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CONSISTENT BELIEFS, LEARNING AND DIFFERENT
EQUILIBRIA IN OLIGOPOLISTIC MARKETS

Gonzalo Ferndndez de Cérdoba

ABSTRACT

The aim of this paper is to show the relation among equilibria in models with
different levels of rationality. The different levels of rationality are defined in terms of the
number of iterations that a player can perform with a simple rule for updating beliefs. It is
shown that the rule converges to the Nash equilibrium without any increase in the complexity

of players.
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1 Introduction

This paper proposes a rule for updating beliefs in a simple symmetric oligopoly model
with a linear demand function and constant marginal costs.

The crucial features of this rule are the following:

First, each firm 7 has a belief about how other firms respond to #'s production level,
and this belief is correct. Beliefs of firms form a consistent self-reference system.

Second, beliefs about beliefs are seen as iterations of the beliefs formation process,
and those iterations are identified with a rationality level.

Third, it is assumed that these beliefs are elements of a one parameter family,
and by the assumption of symmetry, firm ¢’s beliefs about any other firm can be
summarized by that parameter.

The main result of this paper is that for a number of firms larger than three,
beliefs updating leads to the competitive equilibrium. In contrast, when the number
of firms is two, it leads to the Cournot-Nash equilibrium. If we allow for asymmetric
levels of rationality, a Stackelberg solution can also be an equilibrium.

A motivation of this rule for updating beliefs is in the next section. In section 3 I
present the model with an example. The stability properties of the beliefs updating
rule are investigated in sections 4 and 5, where the main results are stated.

Most of the recent literature on learning in games concentrates in developing
learning algorithms where past play of the opponent is used to estimate future play.
The approach I propose is that players should be able to learn the rule opponents use
to select their strategies. This is important because it is more profitable for a player

to learn opponents reasoning processes rather than opponents frequencies of play.

2 Motivation

A pervasive criticism of the game theoretic models, as suggested by Fudenberg and
Kreps in their CORE lectures in May 1990 has emerged concerning the application of
the Nash equilibrium. Where do these equilibria come from? How does one choose in
the case of multiple equilibria in order to make predictions? In the CORE lectures,
learning was presented as a justification tor the extended use of the Nash equilibrium
in economics. Not only did learning yield a Nash equilibrium but was also a way how
to reach it. Unfortunately a lot of the underlying assumptions of the learning process
were made in order to reach the desired result thereby introducing an ad hoc element
into the analysis. This is the case of fictitious play.

The fictitious play (Brown [2]) justification has become, after a degree of rein-

terpretation (I'udenberg and Kreps [9]), a model of learning. In order to illustrate




how fictitious play works, the following example is useful. Imagine that two players
repeatedly play the game that is described in the table below. Imagine also that they
have some prior beliefs about the strategy that their opponent will choose. Let bR
and bC be the beliefs held by the Row player and column player respectively. Set
arbitrarily b2 = (0,1) and bC' = (1,0), suggesting, therefore, that the Row player will
believe that his counterpart will play his second strategy (column 2), with probability
1, while the Column player will believe that the Row player will play his first strategy
(row 1) with probability 1. They observe the pure strategy chosen by the opponent.
If a strategy is mixed, however, they will not be able to observe the *impurity’ of the
strategy that is inherent in the 'mixture’.
Columnl Column2

Rowl 1,0 3,2
Row?2 2,1 4,0

The history of play and how beliefs are updated is represented in the next table.
In the first column and first row the beliefs about each rival have been set arbitrarily
as explained above. In the next column the expected payoffs for the two strategies of
each player are displayed and, finally, a comparison between these expected payoffs
indicates the best or optimal choice for each player in each round. In the second line
the updating of beliefs is achieved by adding 1 to the observed strategy and, after
a process of normalisation, the relative likelihood about the rival is obtained. The

process is then repeated to show how the system converges.
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Table 1.

