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LAGRANGEAN CONDITIONS FOR GENERAL OPTIMIZATION
PROBLEMS WITH APPLICATIONS TO CONSUMER THEORY

C. Herrero and J.M. Gutierrez

ABSTRACT

In thik paper we provide Lagrangean conditions in a problem general
enough to encompass both the classical quasiconcave optimizﬁtion problem

and the maximization of binary relations.

The formal results are applied to consumer theory, providing
analytical characterizations of the solution to the consumer problem in
some cases where preferences are not representable by continuous utility

functions.



1. INTRODUCTION.

Consider the following description of a general optimization problem:
Let C denote a reference space, and let P stand for a binary relation on
C, such that, for each x,y € C, "xPy" means that point x "precedes", "is
greater than" or "is preferred to" point y. For a given subset A ¢ C, to
be interpreted as the set of feasible aifematives, find a point x* € A
such that:

i {xeAiIxPx*})= o

Concerning this optimization problem, there are two -related but

substantially different questions which immediately arise:

(a) Does it have a solution?

(b) What does it look like?

To deal with the first question implies finding sufficent conditions
to ensure that an optimum exists whenever the feasible set is nonempty.
When P is a transitive and continuous relation , and C is a connected
subset of a topological vector space, P can be represented by a continuous
function, f:C -> R, so that x P y iff f(x) > f(y) [see Debreu (1959,
ch.4), Schmeidler (1971)]. In this case, the optimization problem takes
the form: .

Max f(x)

s.t. X € A
The existence of a solution to this problem can then be approached via
Weierstrass’ Theorem, when A is a nonempty, closed set that is bounded

from above.



In many relevant cases, the binary relation is not r‘epresenfable by a
continuous function, mainly due to lack of transitivity (as happens when
P refers to individual preferences in economic theory). In these cases,
the existence of a solution to the optimization problem can be ensured
when the binary relation is continuous and convex, via the application of
the Knaster-Kuratowski-Mazurkiewicz Theorem ""T/as analyzed in Sonnenschein

(1971) or Shafer (1974)].

i

One way of answering the second question conmsists of finding some
analytical (or geometrical) properties that an optimum may satisfy. A
complete treatment of this point is obtained when such properties are
necessary and sufficient conditions, so that they provide us with a

suitable characterization of the solutions.

The characterization problem has been dealt with in the classical
optimization literature. The main concern is to obtain sufficient
conditions to solve the problem

Max f(x)
(CoP)
s.t. gi(x) =0
where f, g iel are continuous real valued functions defined over some
topological vector space. In the case whereby P is transitive, continuous
and convex, f turns out to be a quasi-concave f unction, and then

sufficient conditions may be obtained by means of results on separability

of convex sets. These sufficient conditions (lagrangean-type) turn out



to be characterizations of the solutions to (COP) wunder constraint
qualifications [see the classical results by Kuhn & Tucker (1951), Arrow &

Enthoven (1961)].

In this paper we analyze the characterization problem in the case
where P is a convex binary relation "c/iispensing with the transitivity
hypothesis, so that the optimization problem cannot be formulated as the

maximization of a real valued function.

g

In Section 2 we present the main framework. Section 3 is devoted to
the analysis of the consumer problem, as a consequence of our previous
results to the case of maximization of binary relations. Our main
contribution consists of providing a characterization of the solution to
the consumer problem in some cases where preferences are not representable
by a continuous utility function. These cases are closely related to those
studied in the economics literature [Fan (1961); Sonnenschein (1971);
Shafer (1974), Mas-Colell (1974), Gale & Mas-Colell (1975) or Shafer and

Sonnenschein (1975)].



2. THE MAIN FRAMEWORK

Let FIT] be a locally convex (Hausdorff) real space, and
X ¢ F. We consider a non-empty family (Si}iEI of convex sets in X. We
write S =.n Si'

iel

Let us consider now the family ¥ of those set-valued mappings
T:X ->-> X such that for every x € X, (a) "f(x) e 7; (b) T(x) is a convex
set, and (c) x € cl[T(x)] whenever T(x) # 2.

If T eV, we consi?er the problemzz

TxX)nS =02

s.t. X € S P(T)
Given x € X, we write ¥(x) = { T € ¥: x solves P(T)}.

For M € F, we denote by K(M) the cone generated by M. If F’ stands
for the set of continuous linear functionals on F, then the polar of M is
M= { peF!<px>=0 V x € M), and the discriminant of M fcf.

