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Efficiency of New Ethanol Plants in the U.S. North-Central Region 

Juan P Sesmero, Richard K Perrin and Lilyan E Fulginiti 

Abstract 

Continuation of policy support for the U.S. corn ethanol industry will depend upon the 

greenhouse gas (GHG) effects of the industry, and its economic viability. The 

environmental and economic performance of ethanol plants is determined by the 

productivity of new technologies and, in addition, by the efficiency with which 

technologies are used (technical efficiency) and output and inputs are combined 

(economic efficiency). This study estimates the technical and economic efficiency of 

seven recently‐constructed ethanol plants in the North Central region of the US during 

2006-2007.  It uses nonparametric data envelopment analysis (DEA) and investigates 

both the drivers and implications of inefficiency differentials. In terms of drivers, results 

are consistent with the hypothesis that economic (profit) efficiency of productive units 

tends to be positively correlated with their size. Regarding implications results show that, 

on average, the maximum feasible reduction in Greenhouse Gases (GHG) emissions that 

can be achieved by these ethanol plants, when comparing across plants, is very limited 

(7,769 milligrams). We calculate that, by eliminating inefficiency, plants can achieve a 

17% increase in returns over operating costs per gallon of ethanol produced, or   about 12 

cents a gallon. Therefore, plants can potentially increase their returns improving their 

economic viability. By enhancing economic viability, public policies can profoundly 

affect survival of this industry. 
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JEL Classification: 
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Introduction 

The U.S. corn ethanol industry has benefited from government support due to its 

potential to achieve a rather wide set of goals: mitigating emissions of greenhouse gases 

(GHG), achieving energy security (diversifying energy sources), improving farm incomes 

and fostering rural development among others. Continuation of policy support, however, 

is being debated due to doubts about the direct and indirect GHG effects of the industry, 

as well as its economic viability. measured as the level and sensitivity of profits to 

changes in corn, ethanol and energy prices. Moreover, the capacity of the industry to 

reduce overall GHG emissions will also determine the opportunities opened to it in future 

carbon markets. 

The economic viability of plants depends on their profitability. The profitability of 

plants is captured by returns over operating costs; i.e. the difference between revenue and 

processing and feedstock costs which is, in turn, driven by differences in prices paid for 

inputs and received for outputs across plants. Given prices, the input-output combination 

achieved by the plants will depend both on their technical and their allocative 

performance. Technical performance of plants is usually expressed in terms of input 

requirements per unit of output; i.e. how many physical units of each input are used per 

physical unit of output produced. Allocative performance is measured by the potential 

increase in profits that can be obtained by changing the input-output mix. 

In addition we are interested in the environmental performance of the industry.  This  

aspect relates to the industry’s effect on GHG emissions. Environmental efficiency 

depends on corn net of byproduct yield and on energy use per gallon of ethanol produced.  
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Relative to technical efficiency, environmental efficiency focuses on a subset of all inputs 

used in production.  

In rapidly evolving industries (like the ethanol industry) it is relatively common to 

observe significant dispersion across production units both in terms of technical, 

environmental and economic performance. This is a very important aspect of the 

industry’s evolution since if performance differences are due to factors that are out of the 

managers’ control, like market conditions and differences in local regulations, then there 

would be little room for improvement and these efficiency calculations are not 

informative.  

Previous studies have addressed the issue of technical and economic performance of 

ethanol plants. Using engineering data, McAloon et al. (2000) and Kwiatkowski et al. 

(2006) measuredconsiderable improvement in plant efficiency between 2000 and 2006. 

Shapouri, et al. (2005) reported input requirements and cost data based on a USDA-

sponsored survey of plants for the year 2002. Wang et al. (2007) and Plevin et al. (2008), 

reported results based on spreadsheet models of the industry (GREET and BEACCON, 

respectively.) Pimentel et al. (2005) and Eidman (2007) reported average performances 

of plants although they do not clearly indicate the sources of their estimates. Finally 

Perrin et al. (2009) reported results on input requirements, operating costs, and operating 

revenues based on a survey of seven dry-grind plants in the Midwest during 2006 and 

2007 and this is the source of the data used in this study. 

With the exception of Shapouri et al. (2005) and Perrin et al. (2009) all of these 

studies reported values corresponding to the industry’s average plant which, as argued 

before, are not necessarily informative of the overall industry’s situation and evolution, in 
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particular when dispersion across plants is important. Regarding dispersion, Shapouri et 

al. (2005) conducted a survey of 21 dry-mill ethanol plants and found significant 

dispersion across them. Given that the only significant restriction in sampling was that 

the plants had to be dry-mill,  the cause of dispersion could not be isolated asthey can be 

attributed to many other factors.  It is then impossible to isolate the impact of the 

technology used, the size and age of the plant fromthose under the control of the 

manager. In fact this paper argues that dispersion in ethanol yield per bushel of corn was 

directly related to factors such asthe plant’s efficiency, the plant’s age, types of 

equipment, and the amount of fermentable starch in the corn kernels not under the control 

of the manager as well as those factors depend on managerial ability. 

In line with Shapouri et al. (2005), Perrin et al. (2009) also found significant 

dispersion of returns over operating costs across plants in the sample. However, in 

contrast to Shapouri et al. (2005), this study employed much more restrictive sampling 

criteria (discussed below) which yielded a modern and technologically homogenous 

sample of plants. Therefore, this study will exploit the survey initially reported and 

discussed in Perrin et al. (2009) to isolate the effects on performance dispersion of 

efficiency-related sources and determine potential for improvement in the industry. 

To sum up, dispersion in economic performance across plants may imply that there is 

potential for improvement in the industry which may enhance its economic viability. We 

take advantage of the new plant level data provided in Perrin et al. and add to that study 

by examining the potential improvements in efficiency -environmentally, technically and 

allocativelly- that could indicate a path to improved economic viability.. This is important 

given studies that have been influencing the policy debate about nthe merits of the 
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ethanol industry used input requirements consistent with obsolete technologies and refer 

to the performance of an ‘average plant.’. In an attempt to give updated and in depth 

information this study looks at seven recently‐constructed ethanol plants in the Mid-West 

and takes advantage of information contained in their differences to infer the potential for 

improved performance.  It does so by estimating technical, environmental, and allocative 

efficiencies of each production unit to compare with that of the best performers in an 

effort to isolate potential managerial improvments.  

We first characterize the plants surveyed, and conduct an analysis of technical 

efficiency of ethanol plants. We then investigate the potential link between the size of 

productive units and their efficiency due to returns to scale.  We then calculate the 

maximum feasible reduction of GHG emissions.  Finally, to investigate the industry’s 

potential economic viability, we report results on allocative efficiency of plants and 

calculate the maximum feasible increase in returns over operating costs implied by 

elimination of both technical, environmental and allocative inefficiencies. 

 

The surveyed plants 

 The sampling criteria in Perrin et al. were as follows. The plant must have started 

production (or been updated) after mid-2005 with a capacity of about 50,000 million 

gallons per year or more, so as to represent recent technology. Plants must have a 

minimum of three quarters of operating data, starting at least one month after the plant 

opened. Finally, the plants should be located in or near small towns of approximately 

10,000 or less, to facilitate companion studies of the impact of the plants on rural 
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communities within the twelve-state North Central region of the U.S. Eighteen plants met 

these criteria but only seven accepted the invitation to participate. 

Table 1 presents the characteristics of the plants surveyed for this study.  Seven 

dry-grind ethanol plants were surveyed from north-central Midwest states.  The plants 

produced an average rate of 53.1 million gallons of ethanol per year, with a range from 

42.5 million gallons per year to 88.1 million gallons per year.  The period surveyed began 

in the third quarter of 2006 and lasted until the fourth quarter of 2007 (six consecutive 

quarters).  In addition, so as to eliminate startup inefficiencies from our results, all but 

one of the plants was online prior to the start of the 2006 to 2007 survey period.  The 

Michigan plant was the exception, having come online in the first quarter of the survey 

period, the third quarter of 2006.  For this plant, we included only data from the last five 

quarters, ignoring the startup quarter. 

