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Abstract 

The traditional approach to measuring allocative efficiency is based on input prices, which are rarely 

known at the firm level. This paper proposes a new approach to measure allocative efficiency which is 

based on the output-oriented distance to the frontier in a profit – technical efficiency space – and 

which does not require information on input prices. To validate the new approach, we perform a 

Monte-Carlo experiment which provides evidence that the estimates of the new and the traditional 

approach are highly correlated. Finally, as an illustration, we apply the new approach to a sample of 

about 900 enterprises from the chemical industry in Germany. 

 

Keywords: Allocative efficiency, data envelopment analysis, frontier analysis,  technical efficiency, 

Monte-Carlo study, chemical industry. 

JEL Classification: D61, L23, L25, L65 

 

 

Zusammenfassung 

“Ein neuer Ansatz zur Messung allokativer Effizienz – Sind Input-Preise wirklich erforderlich?“ 

Der traditionelle Ansatz zur Messung allokativer Effizienz erfordert Informationen über Input-Preise 

der Unternehmen, die allerdings nur selten vorliegen. In diesem Aufsatz schlagen wir eine neue 

Methode zur Bestimmung der allokativen Effizienz vor, der als wesentliche Information den Abstand 

eines Unternehmens von der Effizienz-Grenze nutzt und keine Information über Input-Preise erfordert. 

Ein Monte-Carlo Experiment zur Überprüfung der Tragfähigkeit dieses Ansatzes zeigt, dass die 

Schätzwerte nach der traditionellen Methode und dem von uns vorgeschlagenen Verfahren eng 

miteinander korreliert sind. Zur Illustration wenden wir den neuen Ansatz auf ein Sample von 900 

Unternehmen der Chemischen Industrie in Deutschland an. 

 

Schlagworte: Allokative Effizienz, Data Envelopment Analysis, Frontier Analysis, Technische 

Effizienz, Monte-Carlo Methode, Chemische Industrie. 

JEL-Klassifikation: D61, L23, L25, L65 
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1 Introduction 

1 Introduction 

A significant number of empirical studies have investigated the extent and determinants of technical 

efficiency within and across industries (see Alvarez and Crespi (2003), Gumbau-Albert and Maudos 

(2002), Caves and Barton (1990), Green and Mayes (1991), Fritsch and Stephan (2004a)). 

Comprehensive literature reviews of the variety of empirical applications are made by Lovell (1993) 

and Seiford (1996, 1997). Compared to this literature, attempts to quantify the extent and distribution 

of allocative efficiency are relatively rare (for a survey, see Greene (1997)).1 This is quite surprising 

since allocative efficiency has traditionally attracted the attention of economists: what is the optimal 

combination of inputs so that output is produced at minimal cost? How much could the profits be 

increased by simply reallocating resources? To what extent does competitive pressure reduce the 

heterogeneity of allocative inefficiency within industries?2 

A firm is said to have realized allocative efficiency if it is operating with the optimal combination of 

inputs. The traditional approach to measuring allocative efficiency requires input prices (see Atkinson 

and Cornwell (1994), Green (1997), Kumbhakar (1991), Kumbhakar and Tsionas (2005), Oum and 

Zhang (1995)) which are hardly available in reality.3 This explains why empirical studies of allocative 

efficiency are highly concentrated on certain industries, particularly banking, because information on 

input price can be obtained for these industries. 

This paper introduces a new approach to estimating allocative efficiency, which is solely based on 

quantities and profits and does not require information on input prices. An indicator for allocative 

efficiency is derived as the output-oriented distance to a frontier in a profit-technical efficiency space. 

What is, however, needed is an assessment of input-saving technical efficiency; i.e., how less input 

could be used to produce given outputs.  

The paper proceeds as follows: section 2 theoretically derives a new method for estimating allocative 

efficiency and introduces a theoretical framework for activity analysis models. Section 3 presents the 

results of the Monte-Carlo experiment on comparison of allocative efficiency scores calculated using 

both traditional and new approaches. Section 4 provides a rationale and a simple illustration using the 

new approach; section 5 concludes. 

