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 A State Dependent Regime Switching model 

of Dynamic Correlations 

   

Hernan A. Tejeda, Barry K. Goodwin, and Denis Pelletier 

 

     Abstract 

We extend the Regime Switching for Dynamic Correlations (RSDC) model by Pelletier (Journal 

of Econometrics, 2006), to determine the effect of underlying fundamental variables in the 

evolution of the dynamic correlations between multiple time series. By introducing state 

dependent transition probabilities to the switching process between different regimes - governed 

by a Markov chain, we are able to identify potential thresholds and spillover effects in the 

dynamic process. In addition, asymmetric correlations between the series are determined.  We 

simulate data for multiple series and find an initial better fit of state dependent transition 

probabilities, versus constant transition probabilities, for the regime switching model. Capturing 

more precisely the dynamic interrelationships between multiple series or markets conveys many 

benefits including - potential efficiency gains from related operations, determining the effects of 

shocks from related variables, as well as improvement in hedging operations.  
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Introduction 

Financial instruments and more specifically commodity prices for agricultural products – such as crops 

and/or livestock, constitute an important source of risk for agricultural producers, consumers, investors, 

etc. Fluctuation in these prices that include sharp spikes and plunges or slight increases and drops, 

generates risk to producers and consumers called volatility. This volatility is steadily changing through 

time as new information arrives. This updated information may be directly related to the product(s) or 

general economic news – causing the time series to have heteroskedastic properties. 

Measurement of this risk gave rise to the ARCH and GARCH models by Engle (1982) and Bollerslev 

(1986), respectively. These models are estimated via MLE, and a Lagrange Multiplier test is used to 

measure the significance of autocorrelation between these squared residuals, Engle (2004). These 

ARCH/GARCH models are univariate, permitting parameter estimation of single time series. In addition, 

multivariate GARCH models have been developed that enable the estimation of time varying correlations 

between many instruments. i.e. multivariate GARCH models permit parameter estimation of conditional 

correlations among multiple time series   

These multivariate models have the restriction of requiring a positive semi-definite (PSD) correlation (or 

variance) matrix at every period. i.e. during parameter estimation - for each period the models must 

incorporate this PSD correlation matrix condition. In addition, some multivariate models may allow 

estimations for only a few time series, thus having a dimensionality curse. i.e. they can‟t be estimated in 

two steps as a set of SURE equations, which enables to deal with this dimensionality inconvenience. An 

extensive amount of univariate and multivariate ARCH /GARCH models have been developed, with an 

earlier paper by Bollerslev et al. (1992) addressing broad model developments including empirical 

financial applications. Recently, Bauwens et al. (2006) presents a broad survey of the multivariate models 

in existence. 

A simple workhorse for the multivariate GARCH model has been the Constant Conditional Correlation 

(CCC) model from Bollerslev (1990). In this model the correlations are constant and so the conditional 

covariances are linearly proportional across time - as they are product of these constant correlations and 

the corresponding conditional volatilities. Nonetheless, it has been shown empirically for stock markets 

that this condition doesn‟t hold, since correlations tend to increase in periods of higher volatility as per 

Longin and Solnik (1995) and Ramchmand and Susmel (1998). On the other hand, from Engle (2002) the 

Dynamic Conditional Correlation (DCC) model considers the case of varying conditional correlations 

through each period. For this model, the correlations between the different assets or markets considered 
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follow a parsimonious parametric model – specifically a GARCH-type dynamic. i.e. there is a different 

correlation matrix at each period, built through exponential smoothing. 

Another model which considers multivariate dynamic correlations is the Regime Switching Dynamic 

Correlation (RSDC) model from Pelletier (2006). This model considers the correlations as constant within 

a regime, yet they vary in value from one regime to another. The switch between regimes, producing a 

change of correlation values, is governed by a Markov chain. In this model the series may remain in a 

specific regime for ensuing periods before switching to a different regime, and only at this different 

regime is there a change in the correlation values. This is in contrast to the DCC model, which may have 

different correlation values for each subsequent period. As mentioned previously, in the RSDC model the 

transition between different states (or regimes) responds to a Markov chain - with transition probabilities 

between each state being constant. 

We extend and develop a dynamic threshold model based on the RSDC model, by modifying the 

transition probabilities that govern the switching process between regimes - from constant probabilities to 

state dependent or time-varying probabilities. In this sense, we introduce weakly exogenous variables in 

the probabilities that determine the switch from one regime to another. These new transitional or regime 

switching probabilities, now state dependent or time-varying, incorporate underlying fundamental 

variables that are directly related to the evolution of the series being studied. These underlying related 

variables in our regime switching probabilities constitute specific threshold levels which have particular 

effects in our dynamic process. i.e. direct impact on being at one regime of correlation or another. 

By introducing variables related to the time series in the regime switching process, we seek to capture the 

particular effect these variables may have on the dynamic correlation process. That is, we aim to 

determine the impact that these related underlying variables, which are weakly exogenous, have on the 

evolution of the dynamic process. The state dependent probabilities that now govern our regime switching 

process are established following Diebold et al. (1994). Our results are compared to the initial (nested) 

case where switching between different states or regimes responds solely to a completely unaccounted 

exogenous situation. i.e. by constant transition probabilities. The specific effect that each underlying 

variable related to the series has on the evolution of the series is considered a threshold level. This 

threshold level becomes proportional to the estimated parameter of our underlying variable - in the state 

dependent transition probabilities as will be seen ahead in the estimation process. 

We introduce underlying related variables in the regime switching process, and test the significance of 

their relation to the series being studied. In this way, we determine significant factors that produce an 

impact on the evolution of the correlations among the series that are studied. These relevant underlying 
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related factors may produce asymmetries in the correlations between the series. i.e., the dynamic 

correlations calculated would result in different values for particular positive or negative shocks of the 

significant related variables. These significant related variables represent specific thresholds, which are 

unaccounted for in the case of constant transition probabilities.  

Persistence in the Markov chain may vary as a function of these weakly exogenous variables. These 

weakly exogenous variables may form threshold levels that inhibit switching to a different regime, i.e. 

correlation values are maintained as the series stay in a certain regime. Conversely, these exogenous 

variables may prompt switching to a different correlation level than if they had otherwise not been 

considered. i.e. they may catalyze switching to a different correlation value by moving from one regime 

to another. The identification of these variables and their role in the evolution of the correlations is 

compared to the case where constant probabilities govern the Markov chain. Differences in the evolution 

of the dynamic correlation values are obtained by contrasting the state dependent probabilities over the 

constant transition probabilities governing the regime switching process. In this way, we determine the 

impact these weakly exogenous variables have on the dynamic process. 

