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TESTING NON-NESTED SEMIPARAMETRIC MODELS:

AN APPLICATION TO ENGEL CURVES SPECIFICATION

Miguel A. Delgado & Juan Mora

ABSTRACT

This paper proposes a test statistic for discriminating between two
partly nonlinear regression models whose parametric components are
non-nested. The statistic has the form of a J-test based on a parameter
which artificially nests the null and alternative hypotheses. We study in
detail the realistic case where all regressors in the nonlinear part are
discrete and then no smoothing is required on estimating the nonparametric
components. We also consider the general case where continuous and discrete
regressors are present. The performance of the test in finite samples is
discussed in the context of some Monte Carlo experiments. The test is well
motivated for specification testing of Engel curves. We provide an

application using data from the 1980 Spanish Expenditure Survey.
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1. INTRODUCTION

The semiparametric partly linear regression (SPLR) model has recently
attracted considerable attention.‘ We are interested in the estimation of the
parameters entering in the linear part of a regression model which is partly
nonlinear in certain explanatory variables. The functional form of the
nonlinear part of the model is not parametrically specified. Estimation

methods for the linear part have been proposed by Chen (1988), Speckman

(1988) and Robinson (1988), among others.

In this paper, we propose a specification test of non-nested SPLR models
belonging to the class of J-tests suggested by Davidson and MacKinnon
(1981). We motivate the test in the context of functional specification of
Engel curves with cross-sectional data. The focus of interest is the
specification of the relation between expenditure and income given other

explanatory variables about household characteristics.

The rest of the paper is organised as follows. In Section 2 we present
the test statistic and in Section 3 we derive its asymptotic properties.
Section 4 provides some Monte Carlo simulations in order to illustrate the
performance of the test in small and moderate samples. In Section S the test
is applied to specification testing of Engel curves using data from the

Spanish Expenditure Survey.




2. THE TEST STATISTIC

Data consists of independent observations ¢ Yi,X 1’21)’ i=1,...,n}

identically distributed as the RxRPxR%-valued random variable (Y,X,Z), where

P1 Pz P

X=(X1,X2,X3) and Xl, Xz’ X3 take values in R, R and R 3, respectively

(p1+p2+p3=p, pl>0, p2>0). We face the competing hypotheses:

H : EIY|X,Z] = X'B + X\B_ +g(Z) as, (2.1)

H : EIY|X,Z]

XZBZ + X3f33 + gZ(Z) a.s., (2.2)

where gl, gz: R >R are unknown functions, which may include an intercept
term, and Bl, Bz and 63 are unknown parameters. The variables X1 and X2 are,
possibly, transformations of some given set of variables. In the application
to Engel curves of Section 5, X1 and X2 are nonlinear transformations of
income and Z includes variables like "size of household" or ‘"age of

reference person”.

In order to avoid the unknown functions gl(.) and gz( .), following the
approach in Speckman (1988) and Robinson (1988) we represent the regression

models in Ho and H1 as

H : Ele |X,Z]

0 elBl + 83[33 a.s., (2.3)

H: E[sle,Z]

82[32 + 83[33 a.s., (2.4)

where e, = Y—my(Z), € = Xj—mj(Z), Jj=12,3, my(/;) E[Y|Z=4] and mj(/;) =

EIX |Z=3], j=1,2,3




The hypotheses can be represented in terms of a parameter &8 which
artificially links the regression models in (2.3) and in (2.4) by means of

the composite hypothesis

H. Ele |X,Z] = (1-3)e’B + 3eB + /B (2.5)

The two hypotheses (2.1) and (2.2) become, in terms of §,

HO: S8 =0 vs Hl: S =1 (2.6)

If €, and ¢ , j=1,2,3, were known, a J-test statistic could be based on
ji

an estimate of § in the regression model

€, =€+ qiS + esiBs + Error, I=i=n, (2.7)

where ¢ L= Y."m (Z.), e = X—m(Z), j=1)2r3) q.
Y i Y i ji ji j o1 i

e’ B and B is a
i 21’32’ Bz

consistent estimate of [32 under Hl. Notice that (2.7) results from
reparameterizing model (2.5) with y = 61(1—6) and then replacing (32 by Bz to
solve the identification problem. In our context, we will first replace eYi,
€ By and q, in (2.7) by suitable nonparametric estimates and then
estimate & jointly with ¥ and [33 by ordinary least squares (OLS).

First, we estimate my(/;) and mk(/;) by nonparametric estimates ﬁlv(/}) and

r'fzj(/;) (j=1,2,3), respectively and, hence, e and e, are estimated by éYi =

[Yi—rﬁy(Zi)]Ii and € [X”—ﬁzj(Z.)]I‘ (j=1,2,3), respectively. The
Ji i i

it
indicator function I trims out those observations where the denominator of
1

the nonparametric regression estimate is too small. Second, g is estimated
1

by &i = é’ZiBZIi, where f32 is the OLS estimate of @, in the regression éw =




A

_ . = ' ‘ o
SZiBZ + 83133 + Residual. Finally, (%33,5)

are jointly

estimated by
(';;é;,g)’ using OLS in the regression

e =e y+e' B +qd+ idual. .8
€, = €, 83133 qiS Residual (2.8)

The test-statistic is the t-ratio of & in regression (2.8).

Its asymptotic
properties are studied in next section.

3. ASYMPTOTIC PROPERTIES OF THE TEST

First we describe the nonparametric estimates which are used

in the
test-statistic and then present the theoretical results of the paper.