 Table 1 also characterizes the plants in terms of number of employees.  Our 

survey plants employed an average of 39.6 employees.  Furthermore, plants could be 

differentiated by how much byproduct they sold as dry distillers grains (DDGs) as 

compared to modified wet distillers grains (MWDGs).  We found the plants varied 

significantly in this variable, averaging 54% of byproduct sold as DDGs, but ranging 

from one plant that sold absolutely no byproduct as DDGs to another plant that sold 

nearly all byproduct (97%) as DDGs. 

 Finally, Table 1 briefly characterizes plant marketing strategies.  In purchasing 

input feedstock, five of the six plants purchased corn via customer contracts.  Similarly, 

in selling ethanol, five of the six plants used third parties or agents.  Byproduct marketing 

across plants displayed a higher degree of variance.  Marketing of DDGs was split fairly 
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evenly between spot markets and third parties/agents.  An even higher variability was 

observed for MWDGs, where no one marketing strategy (spot market, customer contract, 

or third party/agent) was significantly more prevalent across plants than any other. 

Our basic observations in this study are not plants per se, but instead each observation 

corresponds to a plant in a given quarter; so two quarters of the same plant are considered 

as two different observations and two plants in the same quarter are also considered as 

different observations. Our sample is not balanced (i.e. we don’t have observations for all 

plants in all quarters) and the number of observations per quarter can also be found in 

Table 1 but, in total, they amount to 34 observations. Following the literature on DEA 

efficiency analysis, we will refer to the observations as decision making units (DMUs). 

 

Technical Efficiency and Environmental Performance 

We define technical inefficiency by how much the decision making units (DMUs) can 

increase outputs and reduce inputs simultaneously.   We measure that inefficiency as the 

difference between a given DMU’s input-output quantities and the quantities achieved by 

the DMU’s with the “best practice” in the sample. It is important to note, however, that 

what is attributed to “inefficiency” could be the result of differences in the 

circumstances/environment of these plants which have impacts on the input-output 

quantities. These could include different regulation in the different states/counties. 

 Environmental performance could be defined in many ways depending on the 

which factors are consider critical for the environment at that particular time and location. 

It could be captured by the pressure that plants put on water availability, on marginal 

land, on the use of chemical inputs and water pollution, on local air pollution, on 
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industrial waste, on GHG emissions, and the like. Since continuation of policy support 

will be defined specifically on the basis of life-cycle emissions of GHG, we will use this 

variable as the metric to evaluate environmental performance. Moreover, GHG emissions 

are determined by the amounts of corn (net of byproducts produced), natural gas, and 

electricity used by plants. The amount of corn used by plants is important because of the 

emissions released during the production process of the crop. Byproducts produced 

(distillers’ dried grains, DGS) replace corn used in animal diets and so it must be 

recognized as a “credit” in life-cycle analysis as it prevents emissions that would 

otherwise have occurred from the production of corn used as feed. The use of electricity 

is also a source of GHG emissions from a life cycle perspective since it is mainly 

produced from burning fossil fuels. Finally the use by the plant of natural gas for heat is 

an additional direct source of GHG emissions. Therefore if there is potential to reduce 

natural gas and corn use and increase byproducts per gallon of ethanol produced, then 

there is potential for reducing the life-cycle GHG emissions from the ethanol industry. 

With a given technology, a reduction in inputs and an increase in byproducts per gallon 

of ethanol produced is only possible through elimination of technical inefficiencies.  

 

Method and Data 

This study estimates the technical efficiency of seven recently‐constructed ethanol 

plants in the North Central region of the US during 2006-2007 using data from Perrin et 

al.  Nonparametric, data envelopment analysis (DEA) is the method used.  
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To illustrate the methodology used in this paper, let us assume we have a sample of 

 DMUs. Each DMU produces  outputs using  inputs. Therefore the data set 

consists of a matrix 3 of output observations and a matrix 4 of input observations. 

A production technology transforming a vector of  inputs  

into a vector of  outputs  can be represented by the input 

correspondence and the graph of the technology. The input correspondence of the 

technology, denoted by , is the collection of all input vectors  that yield at 

least output vector . Therefore the input correspondence maps outputs  

into subsets  of inputs, i.e. . Moreover, the graph of a given 

technology is defined as the collection of all feasible input-output vectors, i.e. 

. Figure 1 illustrates a graph representation of technology 

for the case of one output and one input. The graph ( ) in this case is the area below 

the line . 

 

                                                
3  is an output matrix in which each column shows levels of the  outputs produced by the  
DMU. 
4  is an  input matrix where each column shows levels of the  inputs used by the  DMU. 
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Figure 1. Graph of a one-input one-output technology 

 

We compute efficiency by calculating, simultaneously, the maximum feasible 

expansion in outputs and shrinkage in inputs relative to the graph representation of 

plants’ technological possibilities. The inefficiency of a DMU is calculated as the 

distance from that DMU’s observation to the frontier of the graph. This distance will 

depend both upon the direction in which we approach the frontier from the observation 

and the characteristics of the surface of the graph. We will discuss the determinants of the 

surface of the graph now and will address the direction of the change later.  

The surface of the graph depends upon the behavior of the technology under 

proportional changes in the size of the technology and also under changes in the mix of 

inputs and outputs. The former is captured by the notion of returns to scale and the later 

by disposability of inputs and outputs. Returns to scale determine whether a proportional 
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increase in outputs is feasible after an increase in all inputs in the same proportion. 

Disposability, on the other hand, determines whether the sum of inputs from two DMUs 

can produce the sum of their outputs.  We will assume, throughout the paper that the 

technology displays strong disposability which means that the sum of inputs of two 

observations in the data can produce the sum of their outputs.  

Since they will be used later for efficiency computation, we will discuss definitions of 

the graph under three types of returns to scale: constant, non-increasing and variable 

returns to scale. 5 

 

The combination of returns to scale and disposability determines the characteristics of 

the surface of the graph but, as argued before, efficiency also depends upon the direction 

in which we approach the frontier from the observed input-output combination. As Figure 

1 shows for a constant returns to scale technology, the  production unit could expand 

outputs and reduce inputs in many directions and reach the frontier of the graph at any 

point within the segment . The maximum equiproportionate expansion in outputs and 

reduction in inputs feasible for the  production unit yields the hyperbolic movement 

from point  to point C illustrated in figure 1. This distance is called the graph 

measure of technical efficiency and can be stated, for a general technology (i.e. without 

imposing returns to scale and disposability), as: 

  (4) 

                                                
5 For a more detailed discussion on different types of disposability and returns to scale see Färe et al. 
(1994). 
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When there is more than one output and more than one input, efficiency can also be 

measured as maximum feasible shrinkage and expansion of some but not all inputs and 

outputs used and produced by the DMU (e.g. reductions in corn and natural gas, and 

increases in ethanol assuming all other inputs and byproducts constant.) This measure is 

called a sub-vector graph-efficiency measure.  

For a technical definition suppose we can decompose the output matrix  into two 

subsets: a subset of outputs that we want to expand  and a subset that we want to 

keep fixed  so that . Moreover, suppose we can also partition the 

input matrix  into variable  and fixed  inputs so that .  

