
Abstract

This paper describes a method for estimating panels by imposing a factor structure on the
residuals.  The method allows SUR estimation of panel models by providing a full-rank
estimator of the system covariance matrix when the usual estimate is rank-deficient.  We
charactersie completely the circumstances when this is possible.  When the usual estimator is of
full rank, our procedure provides a more parsimonious representation of the covariance matrix,
which can lead to efficiency gains in finite samples.  Monte Carlo analysis of convergence
regressions and PPP regressions in the Heston-Summers data-set indicates that the proposed
estimator has better performance in terms of RMSE and bias than standard panel or SUR
estimators (where available), as well as offering unbiased inference.
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FACTOR RESIDUALS IN SUR REGRESSIONS: ESTIMATING
PANELS ALLOWING FOR CROSS SECTIONAL CORRELATION

DONALD ROBERTSON AND JAMES SYMONS

1. Introduction

The increasing availability of data structures with both time-series and cross-
sectional dimensions and the possibility of overcoming the di¢culties associated
with both pure time series and pure cross sectional work have given renewed interest
to the econometric issues that arise with such structures. In this paper we propose
an alternative method for the estimation of regression models on such data-sets.

The standard model characterises the relationship between the dependent vari-
able and explanatory variables as a linear regression with random errors

yit = ®i + ¯0xit + uit i = 1; :::n; t = 1; :::T(1)

Depending on the data structure available, further assumptions are generally
made to identify the parameters in (??). If T is su¢ciently large and the errors form
a vector white-noise process ( with E(uu0) = § where u0 = (u1t; u2t; :::unt)), the sys-
tem can be treated as seemingly unrelated regression equations (Zellner, 1962) and
®i, ¯, and the variance-covariance matrix of the errors § can be straightforwardly
estimated. If, further, the errors are assumed to be jointly normally distributed,
estimates are available by maximum likelihood.

If T is not su¢ciently large, and in particular if n > T , then such an approach
is not feasible, because the usual estimator of the error covariance matrix is rank-
de…cient. There are a variety of techniques discussed in the literature for dealing
with the n > T case. One method is to assume that § is diagonal. If it is further
assumed that § is a scalar matrix, one has the usual panel estimator. This re-
stricted structure is the one-way error components model. The parameters ®i can
be treated as …xed or random, and the model estimated by OLS, GLS, or, if one is
willing to specify a joint distribution for the uit and the ®i; maximum likelihood.
In these circumstances one can also allow for time …xed e¤ects (the two-way error
components model). If the explanatory variables include a lagged dependent vari-
able, estimation is complicated in the …xed e¤ects formulation: see Nickell (1981).
In both SUR and panel estimation, it is possible to allow for some restricted se-
rial correlation in the error process (see for example Liang and Zeger (1986) for
the static case, Keane and Runkle (1992) for the dynamic case). If one relaxes
the assumption that the error variances are equal, one can weight observations ac-
cordingly to obtain WLS estimators as in Fisher (1993). For § non-diagonal, one
could always collapse some of the cross-sectional units into group averages to make
n < T , as is often done for ML estimation of the factor model in …nance. A further
possibility is to replace the required inverse of § by its generalised inverse. Under
certain conditions this is a BLUE estimator (see Theil, 1971), and brings the n > T
case within the range of SUR estimation, though we know of no applications of this
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2 DONALD ROBERTSON AND JAMES SYMONS

technique in a panel context. The advantage of the factor approach we propose
vis-à-vis this possibility lies in its parsimony: we shall see that the factor approach
is much more e¢cient in small samples, even in the full-rank case, at least for the
cases we consider1.

The assumptions on the correlation structure § are usually made for identi…a-
bility reasons, rather than descriptive accuracy. In particular the panel approach
imposes zero correlation on the shocks to the cross-sectional units at each date
so that estimation can proceed. The hope, presumably, is that by conditioning
on su¢ciently many explanatory variables xit; what remains can be treated as a
purely idiosyncratic shock, uncorrelated over time and the cross-sectional dimen-
sion, though with perhaps a t speci…c e¤ect and a i speci…c e¤ect. In practice,
if the individual units are countries, …rms or even individuals, this is unlikely to
be the case. The econometrician rarely has su¢cient explanatory variables to re-
move all correlated behaviour, and what is left over may not be well described by an
®i+ft+²it formulation2. Ideally one would like to allow for some sort of correlation
pattern across the shocks. In a time series, it is natural to specify the correlations
between disturbances to be functions of distance, measured by time, and a small
set of parameters (such as in an ARMA process). In a cross-section, however, there
is often no unambiguous concept of distance. One approach is to de…ne a metric on
the cross-section using some notion of physical distance and allow for a correlation
structure with this measure playing the part of separation in a time series (see e.g.
Conley (1999) who discusses the consistency of GMM estimation in these circum-
stances). Thus, for example, with a data-set consisting of many countries, one could
allow for correlated shocks on adjacent countries, with zero correlation at greater
distances. This approach is predicated on formulating an appropriate concept of
nearness but clearly one country may be near a second for some purposes, but not
for others. In the SUR framework the possibility of correlated shocks is allowed for
through the covariance matrix §. However estimation of this matrix can often be
expensive in terms of degrees of freedom, and a poor estimate of this matrix may
contaminate the estimation of the parameters of interest in ??.

In this paper we propose a method that retains the ‡exibility of the SUR ap-
proach in allowing for correlated shocks, yet is more parsimonious than SUR, so
can be expected to be more e¢cient in general. It can be implemented when n > T ,
and provides a more general speci…cation than the panel approach. We impose a
factor structure on the covariance matrix and estimate the factors by maximum
likelihood techniques. This procedure can give an improvement in both bias and
RMSE of estimators. The estimation procedure is essentially feasible GLS and so
has the usual e¢ciency properties for large T .3 In Section 2 we set out the details
of the method. Section 3 applies the method to Barro-type convergence regressions
and PPP regressions in the Heston-Summers data-set. Sections 4 and 5 assesses the
performance of the factor approach by Monte Carlo and suggest some approximate
methods. Section 6 concludes.

1It is to be emphasised that this is a small sample property. It is well known that, with a
minor caveat, imposing restrictions on § brings no e¢ciency gains in large samples. See Greene,
1990.