3.1. Nonparametric estimates.

We suppose first that all variables in Z are discrete

-this is the case
in many real situations where variables are dummies,

qualitative variables,
counts or continuous

variables recorded at intervals (see, for example,
Section 5). Thus, we assume that
3 DcR?, D countable set, with P(ZcD)=1 and 4 €D =P(Z=1 )>0. (3.1)
1

In this case, given observations (El,

, €} of a random vector &,
n
nonparametric estimates of m

£1 E[Ei|Zi] can be expressed as weighted
= ¥ _E.W(f.)(Z ), where the superscript f is
#i”j nj i

averages of the form r?l(f)

£i




introduced in order to distinguish among different types of weights. Observe
that this is a "leave-one-out" estimate because & is not used to estimate
1

m As regressors are discrete, the simplest nonparametric weights we can

33

use are the non-smoothing weights, defined as
w'z )= nz=z)/¥ Kz =Z), (3.2)
nj i jooi m*i m i

where I(A) is the indicator function of event A and, hereafter, 0/0 is
defined to be 0. In some situations the non-smoothing weights can perform
poorly. As usual, the amount of smoothing must decrease as the sample size
increases and, therefore, in most cases any smooth estimate will eventually
coincide with the non-smoothing estimate. A natural way of smoothing in this
context is k-nearest-neighbours (k-NN)} where one chooses the k observations
closest to Zi according to a given metric. The precise definition of k-~NN
weights is as follows: given a sequence of positive integers kn and

constants ¢, satisfying that Zn c. =1, ¢z .. 2 cC z 0O and j > k =
Jn j=1 jn In nn n

c. = 0, the k-NN weights are

Jn

(2) - e (j,n,Q) .
Wn‘j () (Zm=1 cd(j,n’/;)+m)/e(J,n,/;), (3.3)

where e(j,n,g) = #{m : IEm=n, pn(Zm,/;)= pn(Zj,/;)}, d(j.n,ng) = #m : I=m=n,

(1 _ @

pn(Zm,/;) < pn(Zj,/;)} and pn(u,v) = (Zl((u -v 17z

Vs )% The sum in p

nl n

extends over all [, Isl=qg, such that s l>O and s1 denotes the sample
n n

standard deviation of Zm, vees Z(” (Zm is the Ith coordinate of 2Z,

1 n
Isl=qg). There are different possible k-NN estimates, according to various
choices of the sequence c¢ . The uniform k-NN estimate (¢, = I(I=j=<k )/k )
Jjn Jjn n n
is the most popular one. Some other alternative c_ are defined in Stone
Jn

(1977). The value k is usually referred to as smoothing value or bandwidth.
n




All regression estimates can be viewed as local averages around the point at
which regression is estimated. The k-NN weights are intuitively appealing

because one decides how many points are used in these local averages.

In Delgado and Mora (1995a, 1995b) it is shown that, when regressors are
discrete, the non-smoothing estimate is globally consistent in the sense of
Stone (1977) and estimates based on different smoothing techniques,
including kernels and the regressogram, are asymptotically equivalent, in a

very strong way, to the non-smoothing estimate.

Let us assume now that Z satisfies that

Z'= (Z(l)’,Z(Z)’), where Z(l)c R" is discrete and
(3.4)

(2)

Z'“c R® is absolutely continuous; r+s = g, s=1.

For any dependent variable €, we estimate E[§.|Z_] using Nadaraya-Watson
1 1

kernel weights for the continuous regressors and non-smoothing weights for

the discrete regressors. Hence, the weights in this case are

(1) (1) (1)___

w2z )= v, (h)1rzV=2 g v (h Kz

nj

z:’), (3.5)

i

where ¥ (h) = q/((z?)-zgz’)/hn), ¥: R°R is defined as ¥Wc) = T_u(c)

for any ceR® (y: R—R is a wunivariate kernel function) and h >0 is a
n

sequence of smoothing values. In this case, the nonparametric estimate we

. ~(3) (3) . .
use is mc_ = ZJCJW "(Z ). Note that this is not a "leave-one-out"
i . nj i
estimate. We do not need toc use "leave-one-cut" estimates here because

universal consistency results are not required. However, stronger technical

conditions will be required when working with them.

10




3.2. Theoretical results.

As mentioned above, our statistic is based on the t-ratio of § in (2.8),
irrespective of the nonparametric method we choose. That is, the test
statistic is

‘7,(1” = 3/SE8), f=1,2,3, (3.6)

where the superscript f indicates the nonparametric estimation procedure
employed and SE(3) is the standard error provided by any statistical
package, which may be robust to heteroskedasticity of unknown form if the
researcher suspects that this problem might arise. Observe that the

)

computation of J f from (2.8) requires also the use of a trimming function
n

I . which is defined in the Appendix.

The following theorem justifies an asymptotic test based on j:f),

f=1,2, when all regressors are discrete.

THEOREM 1. Under (3.1) and other regularity conditions stated
in the Appendix,

. A () _ _
a) r11_1>r°r°1 P(Jn = Zoc‘) = a, f=1,2, under Ho'

where Zoc is such that P(Z = Zoc) for the standard normal distribution Z.

b) lim P(‘AI(” = c)=1 V 0, f=1,2, under H. m
n—>0 n 1

Thus, Theorem 1 proves that critical values can be approximated by a

standard normal distribution and the test is consistent.

When Z contains any continuous variables we have the following result:

11




THEOREM 2. Under (3.4) and other regularity conditions stated in the
Appendix, the test statistic J ta) is also asymptotically normal under the
n

null hypothesis and consistent under the alternative one, as in Theorem 1. ®

Theorems 1 and 2 generalise earlier results obtained in a completely
parametric environment by Davidson and MacKinnon (1981} and others. Theorem
1 is based on resuits in Delgado and Mora (1995a) whereas Theorem 2 also

uses results in Robinson (1988).