In line with these decompositions we will denote the sub-vectors of inputs as 

 and of outputs as   where  is the subset of inputs that we want 

to contract and  is the subset of outputs that we want to expand. Then we apply the 

hyperbolic measure defined in (4) to the subsets of inputs and outputs that we want to 

contract and expand respectively. A technical definition of sub-vector graph efficiency is: 

  (5) 

Using the hyperbolic graph-efficiency method, we measure the productive activity of 

ethanol plants producing three outputs (ethanol, dry DGS, and wet DGS) and using eight 

inputs (corn, natural gas, electricity, labor, denaturant, other chemicals, water and waste, 

and other processing costs.)  The vector of netputs6 with respect to which we measure 

efficiency depends upon the goal of the study. First, we are interested in environmental 

and profit efficiency of plants which requires that we simultaneously adjust input and 

                                                
6 In the context of production, a netput is a quantity that is positive if the quantity is output by the 
production process and negative if it is an input to the production process 
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output quantities.7 When “too many” inputs and outputs are allowed to vary, often, the 

algorithm yields a high number of efficient observations due to a dimensionality 

constraint. So, ideally, we would want to include those netputs that are most important 

both for GHG emissions and profits. As corn, energy, and electricity amount to about 

85% of total operating costs of plants and as they are also, the most important drivers of 

direct GHG emissions from the ethanol industry, they need to be included in the 

efficiency measure if this is to be meaningful. Byproducts are produced jointly with 

ethanol and are important for GHG emissions and as a source of revenue for plants. 

Ethanol is the main source of revenue for these plants. Therefore, all three outputs are 

included in the efficiency measure. 

 

 

Technical Efficiency 

We follow Färe et al. and calculate here sub-vector hyperbolic graph-efficiency for all 

34 observations in our sample. We start by calculating efficiency assuming a constant 

returns to scale technology and we will later calculate this measure for a variable returns 

to scale technology. The sub-vector graph-efficiency of a constant return to scale, strong 

disposability technology can be defined as: 

 (6) 

The measure in (6) can be mathematically implemented through the following non-

linear programming problem: 

                                                
7 This is obvious for profit efficiency but requires some explanation for environmental efficiency. The level 
of (life-cycle) GHG emissions from ethanol plants depends not only on inputs but also on the amount of 
byproducts produced since these receive “credits” as they replace feed corn. 
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      (7) 

We run program (7) for four different combinations of input-output sub-vectors. We 

will now give justification for each combination and denote their notation:  

1. All outputs (ethanol, dry byproduct, and wet byproduct) with corn, gas and 

electricity. As argued before including all inputs may create dimensionality 

problems 8 and hence only corn, gas and electricity were included. These three 

categories are the main drivers of both plants’ costs and GHG emissions.  

2.  All outputs with corn and natural gas. Since electricity contributes less than 

corn and gas to both cost and GHG emissions we exclude it to check 

sensitivity of the results with the previous sub-vector to dimensionality 

constraints. 

3. Byproducts with corn, gas and electricity. This sub-vector is especially 

considered for evaluation of environmental performance of plants. As we will 

discuss in more detail below, potential improvements of DMUs in terms of 

GHG emissions will depend upon maximum feasible shrinkage of corn, gas 

and electricity simultaneously with maximum feasible expansion of 

byproducts.  

                                                
8 In fact efficiency indexes were calculated for all inputs and outputs and we found a very high proportion 
of efficient units as a result. 
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4. Byproducts with corn and natural gas. We exclude electricity to check 

sensitivity of the results in sub-vector 3 to dimensionality constraints. 

The reader may note that we have not included a sub-vector consisting of ethanol and 

inputs excluding byproducts. This is due to the technological features of ethanol plants. 

Since an important portion of natural gas and electricity is used for drying byproducts, 

excluding byproducts and including gas and electricity would confound a greater use of 

these inputs (for a given ethanol production) as inefficiency when it is most likely due to 

an increase in production of dried byproduct. 

Although hyperbolic measures of efficiency are usually calculated through linear 

programs, when only sub-vectors of both inputs and outputs are involved there is no way 

to linearize problem (7). Consequently these four sub-vector hyperbolic measures of 

technical efficiency were calculated through a non-linear program implemented with the 

FMINCON procedure in MATLAB. Results are reported in Table 2 for all 34 

observations in our sample. Table 3 summarizes those results by reporting descriptive 

statistics. 

A hyperbolic efficiency index of 0.9 means, that there is room for a reduction of 10% 

in the amount of inputs used as reference and an increase in 10% in outputs used as 

reference, while keeping all other inputs and outputs constant.  

In particular, the “Corn-Gas-Electricity-Outputs” case is measured as the maximum 

equiproportional shrinkage of all three inputs and expansion of all three outputs that can 

be achieved by a given DMU, assuming all other inputs and outputs constant. In the same 

way “Corn-Gas-Output” assumes shrinkage of those two particular inputs and expansion 

of all three outputs with everything else fixed. “Corn-Gas-Electricity-Byproduct” 
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calculates simultaneous reduction in the three inputs and expansion of byproducts 

keeping ethanol, and all other inputs and outputs constant.  “Corn-Gas-Byproduct” allows 

for reduction of corn and gas and expansion of byproducts keeping ethanol, electricity 

and all other inputs and outputs constant.  

An interesting point to note from Table 3 is that DMUs could have, on average, 

simultaneously reduced corn, gas and electricity and increased ethanol and byproducts 

(dry and wet) by 0.8%. On the other hand, the sample does not show much variability 

across DMUs (standard deviation of 0.018) and a rather large part of the sample can be 

classified as technically efficient (74%) which implies that only 26% of DMUs show 

potential for technical improvement. Finally, excluding ethanol and electricity from the 

reference does not change the results significantly. 

 

Environmental Performance 

It has been argued above that continuation of political support will depend upon the 

environmental performance of the ethanol industry measured by life-cycle GHG 

emissions. We do not have direct observations on emissions but rather we calculate GHG 

levels using the Biofuels Energy Systems Simulator9 (BESS).  

Among a number of existing models that perform life cycle energy and GHG 

emissions assessments of biofuel systems (Wang et al. 2007; Farrell et al. 2006), we use 

BESS because it allows modification of all input parameters This is a very convenient 

feature of the software since our goal is to calculate the GHG emissions level of DMUs in 

                                                
9 BESS is a software developed by a team of specialists in the Agronomy Department at the University of 
Nebraska, Lincoln.  http://www.bess.unl.edu/ 
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the sample in Perrin et al. that provided input requirements and other characteristics of 

technologically newer plants.  

The BESS software uses a linear relationship between inputs (corn, gas, and 

electricity), byproducts, and GHG10 emissions. The linear relationship in BESS, 

developed and simulated by Liska et al. is: 

 (8) 

where  and  are kilograms of corn used and byproducts produced 

respectively,  represents megajoules of gas used for production of ethanol, 

 is total kilowatt hours of electricity used for production and, 

is the total amount of megajoules used for drying byproducts.11  

Re-writing this expression in terms of the units of measurement in this study yields: 

  (9) 

where are bushels of corn, and are tons of byproduct sold 

as dried and wet respectively, and  is the total amount of gas used for 

purposes other than drying byproducts. 

Equation (9) has a very important implication for environmental efficiency 

measurement. It defines the environmental efficiency frontier against which each plant’s 

                                                
10 Since life-cycle GHGs include different types of gases (CO2, CH4, and N2O), the total is measured in 
terms of carbon dioxide equivalents (CO2e). 
11 The amount of gas used per ton of byproduct dried varies across DMUs and in fact some of them could 
not report an exact quantity so we use an average of those plants which did report these values and applied 
it to all plants.  
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performance will be measured. In other words the linear relationship depicted by (9) is a 

mix of inputs and byproducts that, for a given level of output, minimizes GHG. 12 

The concept of environmental efficiency is illustrated in Figure 2 where observations 

are displayed in corn-gas space (i.e. keeping the levels of all other inputs and outputs 

constant.)13 We also plot an iso-pollution line (i.e. combinations of corn and gas that keep 

the level of GHG constant) and, for reasons that will become clear later, an iso-cost line 

(i.e. combinations of corn and gas that keep total expenditure in these two categories 

constant) with an arbitrary slope.  

