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Abstract

We propose a Conditional Autoregressive Wishart (CAW) model for the analysis of realized

covariance matrices of asset returns. Our model assumes a generalized linear autoregressive mov-

ing average structure for the scale matrix of the Wishart distribution allowing to accommodate

for complex dynamic interdependence between the variances and covariances of assets. In addi-

tion, it accounts for symmetry and positive de�niteness of covariance matrices without imposing

parametric restrictions, and can easily be estimated by Maximum Likelihood. We also propose

extensions of the CAW model obtained by including a Mixed Data Sampling (MIDAS) compo-

nent and Heterogeneous Autoregressive (HAR) dynamics for long-run �uctuations. The CAW

models are applied to time series of daily realized variances and covariances for �ve New York

Stock Exchange (NYSE) stocks.
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1. Introduction

Multivariate modeling and forecasting the variances and covariances of asset returns play a promi-

nent role in many practical situations, ranging from portfolio allocation and asset pricing to risk

assessment. In practice, the covariance matrix of asset returns is not directly observable and most

existing models treat it either as measurable given past observations, such as multivariate GARCH

models introduced by Bollerslev et al. (1988), or as an inherently latent quantity, such as multivari-

ate stochastic volatility (SV) models introduced by Harvey et al. (1994). Excellent overviews on

multivariate GARCH and SV models can be found in Bauwens et al. (2006) and Asai et al. (2006),

respectively. An alternative approach of covariance estimation and modeling, which has attracted

substantial interest in recent years, uses high-frequency returns data to construct the realized vari-

ances and covariances as precise estimates for the variances and covariances of low-frequency returns

(see e.g., Andersen et al. 2003 and Barndor�-Nielsen and Shephard, 2004). As such, the observed

realized variances and covariances can be modeled directly as advocated, for example, by Andersen

et al. (2003). Multivariate models for the realized covariance matrix should satisfy two important

requirements, namely that the predicted covariance matrices remain positive de�nite, and, second,

that the speci�cation is parsimoniously parameterized yet empirically realistic with the ability to

account for the strong serial dependence typically observed for realized variances and covariances.

Pioneering multivariate approaches to model the dynamics in the realized covariance matrix are

found in Gourieroux et al. (2009), Jin und Maheu (2009), Chiriac and Voev (2010), and Bauer and

Vorkink (2010). The speci�cation proposed by Gourieroux et al. (2009) extends the Wishart distri-

bution of the sample covariance for i.i.d. multivariate Gaussian random variables by allowing the

multivariate Gaussian random variables to be serially correlated. Under the resulting Wishart Au-

toregressive (WAR) process the realized covariance has a transition distribution which is noncentral

Wishart with a non-centrality parameter depending on lagged covariances and a �xed scale matrix.

As such the WAR model naturally accommodates the positive de�niteness of predicted covariance

matrices without any parametric restrictions. The approach followed by Jin und Maheu (2009) also

relies on a Wishart transition distribution, but assumes a central rather than a noncentral Wishart

distribution, and decomposes its scale matrix into multiplicative components, which are driven by
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sample averages of lagged realized covariance matrices. In order to account for the positive de�-

niteness, the approaches of Chiriac and Voev (2010) and Bauer and Vorkink (2010) use appropriate

transformations of the covariance matrix. The former approach is based upon a Cholesky decom-

position of the covariance matrix and assumes fractionally integrated processes for the individual

elements of the Cholesky factor. The latter approach transforms the covariance matrix by using the

matrix logarithm function and speci�es the individual elements of the transformation as functions of

latent factors driven by lagged volatilities and lagged returns.

In the present paper, we adopt a conditional autoregressive Wishart (CAW) approach and propose

a new �exible dynamic model for the realized covariance matrix of asset returns. Its baseline speci�-

cation assumes a simple generalized linear autoregressive structure for the scale matrix of the Wishart

distribution allowing to account for nontrivial serial dependencies in the variances and covariances.

In particular, under our model the predicted covariance matrix depends on lagged covariance matri-

ces as well as on their lagged predictions. As such it presents a dynamic generalization of the models

proposed by Gourieroux et al. (2009) and Jin und Maheu (2009), where the predicted covariance

matrix is speci�ed as a function of lagged covariances only. Our model also accounts for symmetry

and positive de�niteness of the predicted covariance matrices without imposing parametric restric-

tions and can easily be estimated by Maximum Likelihood (ML). In addition, it allows us to derive

in a straightforward manner conditions for stationarity and other important time series properties.

A further advantage of our approach is that its baseline speci�cation can easily be generalized. The

extensions of the baseline CAW model we explore, are speci�cally designed to capture the long-run

�uctuations in the variances and covariances. For this purpose, we combine the CAW speci�cation

with the mixed data sampling (MIDAS) approach of Engle et al. (2008) and, alternatively, with an

heterogeneous autoregressive (HAR) component as used by Corsi (2009) and Bonato et al. (2009).

The rest of the paper is organized as follows. Section 2 introduces the baseline CAW model and

discusses its stochastic properties. Extensions of the baseline model are proposed in Section 3. The

empirical application to NYSE data is presented in Section 4. Section 5 concludes. The proofs are

provided in the Appendix.
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2. Conditional Autoregressive Wishart (CAW) Model

2.1. CAW(p,q) Model

Consider the stochastic, symmetric positive de�nite matrix Rt = (rij,t) of realized covariances with

dimension n × n recorded at time t (t = 1, ..., T ). The matrix Rt given the past history Ft−1 =

{Rt−1, Rt−2, ...} is assumed to follow a central Wishart distribution

Rt|Ft−1 ∼ Wn(ν, St/ν), (1)

where ν > 0 is the scalar degree of freedom and St/ν is the n× n symmetric, positive de�nite scale

matrix with St = (sij,t), such that the conditional mean and covariances are (see Muirhead, 1982)

E(Rt|Ft−1) = St, Cov(rij,t, rlm,t|Ft−1) =
1
ν

(sil,t · sjm,t + sim,t · sjl,t). (2)

The density function for Rt|Ft−1 has the form

f(Rt|Ft−1) =
|St/ν|−ν/2|Rt|(ν−n−1)/2

2νn/2πn(n−1)/4
∏n
i=1 Γ([ν + 1− i]/2)

exp{−1
2
tr(νS−1

t Rt)}, (3)

where Γ(·) denotes the Gamma function. In order to account for serial- and cross-correlation across

the elements in Rt we assume that the matrix-variate process St follows the linear recursion of order

(p,q)

St = CC ′ +
p∑
i=1

BiSt−iB
′
i +

q∑
j=1

AjRt−jA
′
j , (4)

where C is a n×n lower-triangular matrix and Aj , Bi are n×n parameter matrices. This recursion

of order (p, q) resembles the BEKK-GARCH(p, q) speci�cation of Engle and Kroner (1995) for the

conditional covariance in models for multivariate returns, and has the appealing property to guaran-

tee the symmetry and positive-de�niteness of the conditional mean St essentially without imposing

parametric restrictions on (C,Aj , Bi).

