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ABSTRACT

Carbon dioxide emissions may create significant social harm because of global warming, yet American
urban development tends to be in low density areas with very hot summers.  In this paper, we attempt
to quantify the carbon dioxide emissions associated with new construction in different locations across
the country.  We look at emissions from driving, public transit, home heating, and household electricity
usage.  We find that the lowest emissions areas are generally in California and that the highest emissions
areas are in Texas and Oklahoma.  There is a strong negative association between emissions and land
use regulations.  By restricting new development, the cleanest areas of the country would seem to
be pushing new development towards places with higher emissions.   Cities generally have significantly
lower emissions than suburban areas, and the city-suburb gap is particularly large in older areas, like
New York.
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I. Introduction  

 

While there remains considerable debate about the expected costs of global warming, a 

growing scientific consensus believes that greenhouse gas emissions create significant risks of 

climate change.  A wide range of experts have advocated reducing individual carbon footprints 

and investing billions to reduce the risks of a major change in the earth’s environment (Stern, 

2008).1  Almost 40 percent of total U.S. carbon dioxide emissions are associated with residences 

and cars, so changing patterns of urban development and transportation can significantly impact 

emissions.2   How do major cities differ with respect to their per-household emissions levels?  

In Section II of this paper, we review the basic theory of spatial environmental externalities.  

If emissions are taxed appropriately, then private individuals will make appropriate decisions 

about location choices without any additional location-specific policies.  When emissions are not 

taxed, then location decisions will be inefficient.  The optimal location-specific tax on building 

in one place versus another equals the difference in emissions times the gap between the social 

cost of emissions and the current tax on these emissions.  Even if there was an appropriate 

carbon tax, location decisions might still be sub-optimal if governments subsidize development 

in high emissions areas or artificially restrict development in low emissions areas.  

In Section III of this paper, we measure household carbon dioxide emissions production in 66 

major metropolitan areas within the United States.3   For a standardized household, we predict 

this household’s residential emissions and emissions from transportation use.  We look at 

emissions associated with gasoline consumption, public transportation, home heating (fuel oil 

and natural gas) and electricity usage.   We use data from the 2001 National Household Travel 

Survey to measure gasoline consumption.  We use year 2000 household level data from the 

Census of Population and Housing to measure household electricity, natural gas and fuel oil 

                                                 
1 See also the critical reviews in Weitzman (2007) and Nordhaus (2007).   
2 See http://www.eia.doe.gov/oiaf/1605/ggrpt/carbon.html for sources of carbon dioxide emissions.   
3 Our work parallels the findings of the Vulcan Project at Purdue University 
(http://www.purdue.edu/eas/carbon/vulcan/index.php) and the recent Brookings Institution study by Brown and 
Logan (2008) fall into this category.   Our exercise is slightly different since we look at the impact of a standardized 
household and we focus on marginal, rather than average, homes.   For an example of international analysis that 
disaggregates greenhouse gas emissions variation within a nation, see Auffhammer and Carson’s (2008) study of 
China.  
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consumption.   To aggregate gasoline, fuel oil and natural gas into a single carbon dioxide 

emissions index, we use conversion factors.  To determine the carbon dioxide impact of 

electricity consumption in different major cities, we use regional average power plant emissions 

factors, which reflect the fact that some regions’ power is generated by dirtier fuels such as coal 

while other regions rely more on renewable energy sources.  We distinguish between the 

emissions of an area’s average house and the emissions of a marginal house by looking 

particularly at homes built in the last twenty years.   

Our estimates suggest a range of carbon dioxide emissions from about 19 tons per household 

per year in San Diego and Los Angeles to about 32 tons in Oklahoma City and Memphis.  The 

older cities of the Northeast tend to lie within those extremes.  While people in these older cities 

drive less, they need large amounts of heating and produce more emissions as a result.  For 

illustrative purposes, we use a social cost figure of 43 dollars per ton of carbon dioxide, which 

implies that the social cost of a new home in Houston is $550 dollars more per year than the 

social cost of a new home in San Francisco.  

We also use our methodology to compare the emissions in central cities and suburbs for 48 

major metropolitan areas.  In general, central city residence is associated with lower levels of 

emissions, although there are a few places where that fact is reversed.  Carbon dioxide emissions 

differences within metropolitan areas are smaller than the differences across metropolitan areas.  

The place with the most extreme emissions difference between central cities and suburbs is New 

York, where we estimate that suburban development causes more than 300 dollars more damage 

in carbon dioxide emissions than central city development.   

  Across metropolitan areas, we find a weak positive connection between the level of 

emissions and recent growth when we weight by initial population size.  We find a strong 

negative correlation between emissions and the level of land use controls.  Overall, the metro 

areas with the lowest per-household carbon dioxide emissions levels are also the most restrictive 

towards new development.    This fact suggests that current land use restrictions may be doing 

exactly the opposite of what a climate change activist may have hoped.  Those restrictions, often 

implemented for local environmental reasons (such as to preserve open space or reduce 

neighborhood traffic), seem to push new development towards the least environmentally friendly 
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urban areas (Fischel 1999, Glaeser and Tobio, 2007).  We now turn to the basic economics of 

environmental externalities and urban development.   

 

II. Urban Development and Environmental Externalities 

 

This theory section makes three simple points.  First, if emissions are actually taxed at the 

appropriate rate then there is no need for further spatial policy to improve private decisions about 

location.  Second, if emissions are taxed below the optimal level, then it is appropriate to 

subsidize the areas that have less energy usage and tax the areas with more energy usage.  Third, 

even with an optimal emissions tax, suboptimal public policies, such as zoning or transport 

subsidies, may still lead to suboptimal locations.   

We outline a simple model where location choice interacts with environmental externalities.  

We assume that there is a fixed population of size N identical individuals that must choose 

between I communities.   The population of community i is denoted iN .  Individuals choose 

their communities and their level of energy consumption.  We let “E” denote the amount of 

energy selected by each individual.  This energy choice is meant to include household and 

transportation-related energy use.   

Individuals maximize )ˆ();(ˆ)( ENCZEVEtEtPPY i
E

i
H

ii −+++−− , a quasi-linear utility 

function where Y refers to income, H
iP  refers to housing costs that are specific to region i, E

iP  

refers to energy costs which are specific to region i,  t refers to an energy tax which is initially 

independent of region, Ê  refers to the average energy consumption in the world as a whole, iZ  

refers to attributes of the area which individuals treat as exogenous, V(.;.) reflects the region-

specific benefits from energy use and )ˆ( ENC  represents the costs of global energy consumption 

that may be associated with climate change.  Each individual pays an energy tax of tE, but then 

receives a tax refund of Et ˆ  so that the tax is revenue neutral.  The function V(.;.) allows different 

area characteristics to influence the benefits from energy use, and is meant to capture the 
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possibility that air conditioning might be more valuable in hot, humid places.  We assume that 

V(.;.) is increasing and concave in its first argument.   

Income and housing costs are derived from labor markets and housing markets.  Specifically, 

each region has F
iQ identical employers who earn revenues, denoted f(.), that are increasing and 

concave in the number of people hired.  Each region also has B
iQ  of builders whose costs, 

denoted k(.), are increasing and convex in the number of buildings produced.  The employers and 

builders are owned equally by all of the people in the country.  These assumptions enable us to 

write that wage income equals 







F
i

i

Q
N

f ' , the marginal product of labor, and the cost of housing 

equals 







B
i

i

Q
N

k ' , the marginal cost of supplying housing.  Each person receives an equal share of 

all business profits throughout the world.  

Equilibrium is then determined by two optimality conditions.  First, individuals must be 

choosing their private energy consumption to maximize their utility levels which implies that  

);( *
1 ii

E
i ZEVtP =+ , where *

iE  denotes privately optimal energy consumption conditional on 

prices and taxes in area i, and );( *
1 ii ZEV  is the derivative of V(.;.) with respect to its first 

argument.  Individuals must also be indifferent between the different locations, which means that 
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 must be constant across space.   

Since everyone is essentially identical, we focus on an additive social welfare function:  

(1) ( ))ˆ();( ENCEPZEVN
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This yields first order condition for energy consumption: );()ˆ(' 1 ii
E

i ZEVENNCP =+ , which 

gives the standard result that the private optimality condition will be equivalent to the social 

optimality condition if )ˆ(' ENNCt = .    The first order condition for social optimality locations is 
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 is constant across space.  This 

condition is satisfied if )ˆ(' ENNCt = .    There is no need for any added spatial policies if energy 

is properly taxed. 

  If )ˆ(' ENNCt ≠ , then the spatial equilibrium is not Pareto optimal because people don’t 

fully internalize the externalities associated with their energy use when they change locations.  If 

energy use in an area is independent of the number of people in that area, then a location specific 

tax of ))ˆ('(* tENNCEi −  transforms the private location decision into a second best social 

optimum, where people make the socially optimal location decisions conditional upon their 

socially suboptimal energy decisions.  In comparing any two areas, the difference in tax payment 

for area i versus area j should equal ( ) ))ˆ('(*
2

* tENNCEEi −− , the difference in energy usage 

times the difference between the optimal tax and the current tax.  Our primary empirical exercise 

will be to calculate these quantities for different areas.   

We can use the same model to ask when local environmentalism is good environmentalism.  

We model local environmentalism by assuming that a location imposes a location specific tax, 

iτ  on energy usage in that state, and that revenues from this tax are rebated to the residents of the 

state.  The first order condition for individual energy consumption is now 

));(( **
1 iiii

E
i ZEVtP ττ =++ ,  where )(**

iiE τ  is a function mapping local energy taxes into local 

energy use.   The concavity of V(.;.) implies that 0)('** <iiE τ .   Higher taxes will lead to local 

energy decisions that are better from a global perspective as long as )ˆ(' ENNCt i <+τ , but they 

will not necessarily increase welfare because these taxes also impact migration decisions.   

To make this point, we reduce the world to only two regions and assume that there is no 

energy tax in region 2.  We further assume that )ˆ(' ENNCt i ≤+τ .    Differentiating the spatial 

equilibrium yields: 
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so a tax on energy use in region one reduces the population of region one.     This effect might be 

quite small, especially if the tax is modest, because the tax impacts migration behavior only by 

inducing people in area one to consume too little energy relative to the privately optimal level of 

energy consumption in the absence of this tax.   

The tax in region one improves overall social welfare if and only if: 
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The left hand side of the equation is positive; the right hand side is negative if 21
**

1 )( EE >τ .  

If energy usage in region one is greater than energy usage in region two, then the impact of 

added energy taxes in that region must have a positive effect on welfare.  In that case, the tax 

reduces both energy consumption, and the number of people in region one, which is desirable 

since it is the high energy use region.   