The iso-pollution line is directly derived from (9) with byproducts and electricity 

fixed. Since GHG emissions depend positively on both corn and gas then higher (lower) 

levels of these inputs yield (lower) higher levels of GHG which can be captured 

graphically as a shift in the iso-pollution line away from (towards) the origin.  

 

 

 
 
 
 
 
Figure 2. Illustration of Maximum GHG reduction 

                                                
12  Notice that efficiency frontiers in this study, other than the environmental efficient frontier, are defined 
by the best performer of the seven plants.  The environmental efficient frontier is defined by the 
relationships built in BESS. 
13 We keep everything else constant only with the purpose of illustrating the idea behind environmental 
efficiency although our calculations in this section will allow other variables to vary. 
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Point B is corn-energy inefficient and by reducing both inputs radially to point A on 

the red line (the boundary of the input requirement set), technical inefficiency is 

eliminated. Moreover since this new combination corresponds to an iso-pollution line 

closer to the origin, the amount of GHG emissions is also reduced. Point A is technically 

efficient but it does not correspond to the minimum level of GHG achievable. In fact the 

minimum feasible level of GHG is achieved by input combination D which yields a 

pollution level corresponding to iso-pollution 1. The input combination in D implies an 

increase in corn and a decrease in energy with respect to the technically efficient point A. 

Let us now go back to the cases in which four different subsets of inputs and outputs 

are variable. Technically, one can define the minimum feasible GHG emissions as: 

  (10) 

Iso-pollution 1 

  Gas 

Corn 

Iso-cost 1 Slope:  

 A 
 B 

 Iso-pollution 2 (slope: ) 

 
 C 

 D 
E 

Boundary of Input Requirement Set 

F 

Iso-cost 2 
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Where  are bushels of corn,  are MMBTUs of natural gas,  are tons of dried 

byproduct,  are kilowatt hour of electricity, and  are tons of wet byproduct.  The 

input-output combination that minimizes GHG is denoted by . 

Moreover, the input-output combination that is technically efficient (located at the 

boundary of the graph) is that defined by (7). In particular, it is the measure 

corresponding to sub-vector 3 (byproducts with corn, gas, and electricity) and we will 

denote the technically efficient input-output combination by . Plugging  

into (9) yields the technically efficient level of emissions denoted by . Finally we 

denote the  observed input-output combination by . 

We now define environmental efficiency by the distance between minimum feasible 

GHG emissions and observed GHG emissions: 

        (11) 

Where  is the hypothetical quantity defined in (10) and it is obtained from the 

combination , and  are observed emissions which is obtained by plugging 

the combination  in equation (9). 

We can decompose  into purely technical efficiency (which coincides with the 

hyperbolic technical efficiency of sub-vector 3 computed in the previous section) and 

allocative inefficiency. Allocative inefficiency is related to the input-output mix rather 

than levels14 and can be defined as: 

                                                
14 Environmental allocative inefficiency was and it was illustrated in Figure 2 by the distance between the 

iso-pollution corresponding to combination  and iso-pollution corresponding to point . 
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        (12) 

Where  and  are as defined above. 

Lastly note that in reality plants chose input-output combinations given a zero price 

of GHG. Therefore, in general, there is no reason to expect that plants will choose the 

GHG minimizing combination of inputs and outputs. However, if the price of GHG was 

positive then, a natural question would arise: what would be the price of GHG that would 

induce plants to choose the GHG-minimizing input-output combination? To address this 

issue we need to calculate the profit-maximizing input-output combination first so we 

will delay this discussion to the section in allocative efficiency.  

To calculate measures of technical, allocative and overall environmental efficiency as 

defined above, three estimates are needed: the minimum feasible GHG level (i.e. ), 

the observed GHG level of each DMU (i.e. ) and the GHG level corresponding to 

the “technically efficient” input-output combination of each DMU (i.e. ). 

The minimum feasible GHG level is calculated applying the following linear program 

to our sample: 

  (13) 

This program was calculated using the LINPROG routine in MATLAB. 

The technically efficient level of GHG for the  DMU denoted by  is 

calculated by plugging the technically efficient levels of inputs and outputs  into 

equation (9). The technically efficient combinations  are calculated based on the 
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sub-vector 3 technical efficiency levels reported in column 4 of table 2. We use sub-

vector 3 for our analysis because it includes all variables relevant to GHG emissions. 

We report in Table 4 measures of environmental efficiency for all 34 DMUs. We 

report overall environmental efficiency and both the technical and allocative components 

of this measure. Some interesting conclusions can be drawn. Ethanol plants can, on 

average, reduce GHG emissions by 28% by eliminating technical and allocative 

environmental inefficiencies (this is inferred from the average environmental efficiency 

of 0.72). Although this is an important figure from the point of view of each firm it 

translates to an average reduction of 7,770 milligrams of GHG, a trivial amount for the 

environment.15  

 

Scale and Technical Efficiency 

It has been argued that the technology in the ethanol industry displays increasing 

returns to scale. If this is the case and if, in addition, we calculate efficiency assuming 

constant returns to scale then we should expect a positive correlation between size and 

efficiency, i.e. bigger plants should be, in average, more efficient that smaller ones. When 

the number of observations is not big enough (as it is our case) second stage regressions 

to identify sources of inefficiencies are not possible. Therefore, to verify the consistency 

of this hypothesis with our data we partition efficiency results according to size 

categories of DMUs and comparing the average performances across categories.  

                                                
15 Some calculations reveal that elimination of environmental inefficiencies would imply a total reduction 
of the order of 0.00026 tons of GHG emissions in our whole sample.   
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We conducted the partitioning by classifying DMUs into big (production of more 

than 13.5 million gallons16 –MG-), medium (more than 12.5MG and up to 13.5MGY) 

and small (up to 12.5MG). This categorization yielded groups of 8 big, 14 medium and 

12 small DMUs. The average efficiency for each group and for the different input-output 

sub-vectors are reported in Table 5.  

Although small and medium units show a similar average efficiency, big units seem 

to be more efficient than smaller units in all four sub-vectors which may be an indicator 

of increasing returns to scale. We highlight the probable nature of this relationship since 

note that increasing returns to scale are not necessary for bigger units to be more 

efficient. Therefore the fact that bigger units are more efficient does not necessarily imply 

that returns to scale are increasing as the difference may well be due to managerial 

efficiency in bigger units rather than technological advantages. 

Therefore we proceed to obtain measures of returns to scale in our sample. In order to 

accomplish this we will first decompose the technical efficiency measures obtained 

before into purely technical efficiency and scale effects. We will illustrate this 

decomposition using the most complete input-output sub-vector in this study: sub-vector 

1, including all outputs along with corn, gas, and electricity.  

Calculation of technical efficiency can be done on the basis of a technology 

displaying constant returns to scale (CRS), decreasing returns to scale (DRS), increasing 

returns to scale (IRS), or variable returns to scale (VRS).  Technical efficiency with 

variable returns to scale is defined as (Färe et al.): 

 (14) 

                                                
16 We remind the reader that a DMU corresponds to production of one plant in one quarter and hence an 
amount of 13.5MG would correspond to 54MG a year, and 12.5MG would correspond to 50MG a year. 
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The measure in (14) can be computed through the following non-linear programming 

problem: 

       (15) 

For our analysis we will also need to define technical efficiency for a non-increasing 

returns to scale technology: 

 (16) 

The measure in (16) can be computed as the value of Γ in the following non-linear 

programming problem: 

       (17) 

According to Färe et al. scale inefficiency is the ratio between technical efficiency 

with constant returns to scale as defined in (6) and computed through (7), to technical 

efficiency with variable returns to scale as defined in (14) and computed by (15): 

     (18) 
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If ratio (18) is higher than one and if, in addition, the ratio of technical efficiency with 

constant returns to technical efficiency with non-increasing returns is higher (equal) than 

one, the observation shows decreasing (increasing) returns to scale.  