TRound 1 * Beliefs about the rival Expected payofts Choice
Player Row 0,1 3,4 row 2
Player Column 1,0 0,2 column 2
Round 2 Beliefs about the rival Expected payoffs = Choice
Player Row 0,1 3,4 row 2
Player Column 1/2,1/2 1/2,1 column 2
Round 3 Beliefs about the rival Expected payoffs  Choice
Player Row 0,1 3,4 row 2
Player Column 1/4,3/4 3/4,1/2 column 2
Round 4 Beliefs about the rival Ixpected payoffs  Choice
Player Row 0,1 3,4 row 2
Player Column 1/8,7/8 7/8,1/4 column 1
Round 5 Beliefs about the rival IExpected payoffs  Choice
Player Row 1/2,1/2 2,3 row 2
Player Column 1/16,15/16 15/16,1/8 column 1

As this table shows, fictitious play possesses some useful properties. In any history
generated by fictitious play, if a strategy profile 1s played that is a strict Nash equilib-
rium, then all subsequent play will be part of that strategy profile. And if a strategy
profile is played for all but a finite number of periods, then that strategic profile is a
Nash equilibrium. Fudenberg[6]

But the fictitious play mechanism itself raises some issues when interpreted as
a learning process. A real model of learning should first answer the basic question.
What does a player learn? In the model, learning does not take place at any moment.
The only thing it shows is that if the players update their beliefs using that particular
updating rule, then they will choose their part in the Nash equilibrium profile. But
they do not learn about how the other plaver reason, because if they are able to learn
that feature of the opponent then they will not update their beliefs according to the
fictitious play rule.

The use of fictitious play as an example illustrates this point clearly. It player
Row thinks that player Column is using fictitious play to compute his strategy then,
maintaining from the beginning an adherence to row 1 will doubtless force player two
to play column 2. Once this situation has been attained plaver Row will not deviate

from the strategy because he has seen through the counter strategy, namely that




player Column was revising his beliefs according to fictitious play model. As a result,
any surprising deviation by player Row to row 2 will then be followed by a revision
by player Column of his beliefs that, sooner or later, will provoke the undesirable
payoff of 2 for the Row player. At the same time, player Column will inevitably be
pleased with the reasoning that is followed by player Row. This observation opens

the possibility of learning so as to avoid any Nash equilibrium inefficient outcomes.

3 Example

Consider n firms facing the inverse demand function P = A— X, where A is a positive
real number and X stands for the total supply obtained by adding up the individual
quantities, X = 21 4+ ... + z,,. Firms are indexed by the elemeénts of a subset of the
natural numbers. The firms produce a homogeneous good with no costs (it is easy
to show that this assumption on the cost function can be extended to all degree 2
polynomial cost tunctions).

A typical profit function is

7w, = (A —z; —Z.r7)x2- alli=1...n.
7Fe

Taking the ['.0.C. we get the following:

(17(’2‘ d : . |
iz = A -2z, —ij—xi%:Oallzz 1...n.
J#
Arranging terms, we get the following;:
dx]- .
.l'z‘(Q’{"Zd—*)-'—ij =Aali=1...n.
. ZI;

171

Defining k; = 1 + 37,4, :%Z— we end up with a system of equations. According to
this definition of k, it is interesting to differentiate the following cases:

Loif k=0 or 1+Y =0

2 if k=1 or T =0

3 0f k=n or Z%:#:n—l‘.

(Case 1 is the competitive equilibrium. Case 2 is the Nash-Cournot equilibrium.

Case 3 is the collusive solution. To verity this relations it is enough to solve the maxi-

mization programs and to plug on them these values of k. The system of equations is:




A = 3]2(1 —f— kz) + Z];él .I']

A=z, (1 + k) + 202

This system can be written as DX = A where D is the nxn coefficients matrix,
X is the nx1 column vector of z; and A is a nx] column vector of independent terms.

The coefficient matrix D is:

l+k 1 ... 1
1 14k .. 1
1 1+ k,

A simple repeated operation of substraction -first line minus second line. Second line
minus third line, and so on, leaving the n, line untouched- gives the transformed

equivalent of matrix D.

ki —ky 0O 0
0 ky —ky 0
1 Il I .. 14k,

The column vector of independent terms takes the form of

A
From each of the equations of the system we can verify

2 .
o Ns41 ) . .
Ty = gy, Ty = SEA=l T, 1<) <n—1,

k,

and

Therefore, through a chain of substitutions,



I = ]{’1 ]{'2 Yty kn_lxn’
so that
kn
x — .
=
Similarly,
kn ”
;= h T, foralll <j<n-—1
7
and

L "2—:1 1
L+ ky g

=1
After some additional manipulation we have
A

Tk (r T L) "

xz

To obtain an expression for the profit function, we have to follow this sequence of

equalities:
X = v =2+ ) ;= A—(14+k,) x4z, = A~kpz, = A1 — = .
= = Ltk (142551 )

To simplity matters let

n—1

g:Hkn(H i)‘.
i [
=1 "7

Irom here it is easy to see that

7«‘1:(14—~X)x2:14(1— (1—%)):@.

