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Abstract

We analyze optimal income taxes with deductions for work-related or consumptive

goods. We consider two cases. In the first case (called a complex tax system)

the tax authorities can exactly distinguish between consumptive and work-related

expenditures. In the second case (called a simple tax system) this distinction is not

exact. Assuming additively separable utility functions, we show that work-related

expenditures should be fully deductible in the first case while deduction rates should

be less than 100 percent in the second case. Under further simplifying assumptions,

we also show that the simple system can be characterized by higher tax burdens on

low income earners and less redistribution.
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1. Introduction

Starting in the 1980s, income tax reforms in many countries focused on lowering marginal

tax rates combined with the attempt to reduce the complexity of tax systems, e.g., by

simplifying the regulations for admissible tax deductions. Most notable were differing

proposals for a flat tax, whose proponents argued that taxpayers would need only a postcard

to file their returns (see Atkinson, 1995). A move in this direction was the 1986 Tax Reform

Act in the US: it introduced a tax schedule with only two brackets and increased the

standard deduction, which meant that fewer households had to itemize their deductions.

Similarly, recent German tax reforms were intended to decrease marginal tax rates and to

standardize deductions for work-related expenditures.

Our focus is on the observation that the complexity and the rate structure of the tax

systems were reformed simultaneously. We consider an optimal income tax system which

may incorporate tax deductions for work-related expenditures. Following the literature

on optimal taxation, we assume a simple utilitarian welfare function and heterogeneous

individuals. We model complexity of the tax system by distinguishing two cases. In the

first case, an individual’s tax payment is based on her income and on a detailed distinction

of whether income is used for consumptive or work-related purposes. We call this the

case of a complex tax system. Our second case deals with a simplified tax system where

deductible expenditures may include expenditures for consumption goods which are not

(or cannot be) distinguished from work-related goods. That is, the simplified tax system

requires less information concerning the use of an individual’s income.

The distinction between these two cases is motivated by the observation that for some

goods it may be easy to ascertain whether or not they are used for work-related purposes,

for instance, advanced medical equipment. Others, however, may be used both for con-

sumption and production, say, personal computers or company cars. In this case, it may

be prohibitively costly for the tax authorities to monitor which part of expenditure is for

work-related use and which part consumptive.

Under the assumption of additively separable utility functions, it turns out that work-

related expenditures should be fully deductible in case of the complex system, while deduc-

tion of work-related and consumptive expenditures should be allowed at a rate of less than

100 per cent in the simple system. With utility functions which are separable in all goods,

the simplified system leads to higher average income and to a shift of the tax burden to
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low income earners. Hence, the simplified system provides higher (average) incentives to

work and is less redistributive.

The intuitive explanation for these results is based on the incentive constraints which

are at the heart of the problem of optimal taxation. Monitoring work-related expenditures

and allowing for tax deductions mitigates the restrictions implied by incentive compatibility

and thus allows for high marginal tax rates on income. Under a simplified tax system, tax

deductions imply an additional negative effect by forcing individuals to increase those

consumptive expenditures which are deductible. Hence, optimal tax deductions are lower.

In order to satisfy incentive compatibility the optimal income tax system must be less

progressive.1

Our results are based on well known contributions to the optimal taxation literature.

Starting with the seminal paper of Mirrlees (1971), several authors established that optimal

tax schemes are non-linear and are characterized by marginal tax rates equal to zero at both

the upper and lower end of the income distribution (see for example Atkinson and Stiglitz,

1980). General nonlinear taxation problems with income and excise taxes were considered

by Atkinson and Stiglitz (1976), Mirrlees (1976) and Cooter (1978). When utility is weakly

separable between leisure and consumption, the optimal tax system is characterized by a

nonlinear income tax with zero excise taxes (Atkinson and Stiglitz, 1976; Cooter, 1978).

Our model also assumes weak separability, but in addition we distinguish work-related and

consumptive goods. We also effectively study two different nonlinear tax problems, where

the complex system is similar to that of Mirrlees (1976) and the simple system has the

additional constraint that two of the goods have the same tax schedule. Kaplow (1990) and

Slemrod (1994) study optimal taxation in models where individuals can reduce their tax

burden by spending part of their income on tax avoidance and evasion activities. Whereas

evasion is illegal, and avoidance may be thought of as an implicit part of the tax code we

consider tax deductions, which are an explicit part of the tax code and characterize the

optimal income tax scheme when tax deductions are incorporated.