Provided our exercise includes all outputs produced by DMUs, the non-linear 

programs (7), (15) and (17) can be linearized and calculated with the LINPROG routine 

in MATLAB. The results for all 34 observations are reported in Table 6. This table shows 

that CRS are overwhelmingly observed across DMUs. A total of 25 DMUs display CRS, 

6 exhibit IRS, and only 3 display DRS. 

The analysis in Table 7 aims at identifying patterns of returns to scale based on the 

DMU’s size. The results reported in this Table were obtained by partitioning the 34 

results on returns to scale reported in Table 6 based on size of the DMUs. All three 

groups show predominantly CRS. However, 29% of medium-sized DMUs display 

increasing returns to scale. 

In conclusion bigger units seem to be, on average, more technically efficient than 

smaller units. The  analysis here seems to support the hypothesis that this efficiency 

differential is due to increasing returns to scale in the industry’s technology. However, 

results reported in Table 7 are far from providing irrefutable proof of the existence of 

increasing returns to scale. An alternative potential explanation for the efficiency 

differential across sizes might be better managerial skills in bigger plants. 

 

Economic Viability and Allocative Efficiency 

As argued before an increase in profitability by plants through a better choice of their 

input-output mix may turn out to be a very important factor in enhancing the industry’s 



 28 

overall economic viability. Our purpose in this section is to determine the potential for an 

increase in profit efficiency by DMUs both through an increase in technical and 

allocative efficiency.  

When productive units choose their input-output combinations may do so in a perfect 

or an imperfect market. The characteristics of the market structure may affect the 

efficiency estimates and thus we will discuss both cases separately. We will proceed to 

discuss the case of competitive markets first and we will introduce market imperfections 

later. 

 

When Market Prices are Exogenous 

DEA measures of allocative efficiency determine how DMUs could readjust inputs 

and outputs to increase profit or revenue or decrease cost given market prices. In this   

sample the plants received different prices for their outputs and paid different prices for 

the procurement of their inputs. Provided we have observations of different plants located 

in different states and across time, differences among prices paid and received by DMUs 

can be due to spatial patterns, managerial efficiency, and other local conditions. All 

prices have been deflated using the Producer Price Index (PPI) with the third quarter of 

2006 as base.  

The potential differences due to managerial and other local considerations are 

difficult to deal with. Since we have one plant per state we have a perfect correlation 

between space and manager and hence only if we had enough spatial-price data to adjust 

data points to a base state, we would be able to distinguish differences in plants’ prices 

due to managerial efficiency from those due to the spatial distribution of prices or other 
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local conditions. Due to data limitations, we are not able to decompose these two effects. 

Our definition of “managerial efficiency” then includes any other spatial and local 

differences not controlled for.  

We assume that DMUs follow a profit-maximizing strategy and based on this notion, 

our main purpose in this section is to come up with a measure of profit efficiency of 

DMUs. Measures of profit efficiency are based on the maximum profit that can be 

obtained by the DMU relative to a graph representation of the technology. If, in addition, 

to the input and output matrices  and , output prices  and input prices  are 

given for each observation, maximum profit can be calculated subject to the technology’s 

graph.  

We follow Färe et al and defined the graph under constant returns to scale and 

variable returns to scale .The two graphs are illustrated in Figure 3. The profit-

maximizing input-output mix in a constant returns to scale technology ( ) is usually 

not well defined. Price hyperplane 1 ( ) implies zero production, hyperplane 2 ( ) 

yields an infinite number of profit maximizing input-output mixes (since it has the same 

slope as ) and hyperplane 3 ( ) implies unbounded production. Furthermore there 

is only one price hyperplane ( ) that would rationalize positive levels of production 

and hence all DMUs producing a positive but finite amount either face the same price 

hyperplane or are failing in maximizing profits.  

We assume a variable returns to scale graph illustrated in the figure by the area below 

. 
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Figure 3. Profit Maximization under different returns to scale 

 

In this section we will continue to use the input-output sub-vector consisting of all 

outputs, corn, natural gas, and electricity. The maximum profit of a DMU relative to a 

variable returns to scale graph can be calculated with the following linear programming 

problem (Färe et al.) 

� 

π r j , p j /V ,S( ) = Max
                                                  λ , ′ z 

r ju ˆ α − p j x ˆ β                 

                           s.t.  u ˆ α 
j ≤ ′ z M ˆ α 

                                   xβ
j ≤ ′ z Nβ

                                 λx ˆ β 
j ≤ ′ z N ˆ β 

                                     ′ z j = 1
j=1

J

∑

     (19) 

Where  denotes maximum profits, the optimal value of λ is the 

measure of relative profit efficiency, represents price of outputs,  is the sub-vector 

of outputs that are allowed to vary (all of them in this case),  is the price of inputs,  

and  are variable and fixed inputs respectively and the  are intensity factors used to 

construct the piecewise frontier. 

 

 
 

 

VRSY  

Ethanol 

Corn 
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We will now use maximum profit (19) to calculate a graph measure of overall 

efficiency from which in turn we can infer allocative efficiency of DMUs. Due to the 

hyperbolic nature of the graph measure, the measure of overall economic efficiency is not 

the ratio of observed to maximum profit (see discussion in Färe et al. 1994, section 8.2). 

However, the appropriate indicator of profit efficiency in this case is still closely related 

to maximum profits through the following expression derived by Färe et al. (p. 214): 

 (20) 

Where  denotes maximum profits from (19) and the rest is as before.  

Therefore, to obtain overall profit efficiency, we calculate maximum profits solving 

program (19) using the LINPROG procedure in MATLAB. We then obtain the graph 

measure of overall efficiency by solving the implicit function (20) numerically in 

MATLAB with the FZERO sub-routine.  

Finally a graph measure of allocative efficiency can be calculated residually as: 

 (21) 

Where  is the measure of technical efficiency relative to the 

variable returns to scale graph previously calculated and reported in column 3 of table 6. 

We report results in Table 8. First, on average, plants can increase profits by 15% 

which for the average DMU in thesample, would imply an increase in profits of 

approximately 55 cents per gallon. Second, the standard deviation of profit efficiencies 

across plants is 0.08 which is significantly higher than that of the technical efficiency 

measures reported in Table 3. Third, the percentage of efficient points is just 6% as 

opposed to the 74% of technically efficient observations reported in Table 3. These 

results suggest that managers are relatively successful at optimizing the available 
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technology but they are not as successfull when choosing the profit maximizing netput 

combinations given market prices and local conditions.  This could be the source of 

significant profit losses.17   

The profit efficiency measures reported in Table 8 are based on the assumption that 

prices faced by DMUs are exogenously given. However, many authors found evidence 

that suggests otherwise. The impact of ethanol plants on local corn prices have been 

estimated to range from an increase of 2¢ to 25¢ per bushel (Coltrain; Farm Journal; 

National Corn Growers Association; Top Producer; and Urbanchuk and Kapell). McNew 

and Griffith (2005) also studied the impact of ethanol plants on local grain prices and 

found that there were significantly positive responses for corn prices around ethanol 

plants. Gallagher, Wisner, and Brubacker (2005) examined the pricing systems for corn 

in the vicinity of processing plants and also found evidence of a positive impact.  

The positive impact of the plant on local prices of corn is due to spatial competition 

between the plant and the terminal market for the procurement of corn. Therefore it may 

be the case that the bigger the plant, the more intense the competition with the terminal 

market, the higher the impact on the price of corn and hence the lower the profitability of 

the plant, all else equal. Thus the size of the plant may be negatively related to profits 

through an increase in the price the plant pays for corn. 