Simplitying the last expression, taking into account that z; = %—xn, we obtain

Ak N\ 1
”Z:(é>7€' ?)

Taking the first order condition yields

dri 2 (Ak,\ [ —Ak. G Ak \* 1
dk, ki \ ¢ £ & ) Kk

d¢ ~1
=k, .
dk, " k?

]

But
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Making the substitution, and taking the expression of the profit function in to account,

dm (% L
dk, — "\ tkd k2

1

we finally obtain

Therefore the condition for a maximum is given by

2%, 1
e rz) =Y

or equivalently ék, — 2k, = 0. Taking into account the definition of £, we can write

k k;

n—1 1 kn
k| l4+ky+hk, >, — 4+ =2k, =0.
FES I

Solving for k;, we get the main expression

1
kI = oralli=1...n (3

Then we are ready to state the following

Proposition 1 Ifk; is bounded from above, k; < C' and k; > 0 for alli =1...n, the
optimal belief tends to the competitive equilibrium optimal belief when the number of

firms inereases. In other words k; — 0 when n — oo Vi.

Proof
Let k; take any arbitrary value j = 1,2...n. Increase the number of firms and
let them have any arbitrary belief. Assume that k7 does not converge to zero. That
happens only if
1 1

+ + o+
kn-}—l kn+2 kn+m

< 20

but because beliefs are bounded by (', the following inequality holds:

Ly b !
k'n-}—'l kn+2 o kn+m

>1/C+1/C+ ... 1/C =m/C
Clearly m/(" does not converge when m — oo, and therefore a contradiction. ().I..D.
Notice that this result is an extension to the well known convergence of Nash

equilibrium to competitive equilibrium when the number of firms increases. Ilere we

state that this convergence is achieved from any point.




Proposition 2 [or any gwen n, for any j, if k; — 0 then kF — 0

Proof
li b
klr_nok = 00
lim = 00
k; =0 l#1 k

And therefore k7 — 0. Q.E.D.

This simple proposition states that one competitive firm can induce total compe-

tition in the whole industry just showing a competitive behaviour.

Proposition 3 Any profile x = (21...2,) is symmetric (x1 = ... = z,) if and only
of (ky=...=k,).
Proof

It is clear that if k; = k; V2,[ then x; = x; Vi, 1.
To prove the sufficiency we need the generalized to the n firms case expressions

for x;. See in appendix I the derivation to reach the required expressions:

A B A

Ly = - 7 ’ n 1 =%
Lk (L5205 1) Lk (14 25 )
Then
(1+§_j )_kl(lJrZ )
7F#1 7F#l

If we call S =377, k then we can write the last expression as
bt k(S = ) = ko k(S — )
%) T\ k‘,) — N AR k'[ )

which simplifies to k; — k; = S(k; — k,). This can only be true it S = —1 which is
impossible because k, > 0Vz or k; = k,. This is true V7,/. Q.E.D.

In fact this proposition can be proved because no costs (different among firms) were
assumed. With equal costs the proposition is still valid. In the case that differing
marginal costs are assumed the proposition no longer holds. What is always true
is that in any symmetric equilibrium, beliefs have to be symmetric. In the next
proposition we state some properties about the equilibrium. The proof is constructed

in a way that it also shows that the equilibrium exists.
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Proposition 4 The system of equations described by

1 .
k= ———1=1...n
L+ 370, %
has a unique symmetric equilibrium. [Furthermore, the equilibrium is the competitive

equilibrium. In equilibrium, beliefs are symmetric.