The CAW(p, q) model de�ned by Equations (1) and (4) can be interpreted as a state-space model

with St as a state variable measured by the observable matrix Rt and with measurement density
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given by Equation (3). The corresponding measurement equation obtains as (see Muirhead, 1982,

p. 95, Theorem 3.2.11)

Rt =
1
ν
S

1/2
t Ut(S

1/2
t )′, Ut ∼ Wn(In, ν), (5)

where S
1/2
t denotes the lower-triangular Cholesky factor of St such that St = S

1/2
t (S1/2

t )′ and Ut

represents the measurement error following a standardized Wishart distribution with ν degree of

freedom and a scale matrix given by the identity matrix In. This allows us to interpret St as the

`true' integrated covariance for a broad class of multivariate continuous-time stochastic volatility

models which is, under fairly general conditions, consistently estimated by the realized covariance

Rt (see Barndor�-Nielsen and Shephard, 2004). Within this context, the matrix Ut in Equation (5)

plays the role of the corresponding estimation error.

The CAW(p, q) model as speci�ed is unidenti�ed. Su�cient conditions for identi�cation are that

the main diagonal elements of C, denoted by cll, and the �rst diagonal element for each of the

matrices Aj , Bi denoted by a11,j and b11,i are restricted to be positive (see Engle and Kroner, 1995).

The CAW(p, q) model is designed to capture nontrivial dynamic interactions across n(n + 1)/2

elements of the realized covariance matrix for the returns of n assets. It involves n(n+ 1)/2 + (p+

q)n2 + 1 parameters. For the multivariate GARCH class of models with such a highly parameterized

covariance process, the estimation can be computationally very demanding when the number of assets

increases. However, note that the CAW model is directly �tted to n(n+ 1)/2 realized (co-)variances,

while the corresponding GARCH models are estimated based on the returns of n assets only. Hence,

the number of observations per parameter is signi�cantly larger for the CAW model than that for

the corresponding GARCH speci�cation, such that the curse-of-dimensionality problem appears to

be less acute for the CAW model. Furthermore, the number of CAW-parameters can be reduced by

imposing restrictions on the matrices (Aj , Bi). A natural restriction is to impose a diagonal structure

on the dynamics of St by assuming that Aj and Bj are diagonal matrices. This reduces the number

of parameters to n(n+ 1)/2 + (p+ q)n+ 1.

The CAW model is related to the Wishart autoregressive (WAR) model introduced by Gourieroux

et al. (2009), which is based upon a conditional non-central Wishart distribution for Rt. Under

the WAR model, it is the matrix of non-centrality parameters of the Wishart distribution which
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is assumed to depend on lagged Rts, rather than the scale matrix as under the CAW model. In

particular, the WAR(p) process is characterized by ν degrees of freedom, a �xed scale matrix S, and

a matrix of non-centrality parameters given by S−1(
∑p

i=1AiRt−iA
′
i) such that

E(Rt|Ft−1) = ν · S +
p∑
i=1

AiRt−iA
′
i. (6)

Hence, the WAR(p) and CAW(0, q) model with q = p have conditional expectations for the covariance

matrix of the same form and with the same number of parameters. This allows us to interpret the

CAW(p, q) model as a dynamic generalization of the WAR(p) speci�cation. Note, however, that the

two model speci�cations are nonnested, except for the trivial cases, that the WAR(0) obtains as a

restricted CAW(p, q) and the CAW(0, 0) represents a restricted WAR(p) model.

2.2. Stochastic Properties of the CAW(p,q) Model

For the discussion of the stochastic properties of the CAW model, it proves convenient to use its

VARMA representation which obtains from the recursion (4).

Let vech(·) denote the operator that stacks the lower triangular portion, including the diagonal

of a matrix into a vector, and let vec(·) denote the operator that stacks all columns of a matrix into

a vector. Then de�ning rt = vech(Rt), st = vech(St) and c = vech(CC ′), the vector representation

of recursion (4) is

st = c+
p∑
i=1

Bist−i +
q∑
j=1

Ajrt−j , (7)

where (Aj , Bi) are k × k matrices with k = n(n+ 1)/2. They obtain as

Aj = Ln(Aj ⊗Aj)Dn, Bi = Ln(Bi ⊗Bi)Dn, (8)

where Ln and Dn denote the elimination and duplication matrix, respectively, de�ned so that

vec(X) = Dnvech(X) and vech(X) = Lnvec(X) for any symmetric n × n matrix X (see Lütke-

pohl, 1996, p. 9-10).
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Notice further that rt can be written as

rt = E(rt|Ft−1) + vt = st + vt, with E(vt) = 0, E(vtv′s) = 0 ∀s 6= t, (9)

where vt is a martingale di�erence. By plugging st−i = rt−i − vt−i (i = 1, ..., p) into Equation (7),

the CAW(p, q) can be represented as a VARMA(max(p, q), p) model:

rt = c+
max(p,q)∑
i=1

(Bi +Ai)rt−i −
p∑
j=1

Bjvt−j + vt, (10)

with Aq+1 = · · · = Ap = 0 if q < p and Bp+1 = · · · = Bq = 0 if p < q. From the VARMA

representation (10) we immediately obtain the conditions for the existence of the unconditional

mean for the CAW(p, q) model, which are given in the following proposition.

Proposition 1. The unconditional mean of the CAW(p, q) model (1) - (4) is �nite i� all eigenvalues

of the matrix Ψ1 =
∑max(p,q)

i=1 (Bi + Ai) are less than 1 in modulus. In that case the unconditional

mean is given by

E(rt) = r̄ =

Ik − max(p,q)∑
i=1

(Bi +Ai)

−1

c. (11)

The following discussion of the second moments of rt, which represent the fourth moments of the

asset returns, is based on the VMA(∞) representation of the CAW(p, q) model and resembles that

of Hafner (2003) who derives the existence conditions and the analytic expressions for the fourth

moments of multivariate GARCH processes.