Alternatively, regulators have shown concern that the size of the plant may positively 

impact the price it receives for its ethanol due to exertion of market power.18 This fact 

                                                
17 We would like to remind the reader that our definition of ‘managerial efficiency’ might include spatial or 
local conditions that are not choices for managers/decision makers. 
18 In fact, Section 1501(a)(2) of the Energy Policy Act of 2005 imposes an annual requirement on the 
Federal Trade Commission to “perform  a  market  concentration  analysis  of  the  ethanol  production 
industry” and report it to Congress and to the Administrator of the Environmental Protection Agency. 
So far no evidence of strong market concentration has been found. 
 



 33 

would create a positive relation between plant size and profitability which would tend to 

outweigh the negative link caused by size-corn price relationship discussed above.  

The overall effect of size on profitability will ultimately depend upon the intensity of 

the two links between size and profitability: the corn-price link which causes a negative 

relation between size and profits and the ethanol-price link which causes a positive 

relation between them.  

 

Profit Efficiency Drivers 

As before, we cannot run second stage regressions to identify the quantitative 

relationship between size and profit efficiency. We described above two alternative 

hypothesis.  In order to find evidence that would allow rejection of one of them we check 

the relationship between profit efficiency and size by partitioning the efficiency results 

reported in Table 8 into three groups based on their size and comparing the average 

performance of different categories. We conducted the partitioning based on the same 

classification as before and the results are reported in Table 9. 

Table 9 reveals a positive relation between size and profit efficiency across all sizes; 

i.e. big DMUs show higher profit efficiency than medium DMUs which in turn are more 

efficient than small DMUs. Moreover, the differences in average profit efficiency 

between big DMUs and the rest is significant and considerably higher than the difference 

in technical efficiency as reported in Table 5.  This result may be due to market power or 

the existence of certain local markets conditions that favor profits in places where bigger 

DMUs are located. To obtain evidence on this issue  we group the observations  by 

plants. Results of this exercise are reported in Table 10. 
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Since each plant is located relatively far away from the others they face their own 

local market conditions. If efficiency differences across sizes have to do with local 

market conditions rather than size-related factors then significant differences in average 

efficiency should also be observed across plants. Table 10 reports average profit 

efficiency per plant (from 1 to 7). First, compared to Table 9, standard deviations have 

significantly decreased, except for plant 4. This implies that most of profit efficiency 

dispersion is due to variability across plants rather than across time and within plants. 

 Second, average efficiency across plants is rather homogeneous. Only plant 7 seems 

to be, on average, significantly more efficient than the other plants. DMUs corresponding 

to plant 7 are classified as big so this could be biasing average profit efficiency estimates 

of big plants upwards. However only 3 observations out of 8 classified as big correspond 

to plant 7 and hence there is still a significant portion of efficiency differences across size 

that is not explained by local market conditions. This may be pointing towards the fact 

that bigger plants do exert some kind of market power either by controlling quantities 

sold or by managing contracts in a more efficient way than their smaller counterparts. If 

there is a relationship between quantities and prices which is reflected in profit efficiency 

then we should consider this fact when evaluating DMUs to adjust price 

endogeneity.being endogenous to quantities. 

 

When Market Prices are Endogenous. 

 

It is possible that larger plants exert some market power in input and/or output 

markets. Including this type of endogeneity in our framework is not a straightforward 
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task. In fact the lack of extensions of DEA methods to incorporate market imperfections 

has been noted before (Cherchye et al.). Given that we are now in uncharted territory we 

will first illustrate our problem in Figure 4 and based on this intuitive interpretation we 

will propose a simple way of adjusting profit efficiency for price endogeneity. 

Suppose DMUs face a variable returns to scale technology. The price hyperplane 

faced by the thj  DMU can be represented algebraically by j
j
E

j
C

j
E

j
j C

p
p

p
E += π . Suppose, 

as may be suggested by the positive relation between size and profit efficiency that, the 

bigger the DMU the higher the price received for ethanol, all else equal. Then we would 

expect, at least in average, the price hyperplane faced by big DMUs to be flatter than the 

one faced by small DMUs.  

Figure 4. Profit Efficiency with Endogenous Prices 

 

Suppose observation A in Figure 4 is classified as small. In the figure the average 

price for big DMUs is illustrated by price hyperplane  and the price hyperplane faced 

by observation A is denoted by . The distance between A and B represents the graph-
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technical inefficiency in which this DMU has incurred and the distance between B and C 

represents allocative inefficiency. However if prices are endogenous and the price 

hyperplane for a point like E is depicted by , then the DMU could enhance its 

performance if  corresponds to a higher profit. Therefore the DMU could increase 

profits by not only adjusting the input-output mix but also by facing more convenient 

relative prices. (Alternatively, if  corresponds to a lower profit then that means that 

the DMU has chosen the correct size in the sense that it would have achieved a lower 

profit if it had chosen a larger scale.) 

However, the hyperplanes  and  correspond to different relative prices. We 

therefore calculate the hyperplane ' that depicts the same profit level as  but with 

prices corresponding to . Based on this hyperplane we calculate the distance between 

C and D and interpret it as “size” efficiency, i.e. the expansion (or contraction if ′
AH  

happens to be to the southeast of ) of profits that the DMU would face if it increases 

its scale of production. The same procedure can be developed to evaluate a big DMU that 

could shrink its scale and face a hyperplane corresponding to average prices of small 

DMUs.   

Therefore we calculate a hyperbolic measure of “size” efficiency for each DMU and 

include it as a component of their overall graph profit efficiency. We do this for small 

and big DMUs separately. We define small (big) DMUs as those whose total production 

of ethanol is below (above) the median of the sample.  

Our size-efficiency index for the  small DMU can be implicitly defined by: 

� 

SE rB , pB /V ,S( ) = r ju j /Og
S x j ,u j , p j ,r j /V ,S( ) − p j x j *Og

S x j ,u j , p j ,r j /V ,S( )      (21) 
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Where 

� 

SE rB , pB( ) denotes maximum relative profit that the DMU would achieve if it 

changed its operation scale to a big one and faced prices Br  and Bp  and Og
s represents 

overall graph efficiency measure of profit efficiency.  Moreover prices Br  and  are 

weighted19 averages of prices faced by big DMUs.  Overall maximum profit 

� 

π rB , pB( )  is 

calculated through the following linear program: 

� 

π rB , pB /V ,S( ) = Max
u,x

rB uα − pB x β{ }
s.t.                             uα ≤ ′ z Mα

B

                                    xβ ≤ ′ z Nβ
B

                                    x ˆ β 
≤ ′ z N ˆ β 

B

                                     ′ z j = 1
j=1

J

∑

      (22) 

Where BMα   and BNβ  are the matrices of observed outputs and inputs corresponding 

to the sub-sample of big DMUs.   

Similarly, the size-efficiency of the  big DMU can be defined by: 

 

� 

SE rS, pS( ) = r ju j /Og
B x j ,u j , p j ,r j /V ,S( ) − p j x j *Og

B x j ,u j , p j ,r j /V ,S( ) (23) 

Where 

� 

SE rS, pS( ) denotes maximum relative profit that the DMU would achieve if it 

changed its operation scale to a small one and faced prices  and . Moreover prices 

 and  are average of prices faced by small DMUs.  Overall maximum profit 

 is calculated through the following linear program: 

                                                
19 Where the weights are the share of the value of each DMU’s production in total value of production. 
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� 

π rS, pS /V ,S( ) = Max
u,x

rSuα − pS x β{ }
s.t.                             uα ≤ ′ z Mα

S

                                    xβ ≤ ′ z Nβ
S

                                    x ˆ β 
≤ ′ z N ˆ β 

S

                                     ′ z j = 1
j=1

J

∑

      (24) 

Where   and  are the matrices of observed outputs and inputs corresponding 

to the sub-sample of small DMUs.   

Measures (22) and (24) were calculated using the LINPROG procedure in MATLAB.  