Proof

Because the equilibrium is symmetric assume ky = ky = ... =k, = k% £ 0. Then
kr = m{l—)kﬂ?’ which implies that &7 < k°. Otherwise, k7 = mni—l)-; > k% implies
that k° < 2 —n < 0 impossible by assumption. Therefore must happen that kr < k°.
If k7 = k° then k° = TI('ni—l)}o_ which in turn implies k° = 2 — n and as long as k, > 0
and n > 2, the solution is n = 2 and &% = 0 and then the proposition is proved. If
k7 < k° then call kI = m = k! and assume now that ky = ky = .. =k, = k..
Then

1 1 1

Pl (=1L L+ (n—1) 4+ (n—1)2)
and call this new number k?. Repeating the process we find a sequence of numbers
k%, k' k* . ... To complete the proof, we have to show that this sequence is convergent

to zero. But this is obvious if we look at the general term of the sequence. It is

1

kT = , : :
T (n = 1P 4 (n— 1)p+t L

and it converges to zero with the number of iterations. Q.E.D.

Notice that even in the case that marginal costs are different but constant, the
system does not change at all.
Customising the model for a duopolistic relationship, in equation 3, and indexing

the two firms with « and p results in the following:

dr dz,

k, =1+ pand]{pzl%— .

dz, dz,
Notice that, in general, &, can be anything between 0 and n. In this duopolistic
case k; is anything between 0 and 2, because two is the number of firms. The equiv-
alent ot equation 3 for a duopolistic relation gives the optimal levels ot production

depending on the beliets. The solution is
y ke, A k,A

ro= and @) = — (4)

(LR + k) — (L) (L k) = 1
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Plugging (4) into the profit function, we get the final result

K2k,
(ko + by + Fak,)?

k2k,
(ko + kp 4 koky)?

7 (ka, k) = A? and 7, (kq, k,) = A? (5)
The beauty of the concept is that the profits of each firm depend on what they think
about the opponent and what the opponent thinks about them, i.e. profits depend
only on beliefs. So in order to maximize their profits firms only have to choose their
optimal belief.

The optimal belief that a should have about p given the belief p has about a can

be computed from these two profit functions. The same can be done for p.

fralbeds) = 0 yields to k, = 12 (6)
lets) — 0 yields to k, = 2 (7)

These two equations are a particular case of the idea presented in section 2. Each
player, instead of having a prior about the actions of the other player, the players
observe a certain action and the he asks to himself: ”which one is the belief the
other player has about me in order to make his action optimal”. Once he has this
information he find his best response which in turn determines uniquely a belief
about the other player. The other player will reason in the same way. The function
describing this process is called the beliefs formation process. Learning means the
ability of each player to disentangle how the other player form his beliefs.

The interpretation for equations (6) and (7) is that, given a's belief about p and
given that p is following the same reasoning that a is following, a’s optimal belief is
given by equation (6). Furthermore, a’s belief is consistent, as shall be shown, with
the belief formation that p has about @ and that is given by equation (7). These two
equations have been plotted in figure 1.

A modification in a's beliefs makes p revise his beliefs, which in turn induces a
revision of a's beliefs and so on. Interestingly the final outcome is the competitive
equilibrium and not the Nash-Cournot equilibrium, i.e. k; = 1 is not contained in
the beliet equilibrium that is given by the dynamics of the plotted system. Assume
that the system given by equations (6) and (7) is at a disequilibrium point given by
ke = k, = d (d > 0). In the resulting dynamic one player reacts by matching his
best response function, given the beliefs the other has. Then the other player reacts
also by matching his best response function given the observed reaction of the first,
and so on and so forth until the equilibsium point where k, = k, = 0 is reached. A

possible sequence is provided by the following table when d = 1.




IFigure 1: Beliefs
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Table2.
ko k, ATV ,ATD p A2 poA? P
11 1/3 13 1/9 1/9 - —
/2 1 1/2  1/4  1/8  1/16 —1/2 -2
/2 1/3 1/3  1/2  1/18 1/12 —3/2 —2/3
1/4 1/3 1/2  3/8 1/16 3/64 —3/4 —4/3

0 0 0.5 0.5 0 0 —1 —1

Observe the main characteristic of the process. The revision of beliefs is made

consistent with the variation of the others’ output. Therefore when k, = 1/2 the
value for % = —1/2, and recalling the definition of k; it is clear that they match.

several festures of the equilibrium should be noted here:
It can be easily shown that the worst outcome for p is that « thinks that p is

competitive, i.e. the equilibrium belief, because it will force p to be competitive too,
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with the result that both firms loose any possibility
As the final outcome of the above belief revision process is the worst overall
outcome for firms and if firms are able to forsee this, firms should not be expected to

follow such a reasoning process.

