinalists attend high schools that offered the 2007 AMC. Data on national merit
semifinalists were obtained from articles published in Education Station and Boston Globe on September 10,
2008.

17About 10% of test takers are in grades 10 and below.
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to as the 12A and the second, which occurs 15 days later, is referred to as the 12B. High

scorers (typically students who score above 100) are invited to participate in subsequent

AMC contests. The AMC series of contests are the most prestigious high school contests

in the U.S. and some elite colleges (including MIT, Yale, Brown, and Cal Tech) have places

for students to report AMC scores on their application forms.

The AMC contests are designed to distinguish among students at high performance

levels. The AMC 12 asks students to solve 25 problems in 75 minutes. The questions

increase substantially in difficulty from the beginning of the test to the end and require

in varying degrees knowledge of pre-calculus mathematics and/or problem solving skills.

Figure 1 presents some sample questions: those numbered 13 through 17 on the 2007

AMC 12A. Some require specific knowledge like the equation for a line or trigonometric

identities. Others do not. Most require some creative problem solving. The AMC scoring

rule incorporates a mild anti-guessing penalty: students get 6 points for a correct answer,

1.5 points for a blank answer, and zero points for an incorrect answer. The range of possible

scores is 0 to 150.

We examine the gender gap at various AMC score levels, but will sometimes focus on

students scoring 100 or higher on the AMC 12. There were two main reasons for this choice:

we believe that it roughly corresponds to a 99th percentile score on the math SAT (i.e. 780-

800) which facilitates comparisons with other studies; and it is a round number which is

even more focal in the AMC world because it is the cutoff for automatic advancement to

the AIME.18

Note that when we say that a 100 on the AMC 12 is roughly equivalent to a 99th

percentile SAT score we do not mean that students scoring 100 on the AMC 12 will usually

get an 800 on the SAT. Getting an 800 on the SAT is a random event – one needs to make

zero mistakes in the course of answering 54 questions at a rate of 78 seconds per question.

Indeed, the College Board reports that only 15% of students who retook the math SAT

after scoring 800 scored 800 on the retake. The average retake score was 752 (which is only

11 points higher than the average retake score of students who scored 760 on their previous

attempt). Instead, we mean that we would guess that a typical student who scored 100 on

the AMC 12 and a typical student who scored 800 on the math SAT would be expected to

do about as well if given another similar math test.
18The sample questions in Figure 1 also provide some sense of the level of achievement corresponding to

a score of 100. Fourteen correct answers and eleven blanks gives a score of 100.5. For this reason most
students scoring 100 or higher on the AMC 12A got each of the first three sample questions correct. The
last two were answered correctly by 44% and 64% of students scoring at least 100.
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58th AMC 12 A 2007 3

9. Yan is somewhere between his home and the stadium. To get to the stadium
he can walk directly to the stadium, or else he can walk home and then ride his
bicycle to the stadium. He rides 7 times as fast as he walks, and both choices
require the same amount of time. What is the ratio of Yan’s distance from his
home to his distance from the stadium?

(A)
2
3

(B)
3
4

(C)
4
5

(D)
5
6

(E)
6
7

10. A triangle with side lengths in the ratio 3:4:5 is inscribed in a circle of radius 3.
What is the area of the triangle?

(A) 8.64 (B) 12 (C) 5π (D) 17.28 (E) 18

11. A finite sequence of three-digit integers has the property that the tens and
units digits of each term are, respectively, the hundreds and tens digits of the
next term, and the tens and units digits of the last term are, respectively, the
hundreds and tens digits of the first term. For example, such a sequence might
begin with terms 247, 475, and 756 and end with the term 824. Let S be the
sum of all the terms in the sequence. What is the largest prime number that
always divides S ?

(A) 3 (B) 7 (C) 13 (D) 37 (E) 43

12. Integers a, b, c, and d, not necessarily distinct, are chosen independently and at
random from 0 to 2007, inclusive. What is the probability that ad− bc is even?

(A)
3
8

(B)
7
16

(C)
1
2

(D)
9
16

(E)
5
8

13. A piece of cheese is located at (12, 10) in a coordinate plane. A mouse is at
(4,−2) and is running up the line y = −5x + 18. At the point (a, b) the mouse
starts getting farther from the cheese rather than closer to it. What is a + b ?

(A) 6 (B) 10 (C) 14 (D) 18 (E) 22

14. Let a, b, c, d, and e be distinct integers such that

(6− a)(6− b)(6− c)(6− d)(6− e) = 45.

What is a + b + c + d + e ?

(A) 5 (B) 17 (C) 25 (D) 27 (E) 30

15. The set {3, 6, 9, 10} is augmented by a fifth element n, not equal to any of the
other four. The median of the resulting set is equal to its mean. What is the
sum of all possible values of n ?

(A) 7 (B) 9 (C) 19 (D) 24 (E) 2658th AMC 12 A 2007 4

16. How many three-digit numbers are composed of three distinct digits such that
one digit is the average of the other two?

(A) 96 (B) 104 (C) 112 (D) 120 (E) 256

17. Suppose that sin a + sin b =
√

5/3 and cos a + cos b = 1. What is cos(a− b) ?

(A)

√
5
3
− 1 (B)

1
3

(C)
1
2

(D)
2
3

(E) 1

18. The polynomial f(x) = x4 +ax3 + bx2 + cx+d has real coefficients, and f(2i) =
f(2 + i) = 0. What is a + b + c + d ?

(A) 0 (B) 1 (C) 4 (D) 9 (E) 16

19. Triangles ABC and ADE have areas 2007 and 7002, respectively, with B =
(0, 0), C = (223, 0), D = (680, 380), and E = (689, 389). What is the sum of all
possible x-coordinates of A ?

(A) 282 (B) 300 (C) 600 (D) 900 (E) 1200

20. Corners are sliced off a unit cube so that the six faces each become regular
octagons. What is the total volume of the removed tetrahedra?

(A)
5
√

2− 7
3

(B)
10− 7

√
2

3
(C)

3− 2
√

2
3

(D)
8
√

2− 11
3

(E)
6− 4

√
2

3

21. The sum of the zeros, the product of the zeros, and the sum of the coefficients
of the function f(x) = ax2 + bx + c are equal. Their common value must also
be which of the following?

(A) the coefficient of x2 (B) the coefficient of x

(C) the y-intercept of the graph of y = f(x)

(D) one of the x-intercepts of the graph of y = f(x)

(E) the mean of the x-intercepts of the graph of y = f(x)

22. For each positive integer n, let S(n) denote the sum of the digits of n. For how
many values of n is n + S(n) + S(S(n)) = 2007 ?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

23. Square ABCD has area 36, and AB is parallel to the x-axis. Vertices A, B, and
C are on the graphs of y = loga x, y = 2 loga x, and y = 3 loga x, respectively.
What is a ?

(A) 6
√

3 (B)
√

3 (C) 3
√

6 (D)
√

6 (E) 6

Figure 1: Questions 13 thorugh 17 from the 2007 AMC 12A
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To provide some evidence on the AMC-SAT correspondence, we gathered data on SAT

and AMC scores for a sample of MIT applicants.19 The first row of Table 1 gives the mean

math SAT score that students with junior-year AMC 12 scores in the given range earned

when they first took the SAT. The second row gives the percentage of students scoring

800 (again on their first attempt). Students scoring 120 and above on the AMC 12 did

much better on the SAT than would a typical student with a previous 800 SAT – they are

four times as likely to score 800.20 Students with AMC 12 scores in the 100-109.5 range

are doing somewhat better than the reported retake performances of students with an 800

SAT. Students with AMC 12 scores in the 90-99 range look more like students with a 760

on a previous SAT. We would like to emphasize that these are not unbiased estimates of

SAT performance: they are derived from applicants to MIT and, especially in the low AMC

ranges one would expect a substantial upward bias because students with SAT scores typical

for that AMC score would probably not apply to MIT. We present the data to support our

rough assessment of what a 100 on the AMC 12 means and to show that students who score

higher on the AMC 12 look stronger on other metrics as well, and do not intend them as

an SAT-AMC translation.