During periods of increasing changes in price levels and rising volatilities, it is especially relevant to 

determine both the dynamic market linkages among related assets or markets and the evolution of the 

transmission of price changes between these related markets. With this model we determine the dynamic 

correlation values between multiple related markets, considering the particular effect that underlying 

fundamental variables have in the evolution of these markets. Capturing the impact of these underlying 

variables enables to determine the response effect that specific shocks on these variables may produce on 

the dynamic process of these series. The model is also applicable for managing risk through hedging and 

assists in increasing efficiency in the operation of related markets. 

 

Literature Review 

Several studies have been conducted regarding asymmetric price adjustments, including threshold 

behavior. A paper by Goodwin and Holt (1999) analyzing the dynamic relation and transmission of 

market prices among marketing channels in the beef sector, used a threshold error correction model  

accounting for both the non-stationary nature of each of these prices  and the long-run stationary 

equilibrium or co-integration among these prices. The paper considered the asymmetric effects produced 

and found significance for three different regimes, i.e. threshold behavior. Additionally, and in response 
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to price shocks, lags were found in the adjustment period between each channel. A subsequent study by 

Goodwin and Harper (2000) for the pork sector arrived at similar results. 

Earlier papers by Boyd and Brorsen (1988) - studying market channels in the pork sector, and Hanh 

(1990) - studying market channels both in the pork and beef sector, also found significant lags during the 

adjustment of price variations. These models considered different parameters for both lags and speed of 

transmission, yet did not account for the price‟s non-stationary nature mentioned above. Boyd and 

Brorsen (1988) found symmetric response to price changes, supporting later findings mentioned above. 

Yet Hanh (1990) found some asymmetric response to price changes within the different market channels.  

Another result from Goodwin and Holt (1999) and Goodwin and Harper (2000) confirmed that price 

changes within market channels mainly propagated in one direction. i.e. response to price shocks were 

generally found to produce adjustments when these shocks were applied at the farm markets and from 

there the adjustments were passed on to the wholesale markets, and then to the retail markets. This result 

corroborated earlier findings by Boyd and Brorsen (1985) and Schroeder (1988). A paper by Bailey and 

Brorsen (1989) regarding three major cattle markets (i.e. feedlot operators and packers) in different states 

– found that there was asymmetric spatial adjustment for price variations. This was reflected in a 

difference in speed of adjustment for price changes – responding quicker to price increases than price 

decreases.  

Goodwin and Piggott (2001) studied market integration in spatially separate regional grain markets within 

a state, through price linkages. They incorporated in their analysis thresholds that account for transaction 

costs, which delay price adjustments. Their results indicated that the markets are well integrated, and also 

confirm the existence of thresholds points for price adjustments. Once these thresholds are accounted for 

in the model, the speed of adjustment for price variations is higher than when they are not considered. For 

a study conducting an extensive survey regarding asymmetric price transmission, see Meyer and von 

Cramon-Taubedel (2004). 

Regarding the study of hedge ratios - these are defined as the covariance between the futures and spot 

price divided by the variance of the future price, as per Benningna et al. (1984). It has been noted by 

Myers and Thompson (1989) that both variances and covariances are dynamic, changing through time. 

Hence this property must be taken into account for proper determination of hedge ratios. Time-varying 

optimal hedge ratios have been proposed using GARCH models. Many studies have estimated time-

varying optimal hedge ratios for commodity futures through bivariate GARCH models, such as Baillie 

and Myers (1991), Myers (1991), Bera et al. (1996) and Lien et al. (2002). 
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Recently Lee and Yoder (2007a) incorporate regime switching following a Markov process, into a 

bivariate GARCH (BEKK) approach. This method considers the optimal hedge ratios being both time 

dependent and state dependent. Their model is a bivariate extension of Gray (1996), which is a univariate 

generalized regime switching model with conditional transition probabilities as function of conditional 

cumulative normal distributions.  

Regime switching models that incorporate GARCH models have a path dependency problem. This occurs 

because for N different regimes (each regime denoted by , and , each conditional 

variance -  and conditional covariance - , depend on 

the entire number or sequence of different regimes  being considered. This makes calculation of the 

likelihood practically intractable, since a sample of length T would require integration over all the 

possible   paths. To circumvent this problem, Gray assumes the conditional variance is function of a 

weighted sum of the previous conditional variances over all the possible regimes, therefore producing 

only one conditional variance for each period. 

This method of combining the previous conditional variances of all possible regimes into a single one in a 

univariate setting is extended by Lee and Yoder (2007a) to a bivariate setting - in their regime switching 

bivariate BEKK model. i.e., they use a similar path dependency solution for both conditional variance and 

conditional covariance of the spot and futures prices of the series. However, by using the BEKK model 

from Engle and Kroner (1995), Lee and Yoder are prevented from potentially extending the application to 

multiproduct hedging of many related series, since the model incurs in the dimensionality problem 

mentioned previously and it cannot be estimated in two steps.  

Our extension of the Regime Switching Dynamic Correlations model is similar to the original RSDC - 

being a mixture model made of a correlations (not variance) matrix along with an ARMACH type 

equation to model both the variances and covariances of multiple series. The dynamics of the different 

regimes considered through a Markov chain  are introduced directly in the correlations 

matrix, as will be seen in detail ahead. An advantage of our model over the previous BEKK model is that 

we may estimate the parameters of the model in two steps. In a first step, estimation of the models for the 

variances of our series can be performed series by series (or asset by asset), and these equations need not 

be dependent or function of each different regime ). Subsequently, the calculations for correlations are 

made accounting for each different regime considered in the Markov chain. 
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In another paper, Lee and Yoder (2007b) develop a Markov regime switching frame as a generalization of 

Tse & Tsui (2002), which considers time varying correlations within a GARCH model for estimating 

optimal hedge ratios. The model shows hedging improvement over the CCC model and a time varying 

correlation GARCH model, previously developed by Lee et al. (2006). Yet the time varying correlations 

here do not consider specific underlying fundamental variables and the effect these may have in the 

evolution of the process.  

Many studies have analyzed correlation coefficients of financial instruments during periods of low 

volatility versus high volatility. Longin & Solnik (1995) and Ramchmand & Susmel (1998) specifically 

use multivariate GARCH models to test for different correlations when in periods of changing volatility. 

The first case uses monthly data and considers a bivariate Constant Conditional Correlations for the base 

specification. During periods of high volatility, they insert an exogenous threshold at the 

contemporaneous value of the volatility, resulting in a different correlation during those volatile times. 

The second case uses weekly data (stock returns from Thursday to Thursday) and introduces correlations 

as function of variance regimes, using a Markov regime switching ARCH model (SWARCH). This model 

estimates the regime of volatility completely exogenously, having constant transition probabilities within 

regimes. Both studies find that for higher conditional volatilities, market correlations increase. 