The VMA(∞) representation which obtains from the VARMA(max(p, q), p) speci�cation (10) is

given by (see Lütkepohl, 2005, p. 424)

rt = r̄ +
∞∑
i=0

Φivt−i, with Φi = −Bi +
i∑

j=1

(Aj + Bj)Φi−j , i = 1, 2, ..., Φ0 = Ik. (12)

Then the autocovariance and variance of rt, provided that they exist, have the form

Γ(τ) = E[(rt − r̄)(rt−τ − r̄)′] =
∞∑
i=0

Φτ+iE(vtv′t)Φ
′
i, τ = 1, 2, . . . , (13)
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and

Γ(0) = E(rtr′t)− r̄r̄′ =
∞∑
i=0

ΦiE(vtv′t)Φ
′
i. (14)

The following lemma establishes the particular relationship between the second moment of rt and

the second moment of the state process st obtained under the conditional Wishart distribution in

Equation (1).

Lemma 1. Under the CAW(p, q) model (1) - (4) and the assumption that E(rtr′t) exists,

vec[E(rtr′t)] = (Ω + Ik2)vec[E(sts′t)], (15)

with

Ω =
1
ν

(Ln ⊗ Ln)[In2 ⊗ (In2 +Knn)](In ⊗Knn ⊗ In)(Dn ⊗Dn), (16)

where Knn denotes the commutation matrix (as given in Lütkepohl, 1996 p. 115).

Based upon this result, we can derive necessary and su�cient conditions for the existence of

E(rtr′t) and its explicit form, which are given in proposition 2.

Proposition 2. The unconditional second moment for the CAW(p, q) model (1) - (4) is �nite i� all

eigenvalues of the matrix Ψ2 =
∑∞

i=1(Φi ⊗ Φi)Ω are less than 1 in modulus. In that case the second

moment is given by

vec[E(rtr′t)] = (Ω + Ik2)

(
Ik2 −

∞∑
i=1

(Φi ⊗ Φi)Ω

)−1

vec(r̄r̄′). (17)

Proposition 2 implies that under the CAW(p, q) model the process {Rt} is covariance stationary

if and only if the eigenvalues of the matrix
∑∞

i=1(Φi⊗Φi)Ω are less than 1 in modulus. The explicit

form of the unconditional variance obtains by inserting r̄ and E(rtr′t) as given by Equations (11) and

(17), respectively, into Γ(0) = E(rtr′t)− r̄r̄′. The unconditional variance of the martingale di�erence

vt, which is required for the computation of the autocovariance for rt in Equation (13), is given by

vec[E(vtv′t)] =
(
Ik2 − (Ω + Ik2)−1

)
vec[E(rtr′t)], (18)
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which follows from Equation (15) and the fact that E(vtv′t) = E(rtr′t)− E(sts′t) (see Equation 9).

If the order of the CAW(p, q) model is small, it is possible to obtain a more convenient expression

for the second moment than that in Equation (17). For the CAW(1, 1) speci�cation, for example, we

derive the following results:

Corollary 1. The unconditional second moment for the CAW(1, 1) model is �nite i� all eigenvalues

of the matrix

∆ = (A1 ⊗A1)(Ω + Ik2) + (B1 ⊗A1) + (A1 ⊗ B1) + (B1 ⊗ B1) (19)

are less than 1 in modulus. In that case the mean and the second moment are given by

E(rt) = r̄ = (Ik − (A1 + B1))−1 c, (20)

vec[E(rtr′t)] = (Ω + Ik2) (Ik2 −∆)−1 vec
(
cc′ + cr̄′(A1 + B1)′ + (A1 + B1)r̄c′

)
. (21)

2.3. Estimation of the CAW(p,q) Model and Diagnostics

Estimation of the parameters ψ = (ν, vech(C),′ vec(B1)′, ..., vec(Bp)′, vec(A1)′, ..., vec(Aq)′)′ of the

CAW(p, q) model can be carried out by maximizing the log-likelihood function using numerical

techniques routinely available in standard software packages. The log-likelihood function obtains

as

L(ψ) =
T∑
t=1

{
− νn

2
ln(2)− n(n− 1)

4
ln(π)−

n∑
i=1

ln Γ
(
ν + 1− i

2

)
(22)

−ν
2

ln |St
ν
|+
(
ν − n− 1

2

)
ln |Rt| −

1
2
tr(νS−1

t Rt)

}
.

The ML-estimates presented below are obtained by using the Broyden-Fletcher-Goldfarb-Shanno

(BFGS) optimization procedure. Positivity of the diagonal elements cll, a11,i, and b11,j are enforced

by estimating
√
cll,
√
a11,i, and

√
b11,j . The estimation of an unrestricted CAW(2, 2) for the covariance

of 5 assets with 116 parameters, e.g., requires approximately 150 BFGS iterations and takes of the

order of 10 minutes on a CORE 2 Duo Intel 2.7 GHz processor using GAUSS on Windows XP.
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Diagnostic tests for the �tted models are conducted from the vector of standardized residuals

e∗t = Var(rt|Ft−1)−1/2 [rt − E(rt|Ft−1)] , (23)

where Var(rt|Ft−1)−1/2 denotes the inverse Cholesky factor of Var(rt|Ft−1). For a correctly speci�ed

model, the standardized residuals e∗ij,t in the vector e∗t are serially uncorrelated and not predictable

based on past residuals e∗t−τ . In order to test this implication, we regress each series e
∗
ij,t on a constant

and {e∗t−τ}τ≥1 and test the hypotheses that all regression coe�cients other than the constant are

equal to zero by using the F -statistic.

3. Extensions of the Baseline CAW Model

Due to the nonlinear dynamics and the number k = n(n + 1)/2 of di�erent elements in Rt a low

order CAW(p, q) model can be expected to accommodate a large variety of dynamic patterns in the

variances and covariances of asset returns, including a long-memory type of persistence. The ability

to accommodate long-memory type dependence patterns can be expected due to the well-known fact

that low-order multivariate VARMA models typically imply univariate ARMA speci�cations of a very

high order (see, e.g., Cubadda et al., 2009). Nevertheless, it might be useful to consider extensions

of the basic CAW(p, q) model, introduced in Section 2.1, which are speci�cally designed to capture

the long-run movements of volatilities and co-volatilities. In the following, we introduce two of such

extensions, where we combine the CAW model with the MIDAS (mixed data sampling) approach

of Engle et al. (2008) and Colacito et al. (2009), and with an HAR (heterogenous autoregressive)

component as used by Corsi (2009) and Bonato et al. (2009).

3.1 MIDAS-CAW Model

Component GARCH models with short- and long-run components have been proven to be useful

representations of complex dependence structures in the volatility (see, e.g., Engle and Lee, 1999).

