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Abstract

This paper provides three simple mechanisms to implement allocations
in the core of matching markets. We analyze some sequential mechanisms
which mimic matching procedures for many-to-one real life matching mar-
kets. We show that only core allocations should be attained when agents
act strategically faced with these mechanisms. Two mechanisms implement
the core correspondence in SPE, whereas the third implements the students’
optimal stable solution.
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1. Introduction

This paper presents mechanisms implementing stable allocations for matching
markets. We present three rules that mimic the sequential interaction holding
between agents in contractual processes on both sides of the market.

Matching markets have been extensively analyzed from a game-theoretical
point of view. (See Roth and Sotomayor [15] for a detailed state of the art until
1990.) In this framework, Roth [12] and Alcalde and Barbera [3] have shown the
existence of incentives for agents to misreport their true preferences when faced
with some mechanisms selecting allocations to satisfy “desired” properties.

Some authors have concentrated on partial aspects derived from the strategic
behavior of the agents. For instance, Gale and Sotomayor [7] and Roth [13]
analyzed partial implementation of the core in a marriage market framework.

Alcalde [1] analyzes a particular case of matching problems called the marriage
market. He tackles the implementability of two particular solution concepts: the
core correspondence and its extreme selections, and provides positive answers.
In college admissions problems, the general model we are interested in, Kara

and Sénmez [9] show that the core correspondence can be implemented in Nash




equilibria. Nevertheless, they do not provide a simple mechanism which can be
employed in real life situations. They also show that no subselection of the core
is Nash implementable.

In a related framework, Romero-Medina [11] studies the mechanism employed
by the Spanish University system to allocate new students to colleges. He shows
that this mechanism can select unstable outcomes but, when students act strate-
gically, only core allocations should be reached. The matching procedure studied
by Romero-Medina does not allow universities to act strategically. For this rea-
son, his results cannot be applied to the more general framework in which we are
interested. Thus designing a useful mechanism to implement stable solutions for
job markets is still an open problem.

An interesting feature of the mechanisms we present, is that they constitute
reasonable proposals for effective design. Following Jackson [8], the mechanisms
used to implement social choice correspondences should have “natural” features.
A way to argue when a mechanism is natural is presented by the possibility of
being employed in real life situations. We are going to introduce rules employed
in real many-to-one matching markets. For instance, the rule to be introduced in

Section 5 is used by the Spanish Public Administrations to allocate the workers
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they hire.?

This paper provides some mechanisms implementing core allocations. The
rules to be analyzed capture some aspects which hold in real life college admissions
problems. Firstly, we model sequential interactions among agents on both sides of
the market, reflecting an adjustment process to reach stable allocations. Secondly,
agents on one side of the market adopt an “active” role, making offers, whereas
the aptitude shown by agents on the other side can be considered as “passive”:
they only accept or reject the offers they receive. In fact, the mechanisms analyzed
below reflect the idea of the classical Gale and Shapley algorithm.

The rest of the paper is organized as follows. Section 2 introduces the basic
model. Sections 3 and 4 present two mechanisms to implement the core for job
markets in SPE. Section 5 proposes a family of mechanisms implementing a selec-
tion of the core, namely the students’ optimal stable matching. Conclusions are

collected in Section 6.

2. The model

Let C = {c1,...,cn} and S = {s1,...,8n} be the set of colleges and students,

respectively. Each college has preferences P (c) over the set of groups of students.

1'We are grateful to Carmen Herrero for pointing out this aspect
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P (c) is assumed to be a linear order on 2°. Each student’s preferences P (s) is
described by a linear order on C U {s}. A college admissions problem is fully
described by a triplet {C’, S; ij}, where P={P (c1),..., P(en) , P (51).... P (5m)}
is a list containing a full description of the agents’ preferences and is called a
profile.

An allocation for such a problem, or matching, is a mapping x from C'U S into

25 U C satisfying
(i) for all c € C, u(c) € 25,
(ii) for all s € S, p(s) € C U {s}, and
(iii) for each pair (¢,s) € C' x S, [u(s) = ¢ = s € p(c)].

From now on we will consider C' and S to be fixed sets, thus we can identify
a colleges admissions problem {F W, ij} with the preference profile Pz Let
M ( 5) be the set of all possible matchings u in P. Finally, P denotes the set of
(potential) matching markets.

Let P be a matching market. Given a set of students A C S, we denote by

Ch.(A) the P(c) maximal element on 24.