In the next section we present our model. In section 3 we focus on tax deductions. In

section 4, we consider the progressivity of the optimal tax system. Under strict separability

on the utility function, we show that the simplified system leads to higher incentives to work

and to a higher tax burden on low incomes. The last section contains a short conclusion.

1We use the term progressivity here in the sense that there is an interval of low income earners who

pay higher taxes under the simple than under the complex system.
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2. The Model

For simplicity we assume that all individuals have identical utility functions but they differ

in a parameter θ which measures the individual’s ability to work. Utility is increasing in

the quantities c and s of two distinct consumption goods but decreases in the effort, e,

which an individual must exert in order to earn income y. The distinction between the two

consumption goods c and s is used to characterize the different informational requirements

of the two tax systems considered below. Good s stands for a good whose consumptive

use may not be easily separated from its work-related use (e.g., a personal computer or

company car). While effort is increasing in y, it is decreasing in the quantity q of a work-

related good and in the individual parameter θ. In the case of a computer, q thus measures

the work-related use versus the consumptive use which is captured by s. We assume that

utility is additively separable in consumption and labor:2

u(c, s)− e(y, q)h(θ) with uc, us > 0 and ey > 0 > eq; h′ < 0 < h. (1)

where subscripts denote partial derivatives. We assume that u is strictly concave and that

e is strictly convex in y and q. Furthermore, we will impose the following assumptions on

the utility function:

ucs > ucc, uss and eyq > −eqq.
3

The ability to work parameter θ is distributed on an interval [θ, θ̄] according to the

distribution function F (θ) with density f(θ) > 0 ∀ θ ∈ [θ, θ̄]. F (θ) is common knowledge,

but only the agents know their individual parameter θ.

An individual’s budget constraint depends on her income y and tax payment t. We

assume linear production technologies for all goods and normalize all prices to one. The

tax payment is a function of y and of the composition of expenditures. We distinguish two

cases: In the first case the tax payment depends on expenditures for q and s separately.

The tax function is written as t(y, s, q) and we call this the case of a complex tax system.

In the second case the tax system is simplified in that the tax function takes into account

only the sum of the expenditures for q and s. We define k := s + q and write the tax

function as t(y, k). That is, if the tax system allows for tax deductions on k, deductible

expenditures may include expenditures for consumptive purposes.

2In the following we omit the arguments of the functions where this does not lead to any confusion.
3These are sufficient conditions for c and s to be normal goods and for the optimal y to be increasing

in θ.
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Given either t(y, s, q) or t(y, k) an individual solves

max
c,s,q,y

u(c, s)− e(y, q)h(θ) s.t. y = c + q + s + t(y, ·). (2)

In the following we assume that the (optimal) tax functions are differentiable and involve

no bunching. This allows us to characterize the solutions c∗(θ), s∗(θ), q∗(θ) and y∗(θ) of (2)

by the corresponding first order conditions. For the complex tax system we get

uc(1− ty)− eyh = 0,
us

uc

= 1 + ts, eq = −ey
1 + tq
1− ty

, (3)

while the simplified tax system implies

uc(1− ty)− eyh = 0, us = −eqh, eq = −ey
1 + tk
1− ty

. (4)

Furthermore, defining v∗(θ) := u(c∗, s∗) − e(y∗, q∗)h as the indirect utility function the

envelope theorem leads to
d

dθ
v∗(θ) = −e(y∗, q∗)h′. (5)

The government’s aim is to design the tax functions t(y, s, q) for the complex system and

t(y, k) for the simple system such that the sum of individual utilities is maximized subject

to (5) and to some minimum tax requirement T :

max
t(y,·)

W =

∫ θ̄

θ

[u(c∗, s∗)− e(y∗, q∗)h(θ)] f dθ s.t.

∫ θ̄

θ

t(y, ·)f dθ = T. (6)

3. Optimal Tax Deductions

We first focus on the optimal tax deductions, i.e., the optimal relation between the marginal

tax rates ty and tq in the complex tax system and ty and tk in the simplified tax system.

With positive marginal tax rates on income it turns out that while the complex tax system

entails full tax deduction, the simplified tax system is characterized by less than full de-

duction. The intuition for both results is due to the observation that deductions serve to

decrease the individuals’ efforts. In the complex tax system, with full tax deductions con-

sumers’ efforts are not distorted. Since any redistribution achieved through taxing income

cannot be improved upon by taxing work-related expenditures, full deduction is optimal.