Finally a graph measure of allocative efficiency for big and small DMUs can be 

calculated residually as: 

 (25) 

 (26) 

Where  is the measure of technical efficiency relative to the 

variable returns to scale graph previously calculated and reported in column 3 of table 6 

and  is the overall graph-efficiency measure with exogenous prices 

calculated implicitly in (20). 

To sum up, there are two sources of profit inefficiency in the case of endogenous 

prices. The first is the usual allocative inefficiency caused by the use of an inappropriate 

input-output mix and it is represented in the figure by the distance between B and C.  The 

second source of profit inefficiency has to do with the fact that by choosing the “wrong” 



 39 

scale the DMU is forgoing the possibility of exploiting price endogeneity and increasing 

profits through a positive price effect. 

Results of size-efficiency are reported in Tables 10 and 11 for small and big DMUs 

respectively. After our correction for endogeneity, small DMUs have a high average 

allocative efficiency (0.98) and a low average size-efficiency (0.86). This suggests that 

average prices faced by big DMUs are such that small DMUs would have been better off 

by increasing the size of operations and taking advantage of more convenient relative 

prices. 

Big DMUs on the other hand display a significantly higher average size-efficiency 

(0.985) as compared to their smaller counterparts, but a lower average allocative 

efficiency (0.958). These values seem to indicate that profit inefficiency of big plants was 

mostly driven by allocative factors rather than by forgoing price endogeneity 

opportunities. This fact is consistent with the hypothesis that big plants face more 

convenient relative prices than small plants. The reader should note, however, that this is 

not a test of market power but rather a verification of the consistency of the data with the 

hypothesis of price endogeneity.  

 

 

Carbon Price and GHG Minimization by DMUs 

The purpose of this final section is to answer the following question: what would be 

the price of GHG that would induce plants to choose the GHG-minimizing input-output 

combination?  
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Now that we have calculated maximum feasible profits for each DMU we can 

compute the profits that would be forgone if DMUs were to choose the GHG-minimizing 

input-output mix and based on this we can calculated the price of carbon that would 

induce DMUs to choose such a mix.  

The profits forgone for minimizing GHG is the difference between the maximum 

feasible profits defined in (19) and calculated in the profit efficiency section and the 

profits at the GHG-minimizing mix. The GHG minimizing mix was denoted by  

and calculated in the environmental efficiency section. Profits at this mix are computed 

by plugging  into the profit function of each DMU. Finally the price of carbon 

that would induce DMUs to minimize GHG is that which reduce profits by the difference 

described above. These prices are calculated for each DMU and are reported in Column 5 

of table 4. 

The prices are surprisingly high. In average, DMUs should have to pay a price of $70 

per milligram of CO2 to have enough incentives to choose the GHG-minimizing input-

output mix. Therefore, not only the potential for the industry as a whole to reduce GHG 

emissions is very limited as discussed in the environmental efficiency section but also it 

would take an extremely high price of carbon to induce them to achieve this reduction. 

 

Conclusions 

In this study, we find that: 

1) Seventy one percent of the observations were located on the best practice frontier 

which means that the percentage of observations that have potential for technical 

improvement is below twenty nine percent.  There is little dispersion in technical 
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efficiency across plants. This indicates that from a technical/engineering point of view, 

plants are performing well. 

2) The average reduction of GHG emissions achievable through a simultaneous 

shrinkage of corn, natural gas and electricity and an expansion of byproducts (given 

ethanol production levels) is about fifteen percent. Calculated carbon prices necessary to 

induce plants to minimize GHG are implausibly high, averaging about $70 per ton of 

CO2 .  

3) Results here tend to support the hypothesis that technology in this industry displays 

constant returns to scale although increasing returns are not inconsistent with our results.  

4) On average, it appears that decision-making units (DMUs) might have been able to 

increase their profits significantly, even though they were technically quite efficient.  

However, much of these gains were attainable by changing plant size, and this analysis 

does not consider returns to such capital investments. There analysis suggests that larger 

firms realized more favorable input and output prices, though it is not clear whether this 

is due to market power, better marketing prowess, or favorable geographic location of the 

larger plants.  

To sum up, the potential for technical and environmental improvement in the industry 

is limited given the high average performance measures estimated in this study. On the 

other hand, there seems to be some room for improvements in profits and economic 

performance due to managerial choices. If this is the case, the economic viability of this 

industry could be enhanced.  More research is needed to identify potential causes of 

spatial and local environmental differences across plants so that it would be possible to 
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isolate managerial ability from issues that are not controllable by the plant manager but 

that could be a result of local policies and regulations. 
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Table 1.  Characteristics of the seven surveyed plants 
States Represented Iowa, Michigan, Minnesota, Missouri, Nebraska, S. Dakota, Wisconsin 

Smallest 42.5 
Average 

 
53.1 

 
Annual Production 

Rate (m. gal/y) 
Largest 88.1 
<2004 

 
1 

 
2005 

 

 
4 

 
Number of Plants 
by Start-Up Year 

2006 2 

Smallest 36 
Average 39.6 

 
Number of 
Employees Largest 46.4 

03_2006 5 
04_2006 6 
01_2007 7 
02_2007 7 
03_2007 7 

 
Number of Survey 

Responses by 
Quarters 

04_2007 2 
Smallest 0 
Average 54 

 
Percent of 

Byproduct Sold as 
Dry DGS 

Largest 97 

 Corn Ethanol DDGS MWDGS 
Spot 0 0 3 1 

Customer Contract 5 1 0 1 

 
Primary Market 

Technique 

Third Party/Agent 0 5 2 2 
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Table 2. Technical Efficiency 
    Category 

Observ. 
Corn-Gas-

Electricity-Outputs 
Corn-Gas-

Outputs 
Corn-Gas-Electricity-

Byproduct 
Corn-Gas-
Byproduct 

1 0.9158 0.9158 0.9053 0.9053 
2 1 1 1 1 
3 0.9703 0.9677 0.9644 0.9604 
4 0.9999 0.9998 0.9999 0.9998 
5 1 1 1 1 
6 0.9553 0.9553 0.9537 0.9537 
7 1 1 1 1 
8 1 1 1 1 
9 1 1 1 1 

10 0.9904 0.9838 0.9861 0.9673 
11 1 1 1 1 
12 1 1 1 1 
13 1 1 1 1 
14 1 1 1 1 
15 0.9766 0.9751 0.9643 0.9606 
16 1 1 1 1 
17 1 1 1 1 
18 1 1 1 1 
19 1 1 1 1 
20 1 1 1 1 
21 1 1 1 1 
22 0.9922 0.9914 0.989 0.9872 
23 1 1 1 1 
24 1 1 1 1 
25 1 1 1 1 
26 1 1 1 1 
27 1 1 1 1 
28 1 1 1 1 
29 1 1 1 1 
30 0.9998 0.9998 0.9996 0.9996 
31 1 1 1 1 
32 0.9665 0.9599 0.9632 0.9599 
33 1 1 1 1 
34 0.9738 0.9738 0.9619 0.9619 

 
Table 3. Technical Efficiency-Descriptive Statistics 

  
Corn-Gas-

Electricity-Outputs 
Corn-Gas-

Outputs 
Corn-Gas-Electricity-

Byproduct 
Corn-Gas-
Byproduct 

Average 0.992 0.992 0.991 0.990 
Std Dev 0.018 0.018 0.021 0.021 

Max 1 1 1 1 
Min 0.92 0.92 0.91 0.91 

% of Efficient 
Points 74 74 74 74 
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Table 4. Environmental Efficiency and Feasible Reduction of GHG Emissions 
 

DMU 

Technical 
Environmental 

Efficiency 

Allocative 
Environmental 

Efficiency 

Overall 
Environmental 

Efficiency 

Carbon Price 
that would 
induce Min 

GHG 

Maximum 
Reduction 
of GHG 

(mg) 
1 0.96 0.91 0.87 141 4197 
2 1 0.65 0.65 92 11876 
3 0.97 0.70 0.68 292 10069 
4 1 0.79 0.79 67 6043 
5 1 0.94 0.94 62 1766 
6 0.98 0.96 0.94 151 2010 
7 1 0.90 0.90 118 3233 
8 1 0.69 0.69 171 10350 
9 1 0.79 0.79 295 5830 