Gutierrez (1985)] is D(M) = {(p,a) € F’xR! <p,x> = &, V X € M). M’ is then

2 Notice that if X is convex and open and “we consider a family {gi}i el of
quasiconcave functions gi:X -> R, and ¥ = {f:X -> R! f is continuous and
quasiconcave}, the classical quasiconcave optimization problem for f € ¥':

Max f(x)
s.t. gi(x) =0 P’(f)

turns out a particular case of P(T) by taking Si={zeX: gi(z)zo), iel, and
T(x) = {z € X! h(z) > h(x)}.



a (weakly) closed convex cone in F’, and D(M) a (weakly) closed convex
cone in F'xR. For any set C, P(C) is the set of all possible subsets of C
and ng(C) is the set of all finite subsets of C.

In the following definitions, we consider some properties on the

family (Si)iEI:

Definition 1.- We shall say that (Si)iEI satisfies property N iff

D( n Si) =co[ U D(Si)]
4 iel iel

Definition 2.- Let x € X. We shall say that (Si}iel satisfies property

NG iff [ (5;x)1° = co [ U (5:-x)°]
iel ' iel

Property N is a global property, and property RN(x) is the
corresponding local property. Property N and property N(x) could have been
defined through the inclusions D(S) € co [ U D(Si)] and (s-x)° ¢

iel
co{ U (Si—x)ol, respectively, since the opposite inclusions always hold.

iel

If the sets Si are closed cones with vertex at X, then (s-x)° =
cl{col U (Si—x)ol) [cf. K&the (1969)]. On the other hand, if the sets Si
are closed and S # @, then D(S) = cl{co[ U D(S))]} [cf. Gutierrez (1985)1.

iel
Let s € S. If the sets Si are closed, a sufficient condition for

property N(s) to hold is that [ int(Si)] # @ [cf. Holmes (1972)]. In the
iel



finite dimensional case it is enough that [ ) r'int(Si)] # @, and it is not
iel
necessary to require the sets Si to be closed [cf. Rockafellar (1970)]. In

a parallel way, in the finite dimensional case, if [ rint(Si)] # @, then
iel

N holds [cf. Gutierrez (1985)].

The following proposition specifies the relationship between N and

N(s):

Proposition .- (a) {If property N is satisfied, then N(s) holds Vs € S.

(b) If S is compact, N holds iff N(s) holds V seS.

Proof (a) Suppose N holds, and let s' €S If pe (S-s)°, then (p,p(s)) e

D(S), and thus J € ?#(I) exists such that (p,p(s)) =} (pj,aj), with
Jjel

(pj,ocj) € D(Sj). Moreover, pj(s) = aj for every j € J: obviously, <pj,s> =

o« .; if, for some k € J, <p,,s> < @ then <p,s> =¥ <p,,s> < ¥ a. = <p,s>
J k . .
‘ Jjed jel
, which would be a contradiction. Then, pj € (Sj—s)o. Therefore p €

col U (Si-s)ol, and property N(s) follows.
iel

(b) Suppose now that S is compact, and N(s) holds V s € S. If (p,a) €

D(S), let s. € S such that <p,s.> = sup {<p,s> s € S}. Thus, PS> =

o 0o

applying N(so), immediately (p,<p,so>) € col UD(Si)], and (p,a) €
iel

col U D(Si)]' Hence property N is satisfied. |
iel

3 Results in section 2 appear in Gutierrez (1989).

10



Let us now turn to problem P(T). If T(x) = @, then x obviously solves
P(T), whatever (Si)i el is (unconstrained solution). Let s e S, and

consider the following condition":

If T(s) # @, then:

. . L(T,s)
3 pel(T(s)-s) -{0}], 3 JeP (1), 3 p.e(S.-s) ,jeJ / p+} p.=0
¢ 3 jey d

Then, we get the following result:

Proposition 2.- Let s € S. Then:
(a) L(T,s) = s solves P(T)

(b) Under N(s): s solves P(T) = L(T,s).

-s> < O (since <p,s.>

Proof: (a) If s, € (T(s)nS)exists, then <p + ¥ pj,s o

0 je 0
< <p,s>, as T(s) is open), and so L(T,s) would be contradicted.