Under the GARCH-MIDAS component model, recently proposed by Engle et al. (2008), the short-run

component is speci�ed as a mean-reverting GARCH process based on daily returns that moves around

9



a long-run component driven by realized volatilities computed over a monthly, quarterly or semi-

annual basis. Following this idea, we decompose the scale matrix St for the daily covariance matrix

Rt in Equations (1)-(3) into a secular component Mt and a mean-reverting short-run component S∗t :

E(Rt|Ft−1) = St = CtS
∗
tC
′
t, with Mt = CtC

′
t, (24)

where Ct is the lower-triangular Cholesky factor of the secular component Mt. The short-run com-

ponent S∗t is assumed to follow a covariance-stationary CAW(p, q) process with E(S∗t ) = In, namely,

S∗t =

In − q∑
j=1

AjA
′
j −

p∑
i=1

BiB
′
i

+
p∑
i=1

BiS
∗
t−iB

′
i +

q∑
j=1

Aj

[
C−1
t−jRt−j(C

′
t−j)

−1
]
A′j . (25)

The long-run component Mt is speci�ed as a parsimonious multivariate extension of the univariate

MIDAS polynomial proposed by Engle et al. (2008). This multivariate extension is applied to realized

covariance matrices (R̄
(m)
t ) computed over a horizon of m trading days using rolling samples that

change from day to day. In particular, our MIDAS component is given by the following weighted

sum of L lags of m-period realized covariances:

Mt = C̄C̄ ′ + θ ·
L∑
`=1

ϕ`(ω) · R̄(m)
t,` , (26)

R̄
(m)
t,` =

t−m·(`−1)−1∑
τ=t−m·`

Rτ , ` = 1, ..., L, (27)

where C̄ denotes a lower triangular matrix, θ is a slope parameter restricted to be non-negative, and

ϕ`(·) represents a scalar-valued function of weights. Following Engle et al. (2008), we specify the

function ϕ`(·) using so-called Beta weights, de�ned as

ϕ`(ω) =

(
1− `

L

)ω−1

∑L
j=1

(
1− j

L

)ω−1 , (28)

where the parameter ω controls the weights' decay pattern. In the empirical application discussed

below, we use for the m-period realized covariance in Equation (27) a window length m of one month
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(20 trading days) and take a lag order L of 12 such that the MIDAS �lter aggregates daily covariances

of one year.

Note that the MIDAS �lter in Equations (26)-(28) with the same weighting scheme and the

same slope across all series imposes a common pattern in the long-run dynamics for all elements in

the covariance matrix, thereby preserving parsimony for the speci�cation of the secular component.

This restriction is justi�ed by the �nding that the long-run movements of the individual realized

(co)variances (see Figure 1) appear to be very similar.

An interesting alternative to the parametric MIDAS �lter for the secular component would be

to use for Mt a non-parametric function which smoothes realized covariances in the spirit of the

multivariate component GARCH approach recently proposed by Hafner and Linton (2010). Note,

however, that this approach does not directly allow to forecast covariances since such a non-parametric

smoother involves future covariances.

3.2 HAR-CAW Model

A related alternative to the MIDAS component speci�cation of Engle et al. (2008) for highly persistent

volatility processes is the HAR model proposed by Corsi (2009). It accommodates the long-memory

type of dependence patterns in daily volatility by an hierarchical autoregressive speci�cation including

lagged daily as well as weekly and monthly volatilities. Bonato et al. (2009) extend this univariate

approach by combing the multivariate WAR process with HAR dynamics. Following this idea, we

consider the following speci�cation for the scale matrix St in Equations (1)-(3):

St = CC ′ +ARt−1A
′ +A(w)R̄

(w)
t−1A

(w)′ +A(bw)R̄
(bw)
t−1 A

(bw)′ +A(m)R̄
(m)
t−1A

(m)′ , (29)

with R̄
(x)
t−1 denoting the realized covariance computed over a time window x = {w, bw,m}, where

w stands for the weekly (5 days), bw for the biweekly (10 days), and m for the monthly (20 days)

horizon. A and A(x) are n× n parameter matrices.

Using the vector representation of speci�cation (29), it can be written as a restricted CAW(0,20)

11



model:

st = c+ [A+A(w) +A(bw) +A(m)] · rt−1 + · · ·+ [A(w) +A(bw) +A(m)] · rt−5 (30)

+[A(bw) +A(m)] · rt−6 + · · ·+ [A(bw) +A(m)] · rt−10

+[A(m)] · rt−11 + · · ·+ [A(m)] · rt−20,

where the matrices A, A(x) are obtained as described in Equation (8). Note that this representation

of the HAR-CAW model allows to use directly the results discussed in Section 2.2 for the derivation

of its stochastic properties.

4. Empirical Application

4.1 Data

The CAW model introduced in Sections 2 and 3 is used to analyze the dynamics of daily realized

covariance matrices for �ve stocks traded at the New York Stock Exchange: American Express

(AXP), Citigroup (C), General Electric (GE), Home Depot (HD), and International Business Ma-

chines (IBM). The data set is the same as that used by Chiriac and Voev (2010). The daily realized

covariance matrix can be computed as Rt =
∑M

j=1 yt,jy
′
t,j , where yt,j is the vector of returns for the

n = 5 stocks computed for the jth 5-minute interval of trading day t between 9:30 a.m. and 4:00

p.m. This realized covariance measure is further re�ned, as in Chiriac and Voev, by averaging over

30 subsampling subgrids per day in order to exploit the data richness more e�ciently and to cope

with market microstructure noise. The sample period starts at January 1, 2000, and ends on July 30,

2008, covering 2156 trading days. The �rst 240 covariance matrices are reserved as starting values

for the initialization of the MIDAS �lter discussed in Section 3.1. This leaves a sample of T = 1916

observations. Figure 1 shows time series plots of the realized variances and covariances. Descriptive

statistics are provided in Table 1. The empirical distribution of the variances and covariances is heav-

ily skewed to the right and is highly leptokurtic. The autocorrelation function of the variances and
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covariances plotted in Figure 2 dies out at a very slow rate indicating very strong serial correlation.

4.2 Estimation Results

4.2.1 Baseline CAW Model

Our �rst attempt to describe the data uses the baseline CAW(p,q) model as given by Equations (1)

and (4), with lag orders (p,q) ranging from (0,1) to (2,2). The upper panel of Table 2 reports the

values of the maximized log-likelihood function, Schwarz's (1978) information criterion, the largest

eigenvalues of the estimated matrices Ψ1 =
∑max(p,q)

i=1 (Bi +Ai) and Ψ2 =
∑∞

i=1(Φi ⊗ Φi)Ω, and the

results of diagnostics checks on the standardized residuals e∗t , obtained for the �tted unrestricted

CAW speci�cations.