A study by Forbes & Rigobon (2002) finds that correlation coefficients among markets are conditional on 

market volatility, and this characteristic induces a conditioning bias in the estimates of correlations. For 

example, a bivariate normal distribution with an unconditional correlation value is different than a 

conditional correlation when markets are in upswing or downswing moves.  i.e. the conditional 

correlations calculated are biased when these specific moves are not considered. A study by Ang & Chen 

(2002) takes this factor into account when comparing U.S. stocks versus the aggregate market, and 

develops a statistic for measuring, comparing and testing asymmetries. They find that regime-switching 

models have better performance at capturing correlation asymmetries. This result reaffirms our model 

selection and development. A recent study by Tejeda and Goodwin (2009) apply the restricted version of 

the model to estimate dynamic correlations between corn, soybeans and cattle markets, determining the 

effect of ethanol driven corn consumption among these markets. Results determined are consistent with 

the literature. 
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Econometric Model 

I. RSDC model 

The dynamic covariances between series are partitioned into standard deviations and correlations, with 

different correlation values switching between different regimes through a Markov chain.  

If we consider a  - multivariate time process, i.e. : number of time series: 

      with       - where  may be a filtered process.     (1.) 

The time varying covariance matrix  is decomposed into standard deviations and correlations: 

    where  is a Diagonal matrix with standard deviations:     (2.) 

    is the correlations matrix 

(this decomposition of covariance matrix has been previously used by Bollerslev 1990, Tse & Tsui 2002, 

Engle 2002, and Pelletier 2006). 

The standard deviations  for each time series  - from the diagonal matrix , are assumed to follow 

an ARMACH model. The correlation matrix  follows a Markov chain, with different values for 

different regimes, i.e. for particular periods it may be in one regime with a certain set of correlation 

values, and for other  periods it may be in another regime, with a different set of correlation values.  

 

I.a. Markov Process for Regime Switching between Correlations: 

The RSDC model considers multiple series transitioning between regimes of different correlation levels 

according to a Markov chain process, generating dynamic correlations. The switch from one regime to 

another is determined by transition probabilities, which in this extended model are time-varying 

transitional probabilities. i.e. constant transitional probabilities are nested (special case) within our model.  

The time-varying correlation matrix  is defined as: 

 =               (2.1) 

where is an unobserved Markov chain process independent of , taking N possible regimes or values 

( . And 1 is an indicator function. 
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The  matrices   ( : # regimes) are correlation matrices - symmetric, PSD, ones on the 

diagonal, off-diagonal elements between -1 and 1, with   for . 

The „probability law‟ governing the Markov chain process   is defined by its state dependent transition 

probability matrix: . 

The probability of going from regime  in period  to regime  in period   is denoted by  

The limiting probability of being in regime  is , as per the ergodic property of a Markov chain. 

Matrix has elements of row  and column :      i.e.    

The Markov chain fits standard assumptions - aperiodic, irreducible and ergodic - Ross (1993), Chapter 4. 

In equation (2.1) we impose  to be a correlation matrix, and then  will also be a correlation matrix. In 

the diagonal elements are 1 and the off-diagonal elements are between ; yet this does not imply 

the matrix necessarily being PSD (could have extreme cases of tri-variate time series with off-diagonals at 

-.99, leading to non-PSD). 

Hence the Choleski decomposition is used in helping to impose PSD for . 

i.e.:   with  as the lower triangular matrix, and restricting its first diagonal value equal to 1. 

 This secures off-diagonal elements between [-1, 1]. 

Despite an increasing number of parameters coming from each  that are to be estimated, the 

Expectation maximization (EM) algorithm may be used from Dempster et al. (1977), as presented in 

Diebold et al. (1994) and Hamilton (1994 – Chapter 22), and thus handling this matter effectively. This 

will be duly addressed ahead in the estimation section. Also, as mentioned before, this model is linear due 

to the Markov chain, and therefore able to estimate directly multi-step ahead conditional expectations of 

the correlation matrix. This is in contrast to the DCC model, which introduces non-linearities by rescaling 

the covariances to obtain correlations between -1 and 1; hence direct conditional expectation computation 

is not possible.  

Another relevant factor is that if persistence exists in the Markov chain (staying in the same regime in 

subsequent time periods), it will lead to smoother time-varying correlations. This could have an influence 

for VaR computations and dynamic portfolio allocation, since the benefits of portfolio diversification 

would be less volatile, as per Pelletier (2006). 
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There have previously been numerous regime switching models for univariate heteroskedastic time series, 

including Garcia and Perron (1996), Gray (1996), Dueker (1997).  In addition, some of these models have 

been extended to consider bivariate time series, such as previously mentioned Lee and Yoder (2007a). In 

general, these models consider GARCH equations which must also incorporate regime switching 

parameters for the variances, as well as „normalization‟ of the covariances to become correlations.  

Our model doesn‟t need parameters for the correlations of the same variables, as all these correlations 

must be equal to one. At the same time, the model directly estimates the correlations without need to 

normalize, this in contrast to the case of models that estimate covariances.  

 

I.b.  Restricted Model 

The parsimonious or restricted model for the time-varying correlation matrix  is similar to Pelletier 

(2006). That is: 

        (2.2) 

with: 

 being a fixed  correlation matrix – for every state or regime considered. 

 is a  identity matrix. 

   (for assurance of eliminating possibilities of non-PSD correlation matrix) is a univariate 

random process governed by an unobserved Markov chain process  that takes  possible values 

 and is independent of .  

The „probability law‟ governing the Markov chain process   is defined by its state dependent transition 

probability matrix:  which can be a function of either weakly exogenous variables, or exogenous 

indices, or a mix between them as will be noted.  These state dependent (time varying) transition 

probabilities serve to determine the impact of underlying related factors (prices and/or indexes) in the 

change of these dynamic correlations. That is, by the use of variables such as associated prices and/or 

indexes in these time varying transition probabilities, we are able to assess their impact on the switch 

between one state of dynamic correlation and another.  
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The correlation matrix at time  (i.e. ) is a weighted average of two extreme states or regimes – 

uncorrelated returns by , or totally correlated returns at . Changes among 

correlations of different regimes are strictly proportional to , allowing for regimes of higher or 

lower correlations since the diagonals (own-correlations) are left at one. 

This model enables calculation of dynamic correlations in a context of time-varying transition 

probabilities, without the need for expectation maximization since less number of parameters are to be 

estimated. In other words, through maximum likelihood and using a correlation targeting method 

described next, we are able to estimate dynamic correlations between regimes when considering state 

dependent transition probabilities. 