(b) If s solves P(T), then (applying the separation theorem and
taking into account that s € [cl(T(s)) n S]), p € F’, p # 0, exists such

that p e (T(s)-s)’, and -p € (S-s)°, and thus, L(T,s) follows from N(s).}

¢ L(T,s) is the announced general lagrangean condition. Notice that, in

applying it to the quasiconcave case, we get:

3£ e df(s) BJG?‘Z(I(S)) 3§je dgj(s) BAJZO, jel 7 € + ¥ Ajgj =0 , where d
stands for the subdifferential , and I(s) = (ieI:gi(s)=O), the wusual

lagrangean condition.
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Let us consider now the following definitions:

Definition 3.- Let s € S. We say that s is a regular point if L(T,s) holds

V T e ¥(s).

Definition 4.- A constraint qualificatiof{ for s (CQ-s) is a
sufficient condition imposed on {Si}iel guaranteeing that

s is a regular point.

§

Definition 5.- A weakest constraint qualification for s (WCQ-s) is a

(CQ-s) which holds iff s is a regular point.
Then we get the next result:

Proposition 3.- Let s € S. Then property N(s) is a WCQ-s.

Proof: We have seen above that N(s) is a CQ-s. Suppose now that s is a
regular point. Let q € (s-s)°, q # 0. We define T*:X -> J by T*(x) = x +
(z € F! <q,z> > 0). Then T* e ¥(s), and L(T*s) is satisfied. As (T(s)-s)°

= {-Aq, A = 0), we have that q € col U (Si-s)ol, and property N(s)
iel

follows.
Notice that condition L(T,s) is useful in order to obtain points

solving P(T). Therefore, it is relevant to know if the family (Si)i el

satisfies a constraint qualification for every point s € S.

12



Definition 6.- A general constraint qualification (GCQ) is a condition on

{Si}ieI guaranteeing that every point of S is regular.

Definition 7.- A weakest general constraint qualification (WGCQ) is a GCQ

which holds iff every point of S is regular.

From definitions 6 and 7 and propositions 1 and 3, we obtain the
4
following corgllary:

Corollary 1.- Property N is a GCQ. If S is compact, then property N is a

WGCQ.
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3. AN APPLICATION TO CONSUMER THEORY

Consider now a choice problem in which a consumer has to select
one of the best elements in a choice set consisting of consumption bundles
(to be referred to as the consumption set). The consumer’s choice
possibilities are actually restricted to a subset of her consumption set,

determined by her available wealth.

i
Let X c R" ‘denote the consumption set, and let P denote a binary
relation defined on X; where, for each x,y € X, y P x is interpreted as
"option y is strictly preferred to option x". We shall refer to P as the

. 5
consumer’s preference relation’.

A point w € R stands for the consumer’s wealth, and a point @ in

n . X .
IR+ denotes a price vector. Consider now the following set:
n,
W=xxeR!<mx>=<w)

Then, the consumer’s feasible set (or budget set ), at prices m and

for a wealth of w, will be given by B = X n w.

® We start by considering the strict preference relation instead of the

weak preference relation. This involves no loss of generality, as a strict
preference may be converted into a complete weak preference relation by
making any noncomparable elements indifferent. This creates no problems as
long as we do not require indifference to be transitive.

14



For each x € X, let us define Ux}) = {z e X ! zP x}°, and let I =
{1,2}, with S1 = X, S2 = W. Then, the consumer’s choice problem turns
out to be a particular case of P(T) in Section 2, which can be formulated

as follows: Find x* e R" such that,

Ux)NB = &

st. xeXnW 'P(U)

Notice tha;c x solves P(U) if and only if it is a maximal element of P
&

on B.

Suppose now that, for every x € X, (a) U(x) is open ; (b) U(x) is
convex, and (c) where U(x) # @, then x € cllU(x)]. Then, the results in

Section 2 apply.

Let b € B. We consider the condition:

(B-b)° € col(C-b)° U (W-b)°] K’ (b)

Condition N’(b) is always satisfied if C is a polyhedral convex set

(discard nonactive linear inequality constraints and apply Farkas Lemma).

® U(x) is sometimes called the upper contour set of x. So, we can look at
the preference relation as a correspondence U:X->->X.

A polyhedral convex set is a set which can be expressed as the
intersection of some finite collection of closed half-spaces [see
Rockafellar (1970)].
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Then, the results in Section 2 applied to this particular case can be

summarized in the following proposition:

Proposition 4.- Suppose U:X ->-> X represents a binary relation such that
x € X, (a) U(x) is open (b) U(x) is convex, and (c) if Ux) # @,
then x € cl[Ux)]. If C is a polyhedral convex set , b € B solves
P’(U) if and only if the following condition holds:

If Ub) # o

. . L(U,b)
then 3 ¥y € [(}J(b)-b) -{0}], 3 k € (C-b) / y+k+n=0
4

Consider now the following definitions:
Definition 8.- We say that U is weakly convex if U(x) is convex V x € X,

Definition 9.- We say that U is convex if x € U(y) = [Ax+(1-A)y] € Uly),

v A € (0,1).