                                                      

1 For studies in the financial sector, see the review by Berger and Humphrey (1997) and also Topuz et al. (2005), 
Färe et al. (2004), Isik and Hassan (2002). Some studies have been performed for the agricultural sector (e.g., 
Coelli et al., (2002), Chavas et al., (1993, 2005), Grazhdaninova (2005)). Studies for manufacturing sector are 
relatively rare (e.g., Burki (1997), Kim and Han (2001)). 
2 Moreover, allocative efficiency is also import for the analysis of the production process; e.g., to estimate the bias 
of (i) the cost function parameters, (ii) returns to scale, (iii) input price elasticities, and (iv) cost-inefficiency 
(Kumbhakar and Wang, forthcoming) or to validate the aggregation of productivity index (Raa (2005)). 
3 This includes retrieving allocative efficiency using shadow prices (see Green (1997), Lovell (1993)). 
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2 Allocative efficiency measurement 

2.1 Traditional approach to allocative efficiency measurement 

A definition of technical and allocative efficiency was made by Farrell (1957). According to this 

definition, a firm is technically efficient if it uses the minimal possible combination of inputs for 

producing a certain output (input orientation). Allocative efficiency, or as Farrell called it price 

efficiency, refers to the ability of a firm to choose the optimal combination of inputs given input 

prices. If a firm has realized both technical and allocative efficiency, it is then cost efficient (overall 

efficient). 

Figure 1 
Measurement and decomposition of cost efficiency 

 

 

Figure 1, similarly to Kumbhakar and Lovell (2000), shows firm A producing output yA represented by 

the isoquant L(yA). Dotted lines are the isocosts which show level of expenditures for a certain 

combination of inputs. The slope of the isocosts is equal to the ratio of input prices, w(w1,w2). If the 

firm is producing output yA with the factor combination xA (a in Figure 1), it is operating technically 

inefficient. Potentially, it could produce the same output contracting both inputs x1 and x2 (available at 

prices w), proportionally (radial approach); the smallest possible contraction is in point b, representing 

(θxA) a factor combination. Having reached this point, the firm is considered to be technically 

efficient. Formally, technical efficiency is measured by the ratio of the current input level to the lowest 

attainable input level for producing a given amount of output. In terms of Figure 1, technical 

inefficiency of unit xA is given by 
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( ) ( )
A

A
AA

wx
xwxyTE θθ ==,  (1) 

or geometrically by ob/oa. The measure of cost inefficiency (overall efficiency) is given by the ratio of 

potentially minimal cost to actual cost: 

( ) A

E
AAA

wx
wxwxyCE =,,  (2) 

or geometrically by oc/oa. Thus, cost inefficiency is the ratio of expenditures at xE to expenditures at 

xA while technical efficiency is the ratio of expenditures at (θxA) to expenditures at xA. The remaining 

portion of the cost efficiency is given by the ratio of expenditures at xE to expenditures at (θxA). It is 

attributable to the misallocation of inputs given input prices and is known as allocative efficiency: 

( )
A

A

A
E

wx
xw

wx
wx

TE
CEAE

θ
==  (3) 

or in terms of Figure 1 is given by oc/ob. 

2.2 A new approach to allocative efficiency measurement 

When input prices are available, allocative efficiency in the pure Farrell sense can be calculated using, 

for example, a non-parametric frontier approach (Färe et al., 1994) or a parametric one (Greene (1997) 

among others). However, if input prices are not available these approaches are not applicable. In 

contrast to this, the new approach we propose allows measuring allocative efficiency without 

information on input prices. An estimate of allocative efficiency can be obtained with the new 

approach that is solely based on information on input and output quantities and on profits. 

The first step of this new approach involves the estimation of technical efficiency; whereby, in the 

second step allocative efficiency is estimated as an output-oriented distance to the frontier in a profit-

technical efficiency space.  

In Figure 2, three firms, A, B, and C using inputs xA, xB, and xC, available at prices w,4 produce output 

yA, which is measured by the isoquant L(yA). For the sake of argument, firms A, B, and C are all 

equally technically efficient (the level of technical efficiency θ, however, is arbitrarily chosen) which 

is read from expenditure levels at (θxA), (θxB), and at (θxC), respectively. In geometrical terms obA/oaA 

= obB/oaB = obC/oaC . The costs of these three firms are determined by wxA, wxB, and by wxC. The 

isocost corresponding to expenditures at xC is the closest possible to the origin o for this level of 

                                                      

4 Let us assume that the ratios of input prices are equal for each firm. This assumption is needed to have the 
isocosts parallel to each other.  
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technical efficiency and, therefore, implies the lowest level of cost. This is because xC is the 

combination of inputs lying on the ray from origin and going through the tangent point of the isocost 

(corresponding to expenditure level of wxE) to the isoquant L(yA). This implies that for θ-level of 

technical efficiency costs have a lower bound and using the fact that firms are producing the same 

output yA, profits have an upper bound. Without loss of generality, for each level θ of technical 

efficiency there is a profit maximum, which proves the existence of a frontier in profit—technical 

efficiency space. 

Proposition 1: Existence of the frontier in profit-technical efficiency space.  A profit maximum exists 

for any level of technical efficiency. 

Figure 2 
Bound of a profit 

 

 

In Figure 3, two firms, C and D, use inputs xC and xD to produce output yA, which is measured by the 

isoquant L(yA). Both firms are allocatively efficient because they lie on the same ray from the origin 

that goes through the tangent point xE; thus, in terms of proposition 1 we only look at the frontier 

points. These firms operate, however, at different levels of technical efficiency θC and θD, respectively. 