Loosely speaking, when Z is discrete and non-smoothing weights are used,
only moment conditions on X and the error term are required for the
asymptotic results to follow, and heteroskedasticity can be easily handled.
If k-NN weights are used, conditions on the rate of convergence of kn and
moment conditions on Z are also required. When Z contains continuous
variables, assumptions are much stronger and include conditions on the rate
of convergence of hn and the order of the kernel function (.), which are
related to smoothness conditions on (.), E[X |Z=z] and the conditional
density functions of Z; independence between regressors and errors is also
required. This latter assumption is also required by Robinson (1988) and
seems difficult to relax when Nadaraya-Watson regression estimates are used.
Fan et al. (1995) have shown that it is possible to relax this assumption,
allowing for heteroskedasticity of unknwon form, using density-weighted
least squares. The procedure which Fan et al. (1995) propose can also be
applied in our context, but note that if the true model is homoskedastic
then this procedure yields inefficient estimates. Observe also that optimal

bandwidth selection in this context is not discussed (see Linton 1995).

12




4. MONTE CARLO SIMULATION

We illustrate the performance of our test using Monte Carlo experiments.
First we study the size of the test. We generate n i.i.d. observations from

model

Y =X + FZ)+U,_, (4.1)
i il i il

for i =1, ..., n, and X = F(Z) + U_, X_= F(Z) + oU_ + o U _, where
il i i2 i2 i 1 i2 2 i3
v = (WU ,U _,U ) ~ N(@Od), Z follows a Poisson distribution with
i i’ i2” i3 3 i

parameter A=2 independent of U ; ¢, ¢, and function F(.) will be specified
1

below. The hypotheses to be tested are:
H: E[Y[X X ,Z]= BX + g(Z) vs. H: EIY|X X Z]= B X +g(2). (42)

Observe that parameters ?, and ¢, determine the correlation between
regressors in the null and alternative hypotheses; in particular p =
2, 2.1/2 .
Corr(el,ez) = gol/(golﬂpz) , where £ = X_—E[X.|Z], Jj=1,2. We have performed
J J J

various experiments in order to analyse the influence of F(.), ?, and ¢, on

the size of the test. Specifically, we consider five different models:

Model I: ¢ =2/3, ¢ =5"°/3 (p = 2/3), F(Z)=Z;
1/2 V4
Model 2: ¢ =2/3, ¢ =5"°/3 (p = 273), F(Z) = Z°/5;
2.1/2
Model 3: ¢ =099, ¢ = (1-0.99)"% (p = 0.99), F(Z)=2;
Model 4: ¢ =1/2, ¢ = 32,2, (p = 1/2), F(Z) = 2Z;
Model 5: ¢, = 0, ¢, = 1, (p = 0}, F(Z) = Z.

13




In all experiments our results are based on n = 100 observations and r =
1000 replications. We compute the semiparametric test statistic using
uniform k-NN weights and bandwidths kn = 2, 5, 8. These values have been
selected by previous graphical inspection of various nonparametric estimates
computed from some Monte Carlo samples. These bandwidths have been kept
unchanged in all experiments as our theoretical results do not allow for
data-driven bandwidths. Note that, as Z is discrete, kn = 2 does not mean
that the nonparametric estimate is computed as a weighted average with two
observations, see (3.3). As a benchmark, we also compute a purely parametric
J-test which assumes gj(Z) = Z (j=1,2) in (4.2). All experiments were
performed with FORTRAN77 programmes and run on an Apollo Work Station. (All

programmes and data used in this paper are available at Journal of Applied

Econometrics’ Data Archive). P-value plots (that is, empirical distribution
function of P-values; see, for example, Davidson and MacKinnon 1994) for
Models 1 and 2 are shown in Figures 1 and 2, respectively. Reported results
correspond to three semiparametric test-statistics, computed with different
bandwidths, and the parametric test-statistic. P-value plots for Models 3, 4
and 5 are shown in Figure 3. Reported results correspond to semiparametric

test-statistics with k = 5.
n

FIGURES 1-3 ABOUT HERE

In Figure 1 we observe that, as expected, in Model 1 the parametric test
performs better than all semiparametric ones, but the latter ones also
behave reasonably well, specially if kn is small. In all cases, the test has
a tendency to over-reject (for example, if o = 0.05 the empirical level is
0.054 for the parametric test and 0.061 for the semiparametric test with kn

= 2); this problem has been observed in most J-tests but is not very serious

14




in this Monte Carlo experiment, possibly because the sample size is not too
small and the two rival models only differ by one variable; in other
situations certain small-sample adjustments would probably be desirable (see
Pesaran 1974 or Godfrey and Pesaran 1983). In Figure 2 we observe that, when
F(.) is not linear, the semiparametric test is quite sensitive to the choice
of kn, but it still works reasonably well if kn is adequately chosen. The
results for the parametric case are meaningless because here both the null
and alternative hypotheses faced by the researcher are false. In Figure 3 we
observe that, as expected, the performance of the test-statistic worsens as
the correlation between regressors approaches O (note that Theorem 1 does

not apply for Model 5 because condition A2¢0 does not hold, see Appendix).

To study the power of the test we generate n i.i.d. observations from

Yi = Binz + F(Zi) + Un, (4.3)

for i = 1, .., n and Xu’ Xiz’ Zi, Ui are as defined before (below (4.1)),

]32 varies between —~0.6 and 0.6 and ¢ P, and F(.) are defined by:

Model 6: ¢ =2/3, ¢ = 5'%,3 (p

Model 7: ¢ =2/3, ¢, = 5123, (p

2/3), F(Z) = Z;

z%/5.