%For the sake of simplicity, we will employ the same notation for preference profiles the and
college admissions problem. The context will be made precise if P denotes a matching problem

or simply a preference profile.




Definition 2.1. A matching p is said to be individually rational for P iff

(1) Che(p(c)) = p(c) for all c € C, and
(ii) for all s € S, c € C [sP(s)c = s & u(c)].

Definition 2.2. Let u be a matching for P. We say that p is blocked by a pair

(¢,s) e Cx S iff
(i) ¢ P(s) p(s), and
(ii) s € Ch, (u(c) U {s}).

A pair (¢, s) which satisfies the above two conditions is called a blocking pair

for p.

Definition 2.3. Let y be a matching for P. We say that p Is (pair-wise) stable
if it is individually rational and there is no pair blocking it. Let C <P> be the set

of stable allocations for the problem P.

Finally, we assume that colleges’ preferences with regard to groups of students
are substitutive. That is, for any two students s and s if s belongs to Ch,(A),
then she will also belong to Ch.(A\ {s'}). This assumption is quite usual in the

literature and guarantees non-emptiness of the set of stable allocations. (Alcalde
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[2] provides further arguments in favour of the need of such an assumption.) Notice
that when preferences are substitutive, the set of (pair-wise) stable allocations
coincides with the core of the related colleges admission problem. That is, given
a stable allocation, no group of agents can find a matching to improve the utility
of all its members without being matched with agents outside this group.

The concept of implementation we are going to use throughout the paper is
well-known in the literature. We next formalize this for both the subgame perfect
Nash equilibrium (SPE) and the strong subgame perfect Nash equilibrium (SSPE)
cases. Let & be the set of strategies for agent k and let £ = mgé[ < &, be the set
of strategy profiles. Associated to each strategy profile € we can define a message
profile m (€), or simply 7, which describes the action taken by each individual
when the agents choose such strategies. A matching mechanism is described
by the set of strategies allowed to each agent, and an outcome function v that
assigns a matching to each profile of messages. We say that a matching mechanism
implements a solution concept, say x, in (strong) subgame perfect Nash equilibria
if (i) for any €, (strong) subgame perfect equilibrium of the game I' = {C S5 P ’y},
v (7 (€)) belongs to x <_£3> and (ii) for each p in x (P) there exists a (strong)

SPE for T, say &', such that v (m <é')> = L.

10




3. The “colleges-propose-and-students-choose” mechanism

This section is devoted to analysing a matching mechanism that mimics matching
procedures which hold in real life. The mechanism we are going to introduce is
simple in the following sense. The message space of each agent can be straight-
forwardly obtained from its own preferences. The outcome function can be very
easily evaluated at any profile of messages. Thus, any individual is able to evalu-
ate the consequences of her strategy without using a sophisticated analysis of the
mechanism.

We next introduce a mechanism to implement the core correspondence in SPE.
We are going to employ a natural two-stage game form mechanism. In the first
stage each college makes proposals to a set (possibly empty) of students. In the
second stage each student chooses the college she prefers. The outcome of the
game is a matching where by each student is enrolled by the college she selected
whenever she has received a proposal from this college.

More formally, in the first stage, colleges have to decide simultaneously. Each
college message space coincides with the set of potential teams of students, 25. In
the second stage students, knowing the colleges’ messages, select simultaneously

the college in which they want to study. Thus, each student message space coin-
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cides with C'U {s}. Let m (k) denote the message by agent k € C' U S, and  be
an ordered vector containing the messages of all the agents.

The outcome function, denoted by ®“9, selects a matching which is defined
as follows:

@Y% (1h) = i, where for any s in S,
m(s) if s € m(m(s))
8 otherwise

and, for each ¢ in C,

p (c) = {s €m(c) | c=m(s)}

Theorem 3.1. The mechanism described above implements in SPE the core cor-

respondence.

Proof. First, we prove that every SPE outcome is in C ( P). Let m/ be a SPE?

[

for I'¢% .= {C’, S; P; CIDCS}. One can check that, at the second stage, each student

s has a dominant strategy, namely m/(s) = argmax P(s)on {c € C' s.t. s € m'(c)} U

3Strictly speaking, 7’ is the ordered vector of messages that result in a subgame perfect
equilibrium. We abuse on the notation throughout the paper identifying messages at a SPE
with subgame perfect equilibria




{s}. Thus, ®°° (/') should be an individually rational matching for Pp.