Since the isocost representing the level of expenditure wxC is closer to the origin than that of the 

expenditure level wxD, costs of firm C are smaller than those of firm D and firm C is more profitable 

than firm D. Since obC/oaC>obC/oaD, θC > θD, larger technical efficiency is associated with larger 

profits for points forming the frontier in profit-technical efficiency space. This proves that such 

frontier is upward sloping. 

Remark 1: Frontier in profit—technical efficiency space is sloped upwards. 
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Figure 3 
Relationship between technical efficiency and profit 

 

 

Proposition 2: The higher the allocative efficiency the higher the profit. For any arbitrarily chosen 

level of technical efficiency, the closer the input combination to the optimal one (i.e., the larger the 

allocative efficiency) the larger the profit will be. 

Equation (3) suggests that in terms of Figure 2 (all three firms are equally technically efficient) 

expenditures solely depend on allocative efficiency. Moreover, the smaller the allocative efficiency the 

larger the expenditure. Keeping in mind that these firms produce the same output yA, we conclude that 

for θ-level of technical efficiency (again chosen arbitrarily) the larger the allocative efficiency the 

lower the costs and the larger the profit is; as allocative efficiency reaches its maximum (for firm C), 

the maximal profit is also achieved. Without loss of generality, this statement is true for any level of 

technical efficiency. 

Proposition 3: Allocative efficiency in profit-technical efficiency space. The Farrell output-oriented 

distance to the frontier in profit-technical efficiency space measures allocative efficiency. 
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Figure 4 
Allocative efficiency in profit-technical efficiency space 

 

 

In Figure 4 frontier is the locus of the maximum attainable profits as defined in Proposition 1. The 

firms A, B, and C have the same technical efficiency level TE0; however, they have different profit 

levels: p1, p2, and p , respectively. The potential level of profit which firms can reach is p . The closer 

the observation is to the frontier, the larger the profit is. As we recall from Figure 2, the shift from 

firm A to firm C is only possible when the input-mix is changed; i.e., allocative efficiency is improved. 

Thus, in Figure 4 the shift from firm A to firm B means an increase in allocative efficiency (distance 

AEA is larger then distance AEB), and further increase in allocative efficiency within the same level of 

technical efficiency is only possible up to firm Cs observation, for which both profit and allocative 

efficiency are at the maximum. Thus, which is most remarkable, the distance from the observation to 

the frontier serves as a measure of the allocative efficiency. 

To summarize, we have defined a new way of estimating allocative efficiency, specifically, this is the 

output-oriented distance to the frontier in profit-technical efficiency space. 
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3 Monte-Carlo simulation 

To analyze whether our new approach to measuring allocative efficiency yields valid estimates, we 

conducted several Monte-Carlo experiments. According to a micro-economic theory, a firm which 

chooses such a combination of inputs, thus their ratio is equal to the ratio of output elasticities of the 

respective inputs will be most profitable. When we speak of optimal combination of inputs, the 

original notion of allocative efficiency comes into play, and we suggest that the closer the ratio of 

inputs to the ratio of elasticities the larger a firm’s allocative efficiency will be. 

3.1 Empirical implementation of the traditional approach 

The traditional approach can be used when input prices are known. Under technology T such that  

( )




= xyxT :,  can produce  (4) 




y

We measure input-oriented technical efficiency as the greatest proportion that the inputs can be 

reduced and still produce the same outputs: 

( )




= xxyF i λλ :inf,  can still produce  (5) 




y

We employ the Data Envelopment Analysis (DEA) all the way through the empirical estimation. For 

K observations, M outputs, and inputs an estimate of the Farrell Input-Saving Measure of 

Technical Efficiency can be calculated by solving a linear programming problem for each observation 

N

j  ( ): Kj ,...,1=

( )








≥⋅≤⋅≥⋅== ∑ ∑
= =

0,,:min|,ˆˆ
1 1

k

K

k

K

k
jknkjkmk

i
jj zxxzyyzCxyFET λλ  (6) 

for  and Mm ,...,1= Nn ,...,1= . Note that superscript stands for input orientation while C  is the 

constant returns-to-scale. Other returns-to-scale are modeled adjusting process operating levels s 

(see Färe et al., (1994) for details). 

i

kz

When input prices and quantities are given we can calculate the total costs and the minimum attainable 

cost (solve linear programming problem) and then compute an estimate of cost efficiency for each 

observation j  ( ) as in equation (2): Kj ,...,1=
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( )
∑

∑ ∑∑
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= ==
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zxxzyyzxw
CwxyC

1

'
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''