The simplified system, however, taxes work-related expenditures for q and consumptive

expenditures for s equally. Therefore, tax deductions aimed at increasing q also increase

s. To offset the implied negative effects with respect to efforts and to distortions in the

consumptive expenditures, less than full deduction is optimal.
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3.1. Tax Deductions in the Complex System

Considering the complex tax system t(y, s, q) we start by specifying the optimal control

problem for (6). We use y, s and q as control variables and the individuals’ utility levels

v as state variable. Let c̃(s, q, y, v, θ) be implicitly defined by the solution of v(θ) :=

u(c, s) − e(y, q)h. Then the Hamiltonian for the government’s maximization problem can

be written as (λ1 and λ2(θ) are the multipliers for the tax requirement and the incentive

compatibility restriction (5), respectively)

Hc = [v + λ1 [y − s− q − c̃(s, q, y, v, θ)]] f − λ2e(y, q)h′ (7)

s.t. R(θ) = 0, R(θ̄) = T, v′(θ) = −e(y, q)h′

with R(θ) :=

∫ θ

θ

[y − s− q − c̃(s, q, y, v, θ)] f dθ̃.

Evaluating the optimality conditions for (7) and letting yc(θ), cc(θ), sc(θ) and qc(θ) denote

the optimal solutions, we get the following result.

Lemma 1 The optimal sc(θ) and qc(θ) satisfy

uc(c
c(θ), s) = us(c

c(θ), s) and (8)

ey(y
c(θ), q) = −eq(y

c(θ), q). (9)

Proof See Appendix A.1.

Using lemma 1 and employing (3) to characterize the marginal tax rates we get ts = 0

and tq = −ty.
4 Hence, we have

Proposition 1 The optimal complex tax system tc(y, s, q) can be written as

tc(y, s, q) = tc(y − q)

and implies full tax deduction.

Proof Substituting (8) and (9) in (3) leads to ts = 0 and ty = −tq. �

4Furthermore, it is easy to show that 0 < ty < 1 (see for example Mirrlees (1971) and (1976), Seade

(1977) and (1982) and Ebert (1992)).

6



That ts must be zero is of course well known from the literature (e.g., Atkinson and

Stiglitz, 1976). Given the assumption of additively separable utility, an optimal income

tax cannot be improved upon by excise taxes. The result that ty = −tq is optimal is also

in line with this literature, but we stress the implication for deductibility of work-related

expenditures in order to have a benchmark for our simple tax system. The intuition for

the result is simple. Since individual effort decisions are not distorted if ty = −tq, there are

no further welfare gains from imposing ty 6= −tq. Any redistribution from taxing income

cannot be improved upon by not fully exempting work-related expenditures.

3.2. Tax Deductions in the Simplified System

Turning to the simplified tax system, the tax function t(y, k) with k = s + q does not

allow the government to influence q and s separately. Instead, the allocation of k between

q and s is determined by the individuals according to their optimal private decisions, i.e.

us = −eqh (see (4)). To incorporate this observation into the government’s problem to

design an optimal tax function we first define

s(c, k, y, θ) := arg max
s

[u(c, s)− e(y, k − s)h] .

Let c(k, y, v, θ) be implicitly determined by the solution of v(θ) := u(c, s(c, k, y, θ)) −
e(y, k − s(c, k, y, θ))h. Choosing y and k as control variables and v as state variable, the

Hamiltonian for the government’s maximization problem can be written as (again, λ1 and

λ2(θ) are the multipliers for the tax requirement and the incentive compatibility restriction)

Hs = [v + λ1 [y − k − c(k, y, v, θ)]] f − λ2e(y, k − s(k, y, v, θ))h′ (10)

s.t. R(θ) = 0, R(θ̄) = T, v′(θ) = −e(y, k − s(k, y, v, θ))h′

with R(θ) :=

∫ θ

θ

[y − c(k, y, v, θ)− k] f dθ̃

and s(k, y, v, θ) := s̃(c(k, y, v, θ), k, y, θ).

Evaluating the optimality conditions for (10) and letting ys(θ) and ks(θ) denote the solu-

tions we get:

Lemma 2 The optimal ys(θ) and ks(θ) satisfy

ey(y
s, ks − s(ks, ys, vs, θ)) = Φeq(y

s, ks − s(ks, ys, vs, θ)) (11)

with Φ :=
(uc + eqh)eyqh + ucuss + ucseqh

(uc + eqh)eqqh− ucuss − ucseqh
.
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(i) With uc − eyh > 0, we have −1 < Φ < 0.