Statistics for students with AMC 12 scores in each range
60’s 70’s 80’s 90’s 100’s 110’s 120’s 130’s 140’s

Mean on 1st Math SAT 706 710 711 745 773 774 791 793 800
% with 800 on 1st SAT 0 0 0 19 35 38 65 60 100
Sample size 5 5 12 32 83 21 32 10 5

Table 1: SAT math scores for a sample of students with SAT scores various ranges

Figure 2 contains a histogram of AMC 12 scores for 2007. The average score is typically

around 65 out of 150.21 About 6.5% of students taking the AMC 12 scored 100 or better.
19Our AMC data do not include students’ names, so we could not match MIT applicants directly to

our data. The AMC does, however, publish scores for all students scoring at least 100. Accordingly, we
collected data in two ways: we drew a random sample of applicants and looked in the published data to
see if their scores were above 100; and we drew another semi-random sample and looked to see if applicants
self-reported scores below 100. We dropped three students with SAT scores that were extreme outliers.
Each of these students scored at least 100 points lower than any other student with an AMC score in the
same 10 point range, which we took to suggest either that there was some problem with the matching or
perhaps that the AMC score may not have been valid.

20This refers to the College Board’s 15% statistic noted earlier. We also collected SAT data on a small
random sample of MIT applicants without self-reported AMC scores. This group contained eight students
who scored 800 on their first SAT attempt and then retook the SAT. Two of the eight scored 800 on the
second attempt. The mean second score was 775.

21Interested readers should refer to the Appendix for a detailed description of the data. When students
participated in the AMC 12 exam multiple times, the latter of the two scores is included here and in
subsequent analyses.
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About 0.8% of students scored above 120 on the AMC 12. About 0.06% scored above 140.
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Figure 2: Histogram of 2007 AMC 12 Scores

The AMC is specifically designed to offer challenges even to students at extremely high

percentiles. For example, the 2007 AMC 12A included two questions answered correctly by

only 20-25% of students who scored at least 100, and three that were answered correctly by

fewer than 11% of such students. Data on students who take both the AMC 12A and the

AMC 12B provides ample evidence that the test is measuring something that distinguishes

students at high percentiles. Students who scored 95 to 105 on the AMC 12A averaged

103 (standard error 11) on the AMC 12B. Students who scored 115 to 125 on the AMC

12A averaged 120 (s.e. 11) on the AMC 12B. And students who scored 138 or higher on

the AMC 12A averaged 131 (s.e. 11) on the AMC 12B. Hence, their average scores on the

retake are in the 99.6th percentile of the AMC score distribution, which is probably well

above the 99.9th percentile in the SAT-taking population.

An obvious limitation of using AMC scores to assess math achievement is that the test

is given to a small subset of students. Approximately 4 million U.S. students per year

start high school. About 1.5 million of the 1.8 million who are graduating and going on to

college take the SAT. Only about 50,000 high school seniors take the AMC 12. But if our
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assessment of the SAT-AMC correspondence is correct, selection effects are not nearly so

severe when looking at high-achieving students: we would guess that one-fourth or one-fifth

of the students who score 800 on the SAT take the AMC 12.22

There are other AMC contests and we will also present a little data from two of these.

The AMC 10 is a contest similar to the AMC 12 open to students in grades 10 and below. It

is given in most of the same schools (at the same times) and is also taken by approximately

100,000 students per year. The test is designed so that the mean score is also about 65.

Students who took both the AMC 10 and the AMC 12 in 2007 scored about 13 points

higher on average on the AMC 10. The gap is somewhat larger at the higher score ranges.

For example, students who scored 115 to 125 on the AMC 10A averaged 100 on the AMC

12B.

The American Invitational Math Exam (AIME) is a more demanding contest. Students

get 3 hours to work on 15 problems. It is open only to students who have achieved a

qualifying score on the AMC 10 or 12.23 But the problems are sufficiently difficult so that

the average score in 2007 was only about 3 out of 15.

2.2 Standard standardized tests

In this section we note that the AMC is substantially different from the standardized tests

most commonly used in educational research: the questions on the standard tests tend

to be much easier and/or not require much mastery of precalculus mathematics. For this

reason, we regard other tests as poorly suited for studying high-achieving students.

The National Assessment of Educational Progress (NAEP) is the primary resource sup-

ported by the U.S. Department of Education. It is administered to a representative sample

of about 20,000 high school seniors every four years. The NAEP is designed to include

“easy”, “medium”, and “hard” questions. The simplest way to illustrate the limitations
22If one does the simplest calculation assuming that all of the juniors who took the AMC 12 in 2007 were

as likely to score 800 on the SAT in their final SAT attempt as were the students with the same AMC
score in our MIT applicant database, then one would estimate that about 3500 students who took the AMC
12 as juniors in 2007 scored 800 on their final SAT attempt. This would be about 35 percent of the total
number of students scoring 800 as reported by the College Board. We would not place much too faith in this
estimate, however, because the majority of the students with 800’s are estimated to come from the (many)
students who had scores in the 80’s and 90’s on the AMC 12, and our dataset has very few observations
(and selection problems) in this range. A similar calculation would say there are another 1500 students who
score at least 80 on the AMC 12 and then get 780 or 790 on their final SAT attempt. This alone would be
about 20% of the students with 780’s or 790’s, and again there would be many others from the much larger
pool of students scoring in the 60’s and 70’s on the AMC. Recall also that we estimated that the majority
of National Merit Semifinalists attend schools that offer the AMC 12.

23Qualifying scores vary slighly from year to year but are roughly 100 (the 95th percentile) for the AMC
12 and 120 (the 99th percentile) for the AMC 10.
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of this test is with sample questions. Figure 5 in the Appendix reproduces the five most

difficult of the 21 publicly released “hard” questions from 2005. The set includes some ques-

tions on middle school topics that require a little bit of reasoning and a couple questions

on standard college-preparatory topics that are completely straightforward. It is hard to

imagine that such a test could distinguish between students at different high achievement

levels.

No Child Left Behind regulations have led states to develop proficiency tests admin-

istered to all students. The universal administration is an attractive feature. The lack

of difficult questions, however, is again a severe limitation. One nice piece of evidence in

this regard is provided by Hyde et al. (2008), who used established criteria to categorize

questions on the state proficiency tests they studied into 4 groups on the basis of the level

of reasoning required. They noted that most states’ tests contained no level 3 or level 4

questions, making the tests less challenging than the NAEP, which they report to have a

number of level 3 questions.

The two most common tests for international comparisons are PISA and Trends in

International Mathematics and Science Study (TIMSS). PISA is given to 15-year-olds and

TIMSS to students in fourth and eighth grades and at the end of high school.24 Attractive

features of these tests include that they are administered in dozens of countries and that

samples are representative. PISA is limited in that it again does not appear to be designed

to test advanced math skills. Figure 6 in the Appendix contains a sample question from

PISA. The TIMMS advanced math test is only administered to students pursuing advanced

math courses. The universally administered “mathematics literacy” test is similar to PISA.

Figure 7 presents a sample question which appeared on both PISA and TIMSS.

In comparison to the tests discussed above, the SAT reasoning test is more focused

on standard college-preparatory mathematics. Although the interpretation of the gender

gap in average SAT scores is made difficult by the fact that female participation rates are

substantially higher, it is a reasonable source of information on the gender gap at fairly

high performance levels because the selection into the SAT is not as big an issue at higher

percentiles.25 We say “fairly high performance levels” rather than “high performance levels”

because of a fact noted earlier: students who get a perfect 800 and then retake the SAT

only average 752 on the retake. This is in the 97th percentile, so the SAT should be thought
24Guiso et al. (2008) is an analysis of the gender gap using PISA data and Mullis et al. (2000) is a report

on TIMSS.
25There is also an extensive literature questioning whether the SAT is “biased”. For example, as discussed

in Freedle (2003), several studies have found evidence of persistent biases in the SAT verbal section which
adversely affect African Americans.
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of as having limited power for distinguishing students in percentiles above the 97th.