1
0,,:min

|,,ˆ  (7) 

for  and Mm ,...,1= Nn ,...,1= . We refer to the residual of technical and cost efficiencies as Input 

Allocative Efficiency, which can be computed for each observation j  ( Kj ,...,1= ) as: 

( ) ( )
( )CxyF

CwxyC
CwxyEA

i
j

i
ji

j |,ˆ
|,,ˆ

|,,ˆ =  . (8) 

3.2 Empirical implementation of the new approach 

As mentioned above, the main virtue of the new approach is that we do not necessarily need input 

prices for measuring allocative efficiency. Technically, we need output-oriented distances to the 

frontier in the profit-technical efficiency space. We take advantage of the technical efficiency 

estimates (denoted by TE ) obtained as in equation (6) and profitability measure (denoted by Pr ) to 

calculate (solve linear programming problem) allocative efficiency for each observation j  

( ) as follows: Kj ,...,1=

( )








≥≤⋅≥== ∑ ∑
= =

0,,PrPr:max|Pr,ˆˆ ''

1 1

''''
k

K

k

K

k
jkkjkk

o
jj zTETEzzCTEFEA θθ . (9) 

3.3 Design of the Monte-Carlo experiments 

In each of the Monte-Carlo trials, we study a production process which uses two inputs to produce one 

output. Data for the ith observation in each Monte-Carlo experiment were generated using the 

following algorithm. 

(i) We chose output elasticities of two inputs to be 0.2 and 0.8; this ensures constant returns 

to scale. The optimal ratio of inputs, thus, is 4. 

(ii) Draw ( )uniform⋅+x λφ~ ; uniform on the interval (0;1). 1

(iii) Draw uniformr ~ ; uniform on the interval (0;8). This is meant to be an experimental 

ratio of used inputs. 

(iv) Set x 12 xr ⋅= .  

(v) Choose ε . In doing so, we allow the ratio of inputs in each Monte-Carlo trial to vary on 

the interval [ ]εε −8;  while keeping in mind that the optimal ratio is 4. Therefore, we 
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obtain enough variation of inefficient combinations of inputs, or in other words, enough 

variation of allocative inefficiency. 

(vi) Draw ( )2,0 uN σ+~u  and set ‘te_drawn’ equal to ( )u−exp . 

(vii) Generate output data assuming trans-log production function, which will contain 

inefficiency component:5  

drawntexxxxxxy _
2
18.02.0 2112

2
222

2
11121 +⋅⋅+⋅+⋅+⋅+⋅= γγγ . 

(viii) Draw price of input :1x ( )uniformw ⋅+ψϕ~1

12 ww

, uniform on the interval (0;1). The price 

of input is calculated as 2x ⋅= θ  –  we want to keep the ratio of input prices 

constant to have the isoquants parallel (recall Figure 2). 

(ix) Set profit as output (we set output price equal to 1) minus cost and this is divided by 

output. 

(x) DEA traditional allocative efficiency as in equation (8). 

(xi) DEA our measures of allocative efficiency using technical efficiency drawn in step (vi) as 

in equation (9). 

(xii) Solve for technical efficiency as in equation (6), and DEA our measure of allocative 

efficiency using these solved technical efficiency scores. 

(xiii) Calculate rank correlation coefficient between allocative efficiency estimates based on 

traditional and our approaches. 

(xiv) Repeat steps (i) through (xiii) L times. 

In each of our experiments we set 1=φ , 7=λ , 1=ϕ , 05.0=ψ , 01.011 =γ , 01.022 =γ and 

02.012 −=γ . In order to look at different variabilities of inappropriately chosen ratios of inputs, we 

set 5.0=ε , 1=ε , and 2=ε . With 2=ε , variability of allocative efficiency is expected to have been 

reduced considerably – range becomes (2;6); and vice versa, 5.0=ε  ensures very large variability – 

range increases to (0.5;7.5). We conduct three sets of experiments setting  to 0.0025, 0.025, and 

0.25; this ensures covering a plausible range of standard deviations of technical efficiency.6 In each 

experiment we ran L=500 Monte-Carlo trials.7 

2
uσ

                                                      

5 Since the DEA is deterministic, we do not incorporate a stochastic term in the Monte-Carlo trials. 
6 Using a different experiment, Greene (2005) obtains estimates of technical efficiency with standard deviations 
from 0.09 to 0.43. 
7 The simulation is programmed in SAS 9.1.3; computationally, one run with N=100, L=500 takes about 7 hours 
on a Pentium IV processor running at 3GHz. Thus, we defined relatively few parameter constellations in the 
performed experiment. 
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3.4 Results 