Il
1]

2/3), F(Z)

Observe that if [32 = 0 then both the null and alternative hypotheses are
true, but Theorem 1 does not apply (conditions AZ:#O and [32:#0 do not hold;
see Appendix below). The hypotheses to be tested are in (4.2). The results
we report are based on n=100 observations and r=1000 replications and the

experiments were carried out with the same characteristics as before. The

15




percentage of rejections of the null hypothesis when o = 0.05 is shown in

Figures 4 and 5, for Models 6 and 7, respectively.

FIGURES 4-5 ABOUT HERE

In Figure 4 we observe that, when F(.) is linear (Model 6), the test is
extremely powerful and behaves almost as well as the parametric one. In
Figure 5 we observe that, when F(.) is not linear (Model 7}, the
semiparametric test loses power, but continues to yield acceptable results,
whereas, obviously, the parametric test based on wrong specifications of the

null and alternative hypotheses may produce misleading results.

We have also generated various models as before, but with continuous Z
(taken from a normal distribution). The results we obtained, using higher

order kernels, are entirely similar to those reported for discrete Z.

5. TESTING FUNCTIONAL FORMS OF ENGEL CURVES

The first attempt of estimating the regression curve relating expenditure
with income is due to Engel (1895), who proposed the regressogram, the first
nonparametric regression estimate. Since then, there have been several
alternative formulations for the functional form of Engel curves. The most
popular one is due to Working (1943) and Leser (1963), who proposed a
log-linear relationship. The validity of the Working-Leser formulation in

certain goods has been questioned by other authors, see Deaton and
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Muellbauer (1980), Lewbel (1991), Banks et al (1994), Deaton (1981) or
Pollack and Wales (1978, 1980), to mention only a few. There is also some
empirical evidence using nonparametric estimates of the Engel curve, see for
instance Banks et al (1994), Hirdle and Mammen (1993) and Gozalo (1992). In
this section we test the Working-Leser specification of Engel curves and the
Engel curve form derived from the Quadratic Expenditure System (QES) of
Pollack and Wales (1978, 1980), taking into account a vector of other
possibly relevant variables Z containing characteristics of households (Z is
usually referred to as "demographic variables”). The information of these
variables is usually incorporated in the modelling of Engel curves by means
of "demographic translating" and “"demographic scaling" (see Pollack and
Wales 1980). These procedures are simple to implement, but recent empirical
research does not support this specification (see Gozalo 1992). We propose a
different way of introducing the information regarding demographic
characteristics. We introduce all these variables in an unknown function

g(.) in the semiparametric way discussed in previous sections.

We consider Food Engel curves in its share form, specifying the
relationship between total expenditure of a household and expenditure spent
on food. The dependent variable is Y = pq/X, where p is price, g is quantity
demanded and X is total expenditure. We use data from the 1980 Spanish
Family Expenditure Survey (FES) described in Alonso et al. (1994). This
survey contains 23972 observations with detailed information on household
characteristics, total income and expenditure on several categories. The

sample is designed to be representative of the Spanish population.

We want to test the following relationships,

17




H : E[Y|X,Z] = o log(X) + a log(X)* + g(Z)  as., (5.1)

H : EIY|X,Z] =y X + 9. X + g(2) as, (5.2)

where o’s and 7y’s are parameters. Both specifications are semiparametric. In
Ho the relation between expenditure and income, given Z, is a Generalised
Working-Leser (GWL) Form, whereas in H1 the proposed Engel Curve is the one
derived from the Quadratic Expenditure System (QES). Observe that in these
equations no parametric form is specified for gl(.) and gz(.), but no
interaction effects are allowed between X and Z, that is, both
specifications are additive in X, Z and, hence, demographic variables are
only allowed to produce changes in the intercept term. First we have
estimated (5.1) and (5.2) separately using as vector of demographic
variables Z = (21,22,23,24), where Z1E Age of 'reference person" in the
household (i.e. member of the household with greatest income), ZZE Size of
household, Z:;E Size of the town where the household is placed (categorised
into 5 groups according to the number of inhabitants in thousands NI:
ZS(NI)= i if NI € Ii, where Il=(0,2), Iz=[2,10), 13=[10’50)’ I4=[50,200),
I5=[200,oo)) and Z4E Sex of reference person (I if the reference person is a
woman). With illustrative purposes, in Table 1 we report the semiparametric
estimates which have been obtained for (5.1) and (5.2). These estimates were
computed using the semiparametric estimation procedure described in Section
2. We used uniform k-NN weights with various values of k. We have also
tested specification (5.1 with (5.2) as alternative using the
semiparametric test described in Section 2 (Test 1), and then repeated the
test reversing the null and alternative hypotheses (Test 2). In Table 2 we
report the results we obtained. As in Section 4, all computations were made

with FORTRAN77 programmes.

TABLES 1-2 ABOUT HERE
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In Table 1 we observe that in both equations both parameters are
significantly different from O (hereafter, all conclusions will be drawn
taking «=0.05 as significance level). In Table 2 we observe that in both
cases Wwe reject the null hypothesis. However, results for Test 1 are
somewhat different from those obtained for Test 2 because the estimate of &
is much closer to 1 in Test 2 than in Test 1 (though in neither case would
it be accepted the null hypothesis 38=1). That is, both models are grossly
incompatible with the data. The QES form is rejected even more decisively

than the GWL form, though both forms are decisively rejected.