Because in (2.2) only the product of  and  is identifiable for off-diagonal constraints (diagonal elements 

are equal to 1), we use the same correlation targeting method followed by Pelletier (2006). That is by 

using either of the following sets of constraints during our estimation: 

i. ,        (2.2.1) 

which fixes the first value at its highest i.e.1, obtaining directly  from ; also the rest of  

are in diminishing order to eliminate the possibility of relabeling regime  as  and viceversa. 

ii. ;   with 1 >      (2.2.2)  

which fixes an off-diagonal element at 1; but it does not mean the correlation may be 1 (or -1), 

since the correlation is actually the product given by  and . 

I.c.  Univariate Model 

The time-varying standard deviations are modeled directly by using the ARMACH process as per Taylor 

(1986). Since covariances are the product of correlations and standard deviations, here there is no need to 

model the variance through GARCH, and then using a non-linear square root to obtain the standard 

deviation.  

In ARMACH, the conditional standard deviation follows: 

     with |, for stationarity purposes    (2.3) 

As mentioned previously since the expectation enters as a linear operator, it provides ease of use for 

multi-step ahead computation of conditional expectations. 
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II. State Dependent, Time-varying Probabilities 

In order to introduce state dependent, time-varying transition probabilities within regimes into the 

dynamic correlations model, we use a procedure proposed by Diebold et al. (1994).  As noted, there are 

two regime switching models that will be extended. The first one is the parsimonious (restricted) model 

(2.2), where the Correlation matrix  is obtained by correlation targeting using equation (2.2.2), though 

we would arrive at similar results if using equation (2.2.1). In this case parameter estimation is obtained 

through maximum likelihood, and we need to obtain previously the filtered/smoothed probabilities 

because of the unobserved Markov chain. That is, we require the filtered and the subsequent smoothed 

probabilities in order to estimate our dynamic correlations. On the other hand, for the general regime 

switching model (2.1), and its estimation via maximization of parameters, we apply the EM maximization 

procedure.  

The state dependent probability matrix  has elements of row and column :  

  = . 

The probability of transitioning from regime  at period , to regime  at period  is:  

Such that: 

                | ,  =   ;     and 

               | ,  =  

conversely, 

         | ,  =  ;     and 

 | ,  =  

The variables  are weakly exogenous (or fully exogenous) variables. 

For the specific case of two regimes: 

 i.e.  

 | ,  =     and 

 | ,  =  
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The transition probability matrix :       (3.1) 

   State 1  Time t  State 2 

                                                  =  (1 -  

State 1       | ,   | ,  

  =                                    =  1 -    

Time t-1  

   =  (1 -                            

State 2   | ,    | ,  

  =  1 -                     =      

 

where ….., 1 ;  

 

III. Estimation: 

From equations (1) and (2), the log-likelihood can be written as: 

 

    

                (4.1.) 

where    and  is a zero mean process with covariance  matrix ; 

also | . 

                                                            
1 Here we use same as is if it was  of previous page. 
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Estimation of the model parameters is made in two steps, with the assurance that the variance/covariance 

matrix is PSD (positive semi-definite). First the standard deviations are obtained, and then the correlations 

are calculated. Standard deviations are obtained directly via the ARMACH model in (2.3), permitting a 

smooth linear calculation for correlations versus the use of a GARCH type model, which introduces 

nonlinearities when going from covariances to correlations since it requires the square root of the 

variances. This arrangement also enables the possibility of calculating analytically multi-step ahead 

conditional expectations, due to its linear properties; yet using a GARCH type model does not permit this. 

The estimation method calculates both filtered and smoothed transition probabilities between regimes, 

and subsequently makes use of an Expectation Maximization (EM) algorithm for the unrestricted model. 

i.e. the model estimation involves two main parts. The first part is the expectation step, which estimates 

the expectation of the complete data log-likelihood. This involves calculating the filtered probabilities for 

the complete data log-likelihood conditional on data observed, and then obtaining back the smoothed 

probabilities. The second part is the maximization step, which considers the use of these smoothed 

probabilities in our expected complete-data log likelihood function and maximizes directly with respect to 

the parameters.  

When there are a large number of parameters being estimated we can use a two step estimation procedure 

as in Engle (2002) and Pelletier (2006). In the first step, univariate volatility models are estimated 

independently for each asset. In the second step, the correlation matrix is estimated conditional on the first 

step estimates. This procedure helps in avoiding the dimensionality curse. However, if the number of 

parameters is not too great, then only a one step procedure may be necessary for the estimation of all the 

parameters. In our empirical application, we will use the two-step estimation procedure. Both procedures 

are described below. 

 

III. a. One-step estimate:  

For maximum likelihood, we evaluate: 

(                     (4.1.1) 

with  = {  and  is the vector of unknown parameters.  

This equation comes from (4.1.).  
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We use a Diebold et al. (1994) procedure that considers a filter for time-varying probabilities - creating 

smoothed probabilities, and then estimating through maximum likelihood for the restricted model and 

through expected maximization for the general model. We will present some general steps for this 

procedure, with full details of the process in Appendix 1.  

To simplify, we let {  be the sample path of a first order, two state Markov chain process i.e. 

 or , with time varying transition probabilities according to the matrix  (3.1) above. In 

general, the matrix  considers a  vector ( x ) for the underlying related variable(s), i.e. a set of 

weakly exogenous variables that affect the state dependent transition probabilities. Therefore parameters 

 with  constitute the two regimes i.e.  is a  vector such that ,  and the 

constant transition probabilities are nested within these state dependent probabilities.  i.e. the first element 

of  is a constant. 

In our first and unrestricted model (2.1), we may estimate the case of two regimes considering state 

dependent transition probabilities2, by: 

 |  + |     (4.1.2) 

In our restricted or parsimonious model from (2.2), we estimate the case of our two regimes dynamic 

correlations by: 

|  + |   (4.1.3) 

 

Let {  be a time series that evolves according to the Markov chain { . In our case, the series 

are previously standardized according to their volatility obtained through the ARMACH model (2.3). 

Then we have: 

 ( ; N(  ,  with   

with the conditional density given by: 

 ;  =   exp       with                  (4.2) 

                                                            
2 Here  +  - further details at end of Appendix 1.2. 
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The restricted or parsimonious model enables calculation of dynamic correlations within a time-varying 

transition probabilities context by maximum likelihood. In other words, through the use of correlation 

targeting described below, we are able to estimate dynamic correlations between regimes when 

considering state dependent transition probabilities. 

For the general model (2.1), the Expectation Maximization (EM) algorithm is a robust and stable method 

to maximize the incomplete data log-likelihood, via iterative maximization of the expected complete-data 

log likelihood, conditional upon the observed data set. For the long-run probability of the first (starting) 

state at ,  being at state 1, we use .  