Of the unrestricted models, the Schwarz-preferred speci�cation is the CAW(2,2) with 116 pa-

rameters. The largest eigenvalues of the estimated Ψ1 and Ψ2 matrices imply that the unrestricted

CAW(2,2) is the only speci�cation which is covariance stationary with �nite unconditional �rst- and

second-order moments. However, the largest eigenvalue of Ψ1 is very close to unity indicating an

extremely high persistence in the conditional mean. The result of the F -test for predictability of the

standardized residuals e∗ij,t using 50 lags reveals that the unrestricted CAW(2,2) model successfully

accounts for the dynamics in the variance of four stocks and in six covariances, but points towards

residual predictability of the variance for one stock and four covariances. Hence, the model seems

to capture the dynamic interdependence in most, though not all, elements of the realized covariance

matrix. This is corroborated by the autocorrelation function of the standardized residuals (see Fig-

ure 3), indicating that the CAW(2,2) model dramatically reduces the serial correlation for the raw

data in Figure 2. The ML parameter estimates for the unrestricted CAW(2,2) model are provided

in the upper panel of Table 3. They indicate that, apart from a11,2 and b11,2, all diagonal elements

of the autoregressive matrices Bi and Aj are statistically signi�cant at the 1% level, while many of

the o�-diagonal entries are not signi�cantly di�erent from zero. This seems to suggest the use of a

diagonal CAW speci�cation obtained by restricting the matrices Bi and Aj in Equation (4) to be

diagonal.

The estimation results for the diagonal CAW models are reported in the lower panels of Tables

13



2 and 3. In fact, the Schwarz criterion typically favors the parsimonious diagonal CAW(p,q) speci�-

cations over their unrestricted counterparts and selects the diagonal CAW(2,1) with 31 parameters

as the best CAW formulation. However, this speci�cation is clearly dominated by the unrestricted

CAW(2,2) model in terms of accounting for serial correlation in the covariance matrix. In particular,

under the diagonal CAW(2,1) only 7 out of 15 elements of the residual vector e∗t pass the F -test for

predictability using the 1% signi�cance level, while under the unrestricted CAW(2,2) 10 elements pass

this test. Finally, the largest eigenvalues of the estimated matrices characterizing the unconditional

�rst- and second-order moments indicate that the diagonal CAW(2,1) is not covariance stationary

due to an explosive behavior in the second-order moments.

4.2.2 MIDAS-CAW and HAR-CAW Model

In order to explicitly account for long-run �uctuations we generalize the baseline CAW models by

including a MIDAS component as described in Equations (24)-(28). The upper panel of Table 4

summarizes goodness-of-�t measures for those CAW extensions. For each lag order (p, q), the in-

clusion of the MIDAS component signi�cantly increases the value of the maximized log-likelihood

function, indicative for a much better �t. The Schwarz-preferred MIDAS speci�cation is the diagonal

MIDAS-CAW(2,2)-model. The largest eigenvalues of Ψ1 and Ψ2, obtained for all MIDAS speci�ca-

tions, are all less than one and are noticeably smaller than under the baseline CAW models. This

suggests that the inclusion of the MIDAS component has signi�cant e�ects on the dynamic struc-

ture of the model. The same �nding is reported by Engle et al. (2008) for a univariate GARCH

model, where the inclusion of a MIDAS �lter substantially reduces the persistence in the GARCH

component. The results of the F -test for predictability of the standardized residuals show that the

MIDAS speci�cations better account for the dynamics in the realized covariance matrix than their

baseline counterparts in Table 2. However, none of the �tted MIDAS-CAW speci�cations can com-

pletely capture the serial and cross correlation in all the variances and covariances. The parameter

estimates of the unrestricted and diagonal MIDAS-CAW(2,2) model provided in Table 5 show that

under both speci�cations the slope parameter for the MIDAS component θ is signi�cantly larger

than zero, which underscores the importance of allowing for a long-run component. Figure 4 shows
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plots of the predicted variance, covariance and correlation for the AXP and C stock together with

their respective long-run MIDAS components obtained under the MIDAS-CAW(2,2) model. As ex-

pected, the MIDAS component explains a signi�cant part of the variation in the predicted conditional

(co)variances and correlations.

As an alternative to the MIDAS approach, we explore the HAR-CAW model as speci�ed by Equa-

tions (1) and (29). The goodness-of-�t measures provided in the lower part of Table 4 reveal that the

Schwarz criterion strongly favors the unrestricted and diagonal HAR-CAW models over the baseline

CAW formulations in Table 2. However, the Schwarz criterion for both HAR speci�cations remains

substantially larger than that for the best MIDAS alternative, the diagonal MIDAS-CAW(2,2) model.

Furthermore, the F -test for residual predictability shows that the HAR speci�cations also have dif-

�culties capturing the full dynamics in the realized covariance matrix.

All in all, the Schwarz criterion together with the F -test for residual predictability indicate that

the diagonal MIDAS-CAW(2,2) model represents the preferred CAW speci�cation for our data. In

order to more completely capture the dynamics in the realized covariance than it is possible with this

diagonal MIDAS-CAW model one could further increase the lag order. However, neither the Schwarz

criterion nor the F -statistic obtained for diagonal MIDAS-CAW models with lag orders larger than

(p, q) = (2, 2) (not presented here) indicate a signi�cant improvement of the in-sample �t.

4.3 Forecasting Results

We now compare the out-of-sample-forecast performance of the CAW-speci�cations and alternative

forecasting models, focusing on forecast horizons of h = {1, 5, 10} days. The forecast of the h-

period-ahead realized covariance, denoted by R̂t+h = E(Rt+h|Ft), can be compared with the ex-post

realization of the realized covariance Rt+h. For the forecast experiment we use the last 240 trading

days in our sample as the out-of-sample window. Every model is re-estimated daily and new forecasts

are generated based upon the updated parameter estimates.

For the baseline CAW and the HAR-CAW models, given the parameter estimates, the h-step-

ahead forecasts are easily obtained by recursion. In particular, it can be shown for the baseline
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CAW(p,q) model that

E(rt+h|Ft) = E(st+h|Ft) = c+ B1E(st+h−1|Ft) + · · ·+ BpE(st+h−p|Ft) (31)

+A1E(rt+h−1|Ft) + · · ·+AqE(rt+h−q|Ft),

where

E(st+h−τ |Ft) =
{

st+h−τ , if τ ≥ h− 1

E(rt+h−τ |Ft), if τ < h− 1.
(32)

The forecasts under the HAR-CAW model are obtained by exploiting its restricted CAW(0,20) rep-

resentation as given by Equation (30).