4 Is cooperation possible?

The above argument shows clearly that players are willing to manipulate the belief
formation process when improvements are to be expected. In the model presented in
section 3 there is an explicit equation for player ¢'s belief formation process.

In order to make the argument that follows as clear as possible let us make use
of the duopolistic case in the next subsection. Once the argument is clear we will

provide a further generalisation in the second subsection.

4.1 A reasoning that leads to cooperation

Someone could argue that if firms know the belief formation process of the other
firm, they should forsee the competitive outcome and hence refuse to follow such a
beliet formation process. They will notice that their beliefs are correlated because
a's optimal belief affects p’s optimal belief and vice versa. They should take this
correlation into account when computing their optimal belief.

Let’s formalise these ideas. Assume that there are two markets. In each of them
there are two firms. One is firm ¢ and the other is firm p. The demand curve is the
same as before. The only difference is that the products, being still homogeneous in
each of the markets, differ from one another. In market 1 firms behave as described
in the model in section 3. Market 2 opens one period later. Therefore firms a and
p in the second market have observed the whole process followed by firms a and p
in market 1. This process is described by equations (4) and made particular for a
duopoly

[irms ¢ and p in market 2 will realise that beliefs were correlated. Therefore when
computing their optimal beliefs they will take account of this fact.

The correct way to proceed for firm « in the second market is to take a total

derivative in his profit function, equation 8. [or simplicity I have set A = 1.

dry (K24 2kaky52) (ko by + kaky)? = 2k k2(ka + ky + ko) (14 52 + by + ko 522) .
dk, (ko + kp + kokp,)? -
which simplifies to

, Ok, ~ 0. ()

— kok, =k, /\z + Ai + 2k o=

16




which is a relation that beliefs and sophisticated beliefs must optimally satisty.!
Sophisticated beliefs cannot be arbitrary. To have a sophisticated belief logically
implies that a belief already exists and that it is related with others’ beliefs. A
minimum requirement of consistency is, therefore, that the sophisticated belief refers
to the observed beliefs formation process.
If firm a in the second market thinks that firm p in market 2 will behave like firm

p in market 1, then firm @ in market 2 has to solve the following system of equations:

20k,

2
—kak, — kokS + K2 + Qk“‘ak; =0,
k
k, = L.
P M+ ky,

Irom the second equation in the above system it is possible to compute:

dk, 1

dky — (1 + ky)2. 9)

In fact, if firm p in market 2 behaves like firm p in market 1, firm « in market 2 has
to take this variations as true.
Plugging equation (9) into equation (8), two results are reached. First, a new

behavioral equation is obtained for firm «, namely

3k
ky, = P 10
" (10)
Second, the solution of the system is k, = 1 and k, = 1/2. TFollowing the same

reasoning, now for firm p in market 2 we obtain a similar system of equations with

the following results:
3k
k, = :,
P 1+ Kk,

The solution of the system is k, = | and k, = 1/2

(11)

These two equations form a system. This system has a solution in k, = k, = 2,
which is the outcome that was desired,i.e. k¥ = n or cooperation. The next table
illustrates how the outcome is reached over time if players are to start with the Nash
conjectures.

' am calling sophesticaled belief the tesulting beliel from the kunowledge that /s beliefs and j's

beliels are mutually dependent




T'able3.

k, k, ZIg Zp Ta

p
1 1 0.333 0333 0.111  0.111
3/2 1 0.25 0.375 0.0938 0.1406
3/2 9/5 0.333 0.25 0.1350 0.1125
27/14 9/5 0.25  0.2647 0.1205 0.1291

6561/3281 ~ 2 6561/3281~2 0.25 0.25 0125 0.125

A plot of these two best-belief-best-reply functions is given in figure 2

Figure 2: Sophisticated beliefs
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I'urther points are to be noted:
Iirst, the tunctions are continuous and therefore, more robust than results which

sustain cooperation as a Nash equilibrium with the use of, for example grim,? players.