3 The Gender Gap on the AMC

In this section we present some data on the gender gap in AMC scores. Our most basic

finding is that the gender gap on the AMC is large and widens dramatically as one moves

to higher percentiles.

3.1 The gender gap on the SAT and AMC 12

The descriptive statistics in this section focus on the relative number of girls and boys

who reach various levels of performance. Specifically, writing nf (τ) for the total number of

females with scores of at least τ and nm(τ) for the number of males with such scores, the

graphs in Figure 3 show the fraction female, nf (τ)/(nf (τ) + nm(τ)), as a function of τ .
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Figure 3: Gender Gaps on the Math SAT and on the American Mathematics Contests
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The top curve is a benchmark derived from data on the math SAT scores of 2007

college-bound seniors.26 A rescaling of math SAT scores is on the x-axis and the fraction

female among students scoring at each level or higher is on the y-axis. The x-axis is scaled

to be linear in percentile ranks and nonlinear in the actual scores. The fact that the

curve starts out above 0.5 on the left side reflects that more girls take the SAT: the raw

numbers are about 800,000 vs. 700,000.27 The ratio dips below unity around the 30th

percentile, reflecting that the number of boys and girls achieving scores in excess of 460 are

approximately equal. The ratio drops substantially at higher SAT scores. Approximately

200,000 boys and 150,000 girls receive scores of at least 600. The ratio declines most steeply

at the highest percentiles and reaches 0.31 at 800; i.e., there are more than 2.1 times as

many boys as girls with scores of 800.28

The bottom curve of Figure 3 is one of our main results. It is constucted in a similar

way using data on American students taking the 2007 AMC 12.29 The scaling convention

is mechanically identical to that of the SAT curve – the x-axis is linear in percentile ranks

within the population of AMC takers. The populations taking the two tests are quite

different, however, so readers should keep in mind that the percentiles have very different

meanings.

Several aspects of the graph are noteworthy:

• The female-to-male ratio is below unity even at the left-most point of the graph: 43%

of AMC 12 test-takers are female.

• The AMC curve is at least as steeply downward sloping as the SAT curve. The fraction

female drops below 31% at an achievement level that is only moderately high. (The

60th percentile score on the AMC 12 is 70.5, which would roughly correspond to a

score in the high 600’s on the SAT.) There is a 4.2 to 1 male-female ratio in the pool

of students scoring 100 or higher.

• The AMC curve turns sharply downward at the percentiles above those that the SAT

can measure. The male-female ratio reaches 6.2 to 1 for students in the 99th percentile
26Data is taken directly from the table “SAT Percentile Ranks for Males, Fe-

males, and Total Group, 2007 College Bound Seniors–Mathematics,” available at
http://www.collegeboard.com/prod downloads/highered/ra/sat/composite CR M W percentile ranks.pdf.

27Both this difference and the fact that the selection differs by ethnicity (and presumably other factors)
makes interpreting differences in mean scores difficult.

28The College Board reports an 800 as being in the 99+ percentile because approximately 10,000 of the
1.5 million students who take the math SAT score 800 on their last attempt. The number of students who
score 800 at least once, however, is presumably substantially higher.

29This figure excludes data from schools outside the U.S.
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of the AMC population (1,213 students with scores of 114 or higher) and 12 to 1 in

the 99.9th AMC percentile (116 students with scores of 135 or higher). The top 36

scorers were all male.

The first observation on its own is not surprising and does not indicate that there is

a strong gender-related selection into taking the AMC 12. Most AMC takers must come

from the high end of the SAT population and the population of students with SAT scores

of 600 or above is also 43% female.

The second observation is unexpected. If AMC takers were drawn in a gender-independent

way from the population of students with SAT scores above 600 and scores on the two tests

were similar, then the AMC curve would resemble a stretched out version of the right por-

tion of the SAT graph: it would start lower but decline at one-half or one-third of the

observed rate so that it met the SAT curve at the right endpoint. Instead, the AMC curve

is steeper. Such steepness could come from two sources. First, there may be differential

selection into AMC-taking, with girls of moderate achievement being more likely to take

the exam than comparably accomplished boys, and girls of high achievement being sub-

stantially less likely to take the AMC than comparably accomplished boys. Second, it could

be attributed to gender-related differences in knowledge and problem-solving skills: among

students who know the SAT material equally well it may be that girls are less likely to

know the additional material covered on the AMC 12 and less likely to have developed the

problem-solving skills the AMC requires. One or both of these effects must be substantial:

the male-female ratio among students scoring 100 or more on the AMC 12 is twice as large

as the ratio among students scoring 800 on the SAT.

The fact that the male-female ratio reaches 2.1:1 at an AMC 12 score threshold that

is well below the 800 SAT threshold suggests that there is a substantial gender-related

selection effect. We regard this as an important finding, and not just a confounding factor

that makes estimating population characteristics difficult. Math contests are one of the

primary means by which high-ability students are motivated to develop the knowledge and

problem-solving skills that contribute to success in many technical fields. If math contests

are less appealing to girls than to boys, then this will be a reason why fewer girls are

reaching very high achievement levels.

In the case of students scoring 100 or higher it is plausible that the difference between

the SAT results (a 2.1 to 1 ratio at the 800 level) and the AMC results (a 4.2 to 1 ratio at

the 100+ level) is mostly due to gender-related selection. What would be required is that

girls who would score 100 or higher are only half as likely to take the AMC 12 as comparably
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accomplished boys. A portion of the effect may also be attributable to the AMC test being

more accurate at identifying the 99th percentile of the SAT-taking population (as opposed

to the SAT’s mixing in many 97th percentile students). A portion could also be attributable

to differences between the tests.30

At higher score ranges, however, it becomes increasingly implausible that gender-related

selection into taking the AMC could account for much of the effect: why would girls capable

of scoring 130 or higher be only one-quarter as likely as boys who would do this well to

take the test? Indeed, the knowledge and problem-solving skills needed to get a 130 are

sufficiently high so that we feel that almost all students (male or female) who have acquired

such skills are probably taking the AMC 12, making gender-related selection nonexistent

(for measurements of what the gender composition of high scorers would be under universal

administration). As a result, we interpret the body and right tail of the curve in combination

as telling us that many very talented girls are simply not taking the AMC 12, and that

there is an additional effect in which a smaller fraction of girls who do become involved in

math contests develop the mathematical knowledge and problem-solving skills necessary to

achieve extremely high scores.

We would like to emphasize that nothing in the data requires an assumption of different

distributions of ability in the full male and female populations. What we see the data

as suggesting is that there is a gender-related selection into AMC participation which

disproportionately reduces the number of high-ability girls, and some additional effect that

results in fewer girls developing their knowledge and problem solving skills to the most elite

level.

3.2 The gender gap on various AMC contests: AMC 10, AMC 12, and
AIME

In this section we compare data from the AMC 12 and data from two other AMC contests:

the AMC 10 and AIME. Recall that the AMC 10 is a slightly easier contest taken by

students in grades 10 and below, and that the AIME is a more challenging contest open

only to students with high scores on the AMC 10 and AMC 12. Figure 4 presents data

from the three contests. We have changed a couple of things to facilitate comparisons: the

x-variable in these graphs is simply the AMC score rather than the percentile; and the

y-variable is the fraction female among students at each score level (rather than at the
30Hyde, Fennema, and Lannon (1990), for example, discuss evidence suggesting that the gender gap was

larger on tests requiring complex problem solving.
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score level or higher as in our previous graph).31 The AMC 12 scores are the red squares.