We have searched for explanations for these negative results. First, we
have analysed the performance of the test-statistic in this specific
situation using a Monte Carlo experiment. We have generated observations
from two models which mimic the behaviour of the observations. Specifically,

i.i.d. observations {(Yi’Xi’Zil’Ziz’Zia’Zm)} were generated as follows:

Model 8: Xi is lognormal with Iog(Xi) ~ N(13.4, 0.52); Zil is
N(50.5, 15.12); Z12 = Z:2+1 where Z:Z is Poisson with mean 2.5; Zi3 is
discrete uniform with support {1,2,3,4,5}; Zi4 is a Bernouilli variable with
mean 0.2; and Yi = B’l X (log(Xi),log(Xi)z) + F(Zi) + Ui, where Ui is
N(O,O.OIZ), B’l = (0.296, -0.017), F(Zi) = {I(Ziz>3)-1(ziz<2)}/10' All

variables are generated independently.

Model 9: All variables as before, except Y, which is now generated as
1

Y = (Xi,X;I) x B, + F(Z) + U, where B! = (-12E=7, 1.0E+4).
1

Generating data in this way, the mean and variance of X and Z.1 coincide
1 1

approximately with the sample mean and variance of variables "total
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expenditure"” and "age of reference person”". Parameters Bl, Bz and the
variance of the error term are similar to the semiparametric estimates
previously obtained. Thus, each artificial data set is, to a certain extent,
similar to the observations we use. In Model 8 the GWL specification is
correct and in Model 9 the QES form is the true one. Our results are based
on n = 2000 observations and r = 100 replications. The test-statistic was
computed using uniform k-NN weights with two different bandwidths k selected
by previous inspection of some Monte Carlo samples. If nominal size is a =
0.05 and observations are generated from Model 8, the percentage of
rejections of the null hypothesis is 0.061 (k=150) or 0.052 (k=250) when GWL
is the null hypothesis and virtually 1.00 when QES is the null hypothesis.
If « = 0.05 and observations are generated from Model 9, the percentage of
rejections of the null hypothesis is almost 100 when GWL is the null
hypothesis and 0.067 (k=150) or 0.052 (k=250) when QES is the null
hypothesis. These results show that the test-statistic performs adequately
here. So, it seems unreasonable to think that the negative results obtained

in Table 2 are a consequence of the bad performance of the test-statistic.

It might happen that the rejection of both GWL and QES forms is a
consequence of considering too heterogeneous a sample. In order to analyse
this conjecture, we performed again Tests | and 2 but now considering only
those observations corresponding to ‘"standard" households, i.e., those
households consisting of one woman and one man between 18 and 64 years of
age and one, two or three children below 18. The sample size decreased then
from 23972 to 6710, but results were again similar to those we had
previously obtained and we do not report them here. We then reduced the data

set in a different way: we performed again both tests considering only those
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households whose total expenditure was within the (0.1,0.8) quantiles. Table

3 reports the results obtained when performing the test with this data set.

TABLE 3 ABOUT HERE

We observe that the GWL form is not rejected as null hypothesis when a =
0.05 (if we use k=160 or 350), whereas, when the QES form is the null
hypothesis, & is significantly different from O, but not significantly
different from 1. Thus, the GWL form adequately explains all results
obtained with this subsample. But this is by no means a surprise. It is
well-known that the GWL form adequately explains the relationship between
total expenditure X and share food Y, except for those observations
contained in the upper tail of X (see, for example, Banks et al. 1994), and

those observations were not taken into account here.

As mentioned above, in (5.1) and (5.2) we do not allow for interaction
effects between X and Z. In order to examine to what extent interaction
effects may affect our results we have also estimated equations (5.1} and
(5.2) and performed the semiparametric test splitting the sample into
different groups according to households characteristics. Specifically, we
consider the following groups (the number of observations in each group is

also reported):

Group 1: Households whose only member is a man, n=467;

Group 2: Urban households whose only member is a woman, n=1035;

Group 3: Rural households whose only member is a woman, n=443;

Group 4: Urban households with 2 to 5 members and a man as RP, n=11930;

Group 5: Urban households with 2 to 5 members and a woman as RP, n=1328;
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Group 6: Rural households with 2 to 5 members and a man as RP, n=4938;
Group 7: Rural households with 2 to 5 members and a woman as RP, n=400;
Group 8: Urban households with 6 to 12 members, n=2518;

Group 9: Rural households with 6 to 12 members, n=898.

Groups have been defined in such a way that the number of observations in
each group is greater than or equal to 400 and all households in each group
have similar demographic characteristics. Now we consider equations (5.1)
and (5.2) for each group, but taking Z = Z1 (all other demographic variables
have already been taken into account on constructing groups). First, we
estimated both equations for each group semiparametrically. We used as
smoothing value k=75 in Group 7, k=100 in Groups 1 and 3, k=150 in Group 9,

=200 in Groups 2 and 5, k=250 in Group 8, k=350 in Group 6 and k=500 in
Group 4 (the smoothing value varies because the number of observations is
different in each group). Instead of reporting all estimates we obtained, we
prefer to examine graphically a selection of our results. We depict in
Figures 6-8 three different estimates of Food Engel curve for those groups
with highest number of observations (Groups 4, 6 and 8), taking Z1=50’ The
three estimates we depict are: a kernel nonparametric estimate of
E[Y|X=.X',Zl=50]; an estimate of the GWL form (5.1) (obtained from Y =
&llog(X) + (J;czlog()()2 + é, where &1 and &2 are the semiparametric estimates
obtained, g = ﬁ’ty(50) - ﬁ11(50)&1 - 512(50)&2 and r?zy(/;), 1’711(/;,), nAlz(/;) denote
k-NN nonparametric estimates of E[Y|Z=g], Ellog(X)|Z=4] and E[log(X)2|Z=/;],
respectively); and an estimate of the QES form (5.2) (obtained similarly).
Vertical bounds are included in these figures specifying the range of X

which falls within the (0.1,0.8) quantiles.