2Frees (1995) discusses testing cross sectional correlation in panel data
3For …xed T; the estimators as n grows may or may not be consistent.
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2. A Factor Residual Approach

We specify the model as follows

yt = Xt¯ + ut t = 1; :::T(2)

where yt and ut are n £ 1 vectors, Xt is an n £ v matrix of explanatory variables
observed at t, ¯ is a vector of unknown parameters to be estimated, ut is a vector
white noise process with E(utu0

t) = §; and E(Xijtukt) = 0 all i; j; k; t:
We make the further assumption that

§ = ¤¤0 + ª(3)

where ¤ is a n£m matrix of so-called factor loadings and ª is a diagonal n£n matrix
with diagonal elements Ã1; Ã2; :::Ãn, where Ãi > 0 re‡ects idiosyncratic e¤ects.
This allows for some contemporaneous correlation between shocks, expressed as
a function of fewer parameters than the unconstrained § if m < n. Note that
the factor model generalises …xed e¤ects models directly, as the …xed e¤ects can be
entered as elements of X. A time random-e¤ects model is equivalent to a one-factor
model with ª diagonal and ¤ proportional to (1; 1; 1; :::1)0: ª scalar and m = 0
gives the usual panel formulation.

The factor model has an attractive interpretation because it amounts to speci-
fying that the residuals take the form ut = ¤1Á1

t + ¤2Á2
t + :: + ¤mÁm

t + "t where
E(Ái

tÁ
j
s) = ±ij±ts and E("t"

0
s) = ±tsª and ¤k is a column vector of weights. The Ás

can be interpreted as m common shocks and the elements of each ¤k give the load-
ing or impact of each of these shocks on the cross sectional units. For example, if the
units are economies, the …rst factor Á1

t might represent a world demand shock with
¤1 as the relative openness of the economies, the second factor Á2

t an agricultural
shock etc. For m = n such a decomposition can trivially be obtained; the useful-
ness of this decomposition arises when m may be taken to be much smaller than
n. These common shocks provide cross-sectional correlation in the error structure,
with the "t adding an idiosyncratic term.

Given an estimate S of §; the likelihood function up to an additive constant is

L(§) = L(¤;ª; S) = ¡T
2

¡
log det§ + tr

¡
§¡1S

¢¢
(4)

(see Lawley and Maxwell, 1963).
The …rst-order conditions are (Lawley and Maxwell or J..oreskog, 1967)

@L
@¤

= ¡2§¡1(§ ¡ S)§¡1¤ = 0(5)

@L
@ª

= ¡diag(§¡1(§ ¡ S)§¡1) = 0

Classical factor analysis assumes that S is of full rank, and thereby obtains
estimates of ¤ and ª by maximum likelihood: The results cannot immediately
be generalised to the rank-de…cient case. There are methods in the literature for
dealing with this situation; for instance, Maxwell (1981) suggests estimation via
norm-minimisation.4 It is also possible to obtain factors as principal components,

4The norm in question being kBk = (trB0B)
1
2 , so that one would minimise

kS ¡§k2 =
X

i;j

(Sij ¡ §ij)2:
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even in the rank-de…cient case. In the …nance literature, Connor and Korajcyk
(1986, 1988) estimate factors using the Chamberlain and Rothschild (1983) method
of asymptotic principal components in the rank-de…cient case. These factors are
identi…ed for asymptotically large n given certain assumptions. The advantage of
maximum likelihood is that one has, in large samples at least, a natural basis for
inference and model selection. The technical contribution of this paper is to show
that, subject to certain restrictions on the number of …tted factors, the likelihood
function is bounded and attains its bound at an invertible §, irrespective of the
rank of S. Hence maximum-likelihood estimators of ¤ and ª can be obtained from
direct maximisation of the likelihood function, even in the rank-de…cient case5. The
likelihood is invariant to multiplication of ¤ by a unitary matrix so the matrices
¤ and ª are identi…ed only up to such a matrix. This can be resolved by …xing
¤ to have zeros above the diagonal, thus removing the di¢culty in estimation;
though if one wished to o¤er interpretation of the factors it would, of course, be
problematical.

We summarise our results concerning the likelihood function in the following. If
S has full rank there is no problem in maximising the likelihood (see e.g. J..oreskog,
(1967)). We show in the appendix that, as long as one does not attempt to …t too
many factors, the likelihood function for the general factor model is bounded and
attains its bound, even if the initial estimate of the variance-covariance matrix is
rank-de…cient. The estimator of the covariance matrix thus obtained has full rank.
This result clearly has applications beyond those we explore below. To obtain
estimates of the factors we can therefore operate directly on the likelihood function
(??). As is well known in the case S has full rank, it can be di¢cult to …nd the
maximum of the likelihood function numerically. The situation is the same when
S is rank-de…cient. The geometry of the likelihood function is explored further in
the appendix.

In the situation where the likelihood is bounded, the general shape is akin to
the positive orthant of a multi-dimensional volcano. The maximum is obtained on
the rim or on the boundary of the admissible region (these are known as Heywood
solutions). Clearly search algorithms will usually have great di¢culty with this
surface. Motivated by this, we propose a mixture of search algorithms to ensure
convergence. The numerical technique is discussed in detail in the appendix.

Having obtained estimates of the factors, estimates of ¯ can then be obtained by
feasible GLS, by minimising

PT
t=1 (yt ¡ Xt¯)0 b§¡1 (yt ¡ Xt¯), where b§ = b¤b¤0 + bª

to give ^̄ =
³PT

t=1 X 0
t§̂¡1Xt

´¡1 PT
t=1 X 0

t§̂¡1yt: One could in principle iterate this
approach (as is usually done in a SUR framework) to obtain full maximum likelihood
estimates. Standard errors can be obtained from the usual GLS formula.

Asymptotic consistency results are complicated by the incidental parameter
problem (Neyman and Scott, 1946) arising particularly in this context when time
or individual …xed e¤ects are included in the model. For T -asymptotics with …xed
n, if we begin with an initial T -consistent estimate of §; the estimates of ¤ and
ª will be T -consistent if the factor model is true6: Hence our GLS estimator of ¯
inherits the T -asymptotic properties of GLS. Thus, whereas estimates of time …xed

5Given the factor loading matrix ¤ and ª; the factors can then be recovered by regression, if
desired.

6By application of Slutsky’s Theorem, given that, as is easily shown, the mapping S !
b§Factors is continuous and takes the value § at S = §:
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e¤ects will not be T -consistent, other parameter estimators typically will be consis-
tent. The gain here is a more parsimonious representation of the covariance matrix,
leading, as we shall see, to potential e¢ciency gains even when T is moderate.