Two things that are easier to see in this graph are that the population of students receiving

just about every score below 58.5 is more than 50% female, and that the fraction female

declines fairly smoothly as we move through the range in which most of the data lies.
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Figure 4: Gender Gaps on the AMC 10, AMC 12, and AIME

The AMC 10 data is fairly similar to the AMC 12 data. One difference is that the

fraction female drops off somewhat more slowly at scores above 70 and that there are girls

with scores very close to the maximum possible. This could be due to differences in the

tests. For example, the last few questions on the AMC 12 are substantially harder than any

AMC 10 questions; and the AMC 12 includes trigonometry and other precalculus topics.

But, the most obvious difference between the tests is that the AMC 10 is being taken earlier

in high school, which suggests that the effects that lead to the gender gap in high school

build throughout the high school years.

The AIME is taken only by students who have first achieved a very high score on the
31AIME scores have been multiplied by ten so that they also range from 0 to 150. This figure excludes

data from schools outside the U.S.
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AMC 10 or 12.32 It emphasizes the ability to solve hard problems over speed: the exam is

3 hours long and the median participant in 2007 only solved 3 of the 15 problems. The pool

qualifying to take the AIME is 22% female. The graph illustrates that there is a remarkably

smooth decline in the percentage female at higher score levels.

4 Cross-Sectional Patterns in the Gender Gap

In this section we use data on the clustering of high-scoring girls to obtain estimates of how

the gender gap varies across schools. Such variation is of interest for at least two reasons:

it may provide insight into the sources of the gender gap; and an examination of schools

where the gender gap is relatively small and large may suggest policies that might narrow

the gap. Our most basic conclusion is that there is variation in the gender gap across

schools, but that the magnitude of the variation is not very large.

4.1 Does the gender gap vary across schools?

Our first exercise is to ask how much variation there is in the gender gap across schools.

We use no data on school characteristics, and instead infer whether there is unobserved

heterogeneity by examining the clustering of high-scoring girls. Intuitively, if one only had

data on the single highest score in each school in a single year it would be impossible to

tell whether all schools had identical environments in which there was a 17% chance that

the high scorer would be a girl, or whether 34% of schools had no gender gap whereas the

remaining 66% of schools had zero chance of producing a female high scorer. But with

data on multiple high-scoring students from each school the two scenarios would produce

very different patterns: in the former case we’d find that most schools had one or two girls

among their top ten; whereas in the latter we’d see lots of zeros, fours, fives, and sixes.

More formally, we use data on the number of boys and girls in each school with AMC

12 scores above 100 (and 120). We suppose that the environment of school i is such that

the number of high scoring girls will be distributed as fi ∼ Binomial(Ni, pi), where Ni is

the total number of high scoring students at the school and pi is a parameter that reflects

how the environment affects the gender gap. We are interested in variation in pi across

schools. We estimate this by assuming that the pi are themselves independent realizations

from from a Beta(α, β) distribution and estimate the parameters of this distribution by

maximum likelihood.33

32Qualifying scores are approximately 120 on the AMC 10 and 100 on the AMC 12.
33The beta distribution is assumed because it makes the estimation easy. The integrals over the unobserved
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The first column of Table 2 presents estimates of the mean and variance of the pi derived

from data on the number of girls and boys scoring above 100 on the AMC 12.34 The point

estimates are that the pi are drawn from a distribution with a mean of 0.18 and standard

deviation of just 0.05. The standard deviation is statistically significant, so that we can

conclude that there are some schools where the gender gap is relatively large and others

where it is relatively small. But the more important thing to take away is the magnitude

of the standard deviation: it indicates the variation in the gender gap across schools is not

very large.

The second column presents estimates derived from data on the number of boys and

girls scoring above 120 on the AMC 12. Here, the pi are estimated to be drawn from a

distribution with mean 0.11 and standard deviation 0.04. The standard error for the latter

estimate is somewhat larger due to the fact that the number of girls scoring above 120 is

quite small.

Sample of Students
AMC 12 > 100 AMC 12 > 120

Parameter Est. SE Est. SE
E(pi) 0.18 (0.01) 0.11 (0.01)
St.Dev(pi) 0.05 (0.01) 0.04 (0.05)
Number of schools 1,306 273
Number of students 4,583 532

Table 2: Estimates of the variation in the gender gap across schools

If these estimates seem a bit mysterious, we can point out that the universality of the

gender gap is plainly apparent in the raw data on high achieving schools. In the case of

students scoring over 100 on the AMC 12 there are a number of schools with many high-

scorers. For example, there are 131 schools which had eight or more students scoring above

100. At 127 of these 131 schools, boys outnumbered girls among the high scorers.35 This

parameter pi have simple closed form solutions and the likelihood becomes

Prob{fi|Ni, α, β} =

(
Ni

fi

)
Γ(α+ β)

Γ(α)Γ(β)

Γ(fi + α)Γ(Ni − fi + β)

Γ(Ni + α+ β)
.

34The data include 1,306 schools. In addition to schools with no students scoring above 100, we drop
schools outside the U.S., schools we were not able to identify in the NCES data (see Appendix), and
single-sex schools.

35The exceptions are one private school and three very strong but otherwise unremarkable public schools:
at Holmdel High School (Holmdel, NJ) 8 of the 16 high scorers were girls, at Canton High School (Canton,
MA) 5 of the 9 high scorers were girls, and at Lawton Chiles High School (Tallahassee, FL) 5 of the 9 high
scorers were girls. At the private Hotchkiss School (Lakeville, CT) 6 of the 11 high scorers were girls.
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requires a substantial and nearly universal gender gap – at a school with eight high scorers

one would expect to have four or more girls among them more than one quarter of the

time even if pi were just one-third.36 The estimates for the population of students scoring

above 120 on the AMC 12 reflect that there are few clusters of high-scoring girls: only eight

schools have more than one girl with a score above 120.

We conclude that the factors that are contributing to the gender gap are felt quite

broadly. There are some schools where the gender gap is somewhat bigger or smaller, but

the differences are not large.

4.2 Where is the gender gap larger and smaller?

Although the results above indicate that there is not much variation in the gender gap

across schools, it still may be interesting to investigate where it is relatively large and

small. Patterns could potentially lead to insights on the causes of the gender gap, and might

suggest policies that could narrow the gap. In this section we examine the determinants of

the gender gap using simple school-level regressions. For each public school which could be

matched to NCES data, we computed the fraction female among students in the school who

scored at least 100 (and 120) on the AMC 12.37 Table 3 reports estimates from regressions

of these variables on a number of characteristics of the school and of the zip code in which

it is located.

As might be expected given that our earlier results suggest that most of the variation in

the data is Poisson-style noise rather than true variation in the gender gap, we fail to find

many strong patterns. The regression looking at the fraction female among students having

AMC 12 scores of 100 or more has 904 observations but only one significant coefficient: the

fraction female is estimated to be higher in schools with a higher percentage of students

with sufficiently low income to qualify for free lunch. Variables reflecting the race and

ethnicity of the school population and the education and income of the zip code have small

insignificant effects. The regression examining the fraction female among students with

AMC 12 scores of 120 or higher has somewhat greater explanatory power: the R2 is 0.08

rather than 0.01. But sample size is smaller here – we can only include schools with at

least one student scoring 120 or higher – and perhaps as a result we now have no significant

estimates at all.
36This comment only applies to high-achieving schools. Our estimates have no power to detect variation

in the gender gap at schools with zero or one high scorer.
37The sample excludes schools we were unable to match to the NCES data (see Appendix), non-coed

schools, private schools, charter schools, and magnet schools.
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Dep. var.: Fraction Female
AMC12 > 100 AMC12 > 120