Let us suppose that ®°° (17) is not in C ( 5), then there should be a blocking
pair, say (c¢,s) in C X S. Since all the colleges play simultaneously, this can
not be the case, because college ¢ can reach higher utility by playing m”(c) =
Che (v (¢) U {s}). Notice that, at the second stage the message stated by student
s has to be m"(s) = ¢. A contradiction.

On the other hand, let p be a stable matching for P. Let us consider the
following strategies for the agents. Each college message (and strategy) is m(c) =
p (c). At the second stage any student’s strategy is her dominant strategy. Thus,
her message is m(s) = p(s). It is very easy to see that this constitutes a SPE
for the related game whose outcome coincides with u, which yields the desired

result.

The solution concept we implemented involves a high level of cooperation
among agents. For this reason one is tempted to analyze the consequences of
agents cooperation when faced with our mechanism. As Example 3.2 shows,

cooperation among agents does not reduce the set of outcomes one can expect.

Example 3.2. Let consider the following five students and three colleges market.




P(s1) =1 P(s9) = czcie9
P(Sg) = C3C1C2 P(S4) = C2C1C3
P(S5) = C9C1C3 P(Cl) = 51598384855

P(co) = (s253)(5455)5152535485  P(c3) = (5455)(5253) 5152535455

It is straightforward to see that there is a strong subgame perfect Nash equi-
librium yielding each stable matching. For instance, the matching y° in which
pd(c1) = s1, p¥(cy) = (s485) and p’ (c3) = (s983) can be supported in SSPE
by strategies e (c1) = (8152838485), € (c2) = (8455), €(c3) = (s283) and, for each
student s, e(s) = argmax P(s) on {c € C s.t. s € m(c)} U {s}, where m(c) is the
message of college c. In a similar way, we can support the colleges’ optimal stable
matching p© in which pC (¢1) = s1, uC (c3) = (s283) and p (c3) = (s455) by a
SSPE described by strategies e (c1) = 81, e (cz) = (8983), € (c3) = (s485) and, for

each student s, e(s) = argmax P(s) on {c € C s.t. s € m(c)} U {s}.

4. The “students-propose-and-colleges-choose” mechanism

This section introduces a second mechanism implementing the core correspon-
dence of college admissions problems. The idea underlying this mechanism is
very similar to the previous one. In this case offers are made by students and

each college selects the best set of students, from the proposals it receives. That
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is, the main formal difference between this mechanism and the one studied in
Section 3 is that we shift the order in which agents on both sides of the market
make their decisions.

Let us introduce the mechanism. This is a two-stage game-form mechanism.
In the first stage, students have to decide. Each student message space coincides
with the set of colleges and her being unmatched option, C' U {s}. In the second
stage, colleges which know students’ messages, select the set of students that they
want to admit. Thus, each college’s message space coincides with 2. Let m (k)
denote the message of agent £ € C' U S, and m be an ordered vector containing
the messages of all the agents.

The outcome function, denoted by &%, selects a matching which is defined
as follows:

&5 (h) = s, where for any s in S,

m(s) if s € m(m(s))

8 otherwise

and, for each cin C,

i (€)= {s € m(c) | e = m(s)}
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Theorem 4.1. The “students-propose-and-colleges-choose” mechanism implements

in SPE the core correspondence of college admissions problems.

Proof. First, we show that every SPE outcome is a stable matching relative
to agents’ preferences. For, let ' be a SPE for I'°¢ .= {C’, 9, P; @SC}‘ One
can check that, at the second stage, each college has a dominant strategy, namely
m'(c) = Che({s €S| c=m/(s)}). Thus, ®5¢ (/) should be an individually
rational matching for p.

Let us suppose that 3¢ (17') is not in C ( \]f), then there should be a blocking
pair, say (c,s), in C x S. Since all the students play simultaneously, this can
not be the case, because student s can reach higher utility by playing m”(s) = c.
Notice that, at the second stage c’s message has to include such a student. A
contradiction.

On the other hand, let u be a stable matching for P. Let us consider the
following strategies for the agents. Each student message (and st ategy) is m(s) =
1 (8). At the second stage any college’s strategy is its dominant strategy. Its
message is m(c) = i (c). It is very easy to see that this constitutes a SPE for the

related game whose outcome coincides with p, which yields the desired result. §

Since the Social Choice Correspondence that we study is the core, we are
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tempted to analyze the influence of agents’ behavior on the expected outcome
when their commitment is allowed for. In such a case strong subgame Nash
equilibrium seems to be a minimal requirement to be fulfilled by our predictions.