The case of n-asymptotics is a little more murky. Clearly one could not expect
to obtain n-consistent estimates of individual …xed e¤ects, for given T: Beyond this,
the Nickell result shows that, in the presence of individual …xed-e¤ects, estimates
of the structural parameters can be n-inconsistent. If dim(¯) is …xed as n grows,
however, one might hope to say something, but we have no results as yet. One
could as well seek asymptotics for large T but larger n: It is true that, if the data
are …xed in repeated samples and S is obtained by OLS on each of the n equations,
then the GLS estimate of ^̄ ¡ ¯ will be an odd function of the residuals, and
hence median-unbiased. However, irrespective of these considerations, we shall see
below that, for …xed sample size, the proposed estimator has better performance
measured by standard loss functions than both conventional SUR (where feasible)
and panel methods, and in this sense can provide superior estimates. The empirical
contribution of this paper is thus to suggest the use of this factor-residual model in a
SUR framework, permitting estimation of panel models allowing for cross-sectional
dependence. We illustrate with an empirical example.

3. An Application: Convergence Regressions

We illustrate the above techniques by applying the method to study conver-
gence in the Heston-Summers data-set. We seek to measure convergence in GDP
per capita relative to the US. This problem has been studied by many authors
(Barro, 1991, Mankiw Romer Weil, 1992, Evans and Karras, 1996, Islam, 1995,
Lee, Pesaran and Smith, 1995, Caselli et al.,1996, among others) mainly using the
Heston-Summers database. Barro-type regressions correlate average growth rates
and initial values; others attempt to control for extra right-hand-side variables
such as human capital, savings rates etc. and study conditional convergence. A
typical Barro result is convergence at about 2% per annum; more recently a num-
ber of panel studies have suggested a somewhat higher rate of convergence (see
Evans and Karras, 1996, Islam. 1995, Lee, Pesaran and Smith, 1995, Caselli et al.,
1996). We exploit the full time-series and cross-sectional dimensions of the Heston-
Summers data-set, and study unconditional convergence, though our methodology
could straightforwardly be applied to study conditional convergence. Imposing a
factor structure means we can allow for the shocks that disturb the system to be
correlated across countries – for instance oil price shocks or …nancial crises. We
specify the model as

yit = ½yit¡1 + "it(6)

where yit = ln(GDP per capita as percentage of US). We shall impose a factor
structure on the "it, allowing for correlated shocks. Note that we do not allow
for individual …xed-e¤ects. As discussed above, these would cause problems in a
dynamic regression if T were small (see Nickell, 1981), though there is a developing
literature addressing this problem by applying GMM techniques to the di¤erenced
equation (see Islam, and Caselli et al.). In an unconditional convergence regression,
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the natural formulation does not involve individual intercepts.7 In estimation we
include a simple intercept.

3.1. Results and selection of number of factors. We estimate this model for
the subset of the OECD countries (n = 22; T = 41) and for the whole data-set
(n = 103; T = 31). We also estimate (??) using a panel estimator (i.e. applying
OLS to the stacked data, appropriate when § is a scalar matrix) for both the OECD
and world subsets, and using SUR for the OECD countries. One key issue is the
selection of the number of factors to be …tted. Likelihood ratio tests are available,
as well as information criteria such as Akaike, Schwarz-Bayes or Hannan-Quinn8.
We discuss the performance of these information criteria later.

For the OECD subset, the estimate S of the matrix § indicates considerable cor-
related structure in the errors. The average modulus of the o¤-diagonal correlations
in this matrix is 0.375. With correlations of this magnitude, panel/OLS estimation
will produce biased standard errors, and be less e¢cient than unrestricted SUR
(see Di Liberto & Symons, 1998). The estimation results are set out in Table 1.

7Though in principle there would be no di¢culty in combining any …xed e¤ects estimator
with our factor residual model by premultiplying (??) by b§¡1=2; as long as an initial consistent
estimate of § is available.

8These criterion function are of the form LogLikelihood ¡ f(T ):(#params) where f(T ) = 1
for Akaike, f(T ) = 1

2 ln(T ) for Schwarz, and we use f(T ) = ln(ln(T )) for Hannan-Quinn.
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Fitted § intercept b½ log
likelihood AIC SBC HQC

scalar(OLS) 0:12526
(:01314)

0:97234
(:00323) 0 ¡1:00 ¡1:84 ¡1:31

0-factor(WLS) 0:12847
(:01321)

0:97167
(:00322) 60:01 38:01 19:43 31:29

1-factor 0:11582
(:01191)

0:97422
(:00277) 266:36 222:36 185:20 208:92

2-factor 0:11702
(:01125)

0:97463
(:00260) 305:30 240:30 185:41 220:45

3-factor 0:11445
(:01090)

0:97527
(:00252) 322:34 237:34 165:56 211:38

4-factor 0:12908
(:01191)

0:97175
(:00278) 339:37 235:37 147:55 203:62

5-factor 0:13297
(:01198)

0:97085
(:00279) 354:44 232:44 129:42 195:19

6-factor 0:13316
(:01181)

0:97071
(:00279) 370:93 231:93 114:56 189:50

7-factor 0:12902
(:01178)

0:97169
(:00280) 382:77 227:77 96:88 180:44

8-factor 0:12896
(:01109)

0:97176
(:00264) 394:44 224:44 80:89 172:54

19-factor 0:13239
(:00924)

0:97076
(:00221) 445:77 176:77 ¡50:39 94:64

20-factor 0:13239
(:00924)

0:97076
(:00221) 445:77 173:77 ¡55:92 90:72

n-factor(SUR) 0:13239
(:00924)

0:97076
(:00221) 445:77 192:77 ¡20:88 115:52

Table 1: Factor Residual, SUR and OLS/Panel Convergence Regressions for the
OECD subset of Heston-Summers

Notes: (i) § scalar is Panel/OLS; 0-factor is weighted OLS; n-factor is SUR. (ii) Log-
likelihood is normalised to be 0 for §=scalar (OLS). (iii) Since ¤ is restricted to be upper
diagonal, adding a further factor adds fewer than 22 parameters. (iv) Nominal standard
errors in parentheses, calculated as b¾2(X 0b§¡1X)¡1 for b§ in each row. These standard
errors are fairly dubious a priori for a process so close to the unit circle.