If region one is using less energy than region two, then the situation is more ambiguous.  If 

the migration margin is very large then it is at least conceivable that this tax will make the energy 

problem more problematic.  A local tax that sets )ˆ('1 ENNCt =+τ  is certainly sub-optimal, 

since in that case the gains from reducing the tax on the migration margin will exceed the costs 

of reducing the tax in terms of increased energy usage in region one.   

In many cases, this result may be more of an economic curiosity than a real concern.  Many 

energy taxes seem too small to really impact migration behavior, at least if the taxes are rebated 

to residents in some way.   However, environmentally inspired land use restrictions seem more 

likely to have counterproductive results.  To model these interventions, we assume that location 

one has imposed a tax on new construction equal to 1z  which is meant to refer to a “zoning tax.”   

With this tax, the equilibrium first order condition for builders in location one 
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satisfies 
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11 ' .     We assume that the tax either goes to infra-marginal residents of 

the community or that it is shared across both communities.4     

Unlike the place-specific energy tax, the zoning tax does not impact energy use directly, but 

it does reduce the number of people in location one.  Specifically:  
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The overall impact of zoning on social welfare is ( )( )( )
1

1
112 )ˆ(

z
NztENCNEE
∂
∂

+−′− , which is 

positive as long as ( )( ) 121 )ˆ( ztENCNEE >−′− .  If the area with the high zoning tax is also the 

high energy user, then the zoning tax will improve welfare, at least until the point where the tax 

equals the difference in energy usage times the difference between the social cost of energy use 

and the current tax. If the zoning tax is imposed in areas that have particularly low energy use, 

then it is counterproductive.  This motivates our empirical exercise examining whether areas 

with extensive land use restrictions are also areas that have high levels of energy use.   

 

III. Greenhouse Gas Emissions Across Metropolitan Areas 

 

We now turn to estimating the quantity of carbon dioxide emissions that households produce 

in 66 major metropolitan areas.5   Our goal is to calculate the marginal impact of an extra 

household in location j on the total carbon dioxide emissions of that location.   The marginal 

household and the average household need not be the same, and we will try to create marginal 

estimates by comparing the emissions of an average household and the emissions associated with 
                                                 
4 If the tax is rebated only to new homeowners then the tax will be completely irrelevant.   
5 Our sample includes 66 metropolitan areas with at least 250,000 households based on year 2000 Census IPUMS.  
In the year 2000, 72% of all metropolitan area residents live in one of these 66 metropolitan areas.  We use the 
IPUMS definitions of metropolitan areas to assign households to metropolitan areas (see http://usa.ipums.org/usa-
action/variableDescription.do?mnemonic=METAREA).    Table Two lists the set of metropolitan areas that we 
study.  
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more recent development.  Ideally, we would also be able to address the possibility that marginal 

emissions associated with more electricity generation are different from the average emissions, 

but we have no way of doing this well.  In principle, the marginal resident could foster the 

development of a new lower polluting electric power plant, or the marginal megawatt of 

electricity could involve more harmful energy uses.6   

We consider four main sources of carbon dioxide emissions: private within-city transport, 

public transportation, residential heating (natural gas and fuel oil) and residential electricity 

consumption.  Car usage and home heating involves a relatively simple translation from energy 

use to carbon dioxide emissions.  Household electricity use and public rail transit requires us to 

convert megawatt hours of usage into carbon dioxide emissions by using information about the 

carbon dioxide emissions associated with electricity production in different regions of the 

country.  We are not considering the impact of shifting people on the energy emissions 

associated with moving goods and we are not considering the impact of shifting people on 

industrial output.   The problem of figuring out how industrial location and the transport network 

changes with different urban development patterns is beyond the scope of this paper.7  

One natural concern with our approach is that households in areas that spend more on energy 

have less income to spend on other things that also involve greenhouse gas emissions.  If people 

in Texas are spending a lot on air conditioning and gas at the pump, then perhaps they are 

spending less on other things that are equally environmentally harmful.   We cannot fully address 

this concern, since it would require a complete energy accounting for every form of 

consumption, but we do not believe our omissions fatally compromise our empirical exercise.  

After all, few forms of consumption involve nearly as much energy use as the direct purchase 

and use of energy.   Moreover, areas that tend to have high levels of energy use are generally low 

cost areas like far flung suburbs or the Sunbelt, where people have more, not less, money 

available for other things.  One can argue that the high land costs in expensive cities represent a 

transfer to earlier property owners who use their property-related revenues to buy more energy, 

but tracing through this chain of money and emissions is far too complicated a task for us.     
                                                 
6 To the extent that all regions have a similar relationship between marginal and average usage, then the implications 
of this work for inter city comparisons, may not be terribly effected by our inability to measure true marginal 
impacts.   
7 Since much of modern industry is capital intensive and has low transport costs, we suspect it might not move that 
much in response to a population shift.   
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Car Usage and Emissions 

We begin with estimating gasoline usage across metropolitan areas.  Our primary data source 

is the 2001 National Household Transportation Survey (NHTS).  This data source contains 

information on household characteristics and reported annual miles driven.  The NHTS uses 

information on the types of vehicles the household owns to estimate annual gasoline 

consumption.8  The survey also reports the population density of the household’s census tract, 

and zip code identifiers that enable us to use zip code characteristics to predict gasoline usage.  

We use these zip code identifiers to calculate each household’s distance to the metropolitan 

area’s Central Business District. 

Our primary approach is to use the NHTS to predict gasoline usage based on individual and 

zip code level characteristics.  We regress: 

  (5)             ikq
q
iqj

j
kj XZGasoline εµγβ +++= ∑∑  

where j
kZ  refers to the value of zip code characteristic j in zip code k, jβ  reflects the impact of 

those variables, q
iX   refers to the value of individual level q for person i, qγ  is the coefficient on 

that characteristic and the other two terms are individual level and zip code level error terms.  

Since there are a significant number of truly extraordinary outliers, and since we are running this 

regression in levels rather than logs, we top code the top one percent of the sample.  The results 

of this equation are shown in Table 1.   

The overall r-squared of the equation is 30 percent.  Family size and income strongly 

increase gas consumption, so it is important to control for these characteristics.  The area-level 

characteristics have the predicted signs.  Population density, whether at the tract, zip code or 

metropolitan area level, reduces gasoline usage (see Golob and Brownstone 2008).  Distance to 

the metropolitan’s central business district also increases average gasoline consumption. We also 

                                                 
8 For an analysis of how urban form affects vehicle miles traveled based on the 1990 version of this micro data set 
Bento et. al. (2005). 
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interact census tract density with region dummies and find that the density-gas consumption 

relationship is weaker in the West.  

We then take these coefficients and predict gasoline usage for a family with an income of 

62,500 dollars and 2.62 members for each census tract located within 66 major metropolitan 

areas.9  Specifically, our predicted value for a census tract with characteristics j
kZ  is 

∑∑ +
q

q
Aveqj

j
kj XZ γβ , where q

AveX  denoted the individual characteristics of a standardized 

individual.  We then form metropolitan area averages by aggregating up from the tract level 

using the tract’s household count as the weight.10   

These estimates control for household level income and size, but they are, of course, 

imprecise.  We are only using two primary characteristics for each tract, its proximity to 

downtown and its population density.  As such, there will be an almost automatic relationship 

between urban sprawl and gasoline usage since gasoline usage decreases with density and 

increases with distance from downtown.  There is a less automatic connection between gasoline 

consumption and metropolitan area population size, which is shown in Figure 1.  On average, a 

.1 log point increase in MSA population size is associated with a 7.3 gallon reduction in the 

consumption of gallons of gas.  

An alternative approach is to run regression (5) using metropolitan area fixed effects instead 

of region fixed effects, and then use those metropolitan area fixed effects as our measure of 

gasoline usage.  In that case, we would have had to restrict our work to the small number of 

metropolitan areas with reasonably large data samples.  We have estimated metropolitan area 

gasoline usage in this alternative manner, and the correlation between our measure and the 

measure estimated using metropolitan area fixed effects is high.    

To estimate the gasoline related emissions of a marginal household, we again start with the 

gasoline consumption predicted at the tract level using our coefficients shown in Table 1. We 

then aggregate census tract gasoline usage up to the metropolitan area, by averaging across 

census tracts, weighting not by current population levels, but instead by the amount of housing 

                                                 
9 These demographic statistics are based on the sample means for the 66 metropolitan areas from the year 2000 
Census IPUMS. 
10 We include all census tracts within thirty miles of the metropolitan area’s CBD. 



 12

built between 1980 and 2000.  If the location of housing in the near future looks like the location 

of housing in the near past, then the location of recent construction gives us some idea about 

where new homes will go.   

On average, homes built in the last 20 years are associated with 47 more gallons of gasoline 

per household per year than average homes, which reflects the tendency to build on the urban 

edge.  While we believe that focusing on recent housing patterns adjustment makes sense, it 

makes little difference to the cross-metropolitan area rankings.  The correlation between 

estimated metropolitan area gasoline consumption using the total population of each census tract 

and the estimate based on the number of houses built since 1980 is .96.   

To convert gallons of gasoline into carbon dioxide emissions, we multiply first by 19.564, 

which is a standard factor used by the Department of Energy.11  This conversion factor includes 

only the direct emissions from a gallon of gasoline, not the indirect emissions associated with 

refining and delivering gas to the pump, which typically increase the energy use associated with 

a gallon of gas by 20 percent. 12   To reflect this, we assume that each gallon of gas is associated 

with 23.46 pounds of carbon dioxide emissions.     

Public Transportation  

We now turn to the emissions associated with public transportation.  There are no adequate 

individual surveys that can inform us about energy usage by bus and train commuters.  Instead, 

we turn to aggregate data for each of the nation’s public transit systems from the National Transit 

Database13.  For all of the nation’s public transit systems, this data source provides us with 

information about energy used, which takes the form of gasoline in the case of buses and 

electricity in the case of rail.  The data does not tell us about private forms of public transit, such 

as private bus lines or taxis or the Las Vegas monorail.   

For each bus or rail system, the data set provides us with the zip code of their headquarters.  

We then assign each zip code to the relevant metropolitan area and sum up all of the gasoline and 

                                                 
11 See http://www.eia.doe.gov/oiaf/1605/factors.html.   
12A typical energy efficiency figure for gasoline is 83 percent: http://frwebgate.access.gpo.gov/cgi-
bin/getdoc.cgi?dbname=2000_register&docid=00-14446-filed.pdf  
13 http://www.ntdprogram.gov/ntdprogram/ 
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electricity used by public transit systems within each metropolitan area.  This provides us with 

total energy usage by public transit for each metropolitan area.   