The analysis of such an equilibrium concept is the aim of our Theorem 4.2.

Theorem 4.2. The students-propose-and-colleges-choose mechanism implements

in SSPE the students optimal stable allocation.

Proof. First, we are going to show that the students’ optimal stable matching
can be supported by a SSPE. Let P be a matching market, and u° be its students’
optimal stable allocation. Consider the following strategies. For any s in S,
e(s) = p® (s) and, for each cin C, e (c) = argmax P (c) on {s € S s.t. ¢ = e(s)}.
As the reader can see these strategies constitute a SSPE whose outcome is .
On the other hand, let & be a SSPE yielding 1 # 5 as outcome. We will
show that it cannot be possible. Notice that every SSPE is a SPE. Thus, by
Theorem 4.1, i has to be stable. Since p # u°, there is a set of students, say
S’, preferring their mate under p% rather than that assigned to them by x. Let
S’ = {s €S :uS(s)P(s)p (s)} And consider the following strategies. For all s
in 5, €'(s) = p”(s), and any s in S\S’ plays her strategy ¢’ (s). Because of the

latticial structure of the core, it holds that €’ (s) = p“ (s) for all s not in S’ (Roth
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and Sotomayor [15, Theorem 5.31]). Given that colleges play their dominant
strategies (see proof of our Theorem 4.1 above), the outcome when agents in S’

shift their strategy and play ¢”(s) yield p¥ as outcome. A contradiction. §

5. The “students-sequentially-propose-and-colleges-choose”

mechanism

This section introduces a modified version of the “students-propose-and-colleges-
choose” mechanism. The allocation rule that we are going to analyze differs from
that studied in Section 4 because students’ decisions are made sequentially. In
fact, we are going to introduce a family of mechanisms (each for any different
order in which students have to decide). Nevertheless the expected outcome does
not depend on such an order.

Conclusions of Theorem 3.1 do not remain valid when such a sequentiality is
introduced in the mechanism. Theorem 5.1 shows that our capacity of prediction
(when no commitment is allowed) increases. The outcome we attain is still stable,
but no any stable outcome can be reached by a subgame perfect equilibrium of this
mechanism. In fact, there is only one outcome implemented by this mechanism,

namely the optimal stable matching from the point of view of students.
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In some sense, the sequentiality (in students’ decisions) plays a role similar to
the students ability to commit themselves to the strategies to be played. Because
of the latticial structure of the core such a commitment will lead to the best stable
allocation that students can reach.

Let us introduce the mechanism. First, fix the order in which students are
going to play. Without loss of generality, let us assume that s; is the first to play,
89 is the second and so on. This is a m+1 stage game form. At stage i-th, i = 1,

.., m, student s; selects a college. Thus, each student message space coincides
with the set of colleges (and her being unmatched option). At stage m+1-th, the
last stage, colleges simultaneously select the set of students they want to admit,
one set of students for each college. Thus, each college message space coincides
with 2. Finally, the outcome function, denoted by 55, selects the matching
defined as follows:

®5¢ (h) = p,z,, where for any s in S,

m(s) if s € m(m(s))

S otherwise

and, for each ¢ in C,

—
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i (c) = s € m(c) | ¢ = m (s)}

where 7 is a list containing a full description of agents’ messages.
We next state the main result for this section. The students-sequentially-
propose-and-colleges-choose mechanism implements in SPE the stable solution

which is optimal from the point of view of students.

Theorem 5.1. Let € be a SPE for I'9¢ := {C’, S; P; CI)SSC}, and m be the vector
of messages that agents state in €. Then pz = p°, the optimal stable allocation

from the point of view of students.

Proof. We will proceed to show this result in a constructive way. First, we
will present some properties that any SPE has to satisfy. Then we will argue that
agents’ messages will lead to the optimal students’ stable matching.

In order to characterize the set of SPE, we will apply backward induction. At
stage m+1-th, given students messages, each college ¢ has a best response, namely,

m* (c) = argmax P (c) on {s|m(s) =c}* At stage m-th, given messages for

“Notice that such a strategy is not the unique best response. In fact, the set of best responses
for college ¢ is the union of such a set with any set of students S’ such that ¢ # m (s') for all
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students other than s,,, (M (s1),...,m (Sm_1)), and knowing colleges’ behavior,

this agent’s best reply is

m* (sm) = argmax P (s,,) on

{c|8m € Che({s € S\ {sm} |m(s)=c}U{sm})}.

