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Abstract

We propose a generalized estimating equations approach to the anal-

ysis of the mean and the covariance structure of a bivariate time series

process of panel data with mixed continuous and discrete dependent vari-

ables. The approach is used to jointly analyze wage dynamics and the

incidence of profit-sharing in West Germany. Our findings reveal a sig-

nificantly positive conditional correlation of wages and the incidence of

profit-sharing. Furthermore, they indicate that permanent unobserved in-

dividual ability is comparatively more important in the profit-sharing than

in the wage equation and show that shocks have a long-lasting effect on

transitory wages but not on the incidence of profit-sharing. Hence, the

results support theoretical predictions that selection into profit-sharing is

mostly due to unobservable ability and that profit-sharing ties wages more

closely to productivity.
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1. INTRODUCTION

Profit-sharing as a means of increasing productivity, employment, individual

earnings and labor market flexibility has been discussed among politicians as

well as economists for a long time (e.g. OECD 1995). Yet, the empirical evi-

dence on the economic effects of profit sharing is still mixed. First, while there is

overwhelming evidence from studies in the 1990s based on (cross-sectional) firm

data suggesting that profit-sharing increases productivity (e.g. OECD 1995), re-

cent studies point out that the results might be plagued by selectivity issues as

well as unobserved heterogeneity (e.g. Kraft/Ugarkovic 2005a). Second, if profit-

sharing is beneficial for firms, the question arises why still only a minority of

firms in most industrialized countries has implemented profit-sharing schemes

(eg. Poutsma 2001). To give an example, a current study for Germany finds

that in 2005 roughly 9% of all firms use profit-sharing schemes (Bellmann/Möller

2006). Third, empirical evidence on the effects of profit-sharing on wages is

scarce (e.g. Hart/Hübler 1990, Kraft/Ugarkovic 2005b). Fourth, even though

theoretical models show that the major determinant of whether or not an em-

ployee participates in a profit-sharing scheme is unobservable individual ability

(e.g. Booth/Frank 1999, p. 449), empirical studies that explicitly control for un-

observed individual heterogeneity by means of using representative individual

panel data are rare (Booth/Frank 1999).

Our study contributes to the empirical literature on the effects of profit-
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sharing by jointly analyzing individual wage dynamics and the incidence of profit-

sharing in West Germany. West Germany is of interest, since our data indicate

that the prevalence of profit-sharing among workers has increased during the

1990s. Taking the result of the theoretical literature seriously that the major

determinant of the incidence of profit-sharing schemes is unobservable individ-

ual ability, our focus is on the joint analysis of the mean and the covariance

structure of individual wages and the incidence of profit-sharing. We allow for

unobserved individual heterogeneity, whose impact might vary across wages and

the incidence of profit-sharing, as well as for different dynamics in the two indi-

vidual time series. This enables us to test whether unobserved heterogeneity is

indeed that important for the probability of receiving variable pay as suggested

by the theoretical literature. Moreover, the estimated correlation coefficient of

the two-equation system indicates whether there is a link between profit-sharing

and wages conditional on selection on observables. This might give support to the

premise in the theoretical literature that profit-sharing ties wages more closely

to productivity.

From an econometric point of view our study contributes to the literature

on the covariance structure of individual earnings (e.g. Alvarez 2004, Baker and

Solon 2003, Biewen 2005, Cappellari 2004, MaCurdy 1982) as well as on the

covariance structure of bivariate time serie processes (e.g. Abowd/Card 1989,

Hall/Mishkin 1982). Most of these studies share the use of a two-step estimation

procedure: in a first step, estimated residuals are obtained from (pooled) regres-
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sion models typically including some observable individual characteristics as well

as time dummies to control for aggregate common effects. These ‘mean-adjusted’

raw earnings are then used to test models of the covariance structure of earnings

applying generalized methods of moments (GMM), maximum likelihood (ML)

or pseudo-ML estimators. Arellano (2003, chap. 5) gives a comprehensive sur-

vey of covariance structures for dynamic error component models. In our study,

however — and like Alvarez (2004) with respect to the univariate time series

process of wages with seasonality estimated by GMM or ML — we choose a

one-step approach to analyzing the joint dynamics of wages and the incidence of

profit-sharing in a panel data framework. In particular, we propose a generalized

estimating equations (GEE-) type two-equation panel data model with mixed

continuous and binary dependent variables. Compared to the GEE approach

proposed by Liang and Zeger (1986) our approach is more general, since it allows

us to simultaneously estimate the parameters of the systematic and the covariance

part of the model. Yet, like standard GEE estimation procedures, the estimators

of the systematic part are robust with respect to potential misspecification of the

covariance structure.

We proceed as follows: In Section 2, we start by describing our panel data set

from West Germany, present evidence on the evolution of real monthly wages, and

describe the prevalence of profit-sharing. In Section 3 we set out the econometric

model, describe the estimating equations for our empirical example, outline the

estimation of our model and discuss the relationship of our GEE estimator to
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better known GMM estimators in applied economics. Section 4 contains the

empirical results. Section 5 concludes.

2. DATA AND DESCRIPTIVE EVIDENCE

Our empirical analysis is based on the German Socio-Economic Panel (GSOEP)

which is a nationally representative longitudinal data set for Germany (Wagner

et al. 1993, SOEP Group 2001). We use data for the years 1991 to 2000 for

West Germany. The analysis is restricted to part- and full-time workers in the

private sector aged 18 to 65 in the relevant years. The econometric model is

estimated on a balanced panel data set with 7200 observations. To compensate for

unit nonresponse up to 2000, we use longitudinal attrition factors provided with

the GSOEP to weight individual contributions to the estimating equations (cf.