In the case of our restricted model, instead of having to estimate this extra parameter , we proceed in 

similar way to Pelletier (2006) and consider the limiting probabilities for the Markov process:  and 

solve for: 

   ;     - as per Ross (1993) - Ch.4.4 

Such that     and  

Now the complete-data likelihood – assuming all regimes  are observed, and letting  = (  

(excluding  in the case of the restricted model, as mentioned previously), would be: 

 

                           =  

                           = ) 

Introducing indicator functions for convenience: 

I( I( )] x 

                              x I(  

               +   I( )  + 

   +   I( )  + 
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   +   I( ) }                

Taking logs: 

log  I( [log  + log ] +  

                         + I( [log  + log ] + 

   + I(  log ; I(  log ;  + 

   + I(  log   +   I(  log  + 

    + I(  log   +  I(  log  (4.3) 

 

Therefore a basic algorithm procedure for parameter estimation consists of the following sequence. For             

 = (  - excluding  in the case of the restricted model, as mentioned previously. 

1. Pick  

2. Obtain filtered and smoothed probabilities for the following – see Appendix 1.2 for equation details 

regarding the marginal and joint probabilities3, conditional on : 

 ) 3     ) 3     

 ) 3         ) 3     

 ) 3         ) 3     

3. Construct: E log  - the hypothetical (i.e. assuming all {  and { } are observed) 

complete data likelihood (see Appendix 1.1 below) by replacing the indicator functions (I‟s) from (4.3) 

with smoothed probabilities (P‟s) obtained in previous step 2, obtaining the following: 

 E[log  =  [log  + log ] + 

                                                      (1 [log  + log  + 
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                                      P( [log  +  

P( [log  + 

                                             P( )log(  

P( ) log(  +  

                                           + P( )log(  

     P( | ) log(  }  

4. Set  E[log ] 

5. Iterate to convergence.   

This last convergence criterion may be obtained by assuming a change of likelihood from one iteration to 

the next, or for a change in the gradient vector, or for  that is smaller than a certain 

minimum value. 

For the correlation targeting method used in the restricted model, we just obtain the smoothed 

probabilities as per previous step 2.  i.e., once these smoothed probabilities are estimated, they may be 

used directly for estimation of the parameters in the restricted model (2.2), via maximum likelihood.  

 

III. b. Threshold levels 

Persistence of the dynamic correlations in the Markov chain may vary as a function of the weakly 

exogenous variables. i.e. these variables or underlying related factors of the multiple series may produce 

persistence at a specific regime‟s correlation value along the Markov chain. Thus a threshold is identified 

when it maintains the series in a particular regime instead of switching to a different regime and 

correlation value, had the related factor not been taken into account. This type of threshold may appear 

for example as an effect or consequence of the steady increasing or decreasing level of underlying related 

market factors such as prices, price ratios or changes in prices – which are explicitly included as a weakly 

exogenous variable.  
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The scenario may be the case of continuous rising or decreasing price levels in certain commodities 

responding to market fundamentals, thus producing higher correlation levels among related markets. On 

the other hand, there may be the case of continuous decreasing prices in financial assets, leading to 

anticipated increases in correlation levels among markets, a situation in accordance with the literature. 

Conversely, if the related variable favors the switch from one regime to another regime in contrast to the 

case where the factor had not been considered, i.e. in this latter case the regime switch occurs due to 

unaccounted exogenous factors, then the resulting correlation level may be more prevalent when the 

related variable is taken into account. Then this related factor is the opposite of a threshold and may be 

considered a catalyst. This case where the underlying factor prompts a regime switch, producing a larger 

switch than if the factor had not previously considered, may respond to explicitly considering the 

volatility of related market factor(s) which had previously not been directly considered. 

The threshold levels are a function of weakly exogenous variables and their coefficients  (or 

for the different regimes considered. The case of two regimes in our dynamic correlations model and 

for simplicity we consider only one weakly exogenous variable besides the constant factor, results in the 

following coefficient(s)  and  in the previous transition probabilities: 

 

Coefficients - b11 for the constant and b12  for the weakly exogenous variable - at Regime 1,  

Coefficients - b21 for the constant and b22  for the weakly exogenous variable – at Regime 2.  

The nested case of constant transition probabilities considers b12 = 0 and b22 = 0. 

To assess the impact of a significant coefficient of a weakly exogenous variable i.e. what we consider a 

threshold level, we do a first order Taylor approximation for this probability at a small value around our 

weakly exogenous variable  valued at zero.  

For example at  and being at regime 1, i.e. , and remaining at regime 1 for the next period, 

i.e.  ,  and for a small value of  around zero: 

| ,  =   

| , |  +    |  *(  

      =      |   +   |   *(  
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 results in: 

| , | *           

Or 

| , *      (4.3) 

That is, a small change in the probability of remaining in regime 1 (spillover effect), resulting from a 

small change in the weakly exogenous variable , is equal to the product of three terms. These terms 

are - the coefficient  of the weakly exogenous variable, the constant coefficient (  being a 

function of its exponential and the squared inverse of one plus its exponential, and the small change of 

this variable . There are three basic cases which may occur regarding a small change in the weakly 

exogenous variable . 

If the coefficient of our weakly exogenous variable is insignificant, then this underlying related 

variable would not form a threshold for price variations among markets. i.e. changes in this weakly 

exogenous variable would not make a difference in the evolution of our correlation values, and these 

market correlations would evolve completely exogenous to this particular factor. A different situation 

takes place if this coefficient  is significant and positive, where two cases emerge. One case occurs 

when the product of   with the constant coefficient‟s function  of exponentials is large, then 

positive variations of our weakly exogenous variable  will lead to a higher probability of 

remaining at regime 1 (i.e. longer spillover effect). The other case results in no further effect from 

positive variations of our related variable had this former product been zero or small. In other words for 

this second case - the coefficient  being positive and significant determines an existing threshold from 

this related variable. Yet the effect of increases in this weakly exogenous variable are dampened because 

the terms multiplied to this variable, specifically the product of  and exponential functions of are 

small or negligible. i.e. the threshold identified may produce spillover effects, yet additional spillover 

effects from increases in the related variable coming from shocks would not be produced. 

Conversely, if the coefficient  is significant and negative at (4.3), and its product with the constant 

coefficient‟s  function of exponentials is large, then positive variations of our weakly exogenous 

variable  will lead to a lower probability of remaining at regime 1 or higher probability of 

switching to a different regime, in this case switching to regime 2. This is in comparison to the case of the 

product of the two former factors being negative yet negligible. In other words, positive shocks from our 
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related variable will increase the probability of regime switching resulting in a larger correlation level at 

the new regime, versus the case where positive shocks from the related variables have no effect. This 

latter case is a result of the terms that are multiplied to the related variable, i.e.  and exponential 

functions of  being once again very small or negligible.  