2A grim player is a nasty player. Wheu he is playlng a repeated Prisouer’s Dilernnia, he defects

forever as soon as he perceives a defection [rom other player

IS




Second, the system converges to the solution from any starting point. Therefore
the stability of the system is guaranteed.

Third, as was shown at the beginning, the beliefs must be symmetric if the efficient
solution is to be obtained.

Fourth, the process has two equilibria: the cooperative solution and the Bertrand
case. Only the former should be expected, however, because the Bertrand case is
unstable as will be proven in proposition 6.

In figure 3 the two best responses are plotted for the two duopolists. Two ot them

correspond to the first order beliefs and two to the sophisticated beliefs.

Iigure 3: Two best beliefs

16} e EE
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kp
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i

0.8+ . . 4

04 Pt 1

ka

Notice that it could be the case that, say player a, has a sophisticated beliet
and player p has a simple consistent belief. In this case the solution of the system is
k, = 1 and k, = 1/2. This solution correspond to the Stakelberg equilibrium in which
player a is the follower and player p is the leader. The reason for it is clear. Player
p is too naive to foresee the outcome in case that both players behave according to
equation 3, but player ¢ can anticipate this outcome. We have seen theretore that the

competitive oncome is reached when both plavers are consistent (Bresnahan [1]), the
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collusive outcome when both are smart, and Stakelberg in the case that one player
‘has a sophisticated belief and the other player has not. In figure 3 all these options

appear as an equilibrium point for each situation.

4.2 The generalization to the N firm case

As we have shown in the duopoly case, if firms realise that their beliefs are correlated
(sophisticated beliefs), they can manipulate the process of belief formation. Let us
develop the generalization for the sophisticated beliefs.

The profit function shown in equation (5) can be re-written as

2
A 1
milky )= | —2 )
1+Z] 1 k ki

Now we take the first derivative, taking into account that, firm ¢ realizes the link

between its own beliefs and others’ beliefs.

dmi(ky . ky) (1 + 20 %)2 — 2k, (1 +37, g—) (d ‘j,jf’“-”) B

dk; ((1+Z?:1 £;>2k2>2

(S ) o (E) o

Taking the derivative inside the parenthesis
1 —dk;/dk;
—(1+Zk—)—2k2 / =0.

Taking into account that

or

dk, 1
= , . 2
W (L, )

and doing the substitution, we end up with

e 1
_(1+Z )‘I‘Zkz 5 = 0.
\ et k;

=1 k2R (14 50, 1/ k)

The last expression simplifies when we see that, in the denominator, k; appears with

its inverse, canceling one another. So

n 1 n 1
— (sz ) +2k’2k2 = (.
=1 "1 =1 "™t

20




Solving for k; we finally obtain

ke = “LVi=1...n. (12)

Equation (12) generates a system of n equations.

Proposition 5 The system generated by equation (12) possesses two symmetric equi-

libria. One 1s the competitive equilibrium and the other is the collusive equilibrium.

Proof
Define the function 5 .
n —
Gk)y=k— ———cs.
(k) 1+ (n—1);
Because the equilibrium is symmetric, &y = ... = k,, = k, those values of k such that

G(k") = 0, are a solution of the system. But G(k™) = 0 implies k(k —n) = 0, satisfied
by k = 0 and k = n, which are, respectively, the competitive and collusive beliefs.

To give a proposition about the stability of the system generated by equation (12)
let us induce a particular dynamic. Making time explicit in equations (3), for the

duopolistic case, (6) and (7) we write,

ka — kf—l
t 1 _I_ kf_1 3
and .
ktp — kt—l .
1+ k¢

Irom these two equations substituting one into the other finding a recursive for-
mula we get equation (13) in which any value of k, and k; can be obtained at any

moment of time 7.

ky
L+ 7k,

Just a simple look to equation (13) is enough to see that as 7 — oo, kyyr — 0

k't+7-: all’r:O,l,Q,... (13)

which in turn is a critical point of the system, because once the system reaches k;, = 0

then k.. = 0 for all subsequent periods. This was stated in proposition 4.