To convert energy use into carbon dioxide emissions, we continue to use a factor of 19.546 

for gasoline.  We again increase that factor by 20 percent to reflect the energy used in refining 

and distribution.  The conversion for electricity is somewhat more difficult, since electricity is 

associated with different levels of emissions in different regions of the country.  We will 

therefore be using different conversion factors for electricity in different places, and we will 

discuss those at length when we get to home electricity usage.  By combing emissions from gas 

and emissions from electricity, we estimate a total emissions figure within the metropolitan area.  

To convert this to a household-level figure, we divide by the number of households in the 

metropolitan area.   

There are two reasons why the marginal emissions from a new household might not be the 

same as the average emissions for an existing household.  First, the marginal household might be 

more or less inclined to use public transportation.  Second, even if the marginal household uses 

public transport, we do not know how much extra energy this will entail.  Typically, we think of 

some public transit technologies as having large fixed costs, which could mean that the marginal 

costs are quite low.  However, in some cases, new development may mean that a new bus line is 

extended to a newer, lower density area, and in this case, the marginal costs might be quite high.  

Since we lack the data to make an effective estimate of the marginal effect, we will use the 

average emissions from public transit throughout this paper.  Since the emissions from private 

automobiles are on average fifty times higher than the emissions from driving, the benefits to our 

overall estimates of improving the accuracy of our public transit emissions measures are likely to 

be small.       

 

Household Heating 

 

We now turn to the emissions from the two primary household heating sources: fuel oil and 

natural gas.  Fuel oil use is rare in the United States outside of the Northeast, and is an important 
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source of home heating in only a few metropolitan areas.  Natural gas is the more common 

source of home heat.  In some areas, electricity also provides heat, but we will deal with 

electricity separately in the next section.   

For our purposes we need a large representative sample that provides information by 

metropolitan area on household heating.  The Department of Energy’s Residential Energy 

Consumption Survey14 is too small of a data set to address our needs.  This data set also does not 

provide each survey respondent’s metropolitan area.  Instead, we use data from the 2000 Census 

five percent sample (IPUMS).   This data set provides information for each household on its 

expenditure on electricity, natural gas and fuel oil.  

The key problem with the IPUMS data is that we are interested in household energy use, not 

energy spending.  Conveniently, the Department of Energy provides data on prices for natural 

gas15 and fuel oil16 for the year 2000.  These prices are at the state level, so we miss variation in 

prices within the state.  We use these prices to convert household energy expenditure to 

household energy consumption.   

One particular problem with the expenditure data is that some renters do not pay for energy 

directly, but are charged implicitly through their rents (Levinson and Niemann 2004).  These 

renters will report zero energy expenditures, when they are indeed using electricity and some 

home heating fuel.  Indeed, when we look at the frequency of reported zero expenditure in 

different metropolitan areas, we find that these tend to be disproportionate among renters and 

other residents of multi-family houses.  In these cases, it is impossible to know whether a zero 

value for expenditure truly indicates that the household does not consume this particular fuel or 

whether the household just doesn’t pay directly for that energy.   As such, we have the most 

confidence in the IPUMS data for measuring actual household energy consumption for owners of 

single family homes. 

We use the IPUMS 2000 data to estimate a separate regression for each of the 66 

metropolitan areas using the subsample of owners of single family homes:  

                                                 
14 http://www.eia.doe.gov/emeu/recs/recs2001/publicuse2001.html 
15 http://www.eia.doe.gov/emeu/states/_seds.html 
16 http://tonto.eia.doe.gov/dnav/pet/pet_sum_mkt_a_EPD2_PRT_cpgal_a.htm 
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(6) Energy Use=a*Log(Income)+b*Household Size +c*Age of Head+ MSA Effects. 

In the case of natural gas in the New York City area, for example, we estimate: 

(6’)  AgeSizeIncomeLogGasNatural •+•+•+−=
)02(.)15(.)21(.)5.2(

81.8.9)(13138 . 

Standard errors are in parentheses.   In this regression, there are 28,757 single owner occupied 

housing unit observations and the r-squared is .02.  For each metropolitan area, we estimate 

similar regressions for fuel oil and electricity consumption.    We then use metropolitan area 

specific regression coefficients to predict the natural gas and fuel oil consumption for a 

household with an income of 62,500 dollars and 2.62 members.   

We try to correct for individual characteristics, but we do not correct for housing 

characteristics.  After all, we are not attempting to estimate emissions assuming that people in 

Houston live in New York City apartment buildings.  The building sizes in an area are a key 

component in emissions and we want to include that.  Our approach allows for the fact that a 

household with a fixed set of demographics is likely to live in a larger, newer home if it lived in 

Houston than it would have chosen if it lived in Boston or New York City, since land prices are 

higher in the latter cities. Our approach captures the fact that a standardized household will live 

its life differently depending on the relative prices that it faces in different cities.   

To estimate energy consumption for renters and owners in multifamily units for each of the 

66 metropolitan areas, we adjust our metropolitan area specific predictions that were based on 

estimates of equation (6).  For example, we will estimate equation (6) using Census IPUMS data 

for Los Angeles owners of single family homes.  This yields a prediction of average electricity 

consumption for Los Angeles home owners of single family homes for a household with 

standardized demographics.  We still need to impute what this household’s electricity 

consumption would have been if it had lived in Los Angeles as a renter of a single family home, 

an owner of a unit in a multi-family unit, or as a renter in a multi-family unit.  To impute these 

last three categories, we use a second micro data set called the 2001 Residential Energy 

Consumption Survey (RECS).17   This data set is a national sample with 4,392 households that 

                                                 
17 http://www.eia.doe.gov/emeu/recs/recs2001/publicuse2001.html 
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includes actual household energy consumption data.  We use this energy consumption data to 

estimate national level OLS regressions; of the form: 

(6”)  Log(Energy Consumption) =  Controls  +  b1*Owner + b2*Multi-Family + U 

Using the OLS estimates of b1 and b2 from these regressions, we adjust our metropolitan area 

specific predictions of energy consumption.  For example, suppose that we estimate using the 

national data that b2 equals zero and that b1 equals .1.  If based on our Los Angeles regression for 

owners of single family homes, we predict that the average home owner (with standardized 

demographics) consumes 9 megawatt/hours of electricity per year, then we would impute that the 

average renter consumes 8.18 megawatt/hours of electricity per year.18 

This procedure allows us to predict a standardized household’s consumption of energy for 

each metropolitan area, if it lived in four different housing categories. We then calculate a 

weighted average across these four categories by metropolitan area.  The weights, which vary by 

metropolitan area, are based on the IPUMS data’s frequency count of each of these four housing 

types.    This multi-step method allows us to impute the energy consumption for renters and all 

residents in multi-family buildings, where we are concerned that reported energy expenditure 

does not accurately measure household consumption.  Our correction procedure is especially 

important in a metropolitan area such as New York City, and is much less important in places 

like Houston where most of the households are single family owners.   

Natural gas consumption is driven primarily by climate.  Figure 2 shows the correlation 

between our estimated natural gas consumption and January temperature.  We do not find the 

correlation coefficient of -.81surprising, but it does suggest that our results are reasonable.   

For fuel oil and natural gas, there are again conversion factors that enable us to move from 

energy use to carbon dioxide emissions.  In the case of fuel oil the factor is 22.38 pounds of 

carbon dioxide per gallon of fuel oil19.  We again increase this number by 20 percent to reflect 

the energy used in refining and distributing.  According to the same source, there are 120.59 

pounds of carbon dioxide emissions per 1,000 cubic feet of natural gas.  In this case, there is 

much less energy involved in distribution so we use this conversion factor without any 

                                                 
18 The REX regressions are available on request. 
19 http://www.eia.doe.gov/oiaf/1605/factors.html 
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adjustment.  We combine the emissions from natural gas and fuel oil to form an estimate of total 

home heating emissions.   

To examine the impact of a marginal home, we repeat this procedure using only homes built 

between 1980 and 2000.  Since older homes are less fuel efficient, the average home will 

overstate true energy use, especially in older areas of the country.  We use only homes built 

within the last 20 years to minimize this effect.  In principle, we could have used only homes 

built in the last five or ten years, but our sample sizes become too small if we limit our samples 

in this way.  We will refer to these estimates as our estimates of marginal heating emissions.    

 

Household Electricity 

In the case of electricity consumption, we begin with the same IPUMS-based procedure used 

for fuel oil and natural gas.  We use state-wide price data to convert electricity expenditure into 

consumption in megawatt hours20.  We then regress estimated electricity consumption on 

household characteristics by metropolitan area, just as we did for home heating.  We also follow 

the same imputation procedure for owners of multi-family units and all renters. Following this 

strategy, we predict household annual electricity consumption for each metropolitan area for a 

standardized household with 2.62 people earning an annual income of $62,500.   

In the case of electricity, consumption rises most sharply with July temperatures, as shown in  

Figure 3.  The correlation is relatively strong (.61) but there are some significant outliers in the

Pacific Northwest, namely Tacoma and Seattle. These places have particularly high electricity 

usage, relative to July temperatures, which reflects, in part, the low costs of electricity in that  

region.

The conversion between electricity usage and carbon dioxide emissions is considerably more 

complicated than the conversion between natural gas or petroleum usage and emissions.  If we 

had a national market for electricity, then it would be appropriate to use a uniform conversion 

factor, but since electricity markets are regional, we must allow for different conversion factors 

in different areas of the country.   There is considerable heterogeneity in the emissions for 

                                                 
20 http://www.eia.doe.gov/cneaf/electricity/epm/table5_6_b.html 
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megawatt hour of electricity between areas that rely on coal, like the Northeast, and areas that 

use more hydroelectric energy, like the West. 

What geographic area should we use to calculate the emissions related to electricity usage?  

In principle, one could calculate anything from a national average of emissions per megawatt 

hour to a block specific figure.   Using smaller levels of geography certainly increases the 

accuracy with which emissions are allocated to electricity usage.  However, if electricity is 

perfectly substitutable between two places, then this precision is somewhat misleading, and 

irrelevant for estimating the marginal emissions associated with new construction.   The relevant 

consideration is not the actual greenness of the particular area’s supplier, but rather the average 

emissions of the entire area.   

For example, consider a setting where there is a clean and a dirty electricity producer in a 

region, with identical costs of production and plenty of consumers who don’t care about the 

source of their electricity.  In equilibrium, both producers will generate the same amount of 

electricity.  A new consumer who buys only from the clean producer will still be associated with 

the average level of emissions. Since these two providers are perfect substitutes, if a new resident 

buys only from the clean provider, then someone else will be buying from the dirty provider.  