From tables 1 to 6 it is clearly seen that in all three cases the DEA estimates the drawn technical 

efficiency scores fairly accurately – the rank correlation coefficient (Corr4) is close to unity. This is an 

expected outcome since we do not assume a stochastic term in the production output generation (step 

(vii) of the experiment). The same argument applies to the rank correlation coefficient between 

allocative efficiency calculated in step (xi) and that calculated in step (xii) (Corr3). Thus, there is not 

much difference in using the true or the estimated technical efficiency in the new approach. However, 

what is of most interest to us are the rank correlation coefficients between allocative efficiency 

estimates from the traditional and our new approach (Corr1 and Corr2). Corr1 has been computed with 

the estimates of allocative efficiency based on ‘true’ technical efficiency while Corr2 has been 

computed with the estimates of allocative efficiency based on estimated values of technical efficiency. 

As previously mentioned, the rank correlation between these measures is quite high (Corr3). We argue 

that it is more appropriate to draw conclusions from Corr2 since we do not know the ‘true’ technical 

efficiency in practice. 

Table 1 
Rank correlations, 5.0=ε ,  100=N

2
uσ  

0.0025 0.025 0.25 

θ  0.75 1 1.25 0.75 1 1.25 0.75 1 1.25 

mean 0.8566 0.7375 0.6954 0.8608 0.7326 0.6942 0.8087 0.6879 0.6413 Corr1 

st.d 0.0442 0.0625 0.0677 0.0434 0.0621 0.0686 0.0649 0.0760 0.0772 

mean 0.8642 0.7485 0.7038 0.8695 0.7526 0.7115 0.8712 0.7885 0.7365 Corr2 

st.d 0.0416 0.0590 0.0663 0.0407 0.0589 0.0664 0.0469 0.0687 0.0818 

mean 0.9899 0.9880 0.9894 0.9915 0.9901 0.9895 0.9468 0.9419 0.9464 Corr3 

st.d 0.0194 0.0212 0.0188 0.0148 0.0159 0.0168 0.0531 0.0492 0.0397 

mean 0.8928 0.8937 0.8893 0.9524 0.9528 0.9560 0.9830 0.9816 0.9825 Corr4 

st.d 0.0409 0.0405 0.0423 0.0275 0.0268 0.0254 0.0124 0.0148 0.0141 

Notes: Corr1 is the rank correlation between allocative efficiency calculated in step (x) and that calculated in step 
(xi). Corr2 is the rank correlation between allocative efficiency calculated in step (x) and that calculated in step 
(xii). Corr3 is the rank correlation between allocative efficiency calculated in step (xi) and that calculated in step 
(xii). Corr4 is the rank correlation between technical efficiency calculated in equation (6) and that drawn in step 
(vi). 
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Table 2 
Rank correlations, 1=ε ,  100=N

2
uσ  

0.0025 0.025 0.25 

θ  0.75 1 1.25 0.75 1 1.25 0.75 1 1.25 

mean 0.8569 0.7043 0.6192 0.8519 0.6991 0.6053 0.7851 0.6381 0.5476 Corr1 

st.d 0.0412 0.0653 0.0744 0.0429 0.0685 0.0779 0.0706 0.0803 0.0838 

mean 0.8611 0.7111 0.6264 0.8598 0.7197 0.6263 0.8470 0.7481 0.6709 Corr2 

st.d 0.0393 0.0641 0.0722 0.0405 0.0654 0.0771 0.0480 0.0753 0.0944 

mean 0.9928 0.9922 0.9919 0.9912 0.9903 0.9889 0.9469 0.9356 0.9384 Corr3 

st.d 0.0163 0.0152 0.0157 0.0149 0.0146 0.0170 0.0530 0.0542 0.0419 

mean 0.9183 0.9209 0.9196 0.9590 0.9633 0.9626 0.9874 0.9870 0.9869 Corr4 

st.d 0.0341 0.0344 0.0353 0.0278 0.0248 0.0254 0.0111 0.0111 0.0113 

Notes from Table 1 apply. 

 

Table 3 
Rank correlations, 2=ε ,  100=N

2
uσ  

0.0025 0.025 0.25 

θ  0.75 1 1.25 0.75 1 1.25 0.75 1 1.25 

mean 0.8140 0.5782 0.3386 0.8042 0.5561 0.3168 0.6841 0.4515 0.2602 Corr1 
st.d 0.0453 0.0762 0.0835 0.0438 0.0794 0.0928 0.1020 0.1063 0.0984 

mean 0.8155 0.5837 0.3448 0.8091 0.5750 0.3498 0.7638 0.6048 0.4864 Corr2 
st.d 0.0437 0.0738 0.0828 0.0425 0.0791 0.0937 0.0609 0.0992 0.1294 

mean 0.9939 0.9948 0.9938 0.9917 0.9904 0.9878 0.9265 0.9117 0.9049 Corr3 
st.d 0.0144 0.0124 0.0130 0.0152 0.0156 0.0202 0.0765 0.0838 0.0652 

mean 0.9455 0.9449 0.9443 0.9749 0.9743 0.9731 0.9910 0.9908 0.9910 Corr4 
st.d 0.0283 0.0300 0.0300 0.0202 0.0197 0.0206 0.0090 0.0089 0.0075 

Notes from Table 1 apply. 