FIGURES 6-8 ABOUT HERE
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In most cases both parameters are significantly different from O: the
only exceptions to this are @, in Group 5 (GWL Form) and v, in Groups 3 and
7 (QES Form). If we examine Figures 6-8 we observe that in Groups 4, 6 and 8
the GWL estimate is usually closer to the nonparametric estimate than the
QES estimate; this is also true in Groups 1, 7 and 9; in Groups 2 and 3
neither of the semiparametric estimates seems to be «close to the
nonparametric one and in Group 5 the QES estimate seems to perform better.
As expected, when X is within the (0.1,0,8) quantiles, in all groups all

estimates are closer to each other than when X is on the tails.

Finally, we have also performed the semiparametric test separately in
each group. As before, first we used the whole data in each group and then
reduced the data set considering only those observations for which X was

within the (0.1,0.8) quantiles. We report our results in Tables 4 and 5.

TABLES 4-5 ABOUT HERE

Some interesting conclusions may be drawn from these tables. In Table 4
we observe that in the majority of cases (six of nine) the test manages to
discriminate between the two models, in favour of GWL, even when extreme
values of X are kept in the sample. However, in Table 5 we observe that
results are less conclusive when observations corresponding to the tails of
X are excluded: the GWL form continues to perform better, but both models
seem compatible with data in six cases (using heteroskedasticity-consistent
t-ratios), both models are rejected in one case and the GWL form is only

favoured in the other two cases.
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To sum up, if demographic variables are incorporated additively in the
formulation of Engel curves, then our results show that neither the GWL or
QES specifications can be accepted as suitable when the whole data set
(observations from the 1980 Spanish FES) is used. However, the GWL form
explains adequately the results obtained when observations with extreme
values of X are removed. On the other hand, if the formulation of Engel
curves assumes that demographic variables may also affect the shape of the
curve, then the GWL form adequately explains the results obtained in many
cases when the whole data set is used and in almost all cases when
observations falling in the tails of X are removed; however, the QES is
incompatible with data in all cases when the whole data set is used but in
some cases it may explain the results obtained when observations with
extreme values of X are removed. It is worth noting, finally, that the bad
performance of certain specifications when the whole data set is used may be
also explained by the possible endogeneity of income and certain households
characteristics (like number of members in the household) as some authors

have argued (see, for instance, Deaton 1986 or Pudney 1989).
APPENDIX.- THEOREMS AND PROOFS

Theorem 1.- Let {(Yi,Xn,XZi,Xgi,Zi), I=i=n} be 1i.i.d. observations from an
!Rleplxtszlepsx[Rq—valued observable random variable (Y’Xl’Xz’Xs’Z) (p1>0,
p2>0, pl+p2+p3=p). Assume that E|Y]|<w, (3.1) holds, EI|XII4<oo, E[U*]<» (where
Us Y-E[Y|X,Z]), and & = E{(X-E[X|ZIXX-E[X|Z])"} is d.p. Suppose we use as

trimming function Ii = I(Y, iiI(Z =Z )>0) and denote
C c 1

9 o’ ¢ A B

_ 22 23 | o _ 12 23 2 -1 o 1
23 P == ’ = X Ex ’

o 9 i ¢ A B

23 33 13 33 3 3
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where @rs = E{(XP—E[XrlZ])(X -E[X |Z])'}. Then we will show that:
S s

i) If Var‘(YlX,Z) = ¢’ e (0,0) and we use non-smoothing estimates rﬁél)
1

for ¢ = Xl’Xz’XS’Y’ then under Ho (i.e. if (2.1) holds), if AZ:&O,

FY_94Ne0,1) and under H (if (2.2) holds) if B.#0 V p>0 lim P(|J™M|>p)=1.
n 1 2 n—>oo n

ii) If Var(YlX,Z) = e (0,), E[G(Z)2]<oo, we use k-NN estimates l’;lé_Z)
1

with uniform, quadratic or triangular weights and k /n+1/kn=o( 1) then, under
n

H, if 220, 7% -9N(0,1) and, under H, if B.#0 V p>0 lim P(1J'?|>p)=1.
[¢] 2 n 1 2 n—>0 n

iii) If Var(YIX,Z) = 0‘2(X,Z) € (0,0) and we use non-smoothing estimates

r;l(l)
Ci
A (1)

lim P(lJ
n—o n

then, under Ho’ if 7\2:#0, 3:”% N(0,1) and under Hl, if Bz # 0, V p>0

X
|>p) = 1, where JY is  the heteroskedasticity-consistent
n

t-ratio, constructed as specified below.