For this reason, it makes sense to consider the average emissions within the market not the 

individual emissions of one particular place.     

The North American Electric Reliability Corporation (NERC) has divided the U.S. into eight 

electricity markets.  While electricity within these regions is not perfectly fungible and there is 

some leakage across NERC regions, there is much more substitutability of electricity within 

NERC regions than across regions. The difficulties involved in transmitting electricity over long 

distances mean that electricity in one region cannot readily substitute for electricity in another 

region.   We therefore feel comfortable treating these markets as more or less closed systems 

(Holland and Mansur 2008).  

We calculate NERC region average emissions data using power plant level data from the 

Environmental Protection Agency’s eGRID, or Emissions & Generation Resource Integrated 
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Database data base21.  The eGRID data base contains the emissions characteristics of virtually all 

electric power in the United States and includes emissions and resource mix data for virtually 

every electricity-generating power plant in the U.S.  eGRID uses data from 24 different federal 

data sources from three different federal agencies: EPA, the Energy Information Administration 

(EIA), and the Federal Energy Regulatory Commission (FERC). Emissions data from EPA are 

integrated with generation data from EIA to create the key conversion factor of pounds of carbon 

dioxide emitted per megawatt hour of electricity produced (lbs/MWh).  

Using eGRID, we calculate the emissions for megawatt hour for each of the NERC regions.  

There is remarkable heterogeneity across these regions (Holland and Mansur, 2008).  For 

example, San Francisco is located in a NERC region that generates 1000 pounds of carbon 

dioxide for each megawatt hour of electricity.  In contrast, Philadelphia is located in a NERC 

region where the average power plant in the region generates 1600 pounds of carbon dioxide for 

each megawatt hour.   

We then use these conversion factors to turn household electricity usage into carbon dioxide 

emissions for each metropolitan area.  We use the same conversion factor to handle the 

electricity consumption of commuter rails.  To consider the impact of the marginal home, as 

above, we restrict our IPUMS estimates to homes built only between 1980 and 2000.   

 

Overall Household Rankings 

We finally turn to an overall ranking of metropolitan areas based on carbon dioxide 

emissions.  Table 2 lists the 66 largest metropolitan areas for which we have data.  The first 

column shows carbon dioxide emissions from predicted gasoline consumption within each 

metropolitan area.22   There is considerable range in the consumption of gasoline at the 

metropolitan area level.  The New York metropolitan area is estimated to use the least gasoline, 

                                                 
21 see http://www.epa.gov/cleanenergy/egrid/index.htm 
22 These predictions are based on predicting gasoline consumption in each census tract for a standardized household.  
Within a metropolitan area, census tracts differ with respect to their population density and their distance to the City 
Center.  Across metropolitan areas, census tracts differ with respect to their MSA’s region and overall density.  We 
exploit this variation as well to predict each tract’s annual gasoline consumption per household.  We then use census 
data on household counts to weight this tract level data into a metropolitan area level average prediction.  
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which reflects its high degree of employment and population concentration and its relatively 

heavy use of public transportation.  Greenville, South Carolina, is estimated to have the most 

gasoline consumption. The gasoline-related emissions in Greenville are almost twice as high as 

the gasoline-related emissions in the New York area.    

The second column reports our results on per household energy emissions due to public 

transportation.  This column adds together rail and bus emissions and converts both by 

appropriate factors to arrive at carbon dioxide emissions.  There is, of course, considerable 

heterogeneity.  Emissions from public transportation in New York City are more than three tons 

of carbon dioxide from public transit per capita.23   However, even in New York, these emissions 

are relatively modest relative to the contributions of cars, since public transportation shares 

infrastructure, like buses, and uses electricity.     

The third column gives our results on fuel oil and natural gas.  Again, the results show a fair 

amount of regional disparity.  Detroit leads the country in home heating emissions and Boston is 

a close second.  Much of the West has almost no emissions from home heating.  In general, 

places that use fuel oil have much higher emissions than places that use only natural gas, which 

explains why emissions from this source are much lower in Chicago than in Detroit.   

The fourth column shows electricity consumption and the fifth column shows the NERC-

based conversion factor for converting electricity into emissions.  To calculate electricity related 

emissions in each area, the fourth and fifth columns need to be multiplied together.24  We show 

these columns separately to illustrate the role of electricity usage versus the role of clean 

electricity production.  New Orleans is the leader in electricity usage, while residents of Buffalo 

consume the least electricity.  San Francisco has the second lowest electricity usage in our data.    

                                                 
23 We do not have data on energy consumption from public transit in Las Vegas.  
24 Households use electricity not only at home but also where they shop and work.  In results that are available on 
request, we have used the 2003 Commercial Building Energy Survey.  This building level data set collects 
information on roughly 5000 buildings across the United States.  While this data set does not have metropolitan area 
identifiers, it does provide information on the heating degree days and cooling degree days at the location of each of 
the buildings.  We regress building energy consumption per worker on building type dummies and these climate 
measures.  Using  city level data from Burchfield et. al. (2005), we predict commercial building energy consumption 
per worker for each metropolitan area.   The cross-metropolitan area correlation between commercial energy 
consumption prediction and our residential energy consumption measure is .65.  On average across the metropolitan 
areas, commercial energy consumption per worker is 30% higher than residential consumption per household.    
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The sixth column sums together all of the different sources of carbon dioxide emissions. The 

table is ordered by the amount of these emissions.  California’s cities are blessed with a 

temperate climate and they use particularly efficient appliances and produce electricity in 

particularly clean ways.  Four of the five cities with the lowest emissions levels are all in 

California.   Providence, Rhode Island ranks in the top five due to its low electricity use.  

The high emissions cities are almost all in the South.  These places have large amounts of 

driving and very high electricity usage.  Their electricity usage is also not particularly clean.  

Texas is particularly well represented among the places with the highest levels of emissions.  

Memphis has the absolute highest level among our 66 metropolitan areas.  Indianapolis and 

Minneapolis are the northernmost places among our ten highest emission metropolitan areas.   

New construction in the Northeast is generally between those extremes.  These places use 

moderate amounts of electricity. They drive less than Californians, but use large amounts of fuel 

oil.  The Midwest looks generally similar to the Northeast, but larger amounts of driving push 

gasoline emissions up.    

In column seven, we multiply total emissions by 43 dollars per ton to find the total 

emissions-related externality associated with an average home in each location.  The 43 dollar 

number is somewhat arbitrary, and we are using it purely for illustrative purposes.  It is 

conservative relative to the Stern report (2008),  which suggests a cost of carbon dioxide that is 

twice this amount, but it is considerably more aggressive than the numbers used by Nordhaus 

(2007).  Tol (2005) is one meta-study that also suggests that this number may be somewhat too 

high while our number is in the middle of the range in Metcalf (2007).26  Using this figure, the 

range of costs associated with each home goes from $1,148 dollars in San Diego to more than 

$2,015 dollars in Memphis.   This $867 dollar gap is an annual flow, and at a discount rate of 5 

percent, this would suggest a tax of 17,340 dollars on every new home in Memphis relative to 

San Diego.  The last column gives standard errors for these cost estimates.  The procedure for 
                                                 
26 It is relevant to note that carbon tax policy proposals have suggested taxes per ton of carbon dioxide roughly in 
this range.  Metcalf  (2007) proposes a bundled carbon tax and a labor tax decrease.  As shown in his Figure Six, he 
proposes that the carbon tax start at $15 per ton (in year 2005 dollars) now and rise by 4% a year.  Under this 
proposal, the carbon tax per ton of carbon dioxide would equal $60 per ton (in year 2005 dollars) by 2050. 
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estimating these standard errors is detailed in the statistical appendix.27  The standard errors of 

the carbon emissions (measured in tons) equal the standard errors of the emissions costs divided 

by 43.    

  Table 3 shows the 66 Metropolitan Area ranking based on the subset of households who 

live in homes built between 1980 and 2000.  Table 3’s structure is identical to Table 2 but Table 

3 provides an estimate of how average emissions vary across metropolitan areas for a 

standardized household who lives in housing built between 1980 and 2000.   This is useful 

information for determining whether within MSA growth patterns are shrinking the city’s 

average footprint.   

The differences between the two tables tend to offset each other.  People who live in new 

homes consume more gasoline, which reflects the tendency of new growth to be in the suburbs.  

However, new homes are more energy efficient and therefore have lower emissions from home 

heating.  In general, we find that this ranking based on recent growth is highly positively 

correlated with the average rankings reported in Table 2. 

The energy use differences between metropolitan areas are quite large.   Our estimate is that 

a new house in coastal California is associated with two-thirds or less of the emissions associated 

with a new house in Houston or Oklahoma City.  These differences suggest that changing urban 

development patterns can have potentially large impacts on total carbon emissions.  Since 

residential and personal transportation are associated with about 40 percent of total emissions, a 

33 percent reduction in these sources would reduce total U.S. emissions by 13 percent.  Of 

course, any policy interventions would impact the flow of new housing, rather than the stock, so 

changes in urban development patterns would only reduce emissions gradually. 

Our cost estimates suggest optimal location-specific taxes on development, in the absence of 

other carbon emission taxes.    The six hundred dollar difference in emissions costs between the 

coastal California areas and Memphis suggests a flow tax of six hundred dollars per year for each 

household in Memphis.  This is not a small number.  If the tax were paid in a single lump sum 

payment, of perhaps $12,000, then this would represent a sizable increase in the cost of living in 

                                                 
27 The standard errors for the predictions are based on the sampling variation in the 2001 NHTS data set as reported 
in Table 1.  We are assuming that the large sample sizes in the IPUMS data set minimize the sampling error in our 
predictions of the other entries in Table 2.   
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Memphis.  The U.S. Census tells us that the median value of a home in Memphis in 2006 was 

91,000 dollars.  Of course, the model suggests that a direct carbon tax would improve social 

welfare more than any location tax, so we believe that the main value of our results is only to 

suggest the external costs associated with moving to places like Memphis.   

To study the cross-MSA correlates of greenhouse gas production, we present five separate 

OLS regressions in Table 4. In each of these regressions, the explanatory variables include the 

logarithm of average city income, the logarithm of city population, average January temperature 

and average July temperature.  We also include a measure of the share of city centralization: the 

share of the population within five miles of the city center.  The first column shows the correlates 

of private transportation related emissions.  Income is uncorrelated with gasoline usage at the 

metropolitan level.  At the individual level, there is a strong connection between gasoline 

consumption and income, but these estimates are supposed to correct for that relationship and 

they seem to do that.   Larger metropolitan areas have somewhat less driving, which reflects the 

fact that these cities are somewhat denser. As the share of population within five miles of the city 

center increases by 10 percent, carbon dioxide emissions from driving decreases by 1300 

pounds.  Finally, places with warm Januarys have less driving, but places with hot Julys have 

more driving.  These correlations are presumably spurious, and reflect other variables, like the 

degree of sprawl, associated with these weather variables.  