Wooldridge 2002, pp. 577). These longitudinal attrition factors are the product

of inverse conditional estimated response probabilities and design weights of the

first wave (cf. Pannenberg et al. 2004).

The wage measure used is the monthly gross real labor earnings in the month

preceding the interview including overtime payments. Nominal wages are deflated

by the national consumer price index (base year 1995). Information on extra pay

such as a 13th or 14th month salary, holiday pay as well as profit-sharing-schemes

are drawn from the subsequent wave, divided by 12 and added to the monthly

wage measure. The profit-sharing dummy equals one if the respondent answers
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that he or she received extra pay from profit-sharing schemes or premiums or

bonuses in the respective year. Like Hart/Hübler (1990) we interpret the col-

lected information from the GSOEP as incidence of profit-sharing. This is in line

with evidence provided by Kruse (1993) that premiums and bonuses are mostly

used in a similar way as profit-sharing schemes by firms. Moreover, following

the empirical literature (e.g. Booth/Frank 1999, Hart/Hübler 1990) we include

the following covariates in the profit-sharing equation: experience (in years),

experience squared, years of schooling, the amount of overtime work (in hours

per month), dummy variables for gender, German nationality, part-time work,

occupational status (worker) as well as full sets of firm size dummies, industry

dummies and time dummies. With respect to the wage equation we add tenure

(in years), tenure squared and an interaction term of experience and gender.

Table 4 in the appendix shows the summary statistics of the regressors for our

subsample.

[Table 1 about here.]

Regarding the evolution of wages, the figures in Table 1 reveal a remarkable

increase in real monthly wages over the period 1991 – 2000 in West Germany.

On average, a worker earns 22% more in real terms in 2000 than in 1991. The

standard deviation of the monthly real wage is also steadily increasing over the

years and the percentage change adds up to 36%. The incidence of profit-sharing

schemes over time in West Germany is documented in Column 3 of Table 1. In
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1991, 16% of all workers in our subsample received some type of profit-sharing.

This share falls to a minimum of 14% in 1994, increases to a maximum of 25%

in 1998 and amounts to 23% in 2000. The OECD report (OECD 1995) gives

a slightly lower figure of the incidence of profit-sharing schemes of about 10%

based on information from 1994. Avalaible evidence from establishment data

for the 1990s reveals that roughly 12% of all firms have implemented profit-

sharing schemes in Germany (Poutsma 2001). With respect to the average real

monthly amount of profit-sharing, we observe both a clear upward trend as well

as substantial cyclical variation. Also, the standard deviation of the amount of

profit-sharing is notably increasing over time. If we calculate the ratio of profit-

sharing to the basic fixed wage without any type of incentive pay, the ratio has

its minimum of 6% in 1995 and its maximum in 2000 with 8%. This is in line

with the results of 5%-10% from the OECD report.

[Table 2 about here.]

Regarding the evolution of real wages for workers with and without profit-

sharing (Table 2), we observe a remarkably higher level of real wages as well as

a stronger increase over time for workers with profit-sharing schemes (23% vs.

16%). Moreover, the increase of the coefficient of variation is more pronounced

for the group with profit-sharing (14%) than for the group without profit-sharing

(5%). The descriptive evidence is in line with the argument that profit-sharing

schemes tie wages more closely to productivity and hence the variation of real
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wages is higher in case of the existence of profit-sharing schemes.

3. ECONOMETRIC MODEL AND

ESTIMATION ISSUES

In our econometric study we focus on the analysis of the joint covariance structure

of wages and profit-sharing. This allows us to test whether unobservable indi-

vidual ability is indeed a major determinant of an individual’s participation in a

profit-sharing scheme as suggested by the theoretical literature. In preliminary

regressions we did start with a flexible structure of the joint covariance matrix in-

cluding unobserved person-specific invariant variables, whose impact might vary

across equations and time as well as AR(1) processes of the disturbances for every

equation.

It turned out, however, that — at least in the data set at hand — there

is a trade-off between the use of an extensive set of regressors and a complex

structure of the covariance matrix. To give an example, we did observe a trade-

off between including a full set of time dummies and allowing equation-specific

unobserved heterogeneity to vary over time. We therefore decided to implement

some restrictions on the covariance matrix as described below while including full

sets of indudstry, firm size and time dummies as well as set of covariates usually

employed in the relevant literature.
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3.1 The Model

Consider measurements on a continuous and a binary dependent variable obtained

for each of N units at each of T points in time (n = 1, . . . , N ; t = 1, . . . , T ). Let

j = 1 denote the equation with the continuous and j = 2 the equation with the

binary dependent variable. Our econometric model is a two-equation panel data

model with a continuous dependent variable log(wage), denoted as ynt1, and a

binary dependent variable, incidence of profit-sharing, denoted as ynt2.

For each dependent variable, we assume the following latent model

y∗ntj = xT
ntβj + εntj var(εntj) = σ2

εj
,

where xnt is a (K×1) vector of covariables including the element one as the con-

stant, and the random error εntj is independent of xntj for all n, t, j. We assume

that (εnt2, εnt′2) (t 6= t′) are bivariate normally distributed for all t, t′ with mean

zero, each y∗nt2 conditional on covariates and yn11, . . . , ynT1 is univariate normally

distributed and each εnt2 does depend on all εnt1, t = 1, . . . , T , only through a

linear function. We do not need the assumption of multivariate normality. The

(K × 1) parameter vector βj is equation-specific and may contain parameters

restricted to zero for one of the two equations.