Proof.- i) First suppose that H is true. Denote e = (¢, &), & =
0 Xi 1i° 2i 3i

- 2y " = 20 L1y Y- IY - “lq ~ -1 -l ~ oA

n ZiSXISXiIi’ “ = (821'831) + Then (BZ’BS) {n ZiwiwiIi} n ZiwisviIi'

Using (A.4) in Delgado and Mora (1995a) (DM), -0 = op( 1) and thus

la A A, _ . = =
n ZiwiwiIi Z . oP(I). Moreover, if I 1, then Zjﬁwnj(zi)g(zj) g(Zi)

~ -~ ~ ~ _1 A A
and, therefore, € I = e’ BI + € RBI + £ I . Hence, n ywe I =
Yi i 11171 31 31 Ui i i1 Yii
_1 ~ ~ ~ _1 ~ A .
n yw(e , e ' J)I x (B',B.) + n ywe I. Now, the second term here is
i1 117 3i7i 1’73 i1 Uiid

op(]) (using (A.3) in DM) and the first term converges to E x ([3’1,[3;)’. Thus

(B’ -A',B’-A")" = o (1). Assume not that A #0, and denote I' = H(A_ )’ ®H(A )
2 273 "3 P 2 2 2

P
where, for ueR 2, H(u) denotes the p x (p1+1+p3) block-diagonal matrix with

first block I , second block u and third block I . Observe that I is
P P
1 2

non-singular because h2¢0. As H0 is true, with the same reasoning as before,

. s _ = ;RS V2,20 o R50_pry = A lgm ya V244
if T = H()' ®H(B), then n’"(y -B,8,5 -B) I HB)'n " pe e 1.

Now, n_l/zz.éx_léu.l. converges in distribution to N(0,0‘2<I>), by (A.3) in DM;
1 1 1
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moreover, as [—32—7\2 = op(l) and (A.4) in DM holds, then H(Bz)—H(AZ) = op(l)

and ©-rt o= oP(l). Thus, nl/z(g’l—B’l,g,g’S-B’s)’—de N(0,c°r™). On the other
hand, 5‘2-0‘2 = op(l), where 5‘2 is the OLS estimate of the error variance in

~2 -1 oyl _~ oy o~ A _ Lr a3 2
(2.8), because ¢ = n 21(8“([31 'arl)Ii + 831(!33 ;)rs)Ii + €U1Ii 82132611}

and all terms here are oP(l) except n_IZiEE_I,, which converges to o? as DM
I 1

prove in (A.4). The asymptotic result for 3(1) under H0 follows now because
n

R Ve

n

)1/2, where a denotes the (p1+1)th diagonal element in £t

Now suppose that H1 is true. Then, as a consequence from Theorem 2 in

DM, nl/z(B;—B’z,B's-B;)’ LN N(O,o*zz;;). Moreover, éYiIi = (;:111’612332’;:;1) X
(O,Z,B;)'Ii + (BZ—BZ)’§211i+ éUiIi. Hence, ('}’I,S,'};)' = (0’,1,3;)’ +
f7H®B)" x (ngE & I)B,B) + fHB )" x (n'gE & 1) As B, # O,
H(Bz)’QH(Bz) is non-singular and f‘ﬁl-(H(Bz)' tI>H([32)}—1 = op(l). Thus,
(5"1,5-1,'};—{3;)’ = op(l). On the other hand, 5‘2—0*2 = oP(l) as before. The

asymptotic result for jn(l) under H1 follows from these results.
ii) Follows similarly as part i using Corollary in DM.

iii) In the heteroskedastic model, conditions (A.3) and (A.4) in DM no

longer hold. Instead we have that nﬁl/ZZiEXiEUiIi 2 N0, ™), $-0

o (D, -0 = o(1) where @ = E{c(X,ZXX-EIX|ZIXX-EIX|Z])'} and

n_lz.éx‘é;.élzjj_. These conditions follow in a similar way to (A.3) and
1 1 1 11
*
(A.4) in DM. The heteroskedasticity-consistent t-ratio is now J ‘v =
n

n%5/6"% where b denotes ( p1+1)th diagonal element in f‘_lH(Bz)’fZH(Bz)f‘—l.

As in part i, it may be proved that, BZ—AZ = op(l) and, if 7\2:#0,

172 d d

~ ~ A - - F 3
n'’%y -p1.8,5,-) —> NOT lH(Az)’QH(Az)I‘ 'y and hence JV %5 Neo,D.
n

S 172 RI _R7 R _R! Y d -1 2 ’ 1Y ’ ’ -1
Similarly under H1 n (B2 32,33 Ba) ——)N(O,ZZSE[O‘ (X,Z)(sz,es) (82,83)]223)

A(1)*

and if [32¢0 then ('}’1,3—1,'};-3;)’ = oP(Z) and V p>0 P(IJn [>p) — 1. =

Theorem 2.- All results stated in Theorem 1.i hold when assumption (3.1) is

replaced by (3.4), nonparametric estimates m'? are replaced by mé?),
1

Ci
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GTEI N G (A AR

il

X
trimming function Ii is replaced by I
I3

(where b >0 is a sequence of trimming values) and it is also assumed that:
n

U = Y-E[Y|X,Z] and (X,Z) are independent, (A.3)
dvelN : f € §’°°, 6 e g and £ e g2 uniformly in D, (A.4)
3 v 3 v £ v
-4, 4v 4. 2s
b — 0, nb h — 0, nbh” — o (as n — o) and (A.5)
n n n n n
the kernel function ¢ is in class 1{2 v (A.6)

(2) I Z(l)=/;,;

where, given 74 € fDSIRr, f'/;:[Rs—alR denotes the density function of Z
Gq:leelR is defined as e/}(a)= g(n,a) for aeR® (g(.,.) as in (L.1) for (4,a)