(ii) With ucs ≥ 0, we have uc − eyh ≥ 0 ∀ θ ∈ [θ, θ] and uc − eyh = 0 ⇒ ey = −eq .

Proof See Appendix A.2.

Using lemma 2 and (4) to characterize the marginal tax rates ty and tk implies the next

proposition.5

Proposition 2 (i) With positive marginal tax rates the optimal simplified tax system

ts(y, k) is characterized by less than full tax deduction:

tsy + tsk > 0 for tsy > 0.

(ii) For ucs ≥ 0 the optimal tax rates on income are positive, i.e., tsy ≥ 0 ∀ θ ∈ [θ, θ], and

ty = 0 implies tk = 0.

Proof (i) Using (4) we get uc − eyh > 0 ⇔ ty > 0 and sign [ty + tk] > 0 for ey < −eq. (ii)

Obviously, uc = eyh ⇔ ty = 0 and ey = −eq ⇔ ty = −tk. Therefore, lemma 2 implies the

proposition. �

The first part of the Proposition shows that less than full deduction is optimal if

marginal taxes on income are positive. Since work-related and consumptive expenditures

cannot be distinguished perfectly, any attempt to decrease e by increasing k will also in-

crease the individual’s choice of s.6 Furthermore, comparing us = −eqh with the condition

that characterizes the optimal structure of consumptive expenditures, i.e., uc = us,
7 shows

that with ty > 0 full tax deductions would lead to a distorted consumption structure.

Therefore, with positive marginal taxes on income full tax deductions cannot be optimal.

The second part of Proposition 2 establishes that the optimal marginal tax rates on

income are positive as long as ucs ≥ 0 holds. Intuitively, with ucs ≥ 0, negative (marginal)

tax rates on income would induce an increase in y and c which in turn provides a strong

incentive to increase s at the expense of q. Hence, negative marginal income taxes would

5Generally, the marginal tax rates along the optimal expansion path satisfy −1 < ty, tk < 1. Further-

more, the marginal tax rates for θ, θ are zero.
6Using us(·) + eq(·)h(θ) = 0 and eyq > −eqq simple comparative statics shows that an increase in k

leads to an increase of s.
7Noting that ts = 0 in the optimal complex tax system.
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imply rather strong distortions with respect to the choice of y and q. On the other hand,

taxing income positively (at the margin) and allowing for tax deductions reduces y and c

and thus leads to relatively lower distortions with respect to y and q. Note, however, that

this also implies that income which is finally used for work-related expenditures is taxed

positively.

4. Progression in a Simple Example

The last observation together with the incentive compatibility condition (5) leads to the

conjecture that the simplified tax system should imply less redistribution. The incentive

compatibility constraints show that the higher the individuals’ effort levels the more their

utilities must increase with their ability to work and the lower the tax induced redistribution

should be.

In the following we will explore this conjecture by comparing the optimal complex

and simplified tax system. Using further separability assumptions it turns out that the

simplified system implies that low income earners have to pay higher taxes while the average

tax payments of high income earners decrease. Since the simplified system also induces

higher average income, it can be characterized as less progressive and less redistributive

than the complex tax system.

We assume that the utility from consumption u(c, s) is additively separable in c and s

and the effort function e linear in y and additively separable in y and q:

ucs = eyy = eyq = 0. (12)

While (12) is quite restrictive, it allows us to compare the allocations induced by the two

systems tc(y−q) and ts(y, k) directly. Using the optimality conditions for (7) and (10) and

defining ∆z := zs(θ)− zc(θ) for z = y, c, s, and q, we get:

Lemma 3 With (12), the optimal tax systems tc(y − q) and ts(y, k) imply

(i) ∆c = 0 and tcy(y
c(θ)− qc(θ)) = tsy(y

s(θ), ks(θ)) ∀ θ ∈
[
θ, θ

]
(ii) ∆s > 0 > ∆q; ∆q + ∆s > 0 and

e(cs + ks, ks − ss) > e(cc + sc + qc, qc) (13)

u(cs, ss)− e(cs + ks, ks − ss)h(θ) > u(cc, sc)− e(cc + sc + qc, qc)h(θ) (14)
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for all θ ∈ (θ, θ).

Proof See Appendix A.3.