The results are listed by decreasing degree of restriction on the covariance matrix.
If § is restricted to be a scalar matrix, one has OLS; if § is diagonal (0-factors)
one has weighted least squares; each factor model is nested in a higher-order model;
SUR (n-factor) is the least restricted. OLS and WLS are strongly rejected against
models with non-zero covariance structure by likelihood ratio tests. The restriction
from seven to six factors would not be rejected at the 5% level by likelihood ratio,
but further restrictions would be rejected. Using the information criteria, Akaike,
Schwarz and Hannan-Quinn all select the two-factor model. Likelihood-ratio tests
of constant size will not lead to consistent order selection, unlike SBC and HQC.
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For the entire Heston-Summers data-set (n = 103; T = 31) we obtain the results
in Table 2.

Fitted § intercept b½ log
likelihood AIC SBC HQC

scalar(OLS) ¡0:01774
(:00398)

1:00617
(:00134) 0 ¡1:00 ¡1:70 ¡1:22

0-factor(WLS) ¡0:01581
(:00321)

1:00564
(:00091) 626:91 523:91 451:75 500:83

1-factor ¡0:01953
(:00326)

1:00608
(:00076) 1001:15 795:15 650:83 748:98

2-factor ¡0:01456
(:00310)

1:00462
(:00073) 1145:27 837:27 621:49 768:24

3-factor ¡0:01684
(:00300)

1:00589
(:00073) 1274:88 865:88 579:34 774:21

4-factor ¡0:01720
(:00286)

1:00597
(:00071) 1376:93 867:93 511:32 753:85

5-factor ¡0:01681
(:00280)

1:00588
(:00069) 1474:56 866:56 440:60 730:29

6-factor ¡0:01692
(:00260)

1:00595
(:00066) 1573:85 867:85 373:23 709:62

Table 2: Factor Residual and OLS/Panel Convergence Regressions for the
Heston-Summers Data-set.

Notes: As for Table 1, except that SUR is omitted since n > T:

Akaike is fairly ‡at between the three, four and …ve factor models for the world
regressions, Hannan-Quinn selects three factors and Schwarz points to a one-factor
model, re‡ecting the heavier weight placed on extra parameters by this criterion
Again a scalar or diagonal covariance matrix is strongly rejected.

The parameter estimates are in line with those obtained by other authors, and the
literature on convergence clubs. We …nd a point estimate of the rate of convergence
of approximately 2.5% per annum for the OECD countries, and no convergence for
the full Heston Summers data-set.

3.2. Con…dence Intervals for the Convergence Parameters. We construct
con…dence intervals for the three estimates of the convergence parameter for the
OECD subset by Monte Carlo. We de…ne a 95% con…dence interval as the points
lying between the 2.5 percentile and 97.5 percentile points of the sampling dis-
tribution obtained from 1000 repetitions of each estimation procedure applied to
arti…cial data generated by the relevant estimated parameters in Table 1 and the
original estimated variance-covariance matrix S to generate the errors9. For the
factor model, we select the estimated parameter values from the (preferred) two-
factor model for the Monte Carlo, and always estimate two-factor models on the
generated data. The results are set out in Table 3.

9That is, we do not generate the data using an underlying factor residual model. This will
ensure that we are not biasing the Monte Carlo in favour of such models.
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true parameter 2:5 percentile mean 97:5 percentile
OLS
® 0:12526 0:09350 0:13105 0:17306
½ 0:97234 0:96097 0:97093 0:98000

SUR
® 0:13239 0:10678 0:13614 0:15905
½ 0:97076 0:96198 0:96986 0:97686

Factors
® 0:11702 0:09619 0:11755 0:14025
½ 0:97463 0:96947 0:97449 0:97927

Table 3: Empirical Con…dence Intervals from 1000 repetitions.10

It will be observed that the 95% con…dence intervals for the factor model are
about half the width of the OLS con…dence intervals and two-thirds of the SUR
value. It is useful to compare these intervals with the apparent con…dence intervals
(estimate plus or minus two estimated standard errors) from Table 1. Apparent
con…dence intervals for OLS are expected to be wrong, even asymptotically, when
§ is non-diagonal, while SUR will be correct in large samples but wrong in small
samples when an estimate of § is used in place of its true value to compute standard
errors. One …nds that the apparent con…dence interval width by OLS is about 70%
of its true value, for SUR about 60%. Factors, in contrast, estimates the true
con…dence interval almost exactly. For this example at least, the factor method
o¤ers much superior inference. We return to this issue below.

3.3. A Further Application: PPP. We illustrate the technique with a fur-
ther application, looking at PPP in the Heston Summers data-set. The exist-
ing literature …nds mixed evidence for PPP using time-series, cointegration and
panel methods. Using real exchange rate data from Heston Summers, we have
n = 103; T = 31 (corresponding to the years 1960-1990). We take as our dependent
variable ln(exchange rate) and normalise by subtracting from each time series its
average value over 1964-69. The intention is thus to model deviations of exchange
rates from some “normal” level, here taken as the average over the second half of
the sixties. This is a compromise between allowing for individual country …xed
e¤ects (equivalent to subtracting time averages of the data for each country), en-
tailing problems of bias in a dynamic panel, and normalising the exchange rates
on a particular year which has the risk of choosing an anomalous reference point.
We again estimate an AR(1) regression, …tting an intercept (which should be zero
if PPP holds). The average modulus of the correlations in these data is 0.275,
indicating considerable cross-sectional dependence. Thus, as for the convergence
regressions, conventional panel methods are likely to lead to distorted inference and
loss of e¢ciency.

The results are in Table 4.

10In fact, SUR and OLS are based on 5000 repititions, factors 1000.
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Fitted § intercept b½ log
likelihood AIC SBC HQC

scalar(OLS) 0:00205
(:00249)

0:90534
(:00911) 0 ¡1:00 ¡1:70 ¡1:22

0-factor(WLS) ¡0:00015
(:00161)

0:95222
(:00776) 805:43 702:43 630:27 679:34

1-factor ¡0:01809
(:00197)

0:95810
(:00722) 1596:06 1390:06 1245:73 1343:89

2-factor 0:00767
(:00227)

0:86290
(:00930) 1835:08 1527:08 1311:29 1458:05

3-factor 0:00344
(:00237)

0:85584
(:00945) 2000:75 1591:75 1305:21 1500:08

4-factor 0:00328
(:00228)

0:85887
(:00929) 2054:18 1545:18 1188:58 1431:10

5-factor 0:00262
(:00224)

0:86466
(:00901) 2173:98 1565:98 1140:02 1429:71

6-factor 0:00191
(:00217)

0:84166
(:00975) 2272:95 1566:94 1072:32 1408:71

Table 4: Factor Residual and OLS/Panel PPP Regressions for the Heston
Summers Dataset.