Variable Coef. t-stat Coef. t-stat
Constant -0.19 (0.90) 0.14 (0.35)
Number in school > 100/120 0.002 (1.39) 0.01 (1.36)
School frac. Asian -0.05 (0.39) 0.15 (0.56)
School frac. white 0.08 (0.75) 0.02 (0.09)
School frac. black -0.15 (1.11) -0.25 (1.00)
School frac. female 0.50 (1.44) 0.09 (0.12)
Title 1 school -0.02 (0.64) -0.07 (1.34)
School free lunch pct 0.30 (2.22) 0.37 (1.32)
Adult frac. BA 0.04 (0.21) -0.27 (0.79)
Adult frac. Grad 0.00 (0.00) -0.23 (1.05)
ZIP median income 0.00 (0.89) 0.00 (1.46)
ZIP frac. urban 0.07 (1.10) -0.18 (1.27)
ZIP frac. white -0.08 (0.63) 0.03 (0.13)
Number of obs. 904 185
R2 0.01 0.08

Table 3: Patterns in the gender gap among high scorers on the AMC 12 across schools

One estimate that is consistent across the two columns although it falls short of being

statistically significant in either is that the gender gap appears to be somewhat narrower in

schools that have many high achievers on the AMC 12. Table 4 looks at this relationship

more closely by simply tabulating the number of boys and girls in schools that have different

numbers of students scoring above 100 on the AMC 12. The left columns show that the

percent female among students scoring at least 100 on the AMC 12 rises from about 15%

to about 21% as we move from the lowest to the highest bins. The right columns examine

students scoring at least 120 on the AMC 12. Here, the relation between school quality on

the gender gap is even more pronounced. The lowest three bins contain 237 boys and only

21 girls. The highest bin is 16.3% female. If one tested the hypothesis that the gender gap

is smaller in schools with 5 or more students scoring 100 or higher on the AMC 12 via a

comparison of means one would find that these differences are approximately significant at

the 5% level. But obviously this hypothesis was only generated after looking at the data.

5 Evidence from the extremes

In this section we examine evidence on students at extremely high-achievement levels:

we examine students who achieve the very best scores and are chosen to represent their

20



Number of Gender composition of high scoring students within bin
students with AMC 12 > 100 AMC 12 > 120

AMC 12 > 100 Female Male % Female Female Male % Female
1 65 364 15.2 9 120 7.0
2 70 296 19.1 7 61 10.3

3-4 91 473 16.1 5 56 8.2
5-6 71 265 21.1 7 21 25.0
7+ 344 1290 21.1 15 77 16.3

Table 4: Patterns in the gender gap among high scorers on the AMC 12 across schools

countries in international competition. In contrast to our earlier results, we would not

argue that the gender gap in these data are inherently important: the population studied

here is much, much smaller. Instead, the motivation for this section is that understanding

what is going on at the extremes may help us understand the gender gap at less extreme

percentiles. Indeed, the U.S. data reveal one striking contrast that may turn out to be an

important observation.

5.1 U.S. data: The U.S. IMO and CGMO teams

The AMC series includes one additional invitational test beyond the AMC 12 and AIME,

the United States of America Mathematical Olympiad (USAMO). The rules for invitations

have varied from year to year, but roughly their effect is that 300 to 500 of the students with

the highest AIME scores take the USAMO. The USAMO is very different from the AMC

and AIME: whereas the AMC and AIME exams mostly require knowledge of material from

the standard college-preparatory curriculum, the USAMO is a proof-oriented contest and

therefore relies critically on skills that would not be obtained in coursework in just about

any U.S. high school.

Since 1974 the U.S. has sent teams to compete in the International Mathematics Olympiad.

In recent years this team has consisted of six students chosen from the USAMO winners.

One can combine several years of this data to obtain a noisy estimate of the female-to-male

ratio at an extremely high percentile. Over the full 35 year period the U.S. has sent 224

students to the IMO. Five have been female.38 This gender gap, however, does appear to

be narrowing. In the first 24 years there were no female team members. Since then the

ratio has been 12 to 1.

In the last two years the U.S. has also sent an eight person team to the China Girls’ Math
38This consists of three different students, two of whom went twice.
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Olympiad. These teams are publicly announced, which provides us with an opportunity

to compare the backgrounds of a group of extreme high scoring girls with that of a group

of extreme high scoring boys: the CGMO team members are roughly the top scoring girls

from the USAMO, whereas the IMO team is roughly the top scoring students regardless

of gender.39 We do not have data on individual USAMO scores, but the highest scoring

CGMO team member, Sherry Gong in 2007, was also on the IMO team and hence must

have been in the top 12. No other CGMO student, however, was in the top twenty-four

and announced cutoffs suggest that the lowest-scoring 2008 CGMO team member was

approximately 170th on the USAMO. The CGMO team members are somewhat closer to

the IMO team members on the other AMC tests. For example, in 2007 the median CGMO

team member had 9 on the AIME and the median IMO team member had 10.

Table 5 presents data on the schools which produced IMO and CGMO members in

2007 and 2008. Specifically, it reports the number of each student’s classmates who scored

at least 100 on the 2007 AMC 12, the number who scored at least 5 on the 2007 AIME,

and the number who qualified to take the 2008 USAMO along with percentile ranks of the

schools on these measures.40

The bottom half of the table contains statistics on the CGMO team members’ schools.

The nonrepresentativeness of the schools these girls come from is startling: the median

CGMO team member comes from a school at the 99.3rd percentile among AMC partici-

pating schools, i.e. from one of the top 20 or so schools in the country. Only three come

from schools that are not in the 99th percentile in most measures. And even those three

are from schools that had at least one other student qualify for the 2008 USAMO and are

at least in the 93rd percentile in terms of the number of high-scorers on the AMC 12.

The male IMO team members, in contrast, come from a much broader set of schools.

Some are from super-elite schools and most come from schools that do very well on the

AMC 12, but the median student is just from a 93rd percentile school. The majority of the

IMO team members had no schoolmates qualify to take the USAMO, whereas all CGMO

team members had at least one schoolmate qualify and most had at least four.

The fact that the top boys and girls are coming from such different sets of schools
39Neither description is exactly right. The IMO team is chosen from among the 12 high scorers on the

USAMO using USAMO scores and another test. The first CGMO teams were based on scores in the previous
year, and it is also true that at least one student offered a place on the CGMO team declined.

40The percentile rank is always the rank that the school would have without the student in question. We
do this because otherwise all schools would have a very high rank on the USAMO qualifier metric. We use
2007 data rather than the most recent data for the AMC and AIME because we need to compute school-level
percentiles using our complete dataset and this only runs through 2007.
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School strength: counts and percentiles
AMC 12 AIME USAMO

Student High School > 100 > 5 ≥ 0
U.S. International Math Olympiad Teams: 2007 and 2008

Sherry Gong Phillips Exeter Acad. 45 99.9 24 99.9 16 100
Eric Larson South Eugene HS 8 96.1 1 81-93 0 0-92
Brian Lawrence Mongomery Blair HS 42 99.8 19 99.8 9 99.9
Tedrick Leung North Hollywood HS 9 96.9 2 93-97 0 0-92
Arnav Tripathy East Chapel Hill HS 5 92.0 1 81-93 1 92-98
Alex Zhai University Laboratory HS 5 92.0 0 0-81 0 0-92
Paul Christiano The Harker School 21 99.4 13 99.7 4 99.2
Shaunak Kishore Unionville-Chaddsford HS 0 0.0 0 0-81 0 0-92
Evan O’Dorney Venture (Indep. Study) 0 0.0 0 0-81 0 0-92
Colin Sandon Essex HS 3 84.2 2 93-97 0 0-92
Krishanu Sankar Horace Mann HS 6 93.8 2 93-97 0 0-92
Alex Zhai University Laboratory HS 5 92.0 0 0-81 0 0-92

Median for Male IMO Team Members 5.5 92.9 1.5 81-93 0 0-92
U.S. China Girls Math Olympiad Teams: 2007 and 2008