 The next regression shows the correlates of public transit emissions.  In this case, city 

population is the only variable that is strongly correlated with emissions.  Bigger cities are more 

likely to have extensive public transit systems.  There is also a weak correlation between this 

outcome and the concentration of population within five miles of the city center.   

 The third regression looks at the relationship between home heating related emissions and 

the area-level variables.  There is an extraordinarily strong negative correlation between this 

variable and January temperature, which was discussed above (also see Ewing and Rong 2008).  

Lower July temperatures also weakly increase home heating emissions.  None of the other 

variables are strongly correlated with this outcome variable.   The power of temperature to 

predict home heating emissions explains why the r-squared for this regression is higher than for 

any of the other regressions in this table.   
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 The fourth regression correlates electricity related emissions with our independent 

variables.  Areas that are more geographically concentrated have lower levels of electricity usage 

and lower emissions.  The strongest determinant of home electricity usage in this regression, 

unsurprisingly, is July temperature.  Still, the ability of the weather to explain electricity is 

weaker than the ability of the weather to explain home heating emissions.  

 Finally, the fifth regressions look at the correlates of total emissions. In this case, all of 

the variables except for city income are statistically significant.  More populous cities have lower 

emissions, and this is being driven both by less electricity usage and by less driving.  More 

decentralized cities have higher emissions, and this reflects less electricity and less driving.  

Places with milder Januarys have lower emissions, which is the result of less use of artificial 

heat.  Places with hotter Julys have higher emissions, reflecting the electricity needed to run air 

conditioners.    

 As such, these regressions suggest that there are several different variables associated 

with lower levels of emissions at the city level.  Older dense cities have lower emissions, but not 

if they are particularly cold.  The temperate Sunbelt uses little electricity, but not the places with 

particularly hot summers.   

 What is the connection between low greenhouse gas emissions and city growth?  Figure 4 

shows the correlation between these marginal cost estimates and development in the area since 

2000.  Our dependent variable is the ratio between average annual housing permits in the area 

since the year 2000 and the total stock of housing in these places in the year 2000.  This measure 

captures the extent to which the area is building new homes.   

 The overall relationship is basically flat, which suggests that current development 

patterns are neutral towards emissions.  Unfortunately, that conclusion may be a bit optimistic 

because the correlation becomes significantly positive if we weight by the initial population of 

the area.  The flat relationship that we see is driven primarily by Las Vegas and Phoenix, two 

areas that have high levels of growth and low levels of emissions.  Without those areas, the 

relationship between growth and emissions becomes more strongly positive.  

 If moderate temperatures lower emissions and expenditure, then why aren’t people 

moving to places with more temperate climates?  One possible reason for the weak relationship 
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between new construction and per household emissions is land use regulations.  As Figure 5 

shows, there is a strong negative association between the Wharton Land Use Regulation Index 

and carbon dioxide emissions.  This Regulatory Index is discussed in detail in Gyourko, Saiz, 

and Summers (2008).28  Places with the least emissions tend also to regulate most heavily.  This 

relationship is strongly statistically significant.  

 The negative connection between land use regulation and emissions is ironic but 

unsurprising.  Environmentalists have fought both to reduce emissions and to restrict new 

development.  In California, they have been successful in both fights.  The result of this 

combination of activities is that the places with the lowest emissions in the country are also the 

places that have made it most difficult to build.   We do not believe that California’s small per-

household footprint is caused by land use regulation.  Californians’ heavy reliance on driving 

and not using public transit is well documented (Kahn 2006).  Instead, as documented in Table 2, 

California’s relative greenness reflects a temperate climate and relatively clean electric utilities.    

California’s regulatory authorities have been the nation’s leader in enacting anti-pollution 

regulation.  The state enacted more stringent vehicle emissions and earlier than the rest of the 

nation and now is pursuing the ambitious AB32 legislation signed into law by Governor 

Schwarzenegger in 2006.   California’s current low per-capita electricity consumption levels are 

a relatively new trend.  In 1968, per-capita electricity consumption in California roughly equaled 

the nation’s per-capita electricity consumption. Today, California’s per-capita electricity 

consumption is forty percent lower than the nation’s per-capita consumption.  

 

IV. Greenhouse Gas Emissions within Metropolitan Areas 

 

                                                 
28 Gyourko, Saiz and Summers (2008) describe their index; “This aggregate measure is comprised of eleven 
subindexes that summarize information on the different aspects of the regulatory environment. Nine pertain to local 
characteristics, while two reflect state court and state legislative/executive branch behavior. Each index is designed 
so that a low value indicates a less restrictive or more laissez faire approach to regulating the local housing market. 
Factor analysis is used to create the aggregate index, which then is standardized so that the sample mean is zero and 
the standard deviation equals one.” 
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In the previous section, we focused on cross-metropolitan area implications of greenhouse 

gas emissions.  We now look within metropolitan areas, and focus on energy use differences 

between central cities and suburbs.  After all, locating in central cities generally involves far less 

driving and living in smaller apartments.  Since these choices are associated with fewer 

greenhouse gas emissions, they should also be seen as having fewer negative externalities. 

Our approach is again to estimate the average energy consumption associated with locating 

in different areas, holding an individual’s income and size constant, but not controlling for other 

choices like housing characteristics.  Living in a larger house is a major part of moving to the 

suburbs for many people, and that should be captured in the environmental impact of 

suburbanization.   We will use the same data sources and the same methodology as above, but 

we now focus on the differences between central city and suburban locations.   

To keep definitions constant across data sources, we use the Census definition of Central 

City status, which we have for both census tracts and in the IPUMS.  We exclude those data 

points that do not provide us with a central city identifier.   This reduces our set of metropolitan 

areas down to 48.  Sample sizes are unfortunately too small for us to provide robust estimates of 

emissions for the marginal home within metropolitan areas.  As a result, we look only at the 

emissions associated with an average home.   

To provide estimates of gasoline consumption in central cities and suburbs, we continue to 

use the regression results reported in Table 1 based on the 2001 National Household Travel 

Survey.  This regression enables us to estimate the level of gasoline usage that a standardized 

household would purchase in each census tract.  We then average all of the predicted gas usage 

numbers in census tracts that are in Central City PUMAs to form our estimate of Central City 

gasoline consumption.  We do the same thing for suburban census tracts to form our estimate of 

suburban gasoline consumption.   We continue to multiply gasoline usage by 23.47 to get total 

emissions.    

 As before, we compute gasoline usage for both marginal and average houses.  We 

calculate average household gas consumption by averaging across census tracts using the total 

number of households in each census tract.  We calculate marginal household gas consumption 

by averaging across census tracts, weighting them by the number of households built in the last 

ten years.   
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 In the case of public transportation, we again calculate the total amount of emissions in 

the metropolitan area.  We then allocate those emissions on the basis of public transportation 

usage.  We calculate the total number of households in the central city and suburban commuters 

who use public transportation. We divide the total public transit emissions by this quantity to 

find the average public emissions per household that commutes using public transportation.  We 

then multiply this number by the share of households in the suburbs and central city respectively 

that commute using public transportation to estimate the amount of public transit emissions 

associated with central city and suburban households.   

 For fuel oil and natural gas, we continue to use our IPUMS methodology of converting 

spending into energy use.  In this case, the methodology is very dependent on central city and 

suburban residents facing the same fuel prices.  We estimate our regressions separately for each 

metropolitan area, and in this case we also estimate an indicator variable that takes on a value of 

one if the household is in the suburbs.  This indicator variable provides us an estimate of how 

much extra fuel is being consumed in suburban areas.  We continue to multiply fuel and gas 

usage by the standard conversion measures to turn them into emissions.  

 We use the same procedure for electricity.  We regress estimated electricity consumption 

on personal characteristics and a dummy variable that indicates a suburban location.  We use the 

coefficient on that dummy variable as our estimate of the extra electricity associated with 

suburban living.  We multiply this dummy variable by the NERC electric utility emissions factor 

to calculate the total emissions difference associated with electricity in the central cities and the 

suburbs.   As discussed in the heating section above, we perform a correction using the 2001 

RECS data to address the problem that renters and owners in multi-family units may not pay for 

their own electricity or home heating.   

 The suburban versus center city differentials are reported in Table 5.  This table reports 

estimates for major metropolitan areas for which the IPUMS reports within metro area 

geography such that both center city residents and suburban residents can be identified. This 

yields a sample of  48 metropolitan areas.  The first column shows the results for gasoline 

consumption.  The city-suburb gap, in Table 5, ranges from 691 pounds of carbon dioxide (about 

30 gallons of gas) in Los Angeles to ten times that amount in Philadelphia.  Interestingly, there 

are large gaps in gas emissions both in older cities, where people in the central city take public 
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transportation, and in newer cities, where everyone drives but people in the suburbs drive much 

more.   

In the second columns of Table 5, we turn to public transportation related emissions.  

Hartford has the largest central city-suburb gap in these emissions (2900 pounds of carbon 

dioxide), followed by Chicago, Seattle, then New York.  Riverside has almost no gap.  While 

public transportation made little difference to the metropolitan area figures, it does matter here.  

Since the central city populations tend to be the big users of public transportation and those 

populations are sometimes much smaller than the overall populations, the emissions that we 

credit to those people can be reasonably high.  For example, in the case of New York City, more 

than one-third of the gains in reducing car-related emissions that are associated with central city 

residents are offset by higher emissions from public transit.     

 In the third column of Table 5, we turn to heating-related emissions.  In this case, there is 

considerable heterogeneity across metropolitan areas.  In New York, central city residents emit 

more than 6000 pounds of carbon dioxide less than suburbanites.  In Detroit, central city 

residents emit more than 6000 pounds of carbon dioxide more than suburbanites.   

 The fourth column in Table 5 shows our result for electricity emissions.  This column 

multiplies the NERC factor with the electricity usage gap.  Almost everywhere, smaller urban 

homes mean lower electricity usage.  Suburban electricity usage is lower in five cases when we 

consider average homes and in eight cases when we look at newer homes.   Central city 

electricity usage does not always decline when we focus on newer homes, because while those 

homes may be more efficient, they are also more likely to have air conditioning.   