Note: Nominal standard errors in parentheses.

Both Akaike and Hannan-Quinn select a three factor model, whereas Schwarz
marginally prefers two factors. Whilst panel/OLS gives an AR parameter of 0.91,
allowing for the correlated error structure reveals b½ = 0:86: The di¤erence between
the half-lives of deviations from PPP implied by these estimates is of economic
signi…cance.

4. Monte Carlo analysis of the method.

4.1. Deciding on the number of factors. We take the …tted three-factor co-
variance matrix from the Heston Summers PPP regressions and use this to generate
103 £ 31 matrices of correlated normal variates. These are used to generate arti-
…cial AR(1) time series of length 31, using the parameters in Table 1. An AR(1)
model is then …tted to each of the 103 time series and the residuals used to form a
rank-de…cient 103 £ 103 variance-covariance matrix . AIC, SBC & HQC are then
calculated to see whether they are able to identify the correct number of factors,
here three. This procedure is rather time-intensive: the …ve- and especially the
six-factor models are automatically heavily overparameterised and this seems to
cause convergence to be very slow. We therefore limit the number of repetitions to
100. Table 5 gives the frequency of selection of di¤erent numbers of factors by the
three information criteria.

Frequency of …tted factors: 1 2 3 4 5 6
Chosen by AIC 0 1 95 4 0 0
Chosen by SBC 0 19 81 0 0 0
Chosen by HQC 0 1 98 1 0 0

Table 5. Performance of various information criteria in identifying correct factor
model.

Results from 100 repetitions of underlying 3-factor model.
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The HQC does astonishingly well, getting the number of factors correct 98/100.
AIC is nearly as good. SBC tends often to choose smaller models.

4.2. Factors vs SUR vs OLS - who does best? We generate Monte Carlo
replications of the data using as initial values the 1950 values of log GDP for the
OECD subset of Heston-Summers. We generate series for yit via

yit = ® + ½yit¡1 + "it

where ® and ½ are the estimated parameters from the SUR of this equation and the
"it are correlated normally distributed random numbers with variance-covariance
matrix as estimated from the residuals of the SUR. We use an empirical variance-
covariance matrix for these Monte Carlo, rather than generating data with a given
factor structure, to ensure that the experiments are not biased in favour of factors.
We generate time series of di¤erent lengths T holding n = 22: On these generated
data we estimate AR(1) convergence regressions by OLS/Panel, SUR (whenever
n < T ) and the factor approach, assuming a two-factor model, as suggested by
Table 1, a one-factor model and a zero-factor model (WLS). Given that time …xed-
or random-e¤ects will generate a model close to the one-factor speci…cation, it is of
interest to check the performance of the factor speci…cation against a model where
cross-sectional dependence is modelled as time …xed-e¤ects and this is also calcu-
lated. The root-mean-squared-error and bias from 1000 repetitions are graphed in
Figures 1 and 2. Note …rst that there is nothing between the one- and two-factor
models. The factor-residual approach beats OLS/Panel and SUR in RMSE and
bias for n = 22 and T running from 5 to about 60: One- and two-factor models
outperform time …xed-e¤ects in RMSE, with similar bias performance. Eventually,
as T rises, SUR starts to dominate, though of course this is holding the number
of factors …xed. If the number of factors were allowed to rise as T grew, this may
no longer hold. Since in these Monte Carlo experiments the variance-covariance
matrix generating the data is, in fact, a genuine empirical matrix and is thus pre-
sumably a 22-factor model11, a consistent selection criterion such as SB or HQ
would ultimately select m = 22 and …t the model as well as SUR. Thus the supe-
rior performance of factors for T up to 60 illustrates the e¢ciency gain of parsimony,
even, as here, at the expense of misspeci…cation.

Whilst one- and two-factor models perform about equally well in RMSE terms,
rather unexpectedly, we …nd in Figure 1 that WLS does worse even than OLS
for some sample sizes. In general, transforming the data so that the residuals are
homoscedastic does not always lead to an increase in e¢ciency when § is non-
diagonal.12 This is a useful experiment because it shows that the e¢ciency gains
from the factor approach are due to exploiting the non-diagonal nature of § rather
than the inequality of the terms along the main diagonal. The fact that the one-

11Even though, in Table 1, treating this matrix as the sample estimate of an underlying m
factor model, we selected m = 2.

12Assume ?? contains just one independent variable xt with covariance matrix V = E(xtx0t).
Then OLS is the best among all estimators that weight the data by a diagonal matrix (thus
including WLS) if

diag(V§) = ¸diag(V )

for some ¸ > 0: Examination of this condition shows that for OLS to be both best and di¤erent
to WLS requires both V and § to be non-diagonal. This apart, the condition can certainly hold,
which implies that there are regions of V;§ space where OLS is better than WLS. These results
are for the case of known §:
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and two- factor models perform equally well means presumably that the e¢ciency
gains from parsimony are o¤-set by losses incurred by the imposition of rejectable
restrictions on the covariance matrix.
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Figure 1

Figure 2
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4.3. Actual versus calculated standard errors for the various estimation
procedures. For the Monte Carlo described above we calculate the sampling stan-
dard error of the estimated parameter b½ from 1000 repetitions for the OLS, SUR
and two-factor model. We also obtain the average calculated standard error from
the ¾̂2(X0X)¡1 formula for each estimator. The ratio of the estimated to the true
standard error as the sample length (T ) varies is graphed in Figure 3. We …nd that
OLS and SUR provide seriously biased inference over a wide range of sample sizes,
in both cases calculated standard errors substantially understating the true sam-
pling variation of the estimator. For instance, with a sample size of 15 (so that the
panel has n=22, T=15), OLS calculated standard errors are approximately half the
sampling standard error from the 1000 repetitions. The factor residual approach
provides a much superior guide to the true sampling variation, though still tends
to underestimate somewhat. The performance of SUR when the time and cross
sectional dimensions of the data are of comparable magnitude is very poor. Of
course these results depend on the correlation structure in the underlying Monte
Carlo, which here is drawn from the estimates of the AR(1) model for GDP per
capita on the OECD subset of the Heston and Summers database. But we have
no reason to think that this is a particularly exceptional database in terms of error
correlation structure, so these results must cast real doubt on inference in existing
panel studies13.