Sway Chen Lexington HS 16 99.1 8 99.4 4 99.2
Sherry Gong Phillips Exeter Acad. 45 99.9 24 99.9 16 100
Wendy Hou Hillsborough HS 7 95.0 0 0-81 1 92-98
Jennifer Iglesias IL Math & Sci. Acad. 45 99.9 12 99.6 4 99.2
Colleen Lee Palo Alto HS 26 99.5 12 99.6 6 99.7
Patricia Li Lynbrook HS 39 99.8 13 99.7 6 99.7
Marianna Mao Mission San Jose HS 18 99.3 10 99.5 4 99.2
Wendy Mu Saratoga HS 10 97.5 6 99.1 7 99.8
In Young Cho Phillips Exeter Acad. 45 99.9 24 99.9 16 100
Jenny Jin The Taft School 7 95.0 5 98.7 2 98-99
Carolyn Kim Lawton Chiles HS 6 93.8 2 93-97 1 92-98
Jennifer Iglesias IL Math & Sci. Acad. 45 99.9 12 99.6 4 99.2
Colleen Lee Palo Alto HS 26 99.5 12 99.6 6 99.7
Wendy Mu Saratoga HS 10 97.5 6 99.1 7 99.8
Lynelle Ye Palo Alto HS 26 99.5 12 99.6 6 99.7
Joy Zheng Lakeside School 17 99.2 10 99.5 4 99.2

Median for Male IMO Team Members 5.5 92.9 1.5 81-93 0 0-92
Median for CGMO Team Members 18 99.3 10 99.5 4 99.2

Table 5: The 2007 and 2008 U.S. IMO and CGMO teams: statistics on team members’
schools
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suggests that the gender gap at the very highest levels is in part due to extreme selection

effects. It may be that parents of extremely talented girls are much more likely than parents

of extremely talented boys to send them to schools with elite math programs. (This would

be an independently interesting finding even if it were only strong enough to account for a

fraction of the differences between the teams.) It may be that the school-quality measures

are endogenous because high-achieving girls dramatically raise the achievement of their

classmates. But we feel that the magnitudes are such that it is implausible that there is

not a large pool of highly talented girls in the 99% of schools that are not in the top 1% who

could also have reached performance levels similar to those of the CGMO team members

with the right encouragement and education.41 It may also be worth noting that almost

all of the CGMO team members are Asian-American, which suggests that even within the

super-elite schools the U.S. educational system may be missing the opportunity to bring

many talented girls up to the highest level.

5.2 International evidence: the International Math Olympiad

The International Math Olympiad was first held in 1959. Over the past 50 years it has

grown from a small contest among Soviet-bloc nations to a true worldwide contest among

100 countries. Each country may send up to six high school students. These students

are often winners of the country’s national olympiad, but the manner in which teams

are selected varies.42 A recent paper by Andreescu et al. (2008) analyzes the gender

composition of IMO teams in order to gain insight into the degree to which the gender gap

is due to cultural, educational, and other factors that vary across countries. They show

that there are statistically significant differences in the gender gap across countries and

emphasize the outliers in their discussion

Girls were found to be 12%-24% of the children identified as having profound

mathematical ability when raised under some conditions; under others, they

were 30-fold or more underrepresented. Thus, we conclude that girls with ex-

ceptional mathematical talent exist; their identification and nurturing should

be substantially improved so this pool of exceptional talent is not wasted.
41Andreescu et al. (2008) note that most U.S. IMO team members are also selected from a small fraction

of the population in that many are Asian, Jewish, children of immigrants, and/or children of parents with
advanced mathematical training.

42Countries that wish to send a team to the IMO must submit an application which describes the procedure
by which the team will be selected and are encouraged to include past copies of the country’s national math
olympiad.
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We see our CGMO results as in complete agreement with their view that there is a

substantial pool of exceptionally talented girls that the U.S. is failing to develop. But we

see the IMO data very differently. Where they emphasize the statistical significance of

differences across countries, we would emphasize that the magnitudes of the differences

across countries are quite small. Whatever combination of factors is leading to the gender

gap at the extreme appears to be strikingly universal, and it does not seem likely that

emulating any other country’s educational system would dramatically narrow the U.S.

gender gap on such tests.

Our primary IMO data is the same data as in Andreescu et al. (2008): the gender of

each student who participated at some point in 1988-2008 as a member of the team from

one of 30 high-scoring countries.43 One basic fact about the IMO is that there is a very

large gender gap: only 5.7% of the participants in this sample (185 of 3,246) are female.

There has been some narrowing of the gender gap over time: the fraction female increases

from 4.3% in 1988-1997 to 6.8% in 1998-2008.44

Andreescu et al. (2008) highlight the outliers in the data – the team from Yugoslavia/Serbia

and Montenegro is 24% female in the most recent decade whereas Iran, Japan, and Poland

sent entirely male teams – and note that a simple Chi-squared test rejects the hypothesis

that the variation is entirely random at a very high p-value. Looking at the magnitudes of

the differences, however, we would emphasize that the gender gap is if anything strikingly

universal. In the 27 countries they consider for the 1998-2008 period, the number of female

participants had a mean of 4.6 (out of 66 total participants) and a standard deviation of

3.7.45 In a model in which each participant was female with independent probability 0.069,

the number of female partipants from a country that sent 66 students would have mean 4.6

and standard deviation 2.1. Further, one would expect the actual variance to be greater

than that of the independent model for a mechanical reason: some students qualify for

the IMO multiple times.46 Some heterogeneity across countries will be needed to account

for the 17 female participants from Yugoslavia/Serbia and Montenegro and the countries

sending no young women, but the magnitude cannot be very large.
43The data is posted on the IMO website: http://www.imo-official.org, which we presume obtained it

from Andreescu et al. Our sample has 26 countries rather than 30 because we combine Germany/East
Germany/West Germany and Czechoslovakia/Czech Republic/Slovakia into single countries.

44The 6.8% figure is roughly the same as the gender gap at the 139.5 and above level on the 2007 AMC 12
and at the 11 and above level on the 2007 AIME. These scores were achieved by 60 and 115 U.S. students.

45Serbia and Montenegro sent 72 participants rather than 66 because Montenegro sent a separate team
in 2007 and 2008. Serbia and Montenegro is the only country that sent more than 10 female participants.

46For example, while it is true that 8 of Bulgaria’s 66 participants were female, the 8 female student-years
is attributable to just 3 young women each of whom went multiple times.
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To provide a formal estimate we perform the same calculation as in section 4.1. We

assume that the probability that each participant from country i is female is pi and estimate

the mean and standard deviation of the pi under the assumption that these have a Beta

distribution across countries. In the the 1998-2008 time period, we estimate the mean of

pi to be 0.065 and the standard deviation of pi to be 0.031.47 We would describe this as

indicating that there is not a great deal of variation across countries.

Guiso, Monte, Sapienza, and Zingales (2008) examine the relationship between math

test scores and measures of cultural, political, and economic gender equity using PISA data.

They find that the gender gap in average scores is smaller in countries with greater gender

equity. We looked for a similar effect in the IMO data by regressing the number of female

IMO competitors in 2006-2008 on the World Economic Forum’s Gender Gap Index for each

country.48 The regression has little explanatory power and the positive point estimate on

the gender gap index is not statistically significant.49

One other item that may be of interest is the performance of female IMO participants.

In particular, it may be interesting to know how women fare once they make it to the

IMO. To examine this we regressed IMO scores on country-year fixed effects and a female

dummy using the full sample of IMO participants from 2006-2008. The results indicate

that young women scored about one point lower than their male teammates on average.

This is significant at the 5% level, but fairly small in magnitude.50

6 Conclusion

In this paper we’ve examined data from the American Mathematics Competitions. Girls

are somewhat underrepresented among the participants – 47% of AMC 10 takers and 43%

of AMC 12 takers are female – which is unfortunate given the important role that math

contests play in motivating American high school students to reach high levels of math

achievement.