 

IV. Two-step estimate: 

Once again we make use of a similar procedure in Pelletier (2006), yet make the necessary modifications 

involved for considering state dependent transition probabilities instead of having constant transition 

probabilities. The parameter space is partitioned into - parameters from the univariate volatility 

model for each time series (i.e. ARMACH model), and - parameters from the correlation model. 

The first step from (4.1), the likelihood assumes the correlation matrix is an identity matrix (i.e. : 

 

This does not require the use of a filter since the series‟ volatility is not governed by a Markov chain, and 

the parameters for each series are estimated separately. 

For the second step, the likelihood from (4.1) is estimated given  and taking out  previously 

estimated, which becomes: 

 

This second estimation does require the use of filtering because  (Markov chain) is not observed. This 

filtering has been obtained previously from step 2 for the one-step estimation case mentioned before.  

When considering the non-restricted model (2.1), estimation is done through Expectation Maximization 

(EM) following steps 3. and 4. from the algorithm detailed previously in the one-step estimation. Iteration 

of the maximization process is continued until new vectors  computed have a difference with 

subsequent vectors that becomes arbitrarily small.  
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As mentioned before, the case of the restricted model (2.2) considers correlation targeting. This involves 

first the calculation of unconditional expectation of the correlation matrix. i.e. 

 

The off-diagonal terms are part of the first term, i.e. matrix  multiplied by the scalar . This 

means that an estimation of , computed with the standardized residuals from the first  step, will 

have off-diagonal elements „scaled‟ by   ; thus these will be re-scaled according to the 

natural constraint posed before in (2.2.2). In other words, divide the off-diagonal elements of  by the 

highest absolute value among them, to obtain -1 or 1. This secures  and the number of 

parameters ( ) to be non-linearly estimated increases with the number of different regimes, and not with 

the number of time series. 

In our case of two regimes, we have 1 > , therefore: 

                           

These two-step estimates are consistent, and their asymptotic distribution follows a Normal (0, V), i.e.: 

         with 

 

such that: 

 ,  ,    M ,   

  ,         

The proof is in Pelletier (2006). 
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IV. Simulation 

We simulated four series, considering a Regime 1 level of correlation (  ) of 0.85 and a Lambda 

proportion ( ) of 0.3. Hence the Regime 2 level of correlations ( ) is 0.255. Results of the simulated 

data from our restricted model - in Appendix_2, indicate that we have obtained good approximations of 

the original „true‟ parameters. That is, our restricted state dependent model is providing good estimates of 

the simulated data. The coefficients estimated for the correlations, including the parameters in our state 

dependent transition probabilities and for the lambda proportion are significantly equal to the original 

„true‟ values which simulated the series of data. 

We also include results of the model estimated by considering constant transition probabilities. This was 

done by making the coefficients of the weakly exogenous variable equal to zero. In this case, we obtain 

good estimates of the parameters for correlation and lambda proportion - being significantly equal to the 

original „true‟ values. However, we do not obtain these good results for the coefficients of the constants in 

our transition probabilities. In other words, these parameters are not significantly equal to the original 

ones. Perhaps this should be the case, since the switching probabilities are now not depending on any 

related variable, but just the simulated series themselves. Nonetheless, when we compare these models by 

likelihood, we obtain better results with our state dependent transition probabilities (less likelihood 

preferred, yet we also include two extra parameters being estimated), than for constant transition 

probabilities. Charts showing the correlation series and results of different number of simulations 

considering state dependent transition probabilities and constant transition probabilities are in 

Appendix_3. In addition, direct comparison between the state dependent transition probabilities and 

constant transition probabilities along these simulated series are presented. 

Discussion  

Through the use of multiple series of simulated data, our model was able to capture the effect or impact of 

underlying variables specifically related to the evolution of the multiple series. The simulated data was 

particularly constructed with a related variable, a difference between two of series, which determined its 

evolution process. This related variable in turn, establishes a threshold level in transitioning from one 

regime of correlation to another through the coefficient it has in the state dependent transition probability. 

In other words, in our simulated case for the restricted model, the threshold levels are proportional to the 

coefficients of these related variables, such that there may be a higher probability of staying in one regime 

when these related variables are determined. These threshold levels are estimated by computing a Taylor 

approximation of these related variables, as per previous section III. b. 
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In the case of our simulated data, the coefficients of our state dependent probability are b12 (or ) equal 

to 2, and b22 (or ) equal to -2. When the underlying related variable considered has a positive value, 

the first variable coefficient b12 (or ) being positive increases the probability of remaining at regime 1 

in case of previously being at regime 1. At the same time and also when the related variable considered 

has a positive value, the second variable coefficient b22 (or ) being negative increases the probability 

of switching from regime 2 to regime 1, in case of previously being at regime 2. Hence for steady positive 

values of our underlying related variable, the first coefficients may become a threshold b12 (or ) 

indicating spillover effects or persistence to remain in regime 1, than at regime 2. Additionally, the 

second variable b22 (or ) makes the switch from regime 2 to regime 1 more prevalent. In this 

restricted model, regime 2 ( ) is at a lower correlation level than regime 1 ( ). The converse case of 

spillover effect in regime 2 may be achieved, if the related variable considered has negative values. Thus 

there is an impact in an inverse manner than the previous case, through the probabilities of either 

remaining in regime 1 – with , or of switching to regime 1 from regime 2 – with . This latter 

effect is also obtained in our simulated data, as can be seen form charts in Appendix 3. 

When modeling our simulated data with the original constant transition probabilities model, we are able 

to obtain the proper correlation values for both regimes. However, the dynamics of these correlations may 

be better determined when we include the underlying related variable to the process, as with the state 

dependent probabilities. This is further corroborated by an initial better fit to the simulated data through 

our likelihood values from both models. 

Being able to determine fundamental underlying variables in the evolution of multiple series or markets 

enables us to analyze the impact of shocks from these related variables. In other words, the effect a shock 

from a related variable may have on the multiple series being considered, including the spillovers it 

produces, can be determined and also long-run implications may be assessed.  In addition, having a better 

portrayal of the changes between different correlation states among multiple series may assist in 

efficiency of related operations, as well as for risk hedging improvements. 

 

Conclusion 

Proper assessment of the dynamic interrelationships among different time series and/or markets, 

especially during periods of high volatility, is critical for efficiency gains, management of risk and policy 

analysis. We extend a regime switching dynamic correlation model by including the possibility of 
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determining the effect of underlying related variables, to the evolution of the dynamic process of multiple 

series or markets. These related variables of the multiple series modeled, form part of a switching 

probability process for transitioning between regimes of different correlation values.  