 The fifth column of Table 5 combines the results to show the total emissions gap between 

central cities and suburbs by metropolitan area.  The sixth columns multiply this quantity by 43 

dollars to find the total emissions cost, which ranges from -77 dollars, in Detroit, to 289 dollars, 

in New York.  New York has the biggest gap between central city and suburbs.  There are only 

two areas where suburbs have lower emissions than central cities.  The seventh column shows 

the standard errors of the difference in costs which are again fairly small.   

 Table 6 regresses these differences on the same urban characteristics that we used in 

Table 4 to explain cross area differences in total carbon dioxide emissions.  The dependent 

variable is the difference in emissions between the suburbs and the central city.  The first 

regression shows that in bigger cities, suburbanites are more likely to drive longer distances 
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relative to central city residents.  The suburb-central city driving gap also gets larger in places 

with warm Julys and shorter in places with warm Januarys.  

 The second regression shows that the impact of population on emissions is reversed when 

we look at public transit.  In this case, big city residence is particularly likely to be associated 

with high levels of public transit emissions, which is, after all, what we saw in New York City in 

Table 5.  In richer cities, the gap also increases.   

 In the third regression, we see that the heating gap between central cities and suburbs is 

larger for bigger, richer and more centralized cities.  Interestingly, there is no connection 

between temperature and the city-suburb heating gap.  The fourth regression shows that 

temperature and income, but not city population or centralization, predict the difference in 

electricity emissions.  

 The fifth regression looks at the correlates of the total suburb-city emissions gap.  The 

gap is larger in cities with more income and more people.  It is also larger when January 

temperatures are high and when July temperatures are high.    

 

 

V. Conclusion 

 

Past research has investigated how greenhouse gas emissions vary as a function of the scale 

of population and income.  This paper has documented that holding population and income 

constant, that the spatial distribution of the population is also an important determinant of 

greenhouse gas production.  If the urban population lived at higher population density levels 

closer to city centers in regions of the country with warmer winters and cooler summers in areas 

whose electric utilities used less coal for producing power, then greenhouse gas production 

would be lower.  

If carbon dioxide emissions are taxed appropriately, then individuals will make appropriate 

decisions about their locations without any further government interventions.  However, if we 

believe that current carbon taxes, which are essentially zero, do not charge people for the full use 

of their energy consumption, then location decisions will fail to internalize environmental costs.  

In this paper, we have quantified the greenhouse gas externality that a standardized household 
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would create if it were located in one of 66 major metropolitan areas and if it were located in the 

center city or suburb of 48 major metropolitan areas.   

We estimate that costs per household range from 830 dollars per year in San Diego to almost 

1410 dollars per year in Memphis.  Across areas, emissions are positively associated with July 

temperature, negatively associated with January temperature, and negatively associated with both 

city population and centralization.  New York has the biggest suburban minus central city gap of 

289 dollars while Detroit has a central city minus suburban gap of 77 dollars.    

Our work has many limitations.  To translate our quantity estimates into dollar cost estimates, 

we have relied on the index weight of $43 of damage per ton of carbon dioxide, and this number 

lies within a large confidence interval.  Our estimates are based on regressions that can provide 

only a very imperfect estimate of gasoline usage or electricity consumption in particular areas.  

We restricted ourselves to household energy use.   

That being said, this paper does provide what we consider to be reasonable estimates of the 

emissions-related externalities associated with homes built in different areas.   However, we 

would be skeptical about actually using these numbers as the basis for a tax on development in 

Oklahoma or a subsidy for development in San Diego.  There are surely much better ways, like a 

direct carbon tax, to get people to internalize the social costs of their actions.  Perhaps, the 

clearest public policy-related conclusion that comes out of this analysis is that current land use 

controls seem to operate in a way that increases, rather than decreases, carbon dioxide emissions.    
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Statistical Appendix for Calculating Standard Errors 

 

 If we estimate a regression of the form εβ += 'XY , then by Slutsky’s Theorem and the 
Law of Large Numbers (LLN) the resulting coefficients will converge to a normally distributed 
random variable as follows: 

( )βσββ 2,ˆ Nd→  

Where βσ 2 is an appropriately defined standard error.  

 Note that in general the resulting predicted values may be written as 

β̂'ˆ XY =  

Where X  is any )(XSupportx∈ .  Therefore by a separate application of Slutsky’s theorem 

Ŷ has the following asymptotic distribution: 

( )XXXNX d
βσββ 2',ˆ' →  

Here we define  
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Further we collapse each estimated Ŷ by MSA.  This is equivalent to multiplying each Ŷ by a 

vector MSAj
'γ  where MSAjγ contains 

jn
1  for every observation in MSA “j” , a 0 otherwise, and 

j
jn is the number of observations in MSA “j”. 
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 Define YY MSAjMSAj
ˆ'γ= .  By a third application of Slutsky’s theorem the appropriate 

asymptotic distribution of MSAjY  can be written as 

( )MSAjMSAjMSAj
d

MSAj XXXNY γσγβγ β
2'' ',→  

Now define 

Ω := MSAjMSAj XX γσγ β
2' '  

and further define 
MSAjYC  to be an α confidence interval for MSAjY . 

( )95.0:

|||,|

1

2
1

2
1

−

−−

Φ=





 Ω+Ω−=

α

αα

Z

ZYZYC MSAjMSAjYMSAj  

Thus if we estimate Ω  as 

( )''ˆ''ˆ 2 XX MSAjMSAj γσγ β=Ω  

then we must only replace αZ  with its appropriate counterpart from the t-distribution. 
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Figure 1:
Relationship Between Gasoline Consumption and MSA Size

 

Notes: Gasoline consumption was estimated using the 2001 National Household Transportation 
Survey.  Population is from the U.S. Census 
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Figure 2:
Relationship Between Natural Gas Consumption and January Temperature

 

Notes: Natural Gas Consumption was estimated using the Integrated Public Use Microdata 
Series from the 2000 Census, the Department of Energy prices for natural gas, and the 
Department of Energy’s Residential Energy Consumption Survey (RECS) for 2001. January 
Temperature is from the National Oceanic and Atmospheric Administration. 
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Figure 3:
Relationship Between Electricity Consumption and July Temperature

 

Notes: Electricity Consumption was estimated using the Integrated Public Use Microdata Series 
from the 2000 Census, the Department of Energy prices for electricity, and the Department of 
Energy’s Residential Energy Consumption Survey (RECS) for 2001. Electricity Consumption 
was estimated using July Temperature is from the National Oceanic and Atmospheric 
Administration. 
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Figure 4:
City Growth and Total Emissions Costs

 

Notes: Housing permit data is from the U.S. Census.  Total Cost from Marginal Home was 
estimated using data from the Integrated Public Use Microdata Series from the 2000 Census, the 
2001 National Household Transportation Survey (NHTS), the Department of Energy, the 
National Transit Database, the 2001 Residential Energy Consumption Survey (RECS), and the 
Environmental Protection Agency’s Emissions & Generation Resource Integrated Database 
(eGRID). 

 

 

 

 

 

 

 



 39

 

 

Akron, OH

Albany-Schene~Y Atlanta, GA

Baltimore, MD

Birmingham, ALBoston, MA

Buffalo-Niaga~Y

Charlotte-Gas~C

Chicago-Gary-~L

Cincinnati OH~N

Cleveland, OH

Columbus, OH

Dallas-Fort W~XDayton-Spring~H
Denver-Boulde~O

Detroit, MI

Fort Lauderda~n

Grand Rapids,~I
Greensboro-Wi~o

Hartford-Bris~B

Houston-Brazo~X

Indianapolis,~N
Kansas City, ~S

Los Angeles-L~A

Louisville, K~N

Memphis, TN/A~S

Miami-Hialeah~L

Milwaukee, WIMinneapo.. Pa~N

Nashville, TN

New Orleans, LA

New York-Nort~J

Oklahoma City~K

Orlando, FL

Philadelphia,~J

Phoenix, AZ

Pittsburgh-Be~A

Portland-Vanc~R

Providence-Fa~,

Richmond-Pete~A

Rochester, NY

Sacramento, CA

St. Louis, MO~L

Salt Lake Cit~T

San Antonio, TX

San Diego, CA

San Francisco~C
San Jose, CA

Seattle-Evere~A

Syracuse, NY

Tampa-St. Pet~L

Tulsa, OK

Washington, D~A

-5
0

5
10

W
ha

rto
n 

R
eg

ul
at

io
n 

In
de

x

800 1000 1200 1400 1600
Total Cost from Marginal Home

Figure 5:
Wharton Regulation Index and Total Emissions Costs

 

Notes: The Wharton Regulation Index is discussed in detail in Gyourko, Saiz, and Summers 
(2008). Total Cost from Marginal Home was estimated using data from the Integrated Public Use 
Microdata Series from the 2000 Census, the 2001 National Household Transportation Survey 
(NHTS), the Department of Energy, the National Transit Database, the 2001 Residential Energy 
Consumption Survey (RECS), and the Environmental Protection Agency’s Emissions & 
Generation Resource Integrated Database (eGRID). 

 

 

 

 

 



 40

Household's Annual 
Total Gasoline 
Consumption 

(Gallons)

Midwest 78.998
(0.41)

South Dummy 31.799
(0.2)

West Dummy -417.605
(4.32)

Log(Zip Code Distance to CBD) 64.118
(5.28)

Log(Census Tract Density) -116.851
(17.25)

Log(Metropolitan Area Density) -38.4
(2.12)

Log(Census Tract Density)*Midwest 3.67
(0.17)

Log(Census Tract Density)*South 10.215
(0.53)

Log(Census Tract Density)*West 59.899
(5.37)

Log(household income) 299.264
(16.4)

household size 163.704
(28.8)

household head age 3.127
(6.44)

Constant -1731.832
(6.92)

Observations 11728
R2 0.30

Notes:

(4) Top 1% set as topcode 

(6) The omitted category is a household in the Northeast region.

(5) Standard errors are clustered by metropolitan area and are reported 
below the regression coefficient estimate.

(3) A dummy variable indicating that the head of household's age is missing 
is included.