The first part of the Lemma shows that the optimal marginal distortion between c

and income does not vary under the complex and the simplified tax system. As marginal

utility uc and marginal effort ey are not affected by s and q, the two tax systems induce

the same distortions with respect to c and y. While the different tax systems may imply

different income levels yc(θ) and ys(θ), the optimal income decisions are governed by the

same marginal tax rates.

The second part of the lemma quantifies the distortions with respect to s and q. Note

that these distortions imply that the individuals’ efforts as well as their utility levels in-

crease with the simplified system if tax payments are disregarded.

However, we know that welfare must be higher under the complex tax regime, that is

(vc(θ) and vs(θ) denote the individuals’ utilities with the optimal complex and the optimal

simplified tax system): ∫ θ

θ

vs(θ)f(θ)dθ <

∫ θ

θ

vc(θ)f(θ)dθ. (15)

Therefore, combining (13) and (15), defining ∆t(θ) := tc(yc(θ) − qc(θ)) − ts(ys(θ), ks(θ))

and using
∫ θ

θ
∆t(θ)f(θ)dθ = 0 and again (12), the weighted sum of aggregate tax payments

is higher with the simplified tax system, i.e.,∫ θ

θ

∆t(θ)h(θ)f(θ)dθ > 0. (16)

Finally, employing the incentive compatibility condition (5) we get:

Proposition 3 Under the assumptions in (12), the simplified tax system is less progressive

than the complex tax system in the sense that

(i) the simplified tax system induces higher aggregate income,

(ii) individuals with low incomes pay strictly higher taxes and are strictly worse off com-

pared to the complex tax system.

Proof See Appendix A.4.
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Proposition 2 confirms the conjecture that the simplified system is less redistributive

and less progressive than the complex system. Redistribution is ultimately targeted at

decreasing the differences between the individuals’ utility levels, but the Proposition shows

that the difference between the utility levels at the lower and upper end of the ability

distribution is higher with the simplified system. With respect to progressivity, there

exists an interval of low ability individuals whose tax payments increase with the simplified

system. Hence, the average tax payment of the individuals with higher ability levels and

thus higher incomes must be lower than with the complex system.

5. Conclusion

The paper has studied the interaction of the rate schedule and tax complexity in an optimal

income tax model. Complexity was defined with respect to the informational requirements

of the tax system: the more information authorities require from taxpayers, the more com-

plex the tax system. We obtained two basic results from our model: First, tax deductions

are optimal even if authorities cannot perfectly distinguish between work-related and con-

sumptive expenditures. Second, the example showed that the optimal simple system may

be characterized by higher tax burdens on the poor and less redistribution.

In the 1980s, many countries reformed their tax systems towards less progressivity and

less complexity. Of course, this may be primarily due to the distributional objectives of

the conservative parties that came to power at this time. Our model has shown that this

history could also be rationalized in an optimal taxation framework. Our analysis implies

that an increase in the costs of administering a complex tax system and a corresponding

simplification of the tax rules might imply less progressive tax rates even if the government’s

distributional objectives remain the same.
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Appendix

A.1 Proof of Lemma 1

The optimality conditions for (7) with respect to y, s and q are

Hc
y = λ1 [1− c̃y] f − λ2eyh

′ = 0, (A.1)

Hc
s = λ1 [−1− c̃s] f = 0, Hc

q = λ1 [−1− c̃q] f − λ2eqh = 0. (A.2)

In addition we have the multiplier equations, the state equations and the boundary condi-

tions:

0 = [1− λ1c̃v] f(θ) + λ′
2(θ), (A.3)

0 = v′(θ) + e(y, q)h′, R′(θ) = [y − s− q − c̃(s, q, y, v, θ)] f(θ), (A.4)

0 = λ2(θ) = λ2(θ̄), R(θ̄) = T. (A.5)

Simple comparative statics for c̃(y, s, q, v, θ) yields

c̃y =
eyh

uc

, c̃q =
eqh

uc

, c̃s = −us

uc

, c̃v =
1

uc

. (A.6)

Substituting (A.6) in (A.2) and solving for us and eq leads to

eq = −ey and us = uc. (A.7)

A.2 Proof of Lemma 2

In order to prove the Lemma we first calculate the optimality conditions for (10). We

then prove part (i) and part (ii).