The latent dependent variables, y∗ntj, are related to the observable dependent

variables, yntj as follows. For the continuous variable equation, ynt1 = y∗nt1 holds,
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and for the equation with the binary variable we have

ynt2 =


0 if y∗nt2 ≤ κ

1 else

where we impose the restriction κ = 0.

With respect to the joint covariance matrix of wages and profit-sharing we as-

sume unobserved person-specific time- and equation-invariant random variables,

which might have a different impact on the continuous and the binary depen-

dent variable. This assumption implies a time-invariant biserial correlation of

the error terms of the two equations. The respective correlation coefficient is

denoted as ζ. Furthermore, we consider a stationary AR(1) process of the re-

mainder disturbances in each equation to allow for additional serial dependence.

The corresponding model in the error terms is

εntj = ϑjπn + νntj and νntj = %jνn(t−1)j + σjwntj,

where πn ∼ N(0, 1), E(wnt1) = 0, var(wnt1) = 1, wnt2 ∼ N(0, 1), E(νntj) =

µν,j, var(νntj) = σ2
ν,j, cov(νntj, νnt′j) = γj,tt′ , νn02 ∼ N(µν,2, σ

2
ν,2), |%j| < 1 and

E(πnνn0j) = E(νn01νn02) = E(πnwntj) = E(νn0jwntj) = E(wntjwnt′j′) = 0 for

all j, j′, t, t′. From these assumptions, µν,j = 0 and σ2
ν,2 = σ2

j/(1 − %2
j) follows.

With respect to the wage equation, we estimate ϑ1, %1 and σ2
1. However, in the

profit-sharing equation, we cannot identify all parameters. Therefore, we impose

the restriction σ2
2 = 1− %2

2 and estimate ϑ2 and %2, respectively. The elements of
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Σ, the covariance matrix of the latent model, are

var(εnt1) = ϑ2
1 +

σ2
1

1− %2
1

, var(εnt2) = ϑ2
2 + 1,

cov(εnt1εnt′1) = ϑ2
1 +

σ2
1%

|t−t′|
1

1− %2
1

if t 6= t′,

cov(εnt2εnt′2) = ϑ2
2 + %

|t−t′|
2 if t 6= t′ and

cov(εnt1εnt′2) = ϑ1ϑ2.

3.2 The Generalized Estimating Equations Approach

The approach adopted in this paper is based on the generalized estimating equa-

tions (GEE) approach proposed by Liang and Zeger (1986) which has become a

standard tool in statistics and biometrics. However, as discussed below, under

the assumption that the mean and the covariance structure are correctly speci-

fied, our particular GEE estimator can be interpreted as a generalized methods

of moments (GMM) estimator (e.g. Hansen, 1982), although this does not hold in

general. The GEE approach was introduced as an extension of univariate gener-

alized linear models (cf. Fahrmeir und Tutz, 2001; McCullagh and Nelder, 1990)

and has its roots in the methods of moments advocated by Karl Pearson as well

as in the theory of optimal unbiased estimating functions (e.g. Godambe, 1960).

Let β be the (identifiable) parameter vector of the mean structure with pos-

sibly vector valued elements β1 and β̃2, let ω be the vector of all (identifiable)

parameters of the covariance structure of the observed dependent variables, let

Xn be the fixed matrix collecting all vectors xT
ntj and yn = (yn11, . . . , ynTJ)T . It

10



will be assumed throughout that the interpretation of β does not depend on the

value of ω.

The starting point is the assumption of the existence of a set of unbiased

estimating functions for the parameters of the mean structure, denoted as gn ≡

gn(yn,Xn,β), such that E(gn; β,ω|Xn) = 0 for all possible β, ω, which are

uncorrelated with each other. Optimal estimating functions in a variance mini-

mizing sense with respect to g are given by

g =
N∑

n=1

E

(
∂gn

∂β

)T

Cov−1(gn) gn,

where Cov(gn) is the covariance of gn, conditional on Xn (Godambe, 1960, 1995,

Liang and Zeger, 1995). The use of gn = (yn − µn), where µn is a correctly

specified model of the conditional mean E(yn|Xn) and is a function of β but not

of ω, leads to estimating functions which have been referred to as the generalized

estimating equations (GEEs) by Liang and Zeger (1986). A GEE estimator of β,

β̂, is obtained as the root of the unbiased estimating functions

0 =
N∑

n=1

(
∂µn

∂β

)T

Cov−1(yn) (yn − µn), (1)

where Cov(yn) is the covariance of yn, conditional on Xn, and depends on ω.

Usually ω is unknown and must be estimated. However, it can be shown that

the nuisance parameter, ω, has only little impact on g and on the solution of

g = 0 at least for large N (Liang and Zeger, 1986, 1995). Thus, replacing ω by

any consistent estimator ω̂ of ω, e.g. the classical minimum distance estimator,

the asymptotic variance of β̂ is not affected. Further, if Cov(yn) is correctly
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specified β̂ has minimum asymptotic variance within the class of asymptotically

linear estimators (McCullagh, 1983). But even if Cov(yn) is misspecified, β is

consistently estimated by the root of (1), although efficiency is lost in this case.