Table 1:
Gallons of Gasoline Consumed Per Year

(1) Data is from the 2001 National Highway Travel Survey (NTHS).
(2) The unit of analysis is a household.
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MSA
Emissions 

from Driving

Emissions from 
Public 

Transportation

Emissions 
from Home 

Heating Electricity

NERC Power 
Plant Emissions 

Factor

Carbon 
Dioxide 

Emissions 
Cost

Standard 
Error

 (Lbs of CO2)  (Lbs of CO2)  (Lbs of CO2) (Megawatt Hrs)
(Lbs of CO2 per 
Megawatt Hrs) ($ per Year) ($ per Year)

San Diego, CA 24,774 689 5,994 7.18 1,007 1,148 14.87
San Francisco, CA 23,970 1,675 6,784 7.03 1,007 1,152 17.17
San Jose, CA 23,649 2,058 7,030 7.75 1,007 1,175 16.03
Providence, RI 22,562 1,273 12,965 7.35 1,185 1,177 13.24
Los Angeles, CA 23,553 1,062 6,439 8.43 1,007 1,188 17.91
Sacramento, CA 25,534 458 6,875 9.07 1,007 1,237 13.96
Hartford, CT 23,092 1,539 13,752 8.09 1,185 1,239 17.71
Riverside, CA 26,380 42 6,461 9.27 1,007 1,246 13.64
Boston, MA 22,870 2,276 14,019 7.92 1,185 1,253 11.91
Tucson, AZ 26,363 616 4,535 12.25 1,007 1,270 14.65
Buffalo, NY 24,400 1,124 11,481 6.97 1,185 1,277 14.04
Las Vegas, NV 24,257 0 6,714 13.25 1,007 1,280 15.05
Albuquerque, NM 25,229 648 10,741 8.92 1,007 1,296 14.83
Fresno, CA 25,662 951 7,634 10.48 1,007 1,304 14.62
Rochester, NY 25,732 902 11,377 7.27 1,185 1,306 16.64
Phoenix, AZ 25,543 75 2,627 16.39 1,007 1,307 13.71
Denver, CO 25,159 1,374 10,494 10.10 1,007 1,336 13.76
Portland, OR 25,915 2,098 5,854 13.58 1,007 1,347 13.90
Syracuse, NY 26,744 574 11,588 8.07 1,185 1,347 17.78
Albany, NY 26,277 1,054 11,653 8.05 1,185 1,352 17.21
New York, NY 18,081 6,386 12,503 7.83 1,400 1,379 6.33
Salt Lake City, UT 25,491 3,104 11,146 10.15 1,007 1,406 13.90
Tacoma, WA 26,169 430 5,942 18.36 1,007 1,422 14.48
Seattle, WA 25,234 5,948 6,762 15.50 1,007 1,477 13.79
Pittsburgh, PA 25,591 2,093 12,313 9.67 1,614 1,600 15.88
Cleveland, OH 26,784 1,733 10,980 10.90 1,614 1,633 13.00
Akron, OH 28,604 768 10,652 10.91 1,614 1,644 16.94
Scranton, PA 27,611 282 13,173 10.19 1,614 1,651 18.64
Fort Lauderdale, FL 25,392 1,124 539 17.47 1,427 1,695 18.26
Philadelphia, PA 22,784 3,993 13,688 12.30 1,614 1,698 9.59
Sarasota, FL 28,155 510 532 16.29 1,427 1,701 14.55
Milwaukee, WI 26,315 1,291 10,117 9.35 1,614 1,726 12.73
Columbus, OH 27,997 278 9,291 10.14 1,614 1,727 14.94
St. Louis, MO 28,105 1,267 8,749 13.54 1,472 1,737 13.98
West Palm Beach, FL 27,233 616 677 17.82 1,427 1,738 15.40
Tampa, FL 28,034 742 673 17.36 1,427 1,743 14.88
Cincinnati, OH 27,537 770 8,784 12.83 1,543 1,764 12.09
Miami, FL 24,187 4,689 896 17.92 1,427 1,768 21.69
Chicago, IL 24,278 5,221 10,374 9.83 1,614 1,781 15.21
Orlando, FL 28,174 1,361 734 18.48 1,427 1,789 14.44
Norfolk, VA 27,091 1,078 5,561 16.01 1,472 1,792 15.43
New Orleans, LA 24,899 663 4,964 19.05 1,472 1,795 19.18
Raleigh-Durham, NC 29,922 495 5,797 14.55 1,472 1,798 13.96
Greensboro, NC 31,300 216 4,747 14.53 1,472 1,799 15.09
Grand Rapids, MI 29,248 572 14,362 8.23 1,614 1,811 18.57
Charlotte, NC 30,820 1,084 5,963 14.25 1,472 1,825 14.58
Kansas City, MO 28,763 644 10,319 13.50 1,561 1,830 16.51
San Antonio, TX 27,694 1,929 4,110 15.74 1,555 1,832 15.24
Washington, DC 25,918 4,729 5,674 13.72 1,543 1,832 18.46
Baltimore, MD 26,540 2,135 5,405 13.78 1,614 1,835 17.57
Richmond, VA 29,459 771 4,101 16.87 1,472 1,835 15.23
Louisville, KY 27,880 884 8,538 14.92 1,543 1,837 13.19
Greenville, SC 32,169 130 4,964 15.25 1,472 1,841 16.90
Dayton, OH 28,888 986 9,027 12.69 1,614 1,847 17.89
Tulsa, OK 29,091 353 8,729 13.69 1,561 1,855 14.80
Detroit, MI 27,403 889 16,511 9.23 1,614 1,862 13.22
Atlanta, GA 29,425 1,121 8,851 14.63 1,472 1,866 13.96
Minneapolis-St. Paul, MN 27,427 143 10,990 10.12 1,819 1,866 13.51
Indianapolis, IN 29,222 534 10,665 12.80 1,614 1,888 16.62
Austin, TX 29,134 1,595 4,613 16.58 1,555 1,892 15.02
Dallas, TX 27,323 1,723 6,100 17.81 1,555 1,926 16.30
Houston, TX 27,333 1,447 5,344 18.74 1,555 1,932 15.98
Birmingham, AL 30,041 227 7,759 16.64 1,472 1,937 14.82
Nashville, TN 30,495 473 6,699 17.21 1,472 1,954 14.71
Oklahoma City, OK 28,953 332 8,710 16.41 1,649 2,005 14.73
Memphis, TN 28,440 1,073 8,438 18.70 1,472 2,015 14.43

Notes:

Table 2:
Annual Standardized Household CO 2 Emissions

(2) See text for detailed descriptions of the data calculations

(1) Data is from the Integrated Public Use Microdata Series from the 2000 Census, the 2001 National Household Transportation Survey (NHTS), the Department of Energy, the National Transit Database, the 
2001 Residential Energy Consumption Survey (RECS), and the Environmental Protection Agency’s Emissions & Generation Resource Integrated Database (eGRID).
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MSA
Emissions 

from Driving

Emissions from 
Public 

Transportation

Emissions 
from Home 

Heating Electricity

NERC 
Power Plant 
Emissions 

Factor

Carbon 
Dioxide 

Emissions 
Cost

Standard 
Error

 (Lbs of CO2)  (Lbs of CO2)  (Lbs of CO2) (Megawatt Hrs)

(Lbs of CO2 
per 

Megawatt 
Hrs) ($ per Year) ($ per Year)

Los Angeles, CA 23,766 1,062 5,558 8.60 1,007 840 17.88
San Diego, CA 25,183 689 5,975 7.34 1,007 844 16.20
San Franciso, CA 24,777 1,675 5,765 7.62 1,007 858 17.13
San Jose, CA 24,004 2,058 6,055 7.85 1,007 860 19.96
Sacramento, CA 25,827 458 6,636 9.50 1,007 913 13.93
Riverside, CA 26,761 42 6,413 9.34 1,007 916 13.65
Fresno, CA 25,587 951 7,126 10.60 1,007 953 14.46
Tucson, AZ 27,062 616 4,106 13.02 1,007 965 14.65
Las Vegas, NV 24,667 0 7,347 12.97 1,007 969 15.08
Phoenix, AZ 26,339 75 2,168 17.04 1,007 983 14.68
Albuquerque, NM 25,764 648 10,500 9.03 1,007 989 34.98
Rochester, NY 26,920 902 10,084 7.67 1,185 1,011 16.73
Buffalo, NY 26,539 1,124 10,866 7.84 1,185 1,028 14.05
Denver, CO 26,147 1,374 10,152 10.47 1,007 1,037 13.82
Portland-Vancouver, OR 26,520 2,098 6,665 13.16 1,007 1,044 14.11
Providence, RI 25,648 1,273 12,213 8.00 1,185 1,045 14.64
Syracuse, NY 27,637 574 10,441 8.82 1,185 1,056 17.80
New York, NY 20,480 6,386 10,258 8.78 1,400 1,062 6.34
Albany, NY 28,618 1,054 10,462 8.78 1,185 1,087 17.24
Tacoma, WA 26,877 430 6,120 17.05 1,007 1,088 14.48
Salt Lake City, UT 26,282 3,104 10,870 10.84 1,007 1,100 13.46
Hartford, CT 27,047 1,539 12,245 8.89 1,185 1,105 17.71
Boston, MA 26,062 2,276 13,023 9.18 1,185 1,123 11.75
Fort Lauderdale, FL 25,992 1,124 354 17.97 1,427 1,142 18.14
Milwaukee, WI 28,020 1,291 8,957 9.71 1,614 1,160 12.93
Sarasota, FL 29,037 510 584 16.94 1,427 1,168 14.92
Seattle, WA 25,838 5,948 7,425 15.45 1,007 1,177 13.88
Columbus, OH 29,515 278 8,602 10.43 1,614 1,187 14.15
Tampa, FL 28,885 742 707 17.48 1,427 1,189 14.79
West Palm Beach, FL 27,963 616 583 18.58 1,427 1,197 16.08
Miami, FL 25,056 4,689 697 17.86 1,427 1,203 21.58
Pittsburgh, PA 28,075 2,093 9,713 10.40 1,614 1,219 15.89
Orlando, FL 28,838 1,361 665 18.50 1,427 1,231 14.36
Greensboro, NC 31,442 216 4,169 14.58 1,472 1,232 14.74
Grand Rapids, MI 30,236 572 13,141 8.36 1,614 1,235 17.96
Raleigh, NC 30,433 495 5,446 14.56 1,472 1,243 14.54
Chicago, IL 26,088 5,221 10,113 10.17 1,614 1,243 15.53
Norfolk, VA 27,606 1,078 5,587 16.47 1,472 1,258 15.40
Charlotte, SC 31,159 1,084 5,439 14.19 1,472 1,259 14.40
Cincinnati, OH 29,407 770 6,742 14.09 1,543 1,261 11.50
Minneapolis-St. Paul, MN 29,151 143 10,513 10.45 1,819 1,264 13.63
San Antonio, TX 28,810 1,929 2,638 16.49 1,555 1,269 15.26
Greenville, SC 32,568 130 4,104 15.28 1,472 1,275 19.71
Dayton-Springfield, OH 29,463 986 7,155 13.47 1,614 1,276 17.09
Akron, OH 30,454 768 9,662 11.47 1,614 1,277 15.22
St. Louis, MO-IL 29,811 1,267 7,366 14.39 1,472 1,282 12.68
Baltimore, MD 28,347 2,135 3,391 16.07 1,614 1,286 17.64
New Orleans, LA 26,164 663 3,129 20.45 1,472 1,291 19.25
Scranton, PA 30,117 282 10,117 12.24 1,614 1,296 18.71
Cleveland, OH 29,298 1,733 10,032 12.27 1,614 1,309 13.28
Richmond, VA 29,521 771 3,790 18.23 1,472 1,310 14.69
Tulsa, OK 30,841 353 7,805 14.12 1,561 1,312 14.85
Detroit, MI 29,473 889 14,957 9.75 1,614 1,313 13.05
Washington, DC 27,511 4,729 5,228 15.48 1,543 1,319 18.65
Austin, TX 29,717 1,595 4,419 16.49 1,555 1,320 15.07
Indianapolis, IN 30,299 534 8,949 13.48 1,614 1,323 26.66
Kansas City, MO 30,235 644 9,042 14.01 1,561 1,328 17.23
Louisville, KY 30,231 884 6,965 15.63 1,543 1,337 18.52
Atlanta, GA 30,192 1,121 8,555 15.20 1,472 1,338 14.01
Philadelphia, PA 25,426 3,993 10,831 14.16 1,614 1,357 9.66
Dallas, TX 28,155 1,723 5,253 18.53 1,555 1,375 16.31
Birmingham, AL 32,491 227 5,920 17.21 1,472 1,376 15.96
Nashville, TN 31,959 473 7,006 16.69 1,472 1,376 15.65
Houston, TX 28,216 1,447 5,148 19.30 1,555 1,394 16.54
Oklahoma City, OK 31,312 332 8,058 16.94 1,649 1,454 15.12
Memphis, TN 29,547 1,073 8,166 19.63 1,472 1,455 14.41