The optimality conditions for (10) with respect to y and k are

Hs
y = λ1 [1− cy] f − λ2(ey + eq(−sy))h

′ = 0, (A.8)

Hs
k = λ1 [−1− ck] f − λ2eq(1− sk)h

′ = 0. (A.9)

In addition we have the multiplier equations, the state equations and the boundary condi-

tions:

0 = [1− λ1cv] f(θ)− λ2(θ)eq(−sv)h
′(θ) + λ′

2(θ), (A.10)

0 = v′(θ) + e(y, k − s(k, y, v, θ))h′, R′(θ) = [y − c(k, y, v, θ)− k] f(θ), (A.11)

0 = λ2(θ) = λ2(θ̄), R(θ̄) = T. (A.12)
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Comparative statics of c(k, y, v, θ) with respect to y, k and v gives

cy =
eyh

uc

, sy =
h(eyucs + uceyq)

uc(eqqh− uss)
, (A.13)

ck =
eqh

uc

, sk =
h(equcs + uceqq)

uc(eqqh− uss)
, cv =

1

uc

, sv =
ucs

uc(eqqh− uss)
. (A.14)

Substituting (A.13) and (A.14) in (A.8) and (A.9) and rearranging yields

uc − eyh =
λ2h

′

λ1f

eqh(eyucs + eyquc)− ucey(eqqh− uss)

uss − eqqh
, (A.15)

uc + eqh =
λ2h

′

λ1f

eq(ucuss + eqhucs)

eqqh− uss

. (A.16)

Solving (A.15) and (A.16) implies

ey = eqΦ with Φ :=
(uc + eqh)eyqh + ucuss + ucseqh

(uc + eqh)eqqh− ucuss − ucseqh
(A.17)

which confirms (11).

To prove part (i) of the lemma note first that ey > 0 > eq leads to Φ < 0. To show

that uc− eyh > 0 implies Φ > −1 assume to the contrary that Φ ≤ −1 holds. Then, using

(A.17) we have to consider two cases:

(i) (uc + eqh)eyqh + ucuss + ucseqh > 0 > (uc + eqh)eqqh− ucuss − ucseqh

and (uc + eqh)(eqq + eyq) ≥ 0,

(ii) (uc + eqh)eyqh + ucuss + ucseqh < 0 < (uc + eqh)eqqh− ucuss − ucseqh

and (uc + eqh)(eqq + eyq) ≤ 0.

Case (i) requires uc+eqh ≥ 0. Using ucs > uss this leads to (uc+eqh)eqqh−ucuss−ucseqh > 0

and thus to a contradiction with 0 > (uc + eqh)eqqh− ucuss − ucseqh. In case (ii) we have

uc + eqh ≤ 0. But since ey ≥ −eq and uc − eyh > 0 lead to uc + eqh > 0 we again have a

contradiction. Hence, uc − eyh > 0 ⇒ 0 > Φ > −1.

The proof of part (ii) is again based on a contradiction. We first show that uc−eyh ≤ 0

implies uc + eqh ≤ 0. Using ucs ≥ 0 we get that uc + eqh < 0 ⇒ λ2 > 0. However, solving

the multiplier equation (A.10) incentive compatibility requires that λ2(θ) ≤ 0 ∀ θ ∈ [θ, θ].

Hence, we must also have uc − eyh ≥ 0 ∀ θ ∈ [θ, θ] and uc − eyh = 0 ⇒ uc + eqh = 0.

Assuming uc − eyh < 0, substituting ey (see (A.17)) on the right hand sides of (A.15)

and (A.16) and dividing these equations reveals

sign (uc + eqh) = sign

[
eqh(eyqh + ucs)− uc(eqqh− uss)

eqh(eqqh− ucs) + uc(eqqh− uss)

]
. (A.18)
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Now, assume to the contrary that uc + eqh > 0. Then we have to consider two cases:

(i)
eqh

uc

(eyqh + ucs) > eqqh− uss and
eqh

uc

(eqqh− ucs) > −(eqqh− uss),

(ii)
eqh

uc

(eyqh + ucs) < eqqh− uss and
eqh

uc

(eqqh− ucs) < −(eqqh− uss).

Since uc + eqh > 0 ⇔ eqh/uc > −1, ucs > uss and eyq > −eqq imply that in case (i) the

first inequality and in case (ii) the second inequality is violated, we must have uc − eyh <

0 ⇒ uc + eqh < 0.