Definition 10.- We say that U is continuous® if, ¥ x € X, both U(x) and

U x)? are open.

If U is convex and U(x) is open, then U is weakly convex; if U is

convex, then condition (c) holds [cf. Debreu,,(1959)]. Moreover, in the

We consider here the traditional definition of continuous preferences.
Notice that this concept coincides with that of having open sections, if
we look at U as a set-valued mapping [cf. Border (1985)].

‘Ux)={yeX xeUy)

16



case whereby U(x) is open and convex, if condition (c) holds, then U is

convex [cf. accesibility lemma, K&the (1969)].

The previous remark allows us to specify Proposition 4 in a different

way:

Proposition 4’.- Suppose U:X ->-> X repr‘ésents a convex binary relation
such that U(x) is open V x € X. If C is a polyhedral convex set, beB
solves P’(U) if and only if the following condition holds:

4

If U(b; ® 9, .

then 3 7 € [(U(b)-b)°~{0}], 3 k € (C-b)°/ y+k+n=0

Proposition 4’ provides a characterization of the individual demand
set whenever U(x) is open V x € X, and U is convex. Notice that, since
previous conditions have nothing to do with transitivity, our
characterization covers several cases in which preferences are not

representable by continuous utility functions.
Then, the following corollaries are obtained:

Corollary 2.- Let U:X ->-> X be a continuous and strongly convex'® binary
relation [cf. Shafer (1974)].Then, b € B solves P’(U) if and only if

L(U,b) holds.

We shall say that U is strongly convex if y ¢ Ux), ye Uz) >y €
Ulax+(1-A)z], V A € (0,1). If U is strongly convex and U(x) is open for
every x € X, then U is convex (cf. Debreu, 1959).

17



Corollary 3.- Let U:X ->-> X be a continuous and convex binary relation.

Then, b € B solves P’(U) iff L(U,b) holds.

Remark: Notice that, under the hypothesis in Corollary 3, U has an open
graph [see Shafer (1974) and Bergstrom, Parks & Rader (1976)]. So,
Corollary 3 covers those preferences studied by Fan (1961) [cf. Border,7.5
(1985)]. See, as well, Mas-Colell (1974) and Gale & Mas-Colell (1975).
B

Let us now ) consider a binary relation U:X ->-> X such that.U(x) is
open V x € X, but U(x) is not necessarily convex. In such a case, we
consider another binary relation V:X ->-> X given by: V(x) = co U(x).
Obviously, V(x) is open and convex V x € X, and U is majorized by V% we
can apply Proposition 4’° to V, getting a characterization of those
elements solving P’(V). Since any solution to P’(V) is also a solution to

P’(U), we get the following result:

Corollary 4.- Let U:X ->-> X a continuous binary relation and beB. If

L(V,b) holds, then b solves P’(U).

Remark: Under the hypothesis in Corollary 4, U has open sections, so we
are in the hypothesis of Sonnenschein (1971) and Shafer & Sonnenschein
(1975). In these cases, the lagrangean condition L(V,b) turns out to

be a sufficient condition for b to belong to the individual demand set.

1 That is, U is a subrelation of V, since U(x) € V(x).
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4. CONCLUSIONS.

In this paper we provide a characterization of the solution to a
class of optimization problems general enough to cover both the classical
quasiconcave optimization problem and the maximization of binary
relations. We obtain sufficient Lagrangean conditions f or" the general
problem, and also provide a weakest constraint qualification under which
the Lagrangean condition also turns out to be necessary.

i

We apply our formal results to the consumer problem. In the standard
case, our constraint qualification always holds. So, the lagrangean
condition appears as a characterization of the individual demand  set,
under continuity and convexity of the preference relation. If we drop the
convexity assumption, the lagrangean condition is still a sufficient
condition for optimality. Interestingly enough, our characterization
covers a number of preference relations which are not representable by
continuous utility functions, such as those studied by Fan (1961), Shafer
(1974), Mas-Colell (1974) and Gale & Mas-Colell (1975) whereas the
sufficiency result covers the cases in Sonnenschein (1971) and Shafer &

Sonnenschein (1975).
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