Liang and Zeger (1986) assume that each yntj follows a simple univariate

exponential distribution (e.g. Fahrmeir and Tutz, 2001; McCullagh and Nelder,

1990). The advantage of this assumption is that it implies not only a model for

the theoretical (conditional) mean of yntj, but also of the theoretical (conditional)

variance, which is a known function of xntj, β1, β̃2 and a dispersion parameter,

φj, which might be known in some models but must be estimated in others. For

example, for continuous dependent variables and assuming normality φ = σ2

and for binary dependent variables φ = 1 (Fahrmeir and Tutz, 2001; McCullagh

and Nelder, 1990). To complete the estimating equations for β, Liang and Zeger

(1986) propose a ‘working’ correlation matrix, R(α), which is common to all units

and is a ‘working’ model of the correlation structure in the observed dependent

variables, where α is a possibly vector valued parameter. It can be shown, that

if the yntj are independent and follow an exponential distribution, then choosing

α = 0 leads to estimating equations which correspond to score equations in many

cases (McCullagh and Nelder, 1990).
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3.3 Estimation of Mean and Covariance Parameters

Unlike standard GEE approaches we are interested in estimating both mean

and covariance structure parameters of a latent model based on the GEE ap-

proach. Such estimators have been proposed by Prentice (1988), Zhao and Pren-

tice (1990), Qu et al (1992, 1994) or Reboussin and Liang (1998) among others

(for GMM estimators see, e.g., Breitung and Lechner 1999). In contrast to Pren-

tice (1988), Zhao and Prentice (1990) and Qu et al. (1992, 1994), our estimating

equations for the covariance parameters of the latent model, θ, are equal to score

equations under the assumption that subsets of the dependent variables are inde-

pendent, thereby generalizing Spiess (1998) and Spiess and Keller (1999). Unlike

Reboussin and Liang (1998), we estimate the mean and covariance parameters

as if they were orthogonal. Thus at the price of lower efficiency, the parameters

of the mean structure can consistently be estimated even if the models for the

covariances structure are misspecified, given a correct specification of the mean

model only.

To estimate the parameters of the mean structure, we adopt estimating equa-

tions (1), where for each binary dependent variable, ynt2, we assume the corre-

sponding element of µ, µnt2, to be equal to µnt2 = Φ(ηnt2), where Φ(·) is the cumu-

lative function of the standard normal distribution and ηnt2 = xT
ntβ̃2, β̃2 = σ−1

ε2
β2,

σ2
ε2

= ϑ2
2 + 1. For each continuous dependent variable, ynt1, we assume a linear

model, i.e. the corresponding elements of µ, µnt1, reduce to µnt1 = ηnt1, where
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ηnt1 = xT
ntβ1. However, unlike e.g. Liang and Zeger (1986), we do not adopt a

‘working’ correlation matrix common to all individuals, but use individual specific

covariance matrices instead which follow from the assumed covariance structure

and depend on θ, the vector of all covariance structure parameters of the latent

model (see Appendix A.1).

For simplicity, let the elements of the vector of all identifiable covariance

parameters of the latent model, δ, be arranged in subvectors, so that δc,v de-

notes the vector of variances, δc,c the vector of all correlations of the error terms

εn11, . . . , εnT1 of the linear equations, δb the vector of all (tetrachoric) correlations

of εn12, . . . , εnT2, and δcb denotes the vector of (biserial) correlations of all pairs

(εnt1, εnt′2). Further, Σc is the covariance matrix part of Σ corresponding to all

continuous dependent variables and Sn = (yn1 −µn1)(yn1 −µn1)
T . Accordingly,

denote by Rc that part of the correlation matrix of the latent errors that corre-

spond to all continuous dependent variables. Note, however, that the estimating

equations for δ are usually not equal to those for the parameter of interest, θ,

which are in general of lower dimensionality. In fact, it would be not a good idea

to really estimate all possible covariance parameters, as this would in our case

imply the estimation of 2T 2 = 200 covariance parameters.

The individual contributions to the estimating equations for δc,v and δc,c are

given by

un,c =
(∂Σc

∂δc

)T

(Σ−1
c ⊗Σ−1

c ) en,c, (2)
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where en,c = vec(Sn − Σc), vec(·) is the usual vec operator, ⊗ is the Kronecker

product and δc = (δT
c,v, δ

T
c,c)

T . Note that E(un,c) = 0 at the true parameter values

if Σc is correctly specified and that for consistent estimation of δc,v and δc,c no

distributional assumption is necessary. It is easy to see that (2) are equal to the

score equations derived from the log likelihood under multivariate normality if

all outcomes were continuous.

The estimating equations for the tetrachoric correlations consider each possi-

ble pair of binary dependent variables as a three-dimensional polytomous variable

and equate this variable with its theoretical mean. Denote the (3×1)-vector rep-

resenting a pair of binary variables as vntt′,b and its theoretical mean, which is

equal to a vector of probabilities, as µntt′,b. Note that the latter can, under

bivariate normality of the corresponding errors in the latent model, easily be

evaluated using the bivariate cumulative standard normal distribution function.

Then the individual contributions to the estimating equations for the tt′th ele-

ment (t = 2, . . . , T , t′ = 1, . . . , t− 1) of δb are

un,tt′,b =
(∂µntt′,b

∂δtt′,b

)T

W−1
ntt′,b(vntt′,b − µntt′,b). (3)

where Wntt′,b = (diag(µntt′,b)−µntt′,bµ
T
ntt′,b) and diag(a) denotes a diagonal ma-

trix with diagonal elements equal to a. It is easy to show (cf. Amemiya, 1985, sec.

9.3) that the estimating equations (3) are equal to individual pseudo-score equa-

tions derived from the pseudo-log likelihood for δtt′,b based on observations ynt2

and ynt′2 under the assumption of bivariate normality of the errors and mutual
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independence of all possible pairs. All (T (T − 1)/2 × 1) vectors (vntt′b − µntt′b)

are collected in en,b and all matrices W−1
ntt′,b in the block diagonal matrix W−1

n,b.