 

The first observation worth mentioning is that when variability of sub-optimal ratios decreases (ε  

increases): our method is less successful in yielding similar estimates as the traditional one. Hence, our 

method deteriorates in terms of exactness when ‘true’ allocative efficiency is not very heterogeneous. 

Furthermore, the results show that our approach is robust with respect to variance of the drawn 

technical efficiency, . Looking closely at correspondent ratios, one can notice that for the same 2
uσ

θ ’s Corr2 is increasing when  increases, whereas for other 2
uσ θ ’s Corr2 decreases when we increase 

; however, the changes are minor. The same argument applies to the standard deviation of Corr2. 2
uσ
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This implies that for different levels of  distributions of Corr2 are virtually the same. The skewness 

of the variable Corr2 is always negative and is about —0.6 which means that the distribution of Corr2 

is skewed to the left and more values are clustered to the right of the mean. Kurtosis is about 0.6, but it 

varies more than the skewness; it increases with increase of . Kernel density estimates of Corr2 for 

the case 

2
uσ

2
uσ

75.0=θ are shown in Figure 5. Note that we use the Gaussian kernel function and the 

Sheather and Jones (1991) rule to determine the “optimal” bandwidth. 

500
Figure 5 
Estimates of Sampling Densities of Corr2 ( 75.0=θ , =L , 5.0=ε , 1=ε  and 2=ε ) 

   

 

 

Note: in each panel the vertical dashed line is the mean value of the corresponding density. 
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The results are better when the sample size is increased to 400 (Tables 4-6). However, the 

improvement does not change our main conclusions based on the experiments with sample size 100. 

As expected, standard deviations of rank coefficients are almost halved when the sample size is 

quadrupled. 

Table 4 
Rank correlations, 5.0=ε ,  400=N

2
uσ  

0.0025 0.025 0.25 

θ  0.75 1 1.25 0.75 1 1.25 0.75 1 1.25 

mean 0.8812 0.7551 0.7132 0.8810 0.7543 0.7126 0.8585 0.7297 0.6750 Corr1 

st.d 0.0182 0.0288 0.0311 0.0173 0.0286 0.0297 0.0232 0.0308 0.0334 

mean 0.8824 0.7567 0.7144 0.8828 0.7605 0.7173 0.8773 0.7675 0.7114 Corr2 

st.d 0.0176 0.0287 0.0307 0.0171 0.0281 0.0295 0.0211 0.0418 0.0412 

mean 0.9987 0.9990 0.9987 0.9988 0.9985 0.9986 0.9887 0.9856 0.9870 Corr3 

st.d 0.0035 0.0031 0.0036 0.0028 0.0030 0.0023 0.0122 0.0215 0.0095 

mean 0.9726 0.9730 0.9733 0.9909 0.9905 0.9904 0.9968 0.9969 0.9968 Corr4 

st.d 0.0096 0.0106 0.0099 0.0053 0.0063 0.0060 0.0026 0.0025 0.0027 

Notes from Table 1 apply. 

 

Table 5 
Rank correlations, 1=ε ,  400=N

2
uσ  

0.0025 0.025 0.25 

θ  0.75 1 1.25 0.75 1 1.25 0.75 1 1.25 

mean 0.8760 0.7169 0.6362 0.8734 0.7185 0.6309 0.8363 0.6754 0.5798 Corr1 

st.d 0.0178 0.0334 0.0350 0.0186 0.0316 0.0370 0.0240 0.0350 0.0402 

mean 0.8766 0.7185 0.6375 0.8748 0.7247 0.6370 0.8547 0.7185 0.6257 Corr2 

st.d 0.0176 0.0333 0.0349 0.0185 0.0313 0.0371 0.0214 0.0395 0.0501 

mean 0.9992 0.9991 0.9992 0.9987 0.9984 0.9984 0.9882 0.9845 0.9853 Corr3 

st.d 0.0026 0.0028 0.0025 0.0029 0.0031 0.0031 0.0139 0.0144 0.0104 

mean 0.9814 0.9809 0.9821 0.9930 0.9932 0.9931 0.9978 0.9978 0.9977 Corr4 

st.d 0.0086 0.0086 0.0085 0.0049 0.0047 0.0049 0.0020 0.0019 0.0020 

Notes from Table 1 apply. 
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Table 6 
Rank correlations, 2=ε ,  400=N