Figure 3

4.4. Normality of the distribution of the various estimators. For each of
the Monte Carlo above we investigated the distribution of the 1000 estimates of
the coe¢cient ½. In general estimates derived from the factor residual technique
showed less departure from normality than others. For example, for the sample
n = 22; T = 25 we obtain the following histograms and diagnostics

13Driscoll and Kraay (1998) have recently given a method of obtaining asymptotically correct
standard errors for OLS.
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Figure 4 SUR Estimation

Figure 5 OLS Estimation

Figure 6 Factors Estimation

Notes to Figures 4, 5 and 6: Histograms of 1000 estimates of AR1 coe¢cient by the
various estimation techniques. Sample design n = 22; T = 25 and underlying parameters
of OLS estimate of AR1 convergence regression in Heston Summers OECD database.
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SUR and OLS generate a detectably non-normal distribution of estimates, whilst
for the factor residual approach it is not possible to reject the null of normality of
the estimator at conventional levels.

The Monte Carlo described above is for a particular set of parameter values and a
particular design, and we must be wary of generalising too freely from these results.
However the conclusion of these investigations is clear. The factor residual approach
is superior in RMSE and bias to both OLS and SUR (where available) over a large
range of sample sizes, the estimates derived from the factor residual approach follow
more closely a normal distribution when the underlying errors are normal, and their
estimated standard errors provide a more reliable guide for inference.

5. Approximate Factor Techniques

Full maximum likelihood estimation of the factor model can be rather cumber-
some and time-consuming due to the nature of the likelihood surface. In this section
we brie‡y discuss some techniques that provide an approximation to maximum like-
lihood. We also set out the advantages and drawbacks of these approximations as
they appear to us.

5.1. Principal Components. One can easily approximate the rank de…cient S
matrix by its m principal components and de…ning the corresponding ª matrix to …t
the diagonal exactly. This is very simple to implement, very quick and will usually
produce an invertible estimator b§. We have experimented with such a principal
component scheme, …tting the same number of principal components as the factor
model selects, and …nd that it produces very similar results in terms of rmse etc.
Thus principal components o¤ers a straightforward method to capture correlated
error structures in panel data, the di¢culty being of course that, in contrast to ML,
one has no obvious diagnostic for the choice of the number of principal components.

5.2. Norm Minimisation. Principal Components can be iterated to minimise
k§ ¡ Sk where § = ¤¤0 + ª. For given ª we take the eigenvectors correspond-
ing to the largest eigenvalues of S ¡ ª as our elements of ¤: We then de…ne a
new ª to match the diagonal elements of S exactly given this ¤ i.e. set ª =
max diag(S ¡¤¤0; 0): This procedure produces a non-increasing sequence of values
of the norm and will converge to some §̂. It is again simple to program and tends to
converge quite quickly. The problem with norm-minimisation is that, unlike ML, it
is not guaranteed to …nd an invertible §̂: We have arti…cial examples of covariance
matrices S where, if one factor is …tted, Heywood solutions of multiplicity14 greater
than unity are found by norm-minimisation. In this case the estimated §̂ cannot be
invertible.15 This is inconvenient but not necessarily fatal as a generalised inverse
could always be used for the GLS.

14The multiplicity of a Heywood solution is the number of zero components of ª̂:
15An intuition for the singularity-hating behavior of ML can be obtained from consideration of

(??): as an eigenvalue of § approaches zero, the second term on the right contributes a negative
in…nity of higher order than the positive in…nity contributed by the …rst term. This tends to
cause ML to choose non-singular §s. The norm, in contrast, has no such reason to shun singular
matrices.
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6. Conclusion

In empirical work using data structures with time and cross-sectional dimensions,
it is often di¢cult to estimate correlations in the errors accurately. The solution
of setting these correlations to zero may not, however, be the wisest course. This
paper suggests a technique whereby estimation can exploit correlations in the er-
ror structure across cross-sectional units. By imposing a factor structure, which
can have an appealing economic interpretation, we provide a full-rank estimator
of the covariance matrix. Monte Carlo shows that the parameter estimator thus
obtained has substantial gains in e¢ciency over the standard alternative procedures
for the data-sets considered, as well as o¤ering unbiased inference. Our suggestion
is that the proposed factor-residual method of estimation provides an important
generalisation of standard panel techniques, and that even in situations where the
conventional estimator of the covariance matrix of the residuals has full rank, it
can provide a more parsimonious and e¢cient estimation technique.
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Appendix A. Appendix

Properties of the Likelihood Function of the Factor Model

Our aim in this Appendix is to give a description of the geometry of the likelihood
surface of the factor model, paying particular attention to the case when S is rank
de…cient. When S is of full rank it is possible to show by completely elementary
methods that the likelihood function is bounded (Theorem 2 (i)). We do not have
a similar simple demonstration that the maximum is attained (perhaps on the
boundary). This is true, however, and can be shown by use of the concentration
of L introduced by Lawley. When S is not of full rank, it remains true that L is
bounded and attains its maximum provided that not too many factors are …tted,
but here the tricky part is to show L is bounded. We achieve this by studying the
behaviour of Lawley’s concentrated L on the rim, the set of §s maximising L along
rays from the origin.

De…nitions and Simple Results
Let matrix S = X0X where X is T £ n. Call S admissible if no column of X

consists entirely of 0s. De…ne the function

L = L (¤;ª; S) = ¡
¡
log det§ + tr§¡1S

¢
(7)

where ¤ is any n£m matrix, ª is n£n diagonal with entries Ãi > 0 and §(¤;ª) =
¤¤0+ª. Note § is the sum of a positive de…nite matrix and a non-negative de…nite
matrix and is thus itself positive de…nite and hence invertible. As de…ned, L is the
likelihood function (divided by T=2) of the m-factor model generated by n normal
variates.

Some more terminology. Denote by L the set of n £ m matrices, by P the set
of n £ n positive diagonal matrices, and by Q the range of the function §(:; :)
so that § : L £ P ! Q. This function is not one-to-one which means that ¤;ª
are not identi…ed by knowledge of §(¤;ª). In particular §(¤U;ª) = §(¤;ª) for
any unitary U . If required, this problem can be solved by restrictions on L e.g.
that it consist of ¤s which are non-negative and decreasing along the diagonal, and
zero above it. So restricted, the function §(:; :) is bi-continuous. This is not an
important issue for our purposes as we seek the §s rather than the ¤s and ªs which
generate them.