Notice that such a message coincides with p® (s,,), when any student s; in S\
{sm} has preferences such that m(s;) is the only college which is preferred to her
being unmatched option®, and P'(z) = P(z) for agents in W U {s, }.

In order to apply an inductive argument, let the strategy of student sy, 1m* (s;)

be defined in a recursive way by m’ (s;) if k < i and m* (s);) whenever k > i. Thus

m* (s;) = argmax P (s;) on the set
{c| 8 € Ch.({sx € S\{s:i} | M (sx) =c}U{s;})} =
= 4% (s;) , when agents preferences are P'(z) = m(x) if z € S\ U,, {s;}

and P'(z) = P(z) otherwise.

Finally, given messages that students other than s; have to be m*(s;) =

s"in §’. Nevertheless, all these messages are strategically equivalent. Since we are interested in
equilibrium payofls rather than equilibria strategies, we do not pay attention to these strategies.
The same argument applies to the proof of Theorem 4 1.

5For simplicity, we identify student’ s; preferences with college ¢j, i.e. P(s;) = c;, whenever
such a college is the only for which ¢;P(s;)s; holds.
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1% (w;), when agents’ preferences are P*, where P* (x) = P (z) for all agent other
than s1, the best option for such a student is m* (s;) = p% (wy), when agents

preferences are P, their true preferences. 1

Remark 1. Notice that in the proof the existence of a unique stable matching
which is individually rational and weakly Pareto efficient from the point of view
of students is very important to our result. Since such a property does not hold
for colleges (See Roth [14]), we cannot guarantee that a symmetric result can be
reached for colleges. In fact our Example 6.1 (see Section 6) shows that sequential
extension for the “colleges-propose-and-students-choose” mechanism well might

produce unstable SPE allocations.

6. Final Remarks

This paper introduces two mechanisms implementing the core correspondence of
matching markets. The results it provides solve two essential questions. First,
the core of such games can be implemented in subgame perfect equilibria. And.
second, it provides simple mechanisms to implement such a solution concept.
We also provide a mechanism to implement a particular selection of the core,

namely the students’ optimal stable matching. Thus, this paper also provides
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a positive answer to the implementability of a selection of the core in matching
markets. Notice that Kara and Sénmez [9] prove that no selection of the core can
be implemented in Nash equilibria.

Unfortunately a symmetric result cannot be provided for the set of colleges.
This result points out (as Roth [14] did) the asymmetry holding among both
sets of the market. Moreover, we can also state, in the words of Roth, that “the
college admissions problem is not equivalent to the marriage problem.” Note that,
in the particular case of marriage markets (colleges have only one position each),
a symmetrical result for Theorem 5.1 can be stated by exchanging the role of
students and colleges.

Let us conclude the paper providing an example to show the asymmetry above

mentioned.

Example 6.1. Let be {C’, S P} a three colleges-four students market. Following

v
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table summarizes agents preferences.

{ss,s4} {sa} {s3} c3 o o 3
{s2,84)  {ss} {s4} Ca ¢ e c1
{s2,85} {s2} {s1} ¢ Cs e 2
{s1,84) {s1}  {so} 81 S2 3 S4

{s1,83} 0 0
{s1, 82}

{84}

{ss}

{s2}

{s1}

Let us consider the “colleges-sequentially-propose-and-students-choose” mech-
anism, ®°*°. This is a symmetrical version for the mechanism proposed in Section

5 where colleges are to make proposals in a sequential way. We will see that two
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interesting features which are satisfied by the family of mechanisms ®°°¢ are not
satisfied by mechanism in ®“*5. First, some SPE outcome can be unstable rela-
tive to agents preferences. In order to show that, let us suppose that the order in
which colleges sequentially decide is ¢ , ¢y and c3. There is a SPE with messages
m(c1) = {s1, 82}, m(ce) = {sa}, m(cs) = {s3}, m(s1) = {1}, m(s2) = {eu},
m(s3) = {c3} and m(sy) = {c2}. Notice that ®“*5 (1m) is unstable because the
pair {cy, 83} blocks it. Secondly, the SPE outcomes set depends upon the order in
which colleges make their decisions. Indeed, let us consider the order for colleges
in which first co proposes, then cs, and finally ¢, is the last to make a proposal.
In such a case the unique SPE outcome is p(c1) = {s1,82}, p(ca) = {s3} and
e (c3) = {sa}, which is different from the SPE outcome when firm c; is the first

to play.
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