Notes:

Annual Standardized Household CO2 Emissions for Households Living in Homes Less Than Twenty Years Old
Table 3:

(1) Data is from the Integrated Public Use Microdata Series from the 2000 Census, the 2001 National Household Transportation Survey (NHTS), the Department of Energy, the National Transit Database, 
the 2001 Residential Energy Consumption Survey (RECS), and the Environmental Protection Agency’s Emissions & Generation Resource Integrated Database (eGRID).
(2) See text for detailed descriptions of the data calculations  
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(1) (2) (3) (4) (5)

Emissions 
from Driving

Emissions from 
Public 

Transportation

Emissions 
from Home 

Heating

Emissions 
from 

Electricity
Total 

Emissions

Log(Income) 1373 1123 -1901 3745 4340
(1945) (1351) (2215) (6452) (7051)

Log(Population) -2514 1193 1084 -2337 -2573
(411) (285) (468) (1362) (1489)

Share of MSA Employment within 5 Miles of the City Center -13079 2587 4215 -21618 -27896
(2432) (1690) (2770) (8068) (8817)

January Mean Temperature -71 -4 -191 -15 -280
(17) (12) (19) (56) (62)

July Mean Temperature 107 -11 -92 612 615
(39) (27) (44) (128) (140)

Constant 46439 -27651 25966 -30688 14066
(20068) (13940) (22857) (66569) (72749)

Observations 66 66 66 66 66
R-squared 0.56 0.38 0.73 0.41 0.41

Notes:
(1) Dependent variables are the total pounds of CO2 emissions from the listed source.
(2) The dependent variables are the marginal emissions, that is, emissions calculated for housing built between 1980 and 2000. See Table 3.
(3) The unit of analysis is a metropolitan area.
(4) Standard errors are reported in parentheses.

Regression Table
Table 4:

(5) Data is from the Integrated Public Use Microdata Series from the 2000 Census, the 2001 National Household Transportation Survey (NHTS), the Department of 
Energy, the National Transit Database, the 2001 Residential Energy Consumption Survey (RECS), the Environmental Protection Agency’s Emissions & Generation 
Resource Integrated Database (eGRID), and the National Oceanic and Atmospheric Administration.  
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MSA

Suburb-City 
Difference in 

Emissions 
from Driving

Suburb-City 
Difference in 

Emissions from 
Public 

Transportation

Suburb-City 
Difference in 

Emissions 
from Home 

Heating

Suburb-City 
Difference in 

Electricity

Suburb-
City 

Difference 
in Carbon 

Dioxide 
Emissions 

Suburb-
City 

Standard 
Error

 (Lbs of CO2)  (Lbs of CO2)  (Lbs of CO2)  (Lbs of CO2) ($ per Year)
($ per 
Year)

New York, NY 6,150 -2,367 5,650 4,015 289.16 9.68
Nashville, TN 7,880 -649 986 3,911 260.74 25.15
Atlanta, GA 6,593 -1,242 958 5,676 257.69 23.37
Boston, MA 6,691 -1,091 4,460 1,837 255.82 17.73
Philadelphia, PA 6,884 -2,286 838 4,926 222.78 13.96
Washington, DC 5,436 -2,280 140 5,757 194.64 29.18
Hartford, CT 5,392 -2,905 3,926 1,689 174.21 25.76
San Francisco, CA 4,246 -939 2,678 2,078 173.35 25.66
Minneapolis-St. Paul, MN 5,314 -105 -225 2,960 170.77 21.11
Houston, TX 2,794 -561 676 4,726 164.13 23.33
Raleigh-Durham, NC 3,011 -182 -1,839 5,996 150.19 21.48
Memphis, TN 3,559 -423 252 3,529 148.72 21.91
Tulsa, OK 4,959 -161 -771 2,755 145.80 23.13
Milwaukee, WI 4,624 -860 140 2,466 136.96 20.18
Baltimore, MD 6,248 -1,647 -3,674 5,417 136.40 28.36
Dallas, TX 4,040 -986 -884 4,009 132.86 23.96
Providence, RI 4,427 -982 1,615 1,067 131.74 20.89
Portland, OR 2,965 -553 169 3,362 127.76 20.46
Richmond, VA 4,475 -995 -3,478 5,873 126.29 22.04
Cincinnati, OH 2,848 -383 -2,281 5,424 120.58 17.40
Syracuse, NY 2,043 -204 1,335 2,091 113.18 25.27
Cleveland, OH 4,396 -1,002 -2,113 3,864 110.60 19.62
Buffalo, NY 4,245 -813 124 1,558 109.95 20.10
Seattle, WA 2,894 -2,608 1,282 3,309 104.87 20.58
Norfolk, VA 2,997 -295 -83 2,226 104.17 22.48
Charlotte, SC 2,937 -604 -248 2,671 102.26 21.27
San Antonio, TX 3,589 -388 -911 2,331 99.34 23.54
Austin, TX 4,106 -784 -293 1,415 95.53 23.92
St. Louis, MO 4,296 -1,378 -1,377 2,742 92.06 19.39
Akron, OH 3,661 -369 -1,022 1,707 85.51 23.20
Sacramento, CA 2,185 -101 201 1,681 85.27 20.56
Phoenix, AZ 3,675 -94 -1,497 1,835 84.25 21.34
Chicago, IL 5,577 -2,624 -219 1,102 82.48 24.03
Greensboro, NC 2,199 -60 -3,340 4,220 64.91 21.06
Denver, CO 2,503 -641 150 934 63.34 20.65
Oklahoma City, OK 1,086 -115 -192 1,726 53.86 21.02
Fresno, CA 1,438 -92 267 785 51.55 20.56
Kansas City, MO 2,705 -542 -1,625 1,743 49.03 25.54
Rochester, NY 2,662 -554 -1,001 1,162 48.80 23.85
Grand Rapids, MI 1,528 -183 -1,172 1,870 43.94 25.65
New Orleans, LA 3,391 -474 -1,507 407 39.06 27.77
Riverside, CA 1,176 -8 685 -695 24.88 19.49
Dayton, OH 2,918 -527 -2,893 1,534 22.20 24.05
Pittsburgh, PA 5,824 -1,819 -3,744 318 12.43 23.14
Tampa, FL 2,931 -560 -873 -1,239 5.57 22.52
Tacoma, WA 3,043 -134 -365 -2,428 2.49 21.51
Los Angeles, CA 691 -229 -119 -2,455 -45.42 25.36
Detroit, MI 4,475 -1,214 -6,800 -48 -77.12 19.62

Notes:

Suburb-City Differences in  CO2 Output Emissions
Table 5:

(1) Data is from the Integrated Public Use Microdata Series from the 2000 Census, the 2001 National Household Transportation Survey (NHTS), the Department of Energy, 
the National Transit Database, the 2001 Residential Energy Consumption Survey (RECS), and the Environmental Protection Agency’s Emissions & Generation Resource 
Integrated Database (eGRID).
(2) See text for detailed descriptions of the data calculations  
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(1) (2) (3) (4) (5)

City-Suburb 
Difference in 

Emissions from 
Driving

City-Suburb 
Difference in 

Emissions from 
Public 

Transportation

City-Suburb 
Difference in 

Emissions 
from Home 

Heating

City-Suburb 
Difference in 

Electricity

City-Suburb 
Difference in 

Carbon Dioxide 
Total Emissions

Log(Income) 4190 -1894 4641 9532 16468
(2098) (924) (2732) (2547) (4557)

Log(Population) 665 -478 1070 -876 381
(394) (174) (514) (479) (857)

Share of MSA Employment within 5 Miles of the City Center 3068 -1911 12772 -2792 11137
(2623) (1155) (3415) (3184) (5697)

January Mean Temperature -59 17 53 -61 -50
(20) (9) (26) (24) (43)

July Mean Temperature 93 -7 -22 158 222
(38) (17) (50) (47) (83)

Constant -57430 27215 -69873 -98891 -198979
(21624) (9526) (28159) (26251) (46972)

Number of Observations 48 48 48 48 48
R2 0.37 0.44 0.36 0.39 0.37

Notes:
(1) Dependent variables are the suburb-city difference of total pounds of CO2 emissions from the listed source.  See Table 5.
(2) The unit of analysis is a metropolitan area.
(3) Standard errors are reported in parentheses.

Regression Table
Table 6:

(4) Data is from the Integrated Public Use Microdata Series from the 2000 Census, the 2001 National Household Transportation Survey (NHTS), the Department of 
Energy, the National Transit Database, the 2001 Residential Energy Consumption Survey (RECS), the Environmental Protection Agency’s Emissions & Generation 
Resource Integrated Database (eGRID), and the National Oceanic and Atmospheric Administration.  

 

 

 

 

 

 

 

 

  

 

 

 