Proceeding in the same way with equations (10) and (11) we obtain
aLP
.4 'gkt—l
t T N bl
L4k
and e
1 3k
t 23
1+ ke

.)l

L



After some manipulations we arrive at the equation

97/2k,
I +4k (1 4+9492+.. +97/2-1)

I'rom this equation we can prove the dynamic version of proposition 5 where we stated

kt-l—'r - (]‘4)

that the system had two critical points, one in zero and the other one in n (in this
case n = 2). In addition the global stability of the system around the cooperative

equilibrium can be proven.

Proposition 6 The system described by equation (14) has two critical points. One
competitive and the other collusive. Under this dynamics the competitive equilibrium

15 unstable and the collusive equilibrium is stable.

Proof
Iiquation (14) contains in the denominator the sum of a finite sequence. This sum

S exists and is equal to %2;1., Substituting this value into equation (14) we get

97/2k,
kepr = o Vr=1,2,. .
ST VLT S y IS
And p
97/2f;
lim : 2.

v 1072k, — Th 41
This happens for any starting value of k, # 0. It is clear that for any 7 if k, = 0 then
kt+T - 0 QED

5 Rationality of a Higher Order

We have seen, in the last section, what happens when to smart players play. This
section is divided in two subsections. In the first subsection I introduce the idea
of rationality of a higher order, and its consequences when the number of players
is two. There we will see that the learning process converges to the Cournot-Nash
equilibrium. In the second subsection I will extend the analysis to the V firms case.

There I show that for four or more players the process converges to competition.

5.1 Rationality of a higher order when the number of firms

is two

Let me briefly summarize the whole argument. First I have given the beliefs formation

process of a player. To do this we have applied the idea that any observed prodiction
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decision for an oligopolist must be optimal in accord to some belief about the response
of the opponents. Let us call this operation to be a result of rationality of order 1,
and denote it by r;. Then, in section 3, we have argued, as we did in the discussion
of fictitious play, that this can be anticipated by the other players. We saw that the
resulting reaction function was different and a best response. Let us call this operation
to be a result of rationality of order 2, and denote it by ry. We have already shown
that two players with this level of rationality can achieve cooperation.

Continuing in this fashion we can define rationality of higher order. An r3 player
will optimize taking account of the fact that he has observed that the opponent was
ro. Notice that the beliefs are uniquely determined and therefore the players can
know the rationality level of the opponent.

Then, as we did before, firm a has to solve the following system of equations:

ok
—kaky — kol 4+ k) + 2k} aki =0,

. 3k,

P L4k,
The resulting behavioral equation, now hold by a r; player will be:

ke = 5/3]?7).

1+ k,

For player p will be:

 5/3k,

L Ry

Notice that there is no substantial increase in the difficulty to shift from r, to rs.
The procedure has been to iterate the same profit maximization formula. Similarly
we can go to ry and so forth,

The sequence of behavioral equations can be written as

Ok
Tk

, Ji=a,p, jF

Where ¢, is a constant, and the subindex ¢ indicates the iteration or the rationality

level. It can be easily verified that this coeflicient evolves according to this sequence:

2
b, =1 . 15
o + b (15)

This sequence is decreasing and bounded below. It has a limit and this limit is [ = 2.

Theretore the limiting behavioral equations are the following:




kp = &7
1+ k,
They intersect each other at k, = k, = 1, i.e. in the Cournot-Nash equilibrium. They
are also the best replay as reaction functions. This is the main result of this paper:
the learning process converges to the Cournot-Nash equilibrium.
In the next payoff matrix I have computed the profits for each duopolist when

different levels of rationality are matched.

Tabled.
1 9 T3 T4 rs
r1 (0,0) (0.125,0.0625) (0.0625,0.0468) (0.0937,0.0585) (0.0781,0.0537)

ry  (0.0625,0125)  (0125,0.125)  (00973,0.14062)  (0.1093,0.1367) (0 1015,0.1396)
s (0.0468,0.0625) (0.14062,0.0937) (0.09375,0 09375) (0.1171,0.09765)  (0.1054,0.09667)
re  (0.0585,00937) (0.1367,0.1093)  (0.09765,0.1171) (0.11718,0 11718) (0 1074,0 1181)
s (00537,00781)  (0.1396,0.1013)  (0.09667,0.1054)  (0.1181,0 1074)  (0.10742,0.10742)

The unique Nash equilibrium of this game is in 7,,7,. Two things are to be
noted here. IFirst, the main feature of this process is that there is no fictitious play
here. Once a player has observed the rationality level of the opponent he can react
optimally increasing, if he can, his level of smartness. Second, it we assume that player
1 is r5 and player 2 is rg, the second player will stop in r4. The obvious reason is that
T6, his maximum level of smartness, is not a best response to r;. Notice, however,
that there is no reason to arbitrarily bound the smartness level. The reason is that
there is no substantial difference in the computational capabilities. More intelligent

players have to compute more but not more complex computations.