2
uσ  

0.0025 0.025 0.25 

θ  0.75 1 1.25 0.75 1 1.25 0.75 1 1.25 

mean 0.8337 0.5911 0.3410 0.8269 0.5692 0.3253 0.7463 0.4934 0.2858 Corr1 

st.d 0.0195 0.0361 0.0455 0.0205 0.0395 0.0470 0.0359 0.0458 0.0476 

mean 0.8339 0.5924 0.3422 0.8271 0.5752 0.3353 0.7661 0.5512 0.3780 Corr2 

st.d 0.0192 0.0362 0.0455 0.0206 0.0393 0.0470 0.0302 0.0485 0.0734 

mean 0.9994 0.9994 0.9995 0.9990 0.9986 0.9981 0.9840 0.9777 0.9754 Corr3 

st.d 0.0025 0.0022 0.0017 0.0021 0.0028 0.0037 0.0175 0.0227 0.0195 

mean 0.9884 0.9882 0.9879 0.9955 0.9955 0.9957 0.9985 0.9985 0.9985 Corr4 

st.d 0.0066 0.0071 0.0072 0.0037 0.0037 0.0033 0.0015 0.0014 0.0015 

Notes from Table 1 apply. 

 

Results of one run8 (sample size 500) are summarized in Figure 6; note optimal ratio of inputs is 

shown by the vertical-dashed line in each panel. Our methodology almost completely repeats the trend 

of the traditional approach for 5.0=ε  which is backed by a high correlation coefficient in Tables 1 

and 4; as ε  becomes larger Figure 6 suggests that our methodology is less able to predicts allocative 

efficiency. However, it is most remarkable that our methodology is in line with the traditional 

approach. 

                                                      

8 We repeated this experiment many times and the general picture was always similar; however, due to space 
constraints it is not possible to present all results here. 
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Figure 6 
Allocative efficiency calculated using traditional and new approaches plotted against ratio of 
expenditure shares,  (1122 / xwxw 75.0=θ , 400=N , 5.0=ε , 1=ε  and 2=ε ) 
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Figure 6 (continued) 
Allocative efficiency calculated using traditional and new approaches plotted against ratio of 
expenditure shares,  (1122 / xwxw 75.0=θ , 400=N , 5.0=ε , 1=ε  and 2=ε ) 
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Figure 6 (continued) 
Allocative efficiency calculated using traditional and new approaches plotted against ratio of 
expenditure shares,  (1122 / xwxw 75.0=θ , 400=N , 5.0=ε , 1=ε  and 2=ε ) 
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4 Empirical illustration of the new approach 

4.1 Data 

To illustrate the usefulness of the new approach for measuring allocative efficiency when input prices 

are not available, we apply it to micro-data from the German Cost Structure Census9 of manufacturing 

for the year 2003. Our sample comprises only enterprises from the chemical industry. The measure of 

output is gross production. This mainly consists of the turnover and the net-change of the stock of the 

final products.10  

The Cost Structure Census contains information for a number of input categories.11 These categories 

are payroll, employers’ contribution to the social security system, fringe benefits, expenditure for 

material inputs, self-provided equipment, and goods for resale, for energy, for external wage-work, 

external maintenance and repair, tax depreciation of fixed assets, subsidies, rents and leases, insurance 

costs, sales tax, other taxes and public fees, interest on outside capital as well as “other” costs such as 

license fees, bank charges and postage, or expenses for marketing and transport. 

Some of the cost categories which include expenditures for external wage-work and external 

maintenance and repair contain a relatively high share of reported zero values because many firms do 

not utilize these types of inputs. Such zeros make the firms incomparable and, thus, might bias the 

DEA results. In order to reduce the number of reported zero input quantities, we aggregated the inputs 

into the following categories: (i) material inputs (intermediate material consumption plus commodity 

inputs), (ii) labor compensation (salaries and wages plus employer's social insurance contributions), 

(iii) energy consumption, (iv) user cost of capital (depreciation plus rents and leases), (v) external 

services (e.g., repair costs and external wage-work), and (vi) “other” inputs related to production (e.g., 

transportation services, consulting, or marketing).  