Considering uc − eyh = 0, note that (A.15) either implies λ2 = 0 and thus uc = −eqh

(see (A.16)) or it leads to

ey = −eq
ucs + eyqh

uss − eqq

. (A.19)

Since ey > 0 > eq requires ucs+eyqh < 0 for (A.19) to hold, using ucs > uss and eyqh > −eqq

shows that (A.19) leads to ey < −eq and therefore to uc + eqh < 0.

Turning to the sign of λ2 and using ucuss+eqhucs < 0 (by the assumption that ucs ≥ 0),

eqqh − uss > 0 and eqh
′ > 0, inspection of (A.16) reveals sign(uc + eqh) = −sign λ2/λ1.

Solving (A.10) for λ2(θ), using the boundary conditions (A.12) and substituting cv (see

(A.14)) we get

λ2(θ) = −
∫ θ

θ

(
1− λ1

uc

)
f(θ̃)E

∫ θ̃
θ Γ(θ̂)dθ̂dθ̃ with Γ(θ̂) := eqsvh

′. (A.20)

Since λ2(θ) = 0 we must have λ1 > 0 and thus sign(uc + eqh) = −sign λ2. Hence,

uc − eyh < 0 ⇒ uc + eqh < 0 ⇒ λ2 > 0.

We complete the proof by showing that incentive compatibility requires λ2(θ) ≤ 0 ∀ θ ∈
[θ, θ].8 Using (A.20) and evaluating all functions at the optimal solutions ys(θ), ks(θ) we

get

λs ′
2 (θ) = −

(
1− λ1

uc

)
f(θ)− λs

2(θ)eqsvh
′(θ). (A.21)

Now, assume to the contrary that there exists an interval [θ, θ1] with θ < θ1 < θ such

that λs
2(θ1) = 0, λs

2(θ) > 0 ∀ θ ∈ (θ, θ1) and λs
2(θ) ≤ 0 for all θ ∈ (θ1, θ1 + ε) with ε > 0

8This part of the proof is analogous to Seade (1982).
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but small enough. These assumptions imply λs ′
2 (θ) ≥ 0 ≥ λs ′

2 (θ1) which by using (A.21),

λs
2(θ) = λs

2(θ1) = 0 and (A.15), (A.16) also leads to

λ1 ≥ uc|θ=θ = us|θ=θ = ey|θ=θ h(θ) = −eq|θ=θ h(θ) and (A.22)

λ1 ≤ uc|θ=θ1 = us|θ=θ1 = ey|θ=θ1h(θ1) = −eq|θ=θ1h(θ1). (A.23)

(A.22), (A.23) and h(θ) > h(θ1) obviously imply uc|θ=θ ≤ uc|θ=θ1 and ey|θ=θ > ey|θ=θ1 .

From strict concavity of u(c, s) and strict convexity of e(y, q) we get uc|θ=θ ≤ uc|θ=θ1 ⇒
cs|θ=θ ≥ cs|θ=θ1 and ey|θ=θ > ey|θ=θ1 ⇒ ys|θ=θ < ys|θ=θ1 . Define ŝ(c) and q̂(y) such that

uc(c, ŝ(c)) ≡ us(c, ŝ(c)) and ey(y, q̂(y)) + eq(y, q̂(y)) ≡ 0,

and note that ŝ(c) = s and q̂(y) = ks − s for θ = θ and for θ = θ1. Simple comparative

statics reveals

d2u(c, ŝ(c))

dc2
=

uccuss − u2
cs

uss − ucs

< 0 and
d2e(y, q̂(y))

dy2
=

eyyeqq − e2
yq

eyq + eqq

> 0

where the sign conditions follow from ucs > uss and strict concavity of u(c, s) and from

eyq > −eqq and strict convexity of e(y, q). Hence, (A.22) and (A.23) imply cs|θ ≥ cs|θ1 and

ys|θ=θ < ys|θ=θ1 . But then the θ1 consumer prefers (ys(θ), ks(θ)) to (ys(θ1), k
s(θ1)) which

contradicts incentive compatibility. Repeating this argument shows that with any interval

[θ1, θ2] with θ ≤ θ1 < θ2 ≤ θ such that λs
2(θ1) = λs

2(θ2) = 0 and λs
2(θ) > 0 ∀ θ ∈ (θ1, θ2)

incentive compatibility would be violated. Therefore, we must have λ2(θ) ≤ 0 ∀ θ ∈ [θ, θ]

which contradicts uc − eyh < 0 for any θ ∈ [θ, θ].