If D is a …xed n £ n diagonal matrix then, up to a constant depending on D;

L (¤;ª; S) = L (D0¤;D0ªD;D0SD)

Thus, for the study of boundedness and the existence of maxima, no generality is
lost by re-scaling the rows and columns of S. When S is admissible, the elements
along the main diagonal are non-zero and S may be re-scaled to a correlation matrix.
This is often convenient.

A result we shall not need, but gives some insight into the character of the
likelihood surface is:

THEOREM 1. The function L has no local minima.
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PROOF. If ¤0;ª0 were a local minimum then L restricted to
p

± ¤0; ±ª0; ± > 0
has a local minimum for ± = 1. Examination of L(±) = L(

p
±¤0; ±ª0) shows this

function has no local minimum.¤

It is well-known that L can have multiple maxima (e.g. Jöreskog, 1967). Thus
likelihood surfaces can have ravines but, according to Theorem 1, no lakes.

We now set out the boundedness properties of the likelihood function.

PROPOSITION 1. If S is inadmissible, L is unbounded.
PROOF. If S is inadmissible then the jth (say) row and column consist of 0s.

Choose ¤ = 0, so that L = ¡ (
Pn

i=1 log Ãi +
Pn

i=1 sii=Ãi) and let Ãj ! 0. There
is a term in L; ¡ log Ãj , which is unmatched by a term ¡1=Ãj so that L ! 1. ¤

PROPOSITION 2. If rank(S) = n; then L is bounded.
PROOF . Choose unitary U to diagonalise §(¤;ª) so that

L = ¡
nX

i=1

(log ¾i + x0
iSxi=¾i)

where ¾1 ¸ ¾2 ::: ¸ ¾n > 0 are the eigenvalues of § with corresponding eigenvectors
xi. Since x0S x takes values in [sn; s1] (where si denotes the eigenvalues of S and
s1 ¸ s2 ::: ¸ sn > 0) for vectors x with k x k = 1,

L · ¡
nX

i=1

(log ¾i + sn=¾i) · ¡n (log sn + 1)

because ¡ (log ¾i + sn=¾i) is maximised at ¾i = sn:¤

PROPOSITION 3. If rank(S) = r < n and m = r then L is unbounded.

PROOF. Consider, for ¹ > 0,

§¹ = ¹ I + x1x0
1 + ::: + xrx

0
r

where r = rank S and xi; i = 1; :::; r are the normalised eigenvectors of S of non-
zero eigenvalues si. It follows that §¹ 2 Q. Now the eigenvectors of § are precisely
those of S with eigenvalues ¹ + 1 for i = 1; :::r, and ¹ otherwise. It follows that we
may simultaneously diagonalise §¹ and S in (??) to obtain

L = ¡
Ã

r log (1 + ¹) + (n ¡ r) log ¹ +
rX

i=1

si=(1 + ¹)

!

! 1 as ¹ ! 0:¤
If we were to …t m factors in Proposition 3 where m · r < n then the likelihood

function takes the form

L = ¡
Ã

m log (1 + ¹) + (n ¡ m) log ¹ +
mX

i=1

si

1 + ¹
+

rX

i=m+1

si

¹

!

and it is easy to see that this function is bounded as a function of ¹ as long as
m < r: This might lead one to conjecture that L is bounded provided one …ts fewer
than r factors. However this is incorrect: certain null space structures of the matrix
S further reduce the number of possible factors. To see this suppose that for all



20 DONALD ROBERTSON AND JAMES SYMONS

z 2 N (S) (the null space of S), zj = 0 for some index j; 1 · j · n, i.e. the null
space has a row of zeros at the jth position.16 This implies that ej?N (S) where
ej is the jth element of the canonical basis of Rn. It follows that ej is a linear
combination of the eigenvectors of S of non-zero eigenvalue whence

rX

i=1

xix
0
i + ¹I =

r¡1X

i=1

yiy
0
i + ª

where the yi are linear combinations of the xi; and ª is diagonal. This enables the
likelihood for the r-factor model to be written as an r ¡ 1 factor model. Since for
rank(S) = r, the r-factor model gives an unbounded likelihood, each row of zeros
in the null space reduces by one the number of factors that can be …tted. Thus the
structure of the null space plays a key part in determining the number of factors
that can be …tted. It turns out that the appropriate condition is a generalisation of
the number of rows of zero in the null space which we now develop. For convenience
we state the main result.

THEOREM 2. If S is inadmissible then L is unbounded. If S is admissible:
(i) If rank(S) = n then L is bounded
(ii) If rank(S) = r < n and m ¸ r ¡ d(S) then L is unbounded
(iii) If rank(S) = r < n and m < r ¡ d(S) then L is bounded
where d(S) is the defect of matrix S, de…ned below.

Propositions 1-3 establish the …rst part. We now proceed to the proof of parts (ii)
and (iii). This builds on the concentration of the likelihood introduced by Lawley.

Lawley’s Machinery
The following results are essentially due to Lawley (1940, 1942, 1943); Lawley and

Maxwell (1963) give a convenient condensed version; Jöreskog (1967) also provides
a useful account:

Assume § = §(¤;ª). Then, by routine calculation,

@L=@¤ = ¡2§¡1(§ ¡ S)§¡1¤(8)

@L=@ª = ¡diag
¡
§¡1 (§ ¡ S)§¡1¢(9)

§¡1 = ª¡1 ¡ ª¡1¤
¡
Im + ¤0ª¡1¤

¢¡1 ¤0ª¡1(10)

If in addition, @L=@¤ = 0, then a little algebra shows

Sª¡1¤
¡
Im + ¤0ª¡1¤

¢¡1 = ¤(11)

§¡1 (§ ¡ S)§¡1 = ª¡1 (§ ¡ S)ª¡1(12)

@L=@ª = ¡ª¡1diag (§ ¡ S)ª¡1(13)

We make the normalisations S¤ = ª¡1
2 S ª¡1

2 ;¤¤ = ª¡ 1
2 ¤: Then (??) is trans-

formed to

S¤¤¤ (Im + ¤¤¤¤0)¡1 = ¤¤(14)

16An abuse of terminology that we will often …nd, as here, too convenient to resist is to identify
a linear space with its basis vectors written as a matrix.
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Equation (??) is essentially a collection of eigenvector equations from which
optimal ¤¤ can be obtained for each value of ª: Lawley-Jöreskog base an ML
procedure on (??), searching over ª: This is for the full-rank case wherein the
existence of an ML solution is guaranteed according to Proposition 3. In the rank-
de…cient case, with no such assurance in general, we need to proceed with a little
more care. Nevertheless, we shall see below that, for given ª, optimal ¤ are indeed
determined by (??).