The estimating equations for the biserial correlations are obtained by equating

the binary dependent variables and their theoretical means given the observed

continuous dependent variables. Thus the individual contributions to the esti-

mating equations for δt,cb are

un,t,cb =
(∂Φ(ψnt)

∂δt,cb

)T

(Φ(ψnt)(1− Φ(ψnt)))
−1(ynt2 − Φ(ψnt)), (4)

where

ψnt = (1− δT
t,cbR

−1
c δt,cb)

−1/2(ηnt2 + δT
t,cbR

−1
c V−1/2

c (yn1 − µn1)), (5)

and Vc = Diag(Σc). See Appendix A.2 for a derivation of (4) from the corre-

sponding pseudo-log likelihood. All T scalar terms (ynt2 − Φ(ψnt)) are collected

in en,cb and all scalar terms (Φ(ψnt)(1− Φ(ψnt)))
−1 are collected in the diagonal

matrix W−1
n,cb.

As the above discussion shows, only the correct specification of uni- and bivari-

ate distributions of subsets of the dependent variables is necessary for a consistent

estimation of all parameters of interest. Hence, only one- and two-dimensional in-

tegrals have to be evaluated. This is a clear advantage of our approach compared

to maximum likelihood estimators, where the joint multivariate distribution of all

error terms must be specified and high-dimensional integrals must be evaluated.

However, the advantageous properties of our GEE-type approach come at the

price of a loss of efficiency. Simulation results for a simpler one-equation panel
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model with binary dependent variables suggest that the efficiency loss relative

to the maximum likelihood estimator is rather small (Spiess 1998). This is in

line with Liang and Zeger (1995), who state that according to their experience,

the gain in robusteness is far greater than the loss in efficiency. Further, the

results in Spiess (1998) imply that using individual covariance matrices leads to

more efficient estimators as compared to adopting a ‘working’ correlation matrix,

common to all units, as proposed by Liang and Zeger (1986).

3.4 Estimation of the Model

Collect all vectors en,c, en,b and en,cb in en,2 and all matrices (Σ−1
c ⊗Σ−1

c ), W−1
n,b

and W−1
n,cb in the block diagonal matrix W−1

n,2. Further let Dn,2 include the terms

∂Σc/∂δc, ∂µntt′,b/∂δtt′,b (t = 2, . . . , T, t′ = 1, . . . , t − 1), ∂Φ(ψnt)/∂δt,cb and

∂Φ(ψnt)/∂δc (t = 1, . . . , T ).

Then, to estimate the parameters of the assumed covariance structure, we use

u2 =

(
∂ δ

∂ θ

)T N∑
n=1

Dn,2W
−1
n,2en,2 = 0,

where δ = (δT
c , δ

T
b , δ

T
cb)

T and, in this paper, θ = (ϑ1, ϑ2, σ
2
1, %1, %2)

T . Let u1 =∑N
n=1 un,1. All parameters of interest are estimated simultaneously by stacking

the estimating equations and solving (uT
1 ,u

T
2 )T = 0 for β, where β is the vector

of elements of β1 and β̃2 not restricted to zero, and θ.

Let Γ11 = ∂u1/∂β and Γ22 = ∂u2/∂θ. The vector of estimates, γ̂ =

(β̂
T
, θ̂

T
)T , is iteratively calculated with updated value in the (j + 1)th itera-
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tion given by

γ̂j+1 = γ̂j +

ΓT
11 0

0 ΓT
22


−1

γ=γ̂j

u1

u2


γ=γ̂j

.

The unknown parameters in Ωn are replaced with their estimates.

The asymptotic covariance matrix is estimated by

Ĉov(γ̂) =

ΓT
11 0

ΓT
12 ΓT

22


−1

γ=γ̂

W11 W12

W21 W22


γ=γ̂

Γ11 Γ12

0 Γ22


−1

γ=γ̂

where

Γ12 =
∂u2

∂β

which accounts for the fact that u2 is a function of β, and

W11 =
N∑

n=1

un,1u
T
n,1 W12 =

N∑
n=1

un,1u
T
n,2

(∂ δ

∂ θ

)T

W22 =
(∂ δ

∂ θ

) N∑
n=1

un,2u
T
n,2

(∂ δ

∂ θ

)T

and W21 = WT
12.

Note that weighting factors to compensate for missing observations can easily be

incorporated in our estimation framework following, e.g., Wooldridge (2002).

3.5 GEE vs. GMM

To compare our GEE approach with the GMM approach, which is more widely

adopted in economic applications, first note that the number of equations in (1)

is equal to the dimension of β. Hence, the problem is just identified. Further, (1)

18



timesN−1 is the sample counterpart of the set of (conditional) moment conditions

E(H(Xn,β, δ)(yn − µi)) = 0

which is implied by the assumption E(gn; β,ω|Xn) = 0 for all possible β, ω and

n = 1, . . . , N (cf. section 3.2) and fixed matrix of instruments H(Xn,β, δ). An

optimal matrix of instruments is given by

H(Xn,β, δ) = E(∂µn/∂β)Cov−1(yn)

(Newey and McFadden, 1994, p. 2170) leading to the estimating equations de-

scribed in section 3.2 (cf. Godambe, 1995), which depend on β and the nuisance

parameter δ. However, δ is unknown and must be estimated. The plug-in ap-

proach, using some consistent estimator for δ leads to a feasible GMM estimator

for β using (1) (Newey and McFadden, 1994, p. 2171). By construction of gn,

estimation of ω or δ does not affect the asymptotic variance of β̂ (see section

3.2).