                                                      

9 Aggregate figures are published annually in Fachserie 4, Reihe 4.3 of Kostenstrukturerhebung im 
Verarbeitenden Gewerbe (various years). The Cost Structure Census is gathered and compiled by the German 
Federal Statistical Office (Statistisches Bundesamt). Enterprises are legally obliged to respond to the Cost 
Structure Census; hence, missing observations due to non-response are precluded. The survey comprises all 
large German manufacturing enterprises which have 500 or more employees. Enterprises with 20-499 employees 
are included as a random sample that is representative for this size category in a particular industry. For more 
information about cost structure census surveys in Germany, we refer the reader to Fritsch et al., (2004). 
10 We do not include turnover from activities that are classified as miscellaneous such as license fees, 
commissions, rents, leasing etc. because this kind of revenue cannot adequately be explained by the means of a 
production function. 
11 Though the production theory framework requires real quantities, using expenditures as proxies for inputs in 
the production function is quite common in the literature (see e.g., Paul et al., (2004), Paul and Nehring (2005)). 
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Profits are computed as one minus the total costs divided by the turnover. Since the DEA requires 

positive values, we standardize the profit measure to the interval (0,1) by adding the minimum profit 

and dividing this by the range of profits. 

4.2 Results 

Figure 7 shows profitability plotted against estimated technical efficiency. Remarkably, a frontier, as 

could be theoretically expected from Proposition 1, indeed exists. Another observation worth 

mentioning is that within a certain level of technical efficiency (i) profitability greatly varies 

suggesting variation in allocative efficiency (as firms A, B, and C in Proposition 3) and (ii) profits are 

bounded from above. Moreover, the frontier is positively sloped as was stated in the first theoretical 

part of this paper. Interestingly, Figure 7 suggests that even with 100 percent technical efficiency 

enterprises can be allocatively inefficient.  

Figure 7 
Profitability plotted against estimated technical efficiency scores for about 900 German enterprises 
from the chemical industry 

 

We calculated technical efficiency scores as in equation (6). Table 7, which contains descriptive 

statistics of the estimated technical efficiencies, suggests that an average German chemical 

manufacturing enterprise is fairly inefficient. The median of technical efficiency implies that half of 

firms have an efficiency of 68 percent or less. The scores for allocative efficiency are obtained solving 

the linear programming problem as in equation (9). Descriptive statistics on allocative efficiency are 

also presented in Table 7. At a first glance, the mean and the variation of allocative efficiency appear 

to be strikingly similar to that of technical efficiency. However, the distribution of allocative 
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efficiency is more symmetric and has a lower variance compared to the technical efficiency 

distribution. 

Table 7 
Descriptive statistics of technical and allocative efficiency, N=905 

Efficiency mean st.d. coef. of 
var. 

skew-
ess min 10th 

perc. 
25th 

perc. median 75th 
perc. 

90th 
perc 

Technical 0.6891 0.1507 0.2138 0.4399 0.3253 0.5287 0.5911 0.6817 0.8033 1.0000 

Allocative 0.6963 0.1181 0.1696 -0.0018 0.3102 0.5360 0.6084 0.6974 0.7800 0.8523 

 

Kernel estimated density of technical efficiency is shown in the left panel of Figure 8; we use 

Gaussian kernel function and the Sheather and Jones (1991) rule to determine the “optimal” 

bandwidth. Although the number of firms is quite large, we analyze the sensitivity of efficiency scores 

relative to the sampling variations of the estimated frontier in an additional step. Consequently, we 

perform the homogeneous bootstrap as described by Simar and Wilson (1998). The geometric mean of 

the bias-corrected efficiency scores is 0.6066, which is on average 0.0886 lower than that estimated 

via the DEA; the mean variance of bias is 0.0036. In comparison to other studies, however, the bias of 

estimates and its standard error are rather low, thereby indicating a robustness of the technical 

efficiency scores. 

Figure 8 
Estimates of sampling densities of technical and allocative efficiency scores 
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5 Conclusions 

Allocative inefficiency, introduced in the seminal work by Farrell (1957), has important implications 

from the perspective of the firm. How much could firms increase their profits – given a certain output 

they produce – just by reallocating resources? On the other hand, the existing empirical evidence on 

the extent and determinants of allocative efficiency within and across industries is rather limited. The 

main reason is that the traditional approach to assessing allocative efficiency requires input prices. 

However, input prices are rarely accessible, which per se, precludes the analysis of the allocative 

efficiency with non-parametric approach. 

In this paper, a new method is developed which enables calculating allocative efficiency without 

knowing input prices. This indicator is derived as the Farrell output-oriented distance to the frontier in 

profit-technical efficiency space. Thus, besides input and output quantities, only the profits of the firms 

are needed for calculating allocative efficiency. A simple Monte-Carlo experiment was performed to 

check the validity of the new methodology. We obtain high-rank correlation coefficients between 

allocative efficiency estimates based on both traditional and new approaches for different parameter 

constellations. Moreover, the new approach proved to be quite robust with respect to variance of true 

technical efficiency. Finally, we applied the new approach to a sample of about 900 enterprises in the 

German chemical industry. The results suggest a large variation of allocative efficiency even for 

technically efficient enterprises. Thus, the example highlights the usefulness of our method for 

obtaining allocative efficiency measures when input prices are not available. 
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