Under the MIDAS-CAW model the functional relationship between E(rt+1|Ft) = st+1 and Ft =

{rt, rt−1, . . .} as speci�ed in Equations (24)-(28) is non-linear. This implies that the forecast E(rt+h|Ft)

for h > 1 depends upon the entire h-step-ahead forecast distribution f(rt+h|Ft), which is not avail-

able in a closed form. Hence, we approximate this distribution by Monte-Carlo (MC) simulation

from the convolution of the h one-step-ahead forecast distributions {f(rt+τ |Ft+τ−1)}hτ=1 as speci�ed

by the model and evaluate the forecasts E(rt+h|Ft) by MC integration. The MC integration is im-

plemented using 10,000 arti�cial trajectories simulated from the convolution of the one-step-ahead

forecast distributions.

As alternative forecasting models for the daily realized covariance, we consider a simple Exponen-

tially Weighted Moving Average (EWMA) approach applied to the realized covariance matrices and

a BEKK-GARCH(p,q) model �tted to the daily stock returns. The EWMA model, which is often

used in risk management systems like RiskMetrics (see J.P. Morgan, 1996) to forecast variances and

covariances, is given by

E(rt|Ft−1) = (1− λ)rt−1 + λE(rt−1|Ft−2), (33)

where we set λ to its typical value given by 0.94. For this approach the h-step-ahead forecast obtains

as E(rt+h|Ft) = E(rt+h−1|Ft).

The BEKK-GARCH(p,q) model for a vector of n stock returns, denoted by yt, has the form
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yt = Σ1/2
t υt, where υt ∼ N (0, In). The conditional covariance matrix Σt is speci�ed as

Σt = D0D
′
0 +

p∑
i=1

DiΣt−iD
′
i +

q∑
j=1

Gj [yt−jy′t−j ]G
′
j , (34)

where D0 is a lower triangular n×n matrix and Di, Gj are n×n matrices. The h-step-ahead forecasts

R̂t+h = E(Σt+h|yt, yt−1, ...) are obtained by a recursion, which is analogous to that used to generate

forecasts of the baseline CAW model (see Equations 31 and 32).

In order to assess the predictive accuracy for a given model we follow Ledoit et al. (2003) and use

the root-mean-square error (RMSE) based on the Frobenius norm of the forecast error, given by

FNh =
1
Th

∑
t

||Rt+h − R̂t+h|| =
1
Th

∑
t

∑
i,j

(rij,t+h − r̂ij,t+h)2

1/2

, (35)

where Th is number of forecast periods.

Table 6 contains the results on the forecasting accuracy of the di�erent models measured by the

Frobenius norm. It appears that the diagonal MIDAS-CAW(2,2) model outperforms the other CAW

speci�cations as well as the EWMA and the BEKK-GARCH models at the short horizons (h = 1, 5),

whereas at the longer horizon (h = 10) the diagonal MIDAS-CAW(2,1) formulation yields the most

accurate forecasts. However note, that the di�erences in forecasting accuracy between the the best

CAW speci�cation, the EWMA and the best BEKK-GARCH model become smaller if we move from

the short to the longer forecast horizon. This might re�ect the fact that it is extremely hard to

accurately predict variances and covariances at longer horizons during a highly volatile regime with

many `outliers' as we face it in our forecasting period covering the last 240 trading days of our sample

(see Figure 1). Overall, the out-of-sample performance of our CAW approach appears to be favorable

in relation to the alternative forecasting models.

5. Conclusions

In this paper, we propose a Conditional Autoregressive Wishart (CAW) model for the realized co-

variance of asset returns. The model is designed to represent nontrivial temporal interdependencies
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across variances and covariances and is based upon a generalized linear autoregressive moving av-

erage (GLARMA) structure. Since our model ensures positive-de�nite covariance matrices without

imposing parameter constraints and can easily be estimated by maximum likelihood, it represents

a convenient framework for the analysis of high-dimensional variance-covariance processes. A fur-

ther advantage o�ered by our CAW approach is that its baseline speci�cation is easily generalizable.

The extensions of the baseline CAW model we explored include a mixed data sampling (MIDAS)

component and heterogeneous autoregressive (HAR) dynamics for long-run �uctuations.

The empirical application to daily realized covariance matrices for the returns of �ve stocks shows

that the MIDAS-CAW speci�cation dominates the baseline CAW model and the HAR-CAW alter-

native in terms of accounting for the observed dynamic behavior of the realized covariance as well

as in terms of out-of-sample covariance predictions. Furthermore, we �nd that the MIDAS-CAW

model is able to remove most, though not all, of the observed serial dependence in the variances and

covariances. This indicates that in order to more completely capture the highly complex dynamics

in the realized covariance matrix it might be useful to consider further alternative extensions of the

baseline CAW model. Extensions being currently explored include CAW speci�cations with Markov

switching regimes allowing the parameters of the GLARMA speci�cation (4) to di�er across two

regimes. A further extension we currently investigate allows for asymmetric e�ects of positive and

negative news on the covariance matrix using a speci�cation which is in line with that of Cappiello

et al. (2006) for a multivariate GARCH model.
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Appendix: Proofs

Proof for Lemma 1. First, we derive the functional form of the conditional variance of rt|Ft−1

obtained under the conditional Wishart distribution. Since rt = vech(Rt) = Ln vec(Rt), we can

write

Var (rt | Ft−1) = var (vech(Rt) | Ft−1) = Var (Lnvec(Rt) | Ft−1) = LnVar (vec(Rt) | Ft−1)L′n. (36)

Under the Wishart distribution in Equation (1) the conditional variance Var (vec(Rt) | Ft−1) is (see

Muirhead 1982, p. 90)

Var (vec(Rt) | Ft−1) =
1
ν

(In2 +Knn) (St ⊗ St) , (37)

where Knn is the commutation matrix de�ned so that Kmnvec(X) = vec(X ′) for any m× n matrix

X. Due to vec(ABC) = (C ′ ⊗A)vec(B) we obtain from Equations (36) and (37)

vec[Var (rt | Ft−1)] =
1
ν

(Ln ⊗ Ln) vec [(In2 +Knn) (St ⊗ St)] . (38)