In general, the GEE approach does not require that the estimator of ω is a

GEE (or GMM) estimator. It may be any estimator converging in probability to

some ω, which not even need to be the ‘true’ value. In the latter case, where the

instruments are not optimal, efficiency of β̂ is lost. Thus, stacking the estimating

functions for β and ω does not in general lead to a two-step GMM estimator,

although β̂ can always be interpreted as a
”
plug-in“ GMM estimator.

However, section 3.3 describes estimating equations for δ, the vector of all

covariance parameters of the latent model which are derived from pseudo log-
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likelihood functions assuming independence of certain subsets of variables. Again,

this is a just identified problem, but the instruments chosen now to simplify calcu-

lations are not optimal. The estimating equations are equivalent to conditional

moment conditions and thus, the resulting estimator γ̂ could be denoted as a

”
multi-step plug-in“ GMM estimator if the covariance structure is correctly spec-

ified.

An interesting general difference between the GEE and the GMM approach

is that in the former optimality results are ascribed to the estimating functions

whereas in the latter they are ascribed to the estimator. This difference has been

an issue in the statistical literature (e.g. Crowder, 1989) although in general it

may not make a big difference in large samples (cf. Liang and Zeger, 1995, Go-

dambe, 1995). However, given the equality of the GMM and the GEE estimator

described in this paper, optimality results hold for both, the estimating functions

and the estimator.

4. RESULTS

Table 3 provides the parameter estimates of our two-equation panel data model.

[Table 3 about here.]

Starting with the estimated parameters of the joint covariance matrix, Table

3 reveals that the estimated correlation coefficient between the two equations, ζ,
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equals 0.30 and is significantly different from zero. Hence, we do observe a notable

positive co-movement between variations in the wage residuals and variations

in the profit-sharing residuals conditional on the sets of observed variables in

both equations. This indicates that there is a positive link between shocks in

the wage equation and the incidence of profit-sharing. Hence, we find supportive

evidence for the premise in the theoretical literature that profit-sharing ties wages

more closely to productivity. For example, Booth/Frank (1999) illustrate in their

theoretical model that conditional on observed individual characteristics average

wage differentials across different payment schemes are a good measure of average

productivity differences. Our result also implies that the variation of real wages

is higher under profit-sharing regimes as indicated by our descriptive evidence.

The variance components ϑ1 and ϑ2, capturing the impact of time invari-

ant unobservable individual ability on wages respectively the incidence of profit-

sharing, are significantly different from zero. The share of the variance due to

the permanent component relative to the overall variance amounts to 51% for the

profit-sharing equation while it is only 17% for the wage equation. This clearly

shows that unobservable individual ability is a major determinant of whether

someone participates in a profit-sharing scheme or not as suggested by the theo-

retical model of Booth/Frank (1999).

The estimated parameters of the AR(1) process in both equations are positive

and significantly different from zero. The estimated parameter of %1 = 0.87 for

the wage equation implies that after five years, 50% of a shock is still present
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in transitory wages. This indicates that shocks have a long-lasting effect on

transitory real wages in the 1990s in West Germany conditional on observed

characteristics as well as on the time-invariant permanent earnings component of

our specification. Regarding the estimated AR(1) parameter for the profit-sharing

equation, we find that the effect of a shock on the transitory component of the

likelihood of receiving variable pay is less important than in the wage equation.

After five years, only 7% of a shock is still present in the transitory component of

the probability of profit-sharing incidence. Hence, transitory shocks concerning

the use of profit-sharing schemes by firms do not exhibit a long memory.

With respect to the observed characteristics of the wage equation, we find that

the estimated parameters for male workers, German workers, years of schooling

and firm size are significantly positive, the estimated parameter for part-time

work is significantly negative and the estimated experience profile is concave.

These results are generally in line with findings reported in the literature (e.g.

Wolf 2002, Fitzenberger/Kunze 2006). This also holds for the significantly posi-

tive estimate of the amount of overtime worked in the month before the interview,

which indicates that paid as well as other types of overtime work exert a positive

impact on current wages (Pannenberg 2005). Note however, that the estimated

gender wage differential in our data is at the upper bound estimated in the lit-

erature. Reasons might be that our balanced panel requires continuous labor

market participation over 10 years and covers all age cohorts. Moreover, we can-

not identify significant effects of tenure on wages. This might also be explained
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by the balanced panel data structure of our data at hand, since we can only sep-

arately identify experience and tenure effects if we observe a remarkable amount

of workers who switch firms.

Considering the results of the profit-sharing equation, the estimated param-

eters indicate that the probability of receiving variable pay increases with firm

size. This is in line with evidence based on establishment data for Germany

(Kraft/Ugarkovic 2005a). Moreover, German workers as well as part-time work-

ers exhibit a higher probability of receiving profit-sharing. None of the other

estimated parameters is significantly different from zero supporting again and in

line with our findings with respect to the variance components the theoretical

model of Booth/Frank (1999) that suggests that profit-sharing mainly rewards

unobservable ability.