A.3 Proof of Lemma 3

To show cc(θ) = cs(θ) we first use lemma 1 and (A.3)–(A.5) and (A.20), respectively,

to calculate λc
2(θ) and λs

2(θ). Defining h :=
∫ θ

θ
h(θ̃)f(θ̃)dθ̃ and using (12) we obtain

λc
2(θ) = λs

2(θ) =
1

h(θ)

∫ θ

θ

[
h− h(θ̃)

]
f(θ̃)dθ̃ < 0 and λc

1 = λs
1 = eyh > 0, (A.24)

which by using (A.1) and (A.8) also reveals cc(θ) = cs(θ). Furthermore, employing (3) and

(4) shows that the marginal tax rates on income are the same under both tax systems, i.e.,

tcy(y
s(θ), ks(θ)) = tsy(y

c(θ)− qc(θ)) =
eyλ

c
2(θ)h

′(θ)

λc
1f(θ)

.
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To prove part (ii) we can combine (3) and (4) such that with φ ∈ [0, 1]

us = φuc − (1− φ)eqh, eq = −ey(φ + (1− φ)x) (A.25)

with x :=
uc(eqqh− uss)

eqqeyh2 − ucuss

,

where the definition of x follows from lemma 1 and lemma 2. Solving usssφ = ey [uc + x] h

and eqqqφ = −ey(1− x) for qφ and sφ leads with uc > eyh ⇔ ty > 0 to

qφ =
ey(x− 1)

eqq

> 0, sφ =
eyh(uc + x)

uss

< 0 and sφ + qφ < 0. (A.26)

Substituting sφ and qφ in (A.25) and using uc > eyh we obtain

0 > ussφ − (ey(qφ + sφ) + eqqφ)h, (A.27)

0 > ey(qφ + sφ) + eqqφh. (A.28)

Inequalities (A.26) and (A.27)–(A.28) confirm (13) and (14).

A.4 Proof of Proposition 3

Part (i) is implied by lemma 3 and
∫ θ

θ
∆t(θ)f(θ)dθ = 0. To prove part (ii) note first

that (16) implies that there exists a θ∆t defined by

θ∆t := min
{

θ|∆t(θ) = 0, θ ∈
[
θ, θ

]}
∈ (θ, θ).

Using θ∆t the following two inequalities which are implied by incentive compatibility and

lemma 3

∆t(θ) > 0 ⇒ d

dθ
vs(θ) >

d

dθ
vc(θ), (A.29)

∆t(θ) ≤ 0 ⇒ vs(θ) > vc(θ) (A.30)

lead to ∆t(θ) > 0 for all θ < θ∆t. Assume to the contrary that ∆t(θ) ≤ 0 for θ ∈ [θ, θ∆t].

Since both tax systems are characterized by zero marginal tax rates at the lowest income

levels lemma 3 then implies

vs(θ) ≥ vc(θ) for θ ∈ [θ, θ∆t]

with strict inequality for θ < θ ≤ θ∆t. Now assume that there exists a θ1 with θ∆t < θ1 ≤ θ

such that ∆t(θ) > 0 for θ ∈ (θ∆t, θ1]. Then (A.29) implies that

d

dθ
vs(θ) >

d

dθ
vc(θ) for all θ ∈ (θ∆t, θ1].
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Hence we have vs(θ) > vc(θ) for all θ ∈ (θ∆t, θ1]. Alternatively, assume that there exists a θ2

with θ∆t < θ2 ≤ θ such that ∆t(θ) < 0 for θ ∈ (θ∆t, θ2]. Then, (A.30) reveals vs(θ) > vc(θ)

for all θ ∈ (θ∆t, θ2]. Repeating these two arguments for the entire range
[
θ∆t, θ

]
and all

possible intervals with either ∆t(θ) > 0 or ∆t(θ) ≤ 0 shows that ∆t(θ) ≤ 0 for θ ∈ [θ, θ∆t]

would imply ∫ θ

θ

vs(θ)f(θ)dθ >

∫ θ

θ

vc(θ)f(θ)dθ (A.31)

which contradicts (15). Hence, ∆t(θ) > 0 for all θ < θ∆t.

Finally, applying the same reasoning and using vs(θ∆t) > vc(θ∆t), (A.29) and (A.30)

imply that there exists a θ∆v ∈ (θ, θ∆t) such that vs(θ) < vc(θ) for all θ < θ∆v and

vs(θ) ≥ vc(θ) for all θ ≥ θ∆v.
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