Our main focus, however, is not on the contests themselves but on what they may
47The standard errors on these estimates are 0.009 and 0.011, respectively. In the 1988-1997 data we

estimate a mean of 0.046 and a standard deviation of 0.028.
48The restriction to 2006-2008 allows us to use a much larger sample of 91 countries.
49Hyde and Mertz (2009) independently conducted a similar test and obtained a somewhat different result.

They examine the relationship between the GGI and the number of female competitiors from 1989-2008 in
a 30 country sample and find a positive significant correlation. The difference may be related to Fryer and
Levitt’s (2009) finding that the Guiso et al. result does not carry over to the broader sample of countries
in the TIMSS data.

50The mean score is about 14.5. The residual standard deviation of a regression with team-year fixed
effects and a female dummy is about 5.3.
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tell us about the gender gap at high achievement levels. The AMC contests are able to

draw consistent distinctions between the problem solving and precalculus math skills of

students that remain valid at very high percentiles, and hence provide an opportunity to

learn more about what goes on in the upper part of the distribution. We feel this part of

the distribution is important because, in contrast to what goes on around the mean where

the gender gap is sufficiently small as to be of little practical importance, the gender gap

in the upper tail can be quite large. Policy interventions targeted at the mean may be of

little or no help in narrowing the gender gap in the upper tail.

Our first main observation is another verification of the common observation that there

is a large gender gap among high math achievers: even restricting attention to girls who

choose to participate in these contests, many fewer girls are reaching the highest levels.

Indeed, the AMC data portray the gender gap as being somewhat larger than have previous

99th percentile studies: we find a 4.2 to 1 male to female ratio among students scoring at

least 100 on the AMC 12. Our most visually striking finding, however, concerns what

happens at even higher percentiles. Here the AMC data reveal that the male-to-female

ratio rises dramatically as we move beyond the 99th percentile and reaches more than 10

to 1 at the top end.

Another striking observation that comes up in a couple places is the universality of the

gender gap. Both in our comparison across schools and in the international comparison of

IMO competitors we’ve seen that there is statistically significant evidence that the gender

gap varies from environment to environment, but that the magnitude of this variation is

modest. One implication is that that factors contributing to the gender gap are felt quite

broadly. It also suggests that there are no simple solutions to the problem of eliminating

the gender gap. One should keep in mind, however, that the “modest” variation we’ve

found is suffiently large relative to the fraction top students who are female so as to make

it plausible that it may not be too difficult to make large proportionate increases in the

number of girls who are doing well. For example, our 18%±5% estimate suggests that there

are many schools with values below 13% and above 23%. Shifting a school from one end

to the other would entail a large proportionate increase. For this reason, further studies of

the environments where girls are doing relatively poorly and relatively well would seem to

be potentially very valuable.

One hopeful observation that comes up in a couple places is that girls appear to do

well in top schools. We saw marginally significant evidence in the AMC data of a narrower

gender gap at better schools. And the data on CGMO participants showed that the top
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girls were remarkably concentrated in a few superelite schools. This could in part reflect

that parents of high-achieving girls feel a need to move them to such schools. But the

results suggest that the number of girls (and boys) at the highest achievement levels could

perhaps be increased quite dramatically by increasing the number of schools that provide

opportunities for elite achievement.

We have consciously focused on reporting the facts in our data, rather than on at-

tempting to draw out what the data might say about the relative importance of the many

different factors that may contribute to the gender gap. Mostly, we do this because our

data contain many new facts and do not seem particularly well suited for distinguishing

theories. To some extent, however, it also reflects that the issues are sensitive and prior

debates on competing theories seem to have not been highly productive.

If asked to speculate, our first remark would be that several elements in our results seem

consistent with the view that girls suffer because they are more compliant with authority

figures and/or are more sensitive to peer pressure. Most high schools offer math courses

to suit students at several different levels. But, even in the highest-level “honors” courses,

it is probably unusual to teach material at the level needed to bring students to the 99th

percentile. If girls are less likely to complain and get schools to make special accomoda-

tions, then we would expect them to be more underrepresented among students with skill

levels that are farther beyond those developed in the classroom. Peer pressure would also

presumably be more limiting when we look at achievement levels that are only likely to be

reached if students join a math team or take online courses. Such explanations could also

fit well with the CGMO data: the superelite schools could be places where students can

join a community learning advanced material.

Potential explanations for the gender gap in high percentile math scores should also be

consistent with the fact that such gaps do not exist in some other areas. For example, the

male-female ratio among students scoring 800 on the SAT Critical Reading test is about 1 to

1 and the the ratio on the SAT Writing test is about 0.7 to 1. A compliance/peer-pressure

story could be elaborated in any of several ways to do this. One factor could be that the

verbal SAT tests have a different relationship with the standard high school curriculum:

it may be that they do not test much beyond what is gained from a standard high school

English class plus a lot of reading and hence compliance with standard school path is not

costly. Peer pressure could also differ: reading could be a much more accepted hobby than

joining the math team. Or there could be institutional factors like schools treating boys

and girls differently in different fields.
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A number of alternative explanations for the gender gap are also possible. One would

be a Summers-esqe model in which there is less variance of ability in the female population.

This could be consistent both with the increasing gender gap at the highest achievement

levels and with the extreme high-achieving girls coming from the extreme high-achieving

schools: in a model where achievement is the sum of ability and education, one could posit

parameters are such that the variance of education falls between the variance of ability in

the male population and the variance of ability in the female population.51 Our results

on the concentration of high-scoring girls, however, suggests to us that there is limited

value to trying to putting a lot of effort into estimating “ability” distributions when almost

all girls who would be capable of achieving extremely high scores do not do so. Another

alternate model would be a model in which a lack of girls in the population of extreme high

math achievers is not a bad thing: it might be that the girls who could reach the highest

achievement levels tend not to do so because they are more likely to have other skills and

interests as well and that they tend to pursue less math-focused paths that lead them to

develop portfolios of skills that will be more valuable in the long run. This could be part

of what is going on, but we would note that our impression is that the achievement levels

needed to score 100 on the AMC do not look very high in comparison to what would be

needed to succeed in the economics profession.

To conclude we would like to go back to a more factual posture. The AMC data reveal

a very large and widespread gender gap at the high achievement levels. The gender gap at

these levels is more striking and significant than gaps in average scores and calls out for

further study.

51There is some evidence in the psychology literature that gender may serve as a “proxy” variable for
underlying cognitive processes related to both ability and education. For example, Byrnes and Takahira
(1993) discuss how solving SAT problems can be seen as requiring knowledge and multiple cognitive processes
and discuss where in this chain the gender gap appears.
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Appendix

Our data on AMC 10/12 and AIME participants were provided by Professor Steve
Dunbar and Marsha Conley at the American Mathematics Competitions. The AMC data
include school state, College Entrance Examination Board (CEEB) code, encrypted name,
exam (AMC 10 or 12), contest (A or B), age, gender, grade, score, student state, student
zip, and student city for each participant. Occasionally the score for a participant is missing,
so that participant was eliminated from the data. Other variables, such as age, gender, and
grade, were also occasionally missing from the data, but those participants with missing
data were not excluded from the analysis unless the missing variable was relevant to that
analysis.

The AIME data are similar to the AMC data. They include school state, CEEB code,
encrypted name, age, gender, grade, AMC 10/12 scores, AIME score, student state, student
zip, and student city, as well as variables linking entries for students who took the AMC mul-
tiple times. According to the Mathematical Association of America (MAA) (2007), there
were 8,472 AIME participants total in 2007. After eliminating duplicate participants and
observations for which score data were missing, we have data on 8,349 AIME participants.