10 0.99 0.72 0.72 199 8610 
11 1 0.95 0.95 63 1653 
12 1 0.96 0.96 84 1281 
13 1 1 1 0 0 
14 1 0.91 0.91 111 3141 
15 0.99 0.68 0.68 154 10576 
16 1 0.76 0.76 141 7107 
17 1 0.77 0.77 139 6806 
18 1 0.97 0.97 41 972 
19 1 0.97 0.97 198 1019 
20 1 1 1 0 0 
21 1 0.91 0.91 84 3002 
22 0.99 0.71 0.70 192 9332 
23 1 0.75 0.75 126 7291 
24 1 0.91 0.91 77 2357 
25 1 0.92 0.92 121 2418 
26 1 0.97 0.97 63 1008 
27 1 1 1 0 0 
28 1 0.91 0.91 76 3159 
29 1 0.77 0.77 80 7215 
30 1 0.75 0.75 125 7234 
31 1 0.70 0.70 165 8627 
32 0.99 0.84 0.83 132 5398 
33 1 0.97 0.97 75 1059 
34 1 0.79 0.79 63 8166 

Average 0.996 0.85 0.85 115 4788 
Std Dev 0.01 0.11 0.11 70 3577 
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Table 5. Average Efficiency by Size 
 Input-Output sub- 

vectors 
Category 

Corn-Gas-
Electricity-

Outputs 

Corn-Gas-
Outputs 

Corn-Gas-Electricity-
Byproduct 

Corn-Gas-
Byproduct 

BIG 0.991 0.991 0.9891 0.989 
MEDIUM 0.989 0.989 0.987 0.986 
SMALL 0.996 0.996 0.993 0.991 

 
Table 6. Technical and Scale Efficiency Indices 

DMU 
Corn-gas-electricity-

outputs 
NIRS 

Corn-gas-electricity-
outputs 

VRS 
Scale Efficiency Returns to 

Scale 

1 0.9158 0.9558 0.9582 IRS 
2 1 1 1 CRS 
3 0.9703 0.9711 0.9992 CRS 
4 1 1 0.9999 DRS 
5 1 1 1 CRS 
6 0.9553 0.9821 0.9727 IRS 
7 1 1 1 CRS 
8 1 1 1 CRS 
9 1 1 1 CRS 

10 0.9904 0.9928 0.9976 IRS 
11 1 1 1 CRS 
12 1 1 1 CRS 
13 1 1 1 CRS 
14 1 1 1 CRS 
15 0.9981 0.9981 0.9785 DRS 
16 1 1 1 CRS 
17 1 1 1 CRS 
18 1 1 1 CRS 
19 1 1 1 CRS 
20 1 1 1 CRS 
21 1 1 1 CRS 
22 0.9922 0.9944 0.9978 IRS 
23 1 1 1 CRS 
24 1 1 1 CRS 
25 1 1 1 CRS 
26 1 1 1 CRS 
27 1 1 1 CRS 
28 1 1 1 CRS 
29 1 1 1 CRS 
30 0.9998 1 0.9998 IRS 
31 1 1 1 CRS 
32 0.9665 0.9897 0.9766 IRS 
33 1 1 1 CRS 
34 1 1 0.9738 DRS 

Average 0.9938 0.9966 0.9957   
Std Dev 0.017 0.009 0.010   
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Table 7. Returns to Scale and Optimal Size 

Category of DMUs DMUs CRS IRS DRS 
 # # % # % # % 

Big 8 6 75 1 12.5 1 12.5 
Medium 14 9 64 4 29 1 7 

Small 12 10 83 1 8.5 1 8.5 
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Table 8. Profit Efficiency 

DMU 
Overall 
Graph 

Efficiency 

Allocative 
Graph 

Efficiency 

Technical 
Efficiency 

Maximum Increase in 
Profits (cents per 

gallon) 
1 0.93 0.98 0.96 18 
2 0.99 0.99 1 5 
3 0.86 0.89 0.97 51 
4 0.97 0.97 1 9 
5 1 1 1 0 
6 0.95 0.97 0.98 16 
7 1 1 1 0 
8 0.91 0.91 1 27 
9 0.89 0.89 1 39 

10 0.90 0.91 0.99 32 
11 1 1 1 0 
12 1 1 1 0 
13 1 1 1 0 
14 1 1 1 0 
15 0.94 0.94 1 19 
16 0.96 0.96 1 14 
17 0.98 0.98 1 8 
18 1 1 1 0 
19 0.94 0.94 1 22 
20 1 1 1 0 
21 1 1 1 0 
22 0.94 0.94 0.99 22 
23 0.96 0.96 1 14 
24 1 1 1 0 
25 0.98 0.98 1 7 
26 1 1 1 0 
27 1 1 1 0 
28 1 1 1 0 
29 1 1 1 0 
30 0.95 0.95 1 14 
31 0.97 0.97 1 9 
32 0.95 0.96 0.99 15 
33 1 1 1 0 
34 0.98 0.98 1 6 

Average 0.97 0.97 0.997 10 
Std Dev 0.04 0.03 0.01 12.81 
Efficient 

Points 
(%) 

44 44 82   
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Table 9. Profit Efficiency of DMUs Grouped by Size 
 DMU Size 

Statistic BIG MEDIUM SMALL 

Average 0.92 0.84 0.83 
Std Dev 0.07 0.05 0.10 

Efficient Points (%) 29 0 7 
 
 
 
 

Table 10. Profit Efficiency with Endogenous Prices – Small DMUs 

DMU 
Overall Economic 

Efficiency 
"Size" 

Efficiency 
Technical 
Efficiency 

Allocative 
Efficiency 

1 0.93 0.9096 0.9558 1 
3 0.86 0.9951 0.9711 0.8932 
4 0.97 1.0715 1 0.9059 
5 1 1.0307 1 0.9701 
9 0.89 0.7818 1 1 

10 0.90 0.9558 0.9928 0.9519 
11 1 0.9175 1 1 
16 0.96 0.7627 1 1 
17 0.98 0.8328 1 1 
21 1 0.8115 1 1 
23 0.96 0.6703 1 1 
24 1 0.736 1 1 
25 0.98 0.8574 1 1 
30 0.95 0.7676 1 1 
31 0.97 0.7781 1 1 
32 0.95 0.8005 0.9897 1 
33 1 1.0258 1 0.9748 

Average 0.96 0.86 0.99 0.98 
Std Dev 0.0413 0.1180 0.0124 0.0342 
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Table 11. Profit Efficiency with Endogenous Prices – Big DMUs 

DMU 
Overall Economic 

Efficiency 
"Size" 

Efficiency 
Technical 
Efficiency 

Allocative 
Efficiency 

2 0.99 1.1297 1 0.8736 
6 0.95 1.0775 0.9821 0.9003 
7 1 0.9385 1 1 
8 0.91 1.0902 1 0.8335 

12 1 1.0748 1 0.9303 
13 1 1.1322 1 0.8842 
14 1 0.9195 1 1 
15 0.94 0.9432 0.9981 1 
18 1 0.9299 1 1 
19 0.94 0.9932 1 0.9471 
20 1 1.0889 1 0.9184 
22 0.94 0.9127 0.9944 1 
26 1 0.8958 1 1 
27 1 1.0023 1 0.9977 
28 1 0.8525 1 1 
29 1 0.8696 1 1 
34 0.98 0.8953 1 1 

Average 0.9793 0.9850 0.9985 0.9579 
Std Dev 0.0304 0.0951 0.0045 0.0566 
 

 
 
 