€ RY); and € R°—5R is defined as € (a)= E[X ZzW= ,Z(2)=a] for aeR®.
% % @

00

1)
and Kf (for A>0, w0 and feN) are as defined in Robinson (1988); "uniformly

Proof: First we comment briefly on assumptions in Theorem 2: classes §’z, g

in D" means that the constants which appear in the definition do not depend
on #4; (A.4) specifies the degree of smoothness in f/}, 9@ and Ez which is
required; (A.5) gives conditions on the rate of convergence of hn and bn;
(A.6) specifies the relation between the degree of smoothness and the order
of kernel yi(.); note that (A.5) implies 2v>s (so, Y is at least of order s).
Theorem 2 follows in the same way as Theorem 1 replacing references to DM
by references to generalisations of Propositions 1-14 in Robinson (1988).
The latter contains results only for a partly linear regression model with
absolutely continuous Z, but, adding uniformness conditions, they may be
easily extended to the case when Z contains discrete and absolutely
continuous random variables (Delgado and Mora 1995b). Observe that if we

rewrite conditions vi-x in Robinson (1988) with A=u=y = v, we obtain (A.4),

(A.5) and (A.6). In fact it would have been possible to give Theorem 2 with
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weaker smoothness conditions (allowing for different degree of smoothness in
f'/;, 9/; and E/; as in Robinson 1988), but we have preferred this version for

simplicity. =

TABLE 1.- Semiparametric Estimates (Whole Sample)

GWL Form (5.1)

Bandwidth k=160 k=350 k=750
&1 .296 (.002) .391 (.036) .456 (.044)
&2 -.017 (.001) -.020 (.001) -.023 (.002)

QES Form (5.2)

Bandwidth k=160 k=350 k=750
&1 -1.2E-7 (4E-9) -1.2E-7 (4E-9) ~1.2E-7 (4E-9)
&2 1.0E+4 (2E+ 3) 9.9E+3 (2E+3) 9.6E+3 (2E+3)

Heteroskedasticity-Cons istent SE into brackets.

TABLE 2.- Semiparametric Test (Whole Sample)

Test 1.- (5.1) vs (5.2) Test 2.- (5.2) vs (5.1)

Bandwidth k=160 k=350 k=750 k=160 k=350 k=750
3 -.30 -.40 -.48 1.35 1.38 1.42
| t] 9.31 11.49 12.94 43.81 43.22 42 .85
It*l 7.87 9.60 10.70 39.56 39.63 39.26

t is semiparametric standard t-ratio; t* is semiparametric

heteroskedasticity-consistent t-ratio.
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TABLE 3.- Semiparametric Test (n=16779)

Test 1.- (5.1) vs (5.2)

Test 2.~

(5.2) vs (5.1)

Bandwidth k=160 k=350 k=750 k=160

k=350 k=750

3 .53 .50 .95 1.13 .34 1.85
I t] 1.33 1.12 2.13 4.35 28  3.49
1t 1.18  1.18 2.25 4.28 14 3.29

t is semiparametric standard t-ratio; t* is semiparametric

heteroskedasticity-consistent t-ratio.

TABLE 4.- Semiparametric Test (Sample

into Groups, All Observ.)

G.1 G.2 G.3 G. 4 G.5 G.6 G.7 G.8 G.9
Test 1.- (5.1) vs (5.2)
k 30 50 30 150 50 100 30 75 50
8 .14 -.07 .64  -.47 .17 -0.33 .32 -.43 -.11
| t} .52 .41 2.28 8.46 1.00 3.52 1.87 3.25 .57
¥*
Jt | .53 .36 2.50 7.98 .71 3.28 .95 3.62 .57
Test 2.- (5.2) vs (5.1)
5 1.28 1.92 1.05 1.43 1.03 1.43 1.49 1.48 1.94
| t] 4.54 9.62 3.55 27.29 6.01 15.48 7.59 11.37 8.65
It*l 5.27 10.19 3.52 25.87 5.09 13.54 7.41 13.75 6.91
*
t is semiparametric standard t-ratio; © is semiparametric heteroske-

dasticity consistent

t-ratio.

29




TABLE 5.Semip.Test (Sample into Groups, Obs.within (.1,.8)-quant.)

G.1 G.2 G.3 G.4 G.5 G.6 G.7 G.8 G.9
Test 1.- (5.1) vs (5.2)

K 25 40 25 120 40 80 25 60 40

) .45 .11 .15 .57 .45 2.76 4.24 .00 2.78

| ¢] .43 .12 .21 .52 .52 1.77 1.18 .01 2.62

Lt .48 .12 .19 .48 .47 1.86 1.13 .01 2.69
Test 2.- (5.2) vs (5.1)

5 .93 1.06 .94 .85 .91 .80 1.28 1.01 1.67

| ¢} 1.16 2.01 2.05 1.73 2.04 1.70 2.96 2.11 3.41

It*l 1.21 1.94 1.83 1.46 1.92 1.70 2.96 1.98 3.53

¥*
t is semiparametric standard t-ratio; ¢ is semiparametric heteroske-

dasticity consistent t-ratio.
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FIGURE 1
SIZE: P-Value Plot. Parametric Test and Semiparametric Test
with different bandwidths in Model 1
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FIGURE 2

SIZE: P-Value Plot. Parametric Test and Semiparametric Test
with different bandwidths in Model 2
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FIGURE 3
SIZE: P-Value Plot. Semiparametric Test with
bandwidth k=5 in Models 3,4 and 5
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FIGURE 4

Empirical Power Function (significance level = 0.05). Parametric
Test and Semiparametric Test with different bandwidths in Model 6
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FIGURE 5

Empirical Power Function (significance level = 0.05). Parametric
Test and Semiparametric Test with different bandwidths in Model 7
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FIGURE 6

Food Engel Curve, Group 4. Semiparametric Estimates for GWL
and QES forms and Nonparametric Estimate
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FIGURE 7

Food Engel Curve, Group 6. Semiparametric Estimates for GWL
and QES forms and Nonparametric Estimate
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FIGURE 8
Food Engel Curve, Group 9. Semiparametric Estimates for GWL
and QES forms and Nonparametric Estimate
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