We simulate multiple series in two different regimes of correlation values, by explicitly considering a 

related series in the transition probability for being in one regime or another. We then model their 

dynamic correlations and find advantages of our model which includes state dependent transition 

probabilities, than if considering constant transition probabilities, between regimes.  Determining the 

effect of the underlying related variable in the evolution of the dynamic process enables to identify 

thresholds and spillover effects between the series, as well as better portrayal of the dynamic process for 

efficiency gains, risk management or policy analysis. Further empirical applications with the unrestricted 

model will be conducted. 
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Appendix 1.1 

Expectation Step (as per Hamilton 1990): 

Substitution of „smoothed state‟ probabilities for the indicator functions in the complete-data log 

likelihood (from 3. above): 

 

E [log ] =    [ log   +  log  + 

                                                  + (1 - ) [ log   +  log(1 -  

                                            +  log  + 

                      +  ) log  +  

         +  ) log(  

                                                         +  ) log(1 -  ) + 

         +  ) log(  

                                                          + ) log(  }   

The „smoothed state‟ probabilities are obtained from the optimal nonlinear smoother, conditional upon the 

current „best guess‟ of  , i.e.  . 
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Appendix 1.2 

The Algorithm for calculating the „smoothed state‟ probabilities for state j, given  ,   and   is: 

1.i. Calculate the Conditional densities of , i.e.  by (3.3):  a (T x 2) matrix 

   ii. Calculate Transition Probabilities matrix as per pg. 19:  which is a (T-1) x 4 matrix 

2. Calculate „filtered‟ joint state probabilities ((T-1) x 4 matrix) by iterating on steps 2a to 2d below,  

for t = 2,…,T 

     2.a. Calculate the joint conditional distribution of (    given       

        and     : 

For t = 2, joint conditional distribution is: 

 ) =   

For subsequent time periods t, the joint conditional distribution is: 

 ) = 

              

where    

                    are obtained from previous step 1.  

and 

          is the „filtered probability‟ obtained for previous t. 

2.b. Calculate conditional likelihood of  (ONE #):  

          (Adds up over All „states‟ – in this case two regimes) 

 ) 
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     2.c. Calculate the time-t filtered state probabilities (FOUR #‟s): 

    

  where the numerator is obtained for 2.a. (joint conditional distribution of  

) and the denominator is the conditional likelihood of  , from 2.b. 

     2.d. These previous FOUR filtered probabilities are used as input for step 2.a. to calculate  

the filtered probabilities for the next time period and steps 2.a. – 2.d. are repeated (T-2) 

times.  

 

3. The calculation of the „smoothed‟ joint state probabilities as follows ((T-1) x 6) matrix: 

3.a. For t = 2 and given values for ( ), sequentially calculate the joint probability of  

 (  given  and  , for   = t + 2, t + 3, …………T: 

   

 

where the first two terms in the numerator are from step 1., the third term in the numerator is from 

previous computation of step 3.a. , and the denominator by step 2.b. 

when  = t + 2, the numerator‟s third term is „initialized‟ with: 

  

 

  The last term in the numerator is from 2.c. 
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For each value  - a (4 x 1) vector of probabilities is produced corresponding to the four 

valuations of . Hence upon reaching   = T , we‟ve calculated and saved a (T – 3) x 4 

matrix; in which the Last row is used at step 3.b. below. 

3.b. Once at  = T, then the „smoothed joint state probability for time t‟ and the chosen valuation              

 of ) is calculated as follows: 

     

3. c. Steps 3.a. and 3.b. are repeated for all possible time t valuations ) (FOUR in this  

case), until a smoothed probability has been calculated for each of the four possible  

 valuations. Now we have a (1 x 4) vector of „smoothed joint state probabilities‟ for  

). 

     3.d. Steps 3.a. – 3.c. are repeated for t = 3, 4, …..T , obtaining a total of T – 1 x 4 smoothed  

 joint state probabilities. 

 

4. Smoothed „marginal state probabilities‟ are found by summing over the smoothed joint state  

 probabilities.  For example: 

  + 

              

These (T – 1 x 6) „smoothed state probabilities‟ (FOUR joint and TWO marginal) are used as 

input for the maximization step. 
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Appendix 1.3 

3.2. Maximization Step: 

Once the smoothed probabilities are obtained, the expected complete-data log likelihood given by (3. 

from pg. 2) is maximized directly with respect to the model parameters.  

The first order conditions for the non-linear (logit) transition probabilities parameter vector , result in a 

closed form solution for  and :  

 = (  x 

 

 

 

 = (  x 
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Which in the case of 2 regimes, specifically becomes: 

 

 x 

 

  (  

 

 x 

 

  (  
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Appendix 2. 

 

 
      State Dependent Probabilities   Constant Probabilities 

 
4 Series Simulated 

True Betas 
for 
Simulation   

Mean of Betas 
obtained from 
model 

Stnd Devtn. of 
Betas obtained 
from model*   

Mean of Betas 
obtained from 
model 

Stnd Devtn. of 
Betas obtained 
from model 

 

 

correlation Reg.1 0.85 
 

0.84195 0.02275 
 

0.84352 0.01800 

 
correlation Reg.1 0.85 

 
0.82031 0.02197 

 
0.82205 0.02523 

 
correlation Reg.1 0.85 

 
0.8373 0.02855 

 
0.83903 0.03017 

 
correlation Reg.1 0.85 

 
0.78727 0.02465 

 
0.78879 0.02271 

 
correlation Reg.1 0.85 

 
0.81216 0.01634 

 
0.8137 0.01143 

 
correlation Reg.1 0.85   0.81239 0.05112   0.81373 0.04660 

 
correlation Reg.2 0.255 

 
0.19940 0.02595 

 
0.21938 0.04175 

 
correlation Reg.2 0.255 

 
0.19427 0.02527 

 
0.21380 0.04096 

 
correlation Reg.2 0.255 

 
0.19830 0.02614 

 
0.21821 0.04201 

 
correlation Reg.2 0.255 

 
0.18645 0.02444 

 
0.20515 0.03924 

 
correlation Reg.2 0.255 

 
0.19234 0.02479 

 
0.21163 0.04013 

 
correlation Reg.2 0.255   0.19240 0.02732   0.21163 0.04182 

 

 

Lambda Transtn 0.3 
 

0.23683 0.03015 
 

0.26008 0.04919 

 
LIKELIHOOD     -2835.47     -2845.35   

 

 

b11 (for cte Reg.1) 0.8 
 

0.80247 0.24011 
 

0.55558 0.20837 

 
b21 (for cte Reg.2) 1 

 
1.0364 0.48581 

 
0.44203 0.35982 

 
b12 (for var Reg.1) 2 

 
1.8113 0.31005 

 
0 0 

 
b22 (for var Reg.2) -2   -2.175 0.69446   0 0 

         