Unfortunately, students who participated in the AMC 10/12 multiple times in one year
were not identified separately in the AMC data. Students were matched to their AIME data
by CEEB, name, and AMC 10/12 scores where possible. When determination of duplicate
participant entries was not possible using the AIME data, duplicates were eliminated using
matches on school state, CEEB, age, gender, grade, and name. Some students’ scores in
different exams could not be linked by this method due to inconsistency in CEEB, name,
age, and grade reporting. However, this fairly conservative method yields an estimate of the
total number of AMC 10/12 participants (225,044) which is consistent with the estimate
of “over 225,000” reported by the MAA (2007).

The analyses performed in section 4 employ school- and ZIP code-specific demographic
data. Data on public and private U.S. schools for the 2005-2006 school year were down-
loaded from the National Center for Education Statistics (NCES). The NCES collected pri-
vate school data from schools that responded to the Private School Universe Survey (PSS).
Data on public schools are from the NCES Common Core of Data, which is collected an-
nually from state education agencies. School name, city and state data were linked to the
AMC/AIME data using the CEEB code search program provided on the College Board’s
website. CEEB codes for schools participating in the AMC 10/12 and AIME were matched
to NCES data by school name, city, and state. Special thanks are due to David Card and
Jesse Rothstein for help in matching the CEEB and NCES data. Of the 3,750 schools with
numerical CEEB codes in the AMC data, 3,105 were matched to schools in the NCES data.
255 of the remaining 625 schools do not appear in the NCES data because they did not
have official CEEB identifiers and were thus not linked to school data of any kind. It was
not possible to match the remaining 370 schools by the identifiers reported by the College
Board or NCES.

Data on United States ZIP code demographics are from the U.S. Census.
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Subject: Mathematics Grade:  12 Block:  2005- 12M12 No.: 3

 

3.   Roxanne plans to enlarge her photograph, which is 4 inches by 6 inches. Which of the following 
enlargements maintains the same proportions as the original photograph? Justify your answer. 

     5 inches by 7 inches                  5 inches by inches 

   
  

  

  

  

  
Did you use the calculator on this question? 

 
Subject: Mathematics Grade:  12 Block:  2005- 12M3 No.: 14

 

14.   In a certain restaurant a whole pie has been sliced into 8 equal wedges. Only 2 slices of the pie 
remain. Three people would each like an equal portion from the remaining slices of pie. What 
fraction of the original pie should each person receive? 

   
  

Answer: _________________________

 
Subject: Mathematics Grade:  12 Block:  2005- 12M4 No.: 15

 

 

15.   The pulse rate per minute of a group of 100 adults is displayed in the histogram above. For 
example, 5 adults have a pulse rate from 40-49 inclusive. Based on these data, how many 
individuals from a comparable group of 40 adults would be expected to have a pulse rate of 80 or 
above? 

   
  

Answer: _________________________
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15.   The pulse rate per minute of a group of 100 adults is displayed in the histogram above. For 
example, 5 adults have a pulse rate from 40-49 inclusive. Based on these data, how many 
individuals from a comparable group of 40 adults would be expected to have a pulse rate of 80 or 
above? 

   
  

Answer: _________________________

 
Subject: Mathematics Grade:  12 Block:  2005- 12M12 No.: 16

 

16. A clock manufacturer has found that the amount of time their clocks gain or lose per week is 
normally distributed with a mean of 0 minutes and a standard deviation of 0.5 minute, as shown 
below.                    

 

In a random sample of 1,500 of their clocks, which of the following is closest to the expected 
number of clocks that would gain or lose more than 1 minute per week?

  
A)  15 
B)  30 
C) 50 
D) 70 
E)  90 

 

Did you use the calculator on this question? 
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16. A clock manufacturer has found that the amount of time their clocks gain or lose per week is 
normally distributed with a mean of 0 minutes and a standard deviation of 0.5 minute, as shown 
below.                    

 

In a random sample of 1,500 of their clocks, which of the following is closest to the expected 
number of clocks that would gain or lose more than 1 minute per week?

  
A)  15 
B)  30 
C) 50 
D) 70 
E)  90 

 

Did you use the calculator on this question? 

A) 15             B) 30             C) 50               D) 70            E) 90        
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17. The graph of ƒ(x) = sin x  is shown above. Which of the following is the 
 

x coordinate of point P ?  
  

A)  
 

  
B)   

  
C) 

 

  
D)  

  
E)  
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17. The graph of ƒ(x) = sin x  is shown above. Which of the following is the 
 

x coordinate of point P ?  
  

A)  
 

  
B)   

  
C) 

 

  
D)  

  
E)  

 

  

 

A) 
2
π               B) π              C) 

2
3π                D) π2             E) 

2
5π        

Figure 5: The most difficult “hard” problems from the 2005 NAEP
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THE BEST CAR 
A car magazine uses a rating system to evaluate new cars, and gives the award of 
“The Car of the Year” to the car with the highest total score.  Five new cars are being 
evaluated, and their ratings are shown in the table. 

Car Safety 
Features 

(S) 

Fuel 
Efficiency 

(F) 

External 
Appearance 

(E) 

Internal 
Fittings 

(T) 
Ca 3 1 2 3 
M2 2 2 2 2 
Sp 3 1 3 2 
N1 1 3 3 3 
KK 3 2 3 2 

The ratings are interpreted as follows: 

 3 points = Excellent 
 2 points = Good 
 1 point = Fair 

Question 1: THE BEST CAR M704Q01 

To calculate the total score for a car, the car magazine uses the following rule, which 
is a weighted sum of the individual score points: 

 Total Score = (3 x S) + F + E + T 

Calculate the total score for Car “Ca”.  Write your answer in the space below. 

Total score for “Ca”: ..............................  

THE BEST CAR SCORING 1  

Full Credit 

Code 1: 15 points. 

No Credit 

Code 0: Other responses. 

Code 9: Missing. 

M704BestC_ENG3.doc 

Question 2: THE BEST CAR M704Q02 

The manufacturer of car “Ca” thought the rule for the total score was unfair.   

Write down a rule for calculating the total score so that Car “Ca” will be the winner. 

Your rule should include all four of the variables, and you should write down your rule 
by filling in positive numbers in the four spaces in the equation below.   

Total score = ………×  S + ………×  F + ………×  E + ………×  T. 

THE BEST CAR SCORING 2  

Full Credit 

Code 1: Correct rule that will make “Ca” the winner. 

No Credit 

Code 0: Other responses. 

Code 9: Missing. 

Figure 6: A sample question from the PISA test
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ROBBERIES 

Question 1: ROBBERIES M179Q01- 01  02  03  04  11  12  21  22  23  99 

A TV reporter showed this graph and said: 

“The graph shows that there is a huge increase in the number of robberies from 
1998 to 1999.” 

Do you consider the reporter’s statement to be a reasonable interpretation of the 
graph?  Give an explanation to support your answer. 

ROBBERIES SCORING 1 

 [Note: The use of NO in these codes includes all statements indicating that the 
interpretation of the graph is NOT reasonable. YES includes all statements indicating 
that the interpretation is reasonable.  Please assess whether the student’s response 
indicates that the interpretation of the graph is reasonable or not reasonable, and do not 
simply take the words “YES” or “NO” as criteria for codes.] 

Full Credit 

Code 21: No, not reasonable. Focuses on the fact that only a small part of the graph 
is shown.  
•  Not reasonable. The entire graph should be displayed. 
•  I don’t think it is a reasonable interpretation of the graph because if they were to 

show the whole graph you would see that there is only a slight increase in 
robberies. 

•  No, because he has used the top bit of the graph and if you looked at the whole 
graph from 0 – 520, it wouldn’t have risen so much. 

•  No, because the graph makes it look like there’s been a big increase but you 
look at the numbers and there’s not much of an increase. 

Code 22: No, not reasonable. Contains correct arguments in terms of ratio or 

Number of 
robberies per 
year 

Year 1999 

Year 1998 

505 

510 

515 

520 

Figure 7: A sample question common to PISA and TIMSS

36