The asymptotic Wald test indicates that the joint impact of all regressors

is significantly different from zero. The Pseudo-R2 measure given in Table 3 is

identical to ρ̂2
2, proposed by Spiess and Tutz (2004, p. 138) as a measure of the

explanatory power of the model. The intuition underlying ρ̂2
2 is that a measure

of the explanatory power should take into account all components which are

explicitly modeled when a regression model is estimated, i.e. in our case also

the covariance model. This is based on ideas presented in Glahn (1969) and

Carter and Nagar (1977). Its value suggests that the model possesses substantial

explanatory power, i.e. both its systematic and its covariance part.
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5. CONCLUSIONS

We analyze the joint covariance structure of monthly wages and the incidence

of profit-sharing in West Germany. We show that (a) the ratio of the perma-

nent variance component and the overall variance is greater for the profit-sharing

equation than for the wage equation, that (b) there is a significantly positive

co-movement of the wage and profit-sharing residuals and that (c) shocks in

the wage equation have a long-lasting effect on transitory labor earnings, while

they exhibit no enduring impact on the likelihood of receiving variable pay. Our

findings therefore give supportive evidence for theoretical models stressing the

impact of unobservable individual attributes on the probability of participating

in profit-sharing schemes. The results also demonstrate that profit-sharing indeed

ties individual wages more closely to productivity as suggested in the theoretical

literature. Furthermore, the variation of real wages is higher under profit-sharing

regimes. Combining all these findings with the descriptive evidence of an in-

crease in the incidence of profit-sharing, one might conclude that one reason for

the increasing wage inequality in Germany in the 1990s (e.g. Riphahn 2002) is

the increasing prevalence of profit-sharing among employees. Future research in-

vestigating more explicitly the link between profit-sharing and the increase in

wage inequality in Germany therefore seems promising.

Our proposed GEE-type approach for the analysis of a two-equation panel

data model with a continuous and a discrete dependent variable as well as a joint
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covariance matrix, which is equivalent to a multi-step plug-in GMM estimator,

can in principal be extended to systems of multiple equations for panel data with

mixed continuous, discrete and ordered dependent variables. If sufficient panel

data is at hand to identify all parameters of the specified variance covariance

matrix, the approach is quite flexible, since in principle no restriction on the

covariance model — beyond being positive (semi-) definite — is required. Es-

sentially, the covariance structure parameters are formulated as functions of all

identifiable correlations and variances. Yet, the approach remains quite simple

technically as there are no integrals to be calculated of a dimension higher than

two.
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APPENDIX A.1: THE COVARIANCE

MATRIX Ωn

The matrix Ωn is a ‘working’ covariance matrix and is considered to be fixed

in the first set of estimating equations (1). For each continuous variable, the
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corresponding element on the diagonal is equal to the corresponding entry in Σ.

For each binary dependent variable, the corresponding element is µnt2(1− µnt2).

For all pairs of continuous dependent variables, the corresponding off-diagonal

entries in Ωn are identical to those of Σ. For all pairs of binary dependent

variables, we have

cov(ynt2, ynt′2|xnt,xnt′) = Φ(ηnt2, ηnt′2, ρb,tt′)− Φ(ηnt2)Φ(ηnt′2),

where Φ(·, ·, ρtt′,b) is the cumulative function of the bivariate standard normal

distribution and ρtt′,b is the correlation of εnt2 and εnt′2. The entries in Ωn corre-

sponding to the covariances of each binary with all continuous dependent variables

are easily derived from the corresponding moments representation and are given

by

cov(yn1, ynt2|Xn) = −σ−1
ε2

Σt,cbφ(ηnt2),

where Σt,cb is that part of Σ that denotes the covariances between all continuous

dependent variables and y∗nt2 given the covariates, and φ(·) is the density function

of the standard normal distribution.
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APPENDIX A.2: ESTIMATING EQUATIONS

FOR BISERIAL CORRELATIONS

The likelihood for δt,cb based on one binary dependent variable, ynt2, and the

(T × 1)-vector of continuous variables yn1, can be written as

L(δt,cb) =
N∏

n=1

(
Pr(ynt2 = 1|yn1,xnt2)

ynt2(1− Pr(ynt2 = 1|yn1,xnt2))
1−ynt2

×f(yn1|xn11, . . .xnT1)
)
.

The log likelihood is

l(δt,cb) = const+

N∑
n=1

(
ynt2 Pr(ynt2 = 1|yn1,xnt2) + (1− ynt2)(1− Pr(ynt2|yn1,xnt2))

)
where const is a term not involving δt,cb. Assuming that εnt2 is normally dis-

tributed given yn1, does only linearly depend on εn1 and that ynt2 does not

depend on covariates xn11, . . . ,xnT1 given xnt2, this is

l(δt,cb) = const +
N∑

n=1

(ynt2 log Φ(ψnt) + (1− ynt2) log(1− Φ(ψnt))),

where ψnt is given by (5).

APPENDIX B: COVARIATES IN THE

REGRESSION MODEL

[Table 4 about here.]
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Data Models, in: Mátyás, L. (ed.), Generalised Methods of Moments Esti-

mation, Cambridge University Press, 1999, 248–274.

Cappellari L (2004) The Dynamics and Inequality of Italian Men’s Earnings:

Long-term Changes or Transitory Fluctuations ? The Journal of Human

Resources 39: 475–499.

Carter RAL, Nagar AL (1977) Coefficients of Correlation for Simultaneous Equa-

tion Systems. Journal of Econometrics: 39–50.

Crowder, M.J. (1989). Comment on
”
An Extension of quasi-likelihood estima-

tion“ by V.P. Godambe and M.E. Thompson, J. Statist. Plann. Inference,

22, 167–168.

28



Fahrmeir, L. & Tutz, G. (2001, 2nd ed.). Multivariate Statistical Modelling Based

on Generalized Linear Models. New York: Springer.

Fitzenberger, B. and Kuntze, A. (2006) Vocational training and gender: Wages

and occupational mobility among young workers. Oxford Review of Eco-

nomic Policy (forthcoming).