Since vec(AB) = (Ip⊗A)vec(B) for A (m×n), B (n×p) and vec(A⊗B) = (In⊗Ksm⊗Ir)[vec(A)⊗

vec(B)] for A (m× n), B (r × s) (see Lütkepohl 1996, p. 97), we can write

vec [Var (rt | Ft−1)] =
1
ν

(Ln ⊗ Ln) · [In2 ⊗ (In2 +Knn)] vec (St ⊗ St) (39)

=
1
ν

(Ln ⊗ Ln) · [In2 ⊗ (In2 +Knn)] (In ⊗Knn ⊗ In) [vec(St)⊗ vec(St)] ,

where vec(St)⊗ vec(St) = (Dn ⊗Dn)vec(sts′t). Thus

vec[Var (rt | Ft−1)] = Ω vec
(
sts
′
t

)
, with (40)

Ω =
1
ν

(Ln ⊗ Ln) [In2 ⊗ (In2 +Knn)] (In ⊗Knn ⊗ In) (Dn ⊗Dn) . (41)
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The law of iterated expectations applied to Var(rt | Ft−1) = E(rtr′t | Ft−1)− sts′t leads to

E [var (rt | Ft−1)] = E
(
rtr
′
t

)
− E

(
sts
′
t

)
, (42)

such that E (rtr′t) = E [var (rt | Ft−1)] + E (sts′t). Taking vecs and accounting for Equation (40) we

obtain

vec[E
(
rtr
′
t

)
] = vec (E [Var (rt | Ft−1)]) + vec

[
E
(
sts
′
t

)]
= E (vec [Var (rt | Ft−1)]) + vec

[
E
(
sts
′
t

)]
= Ω vec

[
E
(
sts
′
t

)]
+ vec

[
E
(
sts
′
t

)]
= (Ω + Ik2) vec

[
E
(
sts
′
t

)]
,

which completes the proof. �

Proof for Proposition 1. The VARMA representation in Equation (10) allows us to write

E (rt) = c+
∑max(p,q)

i=1 (Bi +Ai)E (rt), which can be solved for E (rt) = r̄ to obtain Equation (11) i�

all eigenvalues of the matrix
∑max(p,q)

i=1 (Bi +Ai) are less than 1 in modulus. �

Proof for Proposition 2. Since Var(rt) = Γ(0) = E(rtr′t)− r̄r̄′ and E(vtv′t) = E(rtr′t)−E(sts′t) (see

Equation 9), we obtain from covariance Equation (14)

E
(
rtr
′
t

)
=

∞∑
i=0

Φi

[
E
(
rtr
′
t

)
− E

(
sts
′
t

)]
Φ′i + r̄r̄′, (43)

vec[E
(
rtr
′
t

)
] =

∞∑
i=0

(Φi ⊗ Φi) vec
[
E
(
rtr
′
t

)
− E

(
sts
′
t

)]
+ vec(r̄r̄′). (44)

Applying the result of Lemma 1 that vec[E (rtr′t)] = (Ω + Ik2) vec [E (sts′t)], we obtain

vec[E
(
rtr
′
t

)
] =

∞∑
i=0

(Φi ⊗ Φi) Ω vec[E
(
sts
′
t

)
] + vec(r̄r̄′). (45)

Since Φ0 = Ik, Equation (45) can be rewritten as

vec(r̄r̄′) =

(
Ik2 −

∞∑
i=1

(Φi ⊗ Φi) Ω

)
vec[E

(
sts
′
t

)
]. (46)
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I� all eigenvalues of the matrix Ψ2 =
∑∞

i=1(Φi⊗Φi) Ω are less than 1 in modulus, Equation (46) can

be solved for vec[E (sts′t)] to obtain

vec[E
(
sts
′
t

)
] =

(
Ik2 −

∞∑
i=1

(Φi ⊗ Φi) Ω

)−1

vec(r̄r̄′). (47)

Inserting Equation (47) into vec[E(rtr′t)] = (Ω + Ik2) vec[E(sts′t)] completes the proof. �

Proof for Corollary 1. The mean E(rt) is obtained directly from Proposition 1. Furthermore,

note that the CAW(1,1) model can be written as a VARMA(1,1) with a VMA(∞) representation

characterized by the parameters (see Equation 12)

Φ0 = Ik, Φ1 = A1, Φ2 = (A1 + B1)A1, . . . , Φi = (A1 + B1)i−1A1.

Then using the result that AC ⊗ BD = (A⊗ B)(C ⊗D) (see Lütkepohl 1996, p. 19), we can write

under the assumption that the second moment exists

∞∑
i=1

(Φi ⊗ Φi) =
∞∑
i=1

[(A1 + B1)i−1A1]⊗ [(A1 + B1)i−1A1]

=
∞∑
i=0

[(A1 + B1)⊗ (A1 + B1)]i (A1 ⊗A1)

= [Ik2 − (A1 + B1)⊗ (A1 + B1)]−1(A1 ⊗A1)

= Q−1(A1 ⊗A1) (say). (48)

Plugging Equation (48) into Equation (17) we obtain

vec[E(rtr′t)] = (Ω + Ik2) (Ik2 − [A1 + B1]⊗ [A1 + B1]− (A1 ⊗A1) Ω)−1Q vec(r̄r̄′) (49)

= (Ω + Ik2) (Ik2 −∆)−1Q vec(r̄r̄′),

where Q vec(r̄r̄′) = vec (cc′ + cr̄′(A1 + B1)′ + (A1 + B1)r̄c′), which completes the proof. �
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Table 1. Descriptive Statistics for the Realized Variances and Covariances.

Stock Mean Max. Min. Std. dev. Skewness Kurtosis

Realized Variance
AXP (r11) 3.44 57.58 .07 4.68 4.23 32.78
C (r22) 3.61 119.86 .11 5.91 7.65 108.49
GE (r33) 2.43 51.40 .10 3.17 4.90 46.97
HD (r44) 3.46 51.38 .16 3.97 3.92 28.01
IBM (r55) 2.26 56.91 .12 3.05 5.68 67.60

Realized Covariance
C-AXP (r21) 1.59 37.66 −0.55 2.78 5.32 46.13
GE-AXP (r31) 1.11 26.32 −1.47 1.85 5.90 58.08
HD-AXP (r41) 1.16 27.66 −2.46 1.97 5.33 47.60
IBM-AXP (r51) .92 23.43 −.79 1.46 5.65 55.89
GE-C (r32) 1.24 41.69 −.58 2.12 7.02 91.59
HD-C (r42) 1.27 27.34 −.93 2.17 5.02 39.51
IBM-C (r52) 1.03 36.73 −3.27 1.74 5.33 109.96
HD-GE (r43) 1.04 26.85 −1.14 1.70 5.90 59.20
IBM-GE (r53) .90 24.05 −.33 1.44 5.76 57.77
IBM-HD (r54) .87 18.32 −1.20 1.34 5.21 44.18

Note: The number of observations for each (co)variance series is T = 1916.
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Table 3. ML-Parameter Estimates for the Baseline CAW(2,2) model.