 
*Standard Deviations for Correlations in Regime 2 by Delta Method 
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      State Dependent Probabilities   Constant Probabilities 

 
10 Series Simulated 

True Betas 
for 
Simulation   

Mean of Betas 
obtained from 
model 

Stnd Devtn. of 
Betas obtained 
from model*   

Mean of Betas 
obtained from 
model 

Stnd Devtn. of 
Betas obtained 
from model 

 

 

correlation Reg.1 0.85 
 

0.82209 0.04300 
 

0.82261 0.03965 

 
correlation Reg.1 0.85 

 
0.82399 0.02521 

 
0.82471 0.02581 

 
correlation Reg.1 0.85 

 
0.81159 0.03736 

 
0.8122 0.03560 

 
correlation Reg.1 0.85 

 
0.82383 0.03368 

 
0.82446 0.03191 

 
correlation Reg.1 0.85 

 
0.81733 0.02547 

 
0.81796 0.02304 

 
correlation Reg.1 0.85   0.8053 0.05510   0.80579 0.05258 

 
correlation Reg.2 0.255 

 
0.21397 0.02832 

 
0.19349 0.03482 

 
correlation Reg.2 0.255 

 
0.21447 0.02689 

 
0.19399 0.03418 

 
correlation Reg.2 0.255 

 
0.21124 0.02746 

 
0.19105 0.03417 

 
correlation Reg.2 0.255 

 
0.21443 0.02750 

 
0.19393 0.03446 

 
correlation Reg.2 0.255 

 
0.21273 0.02670 

 
0.19240 0.03380 

 
correlation Reg.2 0.255   0.20960 0.02924   0.18954 0.03512 

 

 

Lambda Transtn 0.3 
 

0.26028 0.03164 
 

0.23522 0.04079 

 
LIKELIHOOD     -2861.10     -2864.71   

 

 

b11 (for cte Reg.1) 0.8 
 

0.78777 0.17055 
 

0.57303 0.14454 

 

b21 (for cte Reg.2) 1 
 

0.94704 0.34643 
 

0.41169 0.29068 

 

b12 (for var Reg.1) 2 
 

1.7775 0.51231 
 

0 0 

 

b22 (for var Reg.2) -2   -1.9449 0.67193   0 0 

         

 
*Standard Deviations for Correlations in Regime 2 by Delta Method 

    

 

 

 

 

 

 

 

 

 

 



36 
 

 
      State Dependent Probabilities   Constant Probabilities 

 
15 Series Simulated 

True Betas 
for 
Simulation   

Mean of Betas 
obtained from 
model 

Stnd Devtn. of 
Betas obtained 
from model*   

Mean of Betas 
obtained from 
model 

Stnd Devtn. of 
Betas obtained 
from model 

 

 

correlation Reg.1 0.85 
 

0.80159 0.03571 
 

0.80324 0.03231 

 
correlation Reg.1 0.85 

 
0.82191 0.03606 

 
0.82382 0.03734 

 
correlation Reg.1 0.85 

 
0.8231 0.04408 

 
0.82493 0.04392 

 
correlation Reg.1 0.85 

 
0.81552 0.03394 

 
0.81746 0.03645 

 
correlation Reg.1 0.85 

 
0.81236 0.02986 

 
0.81408 0.02706 

 
correlation Reg.1 0.85   0.82311 0.04134   0.8251 0.04407 

 
correlation Reg.2 0.255 

 
0.18986 0.03442 

 
0.19184 0.03852 

 
correlation Reg.2 0.255 

 
0.19468 0.03527 

 
0.19675 0.03972 

 
correlation Reg.2 0.255 

 
0.19496 0.03582 

 
0.19702 0.04016 

 
correlation Reg.2 0.255 

 
0.19316 0.03489 

 
0.19523 0.03939 

 
correlation Reg.2 0.255 

 
0.19242 0.03455 

 
0.19443 0.03880 

 
correlation Reg.2 0.255   0.19496 0.03564   0.19706 0.04017 

 

 

Lambda Transtn 0.3 
 

0.23686 0.04163 
 

0.23883 0.04699 

 
LIKELIHOOD     -2908.17     -2919.19   

 

b11 (for cte Reg.1) 0.8 
 

0.90659 0.25991 
 

0.58582 0.1834 

 
 

b21 (for cte Reg.2) 1 
 

1.015 0.42433 
 

0.39757 0.26283 

 

b12 (for var Reg.1) 2 
 

2.0372 0.60088 
 

0 0 

 

b22 (for var Reg.2) -2   -2.1888 0.76046   0 0 

         

 
*Standard Deviations for Correlations in Regime 2 by Delta Method 
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Un_Restricted_Model     State Dependent Probabilities   Constant Probabilities 

 
4 Series Simulated 

True Betas 
for 
Simulation   

Mean of Betas 
obtained from 
model 

Stnd Devtn. of 
Betas obtained 
from model*   

Mean of Betas 
obtained from 
model 

Stnd Devtn. of 
Betas obtained 
from model 

 

 

correlation Reg.1 0.85 
 

0.843547 0.01126 
 

0.863472 0.01364 

 
correlation Reg.1 0.85 

 
0.831235 0.01577 

 
0.858808 0.01812 

 
correlation Reg.1 0.85 

 
0.839049 0.01946 

 
0.873877 0.02353 

 
correlation Reg.1 0.85 

 
0.837465 0.01184 

 
0.835509 0.03578 

 
correlation Reg.1 0.85 

 
0.839907 0.00886 

 
0.84368 0.00964 

 
correlation Reg.1 0.85   0.83229 0.01561   0.841237 0.01951 

 

 

correlation Reg.2 0.255 
 

0.181037 0.04439 
 

0.24073 0.07972 

 
correlation Reg.2 0.255 

 
0.269242 0.04885 

 
0.242506 0.03026 

 
correlation Reg.2 0.255 

 
0.237202 0.06632 

 
0.212283 0.04423 

 
correlation Reg.2 0.255 

 
0.251787 0.05697 

 
0.279669 0.05431 

 
correlation Reg.2 0.255 

 
0.277317 0.03697 

 
0.285705 0.02399 

 
correlation Reg.2 0.255   0.294502 0.01751   0.272715 0.04962 

 
LIKELIHOOD     -2349.00     -2407.00   

 

 

b11 (for cte Reg.1) 0.8 
 

0.99047 0.07021 
 

0.428275 0.12847 

 
b21 (for cte Reg.2) 1 

 
0.849528 0.11754 

 
0.521075 0.08040 

 
b12 (for var Reg.1) 2 

 
2.58407 0.426541 

 
0 0 

 
b22 (for var Reg.2) -2   -2.3205 0.537097   0 0 
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Appendix 3. 
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