Glahn HR (1969) Some Relationships Derived From Canonical Correlation The-

ory. Econometrica: 252–256.

Godambe VP (1960) An optimum property of regular maximum likelihood esti-

mation. Annals of Mathematical Statistics 31: 1208–1212.

Godambe VP (1995) Comment on
”
Inference Based on Estimating Functions in

the Presence of Nuisance Parameters“ by K-Y Liang and SL Zeger. Statis-

tical Science 10: 173–174.

Hall RE, Mishkin FS (1982) The Sensitivity of Consumption to Transitory In-

come: Estimates from Panel Data on Households. Econometrica 50: 461–

481.

Hansen LP (1982) Large Sample Properties of Generalized Method of Moments

Estimators. Econometrica 50: 1029–1054.
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Table 1: Real Wages and Profit-Sharing in West Germany 1991–2000

Real wages Incidence Amount of Ratio profit-
profit- profit-sharing sharing/Fixed
sharing real wage

Year Mean Std.Dev. Mean Mean Std.Dev. Mean
1991 4855.57 2295.63 0.16 463.84 673.92 0.08
1992 5044.09 2321.57 0.18 428.01 676.64 0.07
1993 5161.24 2494.86 0.16 398.81 603.95 0.06
1994 5222.89 2497.59 0.14 555.69 742.75 0.08
1995 5443.35 2667.42 0.18 407.74 566.59 0.06
1996 5532.62 2725.87 0.19 480.68 678.01 0.06
1997 5591.18 2772.91 0.18 490.73 920.46 0.07
1998 5716.53 2935.16 0.25 601.35 1024.50 0.07
1999 5837.46 3056.37 0.21 717.55 1071.90 0.08
2000 5904.03 3132.08 0.23 762.82 1097.92 0.08
Source: GSOEP. Sample weights used.
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Table 2: Real Wages for Groups with and without Profit-Sharing (DM)

Without profit-sharing With profit-sharing
Coefficient Coefficient

Year Mean
Standard

of Mean
Standard

ofdeviation
Variation

deviation
Variation

1991 4486.32 1932.07 0.43 6733.26 2989.99 0.44
1992 4699.97 1965.52 0.42 6585.27 3063.83 0.47
1993 4857.77 2120.83 0.44 6708.97 3502.66 0.52
1994 4845.74 2076.34 0.43 7612.24 3456.62 0.45
1995 5005.30 2200.85 0.44 7429.71 3563.69 0.48
1996 5063.59 2201.65 0.44 7579.52 3695.67 0.49
1997 5250.36 2466.32 0.47 7123.95 3483.37 0.49
1998 5012.27 2190.90 0.44 7829.91 3766.17 0.48
1999 5254.80 2442.04 0.47 8079.34 4014.14 0.50
2000 5203.76 2350.62 0.45 8282.59 4139.68 0.50
Source: GSOEP. Sample weights used.
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Table 3: Estimation results

Profit-Sharing Equation Wage Equation
Variable Estimate Std.Dev Estimate Std.Dev

Male 0.298 0.188 0.413** 0.080
German 1.041** 0.200 0.097** 0.027
Part-time 0.463* 0.202 -.261** 0.036
Tenure (\10) -.019 0.022
Tenure2 (\1000) 0.122 0.096
Experience (\10) 0.623+ 0.351 0.177** 0.056
Experience2 (\1000) -1.56* 0.661 -.295** 0.083
Years of schooling 2.345** 0.544
Amount Overtime (\100) 0.148** 0.021
Firm size: 20 ≤ X < 200 0.121 0.118 0.031+ 0.017
Firm size: 200 ≤ X < 2000 0.320* 0.151 0.052** 0.019
Firm size: X ≥ 2000 0.665** 0.150 0.075** 0.023
Chemistry, mining -.170 0.258 0.012 0.014
Construction 0.098 0.333 0.016 0.020
Finance, insurance, wholesale trade 0.126 0.245 -.011 0.014
Manufacturing 0.204 0.239 0.002 0.014
Transportation, warehousing 0.202 0.307 0.014 0.024
Male*Experience (\10) -.004 0.028
Worker -.032 0.118 -.061** 0.014
Constant 3.616** 0.603 7.515** 0.135
Covariance Matrix
Parameter Estimate Std.Dev
Correlation Coefficient (ζ) 0.295** 0.055
ϑ1 0.122** 0.037
ϑ2 1.021** 0.131
σ2

1 0.018** 0.006
%1 0.867** 0.032
%2 0.591** 0.072
Wald Test 667.8** (df=34)
Source: GSOEP 1991-2000 (weighted estimation).
Significance Level: ** 0.01; * 0.05; + 0.10.
Pseudo R2: ρ̂2

2=0.596; NT = 7200.
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Table 4: Variables in Regression Analysis

Variable Mean Std.Dev
Log(real wage) 8.48 0.48
Profit-sharing 0.18 0.39
Male 0.70 0.46
German 0.89 0.31
Part-time 0.10 0.30
Tenure 13.36 9.15
Experience 24.53 9.59
Years of schooling 11.53 2.49
Worker 0.42 0.49
Amount overtime (hours) 11.33 16.80
Firm size: 20 ≤ X < 200 0.26 0.44
Firm size: 200 ≤ X < 2000 0.27 0.44
Firm size: X ≥ 2000 0.31 0.46
Chemistry, mining 0.16 0.37
Construction 0.08 0.27
Finance, insurance, wholesale trade 0.23 0.42
Manufacturing 0.40 0.49
Transportation, warehousing 0.05 0.21
Source: GSOEP. Sample weights used.
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