5.2 The N firm case

In section 3 the argument about consistent beliefs gave as a result equation (3).
Further, in section 4.2 I got equation (12). If we continue iterating we get a recursive

formula for the constant in the next expression:

]{' _ @t

,1=1...n.

This recursive formula is:

b= 1+2(n—1)1/d, 1. (16)
It is easy to verity that for n = 2 we get equation (15).

Proposition 7 The learning process converges to the Cournot-Nash equilibrium of

and only if n = 2.




Proof
The sequence described by equation (16) has alimit. Thislimitis /=14 2(n — 1)1/l
The solution for this equation is: | = (1 —i—\/l + 8(n — 1)/2. This is the constant when

the iterative process has reached the limit. Therefore, the expression for k; would be:

l : ﬂ
= 1 Joralli=1...n.
L4 20,

>

Recall that the Cournot-Nash equilibrium is characterized by ky = ky = ... =k, = 1.
In the denominator we have, in the Cournot-Nash equilibrium, 1+ (n —1). Therefore
the process will reach the Cournot-Nash equilibrium as a symmetric equilibrium iff
we find the constant n in the numerator. But this is to say that [ = n. After minor

manipulations we find n = 2. The converse has been proved in subsection 5.1. Q.E.D.

Iigure 4: Convergence to Cournot-Nash when r..,r., are matched

kp
T
!

0.8} T i

04+ . g .

Proposition 8 The learning process converges to competition for any n > 4

o
Ny |



Proof. The symmetric equlibrium can be easily computed from:

=

{
L= e g fordli=1...n.
L4 X0 &

as k = ﬁ%@ or k=1—{(n—1). When n =4, [ = 3, so that the symmetric
k

equilibrium is & = 0, or competition. It is clear that for n > 4, k < 0, but this is

impossible because with this solution profits are negative for all firms, and in addition

k = 0, and zero profits, is always a solution for any ¢,. Q.E.D,

In case that n = 3, we can find an equilibrium point in the midway from Cournot-
Nash to competition. It is surprising the speed of convergence to competition when
the number of firms increases. With four firms it takes a litle while, but with seven
firms competition is reached at the third iteration. Ilowever as shown in proposition
five, collusion is always possible. From here it is easy to see that those markets with
very smart players will perform very bad in relation with those markets whose players

are bounded to ry.

6 Conclusions

In this paper I have tried to analyze the behaviour of firms in an oligopolistic market
when the principal aim of a firm is to learn about how the other players compute
their best responses. The presented procedure have at least the following adventages
when compared to fictitious play:

1. It is a real model of learning. It is possible for each player to find out the
precise level of smartness of the opponent.

2. Players do not need to have any prior about the opponent. They simply see
what the opponent has done, then they find out the belief the opponent must have
about him in order to make optimal the decision taken. Therefore there is no a priori
suposition about the procedure that firms should follow. Fach firm only apply a
priciple of rationality: what has been observed must be optimal for some belief. Once
a firm has tested the rationality level of the opponent she maximizes profits with the
new information.

3. Convergency is guaranteed from any starting point in the beliefs space if we
use the Cournot "tatonnement” process over any pair of reaction functions.

This paper is a generalisation of Bresnahan duopoly model. Ilere his argument is
extended to any number of firms. The beliets of firms are consistent with those ob-

served responses regardless how far they are from competition. whereas in Bresnahan
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model the conjectures are lovally consistent. This paper also characterize different
equilibria in oligopolistic markets as a result of the interaction of different rationality
levels. It also shows that competition is associated with the lowest rationality level.
This result is of particular interest when boundedly rational agents are considered.
As stated in proposition 8, competition is also reached when players are infinitely
smart but the number of firms is larger than 4. The conclusion is that infinitely

smart players can perform as bad as firms bounded to r, rationality level.

SN
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