Unrestricted CAW(2,2)

Param. Estimate Param. Estimate

A1 .774∗ .060∗ .014 −.018 .010 A2 .003 .191∗ −.057 .052 −.251∗

.033 .649∗ −.004 −.008 −.037 −.072∗ −.096∗ .198∗ −.012 .053∗

.019 .049∗ .583∗ −.021 −.013 −.043 −.019 .234∗ −.036 −.079∗

.030 .067∗ −.035 .559∗ −.022 .050 −.016 .061 .131∗ −.107∗

.016 .041∗ −.032∗ −.029∗ .597∗ .115∗ −.087∗ .036 .059∗ .115∗

B1 .860∗ −.034 .001 .014 −.092∗ B2 .002 −.163∗ −.037 .043∗ −.154∗

.008 .659∗ −.175∗ .070∗ −.010 −.005 −.306∗ −.132∗ .010 −.077∗

.012 −.026 .506∗ .040∗ .120∗ .068∗ .022 −.571∗ .069∗ .002
−.030 −.099∗ .057∗ .617∗ .227∗ −.149∗ −.272∗ −.021 .360∗ .042
.022 −.007 .067∗ .017 .408∗ .106∗ −.058∗ .009 .096∗ −.625∗

ν 22.51∗

Diagonal CAW(2,2)

Param. Estimate Param. Estimate

A1 .790∗ .644∗ .609∗ .591∗ .593∗ A2 .000 .073 .018 .101 −.093∗

B1 .806∗ .577∗ .609∗ .582∗ .587∗ B2 .656∗ .493∗ .494∗ .525∗ .518∗

ν 22.10∗

Note: The estimated model is described in Equations (1) and (4). The �rst diagonal element for A1, A2, B1, B2

represents the estimates of
√
a11,1,

√
a11,2,

√
b11,1,

√
b11,2.

∗ Signi�cant at the 1% level.
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Table 5. ML-Parameter Estimates for the MIDAS-CAW(2,2) model.

Unrestricted MIDAS-CAW(2,2)

Param. Estimate Param. Estimate

A1 .767∗ .064∗ −.004 −.015 .003 A2 .000 −.002 .152∗ −.121∗ .276∗

.014 .604∗ −.034 −.004 −.049∗ .049 .094∗ −.080∗ .075∗ −.180∗

.016 .013 .554∗ −.013 −.013 .184∗ −.037 −.193∗ .141∗ .058

.003 .003 −.007 .569∗ .004 −.063∗ −.196∗ −.005 −.080 −.054
−.005 .005 −.010 −.019 .575∗ −.171∗ .153∗ −.074∗ −.090∗ −.097∗

B1 .745∗ −.021 .209∗ .093 −.060 B2 .017 −.219∗ .090 .106∗ .206∗

.027 .603∗ −.007 .049 .076 .233∗ −.125 .194∗ −.050 −.102

.048 .022 .420∗ .104 .250∗ −.173∗ .165∗ .016 −.015 −.234∗

.048 .077∗ .007 .471∗ .075 −.041 .022 −.191∗ −.405∗ .023
−.036 −.001 .061 .046 .539∗ −.003 .083∗ .016 .091 .347∗

√
θ .927∗ ω 8.413∗

ν 22.819∗

Diagonal MIDAS-CAW(2,2)

Param. Estimate Param. Estimate

A1 .788∗ .628∗ .583∗ .588∗ .575∗ A2 −.000 .231∗ −.169 −.292∗ −.393∗

B1 .829∗ .522∗ .586∗ .371∗ .066 B2 −.261 .401∗ .277∗ .474∗ .574∗

√
θ .920∗ ω 7.271∗

ν 22.481∗

Note: The estimated model is described in Equations (1) and (24)-(28). The �rst diagonal element for A1, A2, B1,
B2 represents the estimates of

√
a11,1,

√
a11,2,

√
b11,1,

√
b11,2.

∗ Signi�cant at the 1% level.
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Table 6. Evaluation of Forecasting Accuracy in Terms of RMSE.

Model (p, q) Frobenius norm of forecast error

h = 1 h = 5 h = 10

Unrestricted CAW (0,1) 8.369 12.135 16.743
(1,1) 7.405 9.516 10.962
(1,2) 7.379 9.431 10.766
(2,1) 7.338 9.518 10.945
(2,2) 7.256 9.368 10.744

Diagonal CAW (0,1) 8.043 10.010 11.612
(1,1) 7.304 9.313 10.612
(1,2) 7.276 9.239 10.508
(2,1) 7.239 9.283 10.569
(2,2) 7.212 9.223 10.487

Unrestricted MIDAS-CAW (0,1) 7.418 9.734 10.850
(1,1) 7.367 9.529 10.607
(1,2) 7.325 9.478 10.601
(2,1) 7.297 9.516 10.678
(2,2) 7.283 9.427 10.623

Diagonal MIDAS-CAW (0,1) 7.376 9.757 10.846
(1,1) 7.192 9.176 10.373
(1,2) 7.192 9.153 10.396
(2,1) 7.164 9.105 10.324
(2,2) 7.161 9.102 10.337

Unrestricted HAR-CAW 7.357 9.718 11.146

Diagonal HAR-CAW 7.184 9.311 10.600

EWMA 8.749 9.842 10.865

Unrestricted BEKK-GARCH (0,1) 10.165 11.546 11.749
(1,1) 10.232 10.989 11.685
(1,2) 9.251 9.987 10.855
(2,1) 10.005 10.641 11.288
(2,2) 9.442 10.141 10.856

Diagonal BEKK-GARCH (0,1) 10.774 11.570 11.765
(1,1) 9.964 10.776 11.355
(1,2) 9.476 10.319 10.945
(2,1) 9.555 10.412 11.004
(2,2) 9.153 10.074 10.753

Note: Reported are the average Frobenius norm of the forecast error as given by Equation (35). Bold numbers

indicate smallest value of the average Frobenius norm.
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Figure 4. Predicted (co)variances sij,t and correlations sij,t/
√
sii,tsjj,t for AXP (i = 1) and C (j = 2) stock,

together with their predicted secular components mij,t and mij,t/
√
mii,tmjj,t obtained under the

MIDAS-CAW(2,2) model. The bold lines represent the secular components.
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