Concentrating out ¤
Substitution from (??) into (??) and a little manipulation yields

L = ¡
h
log detª + log det(Im + ¤¤0

¤¤) + tr S¤ ¡ tr ¤¤0
S¤¤¤(Im + ¤¤0

¤¤)¡1
i(15)

Since L(ª;¤U) = L(ª;¤) for any conformable orthogonal matrix U it follows that
we may replace ¤¤ by ¤¤U in (??), choosing U so that the columns of ¤¤U are
orthogonal vectors or 0s. Assume this has been done and extract the terms in ¤¤

from (??):

L0 = ¡
mX

i=1

[ log(1 + x0
ixi) ¡ x0

iS
¤xi/ (1 + x0

ixi)]

where the xi are the columns of ¤¤. We wish to maximise L0 over all systems
of vectors xi; i = 1; :::; n where the xi are zero or pairwise orthogonal. Hold each
x0

ixi …xed and regard L0 as a function of the normalised xi. Since the supremum
of

Pm
i=1 x

0
iS¤xi is attained at eigenvectors of S¤ or zero vectors (Rao, page 63) it

follows that L0 is a sum of terms of the form: s¤
i x0

ixi=(1 + x0
ixi) ¡ log(1 + x0

ixi).
These terms contribute non-negatively if and only if s¤

i ¸ 1. If s¤
i < 1 then L0 is

maximised by choosing xi = 0. The optimal system of xi; i = 1; :::;m then consists
of the set of eigenvectors of S¤ with modulus determined by

1 + x0
ixi = max(1; s¤

i )(16)

Let ¼(S¤) be the number of eigenvalues of S¤ greater than 1 and de…ne m0 =
min(¼(S¤);m). The columns of the optimal ¤¤ = ¤¤(ª) in (??) thus consist of
the …rst m0 eigenvectors of S¤, with modulus determined by (??), 0s elsewhere.
De…ne ¤(ª) = ª 1

2 ¤¤(ª). The concentrated likelihood function is now Lc(ª) =
L(ª;¤(ª)). This function is well–de…ned for all S, be it full-rank or rank-de…cient,
admissible or inadmissible.

Substituting in (??), one …nds, up to a constant,

Lc(ª) = ¡
"
log detª +

moX

i=1

(log s¤
i ¡ s¤

i ) + trS¤
#

(17)

This is the function we need to bound.

De…ne F = fª 2 P;Ãi · siig. Then since @L=@¤ = 0 at (ª;¤(ª)) and @Lc=@ª =
@L=@ª (the envelope theorem) it follows from (??) that @Lc=@Ãi < 0 for Ãi > sii
with the implication that, for each ª =2 F , there is an element of F for which the
concentrated L takes a higher value. We de…ne the rim R as the set of ª which
maximise the concentrated likelihood function along rays from the origin. Although
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outside F all directional derivatives are strictly negative, the rim does not necessar-
ily lie within the bounded set F ; however, given a point on the rim not within F ,
one can …nd a dominating point within F by moving along a directional derivative
towards F , subsequently passing back to the rim along a ray from the origin. It is
easy to see that iterating this procedure leads to a dominating value in R \ F . It
follows that the maximum is attained on R \ F or on the boundary of F . Thus
we have:

THEOREM 3. If L is bounded, it attains its maximum in F or FnF in the sense
that

supL = lim
p!1

Lc(ªp)

where limp!1 ªp = ª0 2 FnF and ªp 2 R \ F for all p.

Such boundary solutions where some Ãi = 0 can occur and are called Heywood
solutions. At a Heywood solution one need not have @L=@ª = 0: Since the likeli-
hood function is evidently continuous where de…ned, it can be unbounded only at
such boundary solutions. The study of the boundedness of the likelihood function
thus consists in large part of the study of Heywood solutions. Examination of (??)
reveals we need an apparatus to analyse the simultaneous behaviour of the Ãi and
the s¤

j as some of the Ãi ! 0: We proceed to this.

The box diagram
To complete the proof of Theorem 2 we consider the spectrum of S¤. Assume

S is admissible. Consider a sequence ªp 2 F with lim
p!1

ªp = ª0 where Ã0
i = 0

for some i: By passing to a subsequence and renaming indices if necessary, we can
assume

Ãp
1 · Ãp

2 · ::: · Ãp
n

for each p. We assume Ãp
j ! 0 if and only if j < N . De…ne Sp¤ corresponding to

ªp and assume it has eigenvalues sp¤
1 ¸ sp¤

2 ¸ ::: ¸ sp¤
n ¸ 0 with corresponding unit

eigenvectors xp
i . If S is rank-de…cient; r = rankS < n; then the last n¡r of the sp¤

i
are zero. De…ne ªp

i = sp¤
i ªp. Then the eigenvalue equation for Sp¤ takes the form

S (ªp
i )

¡ 1
2 xp

i = (ªp
i )

1
2 xp

i 1 = 1; :::; r(18)

For each p, the system xp
i ; i = 1; :::; r, constitutes an orthonormal set in Rn and

the compactness of the unit ball implies there exists a limit orthonormal system
x0

i ; i = 1; :::; r where x0
i = limp!1 xp

i (passing to a subsequence if necessary).
Treating (??) as an equation of the form S x = y, one deduces

(ªp
i )

¡ 1
2 xp

i = S¡ (ªp
i )

1
2 xp

i + z

where z 2 N (S), and S¡ is any generalised inverse of S, which we may take to be
positive de…nite. Since N (Sp¤) = (ªp

i )
1
2 N (S), it follows that

xp
i = (ªp

i )
1
2 S¡ (ªp

i )
1
2 xp

i + z¤(19)

where z¤ 2 N (Sp¤). Thus, since xp
i ?z¤;

1 = xp 0
i (ªp

i )
1
2 S¡ (ªp

i )
1
2 xp

i i = 1; :::; r(20)
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It follows from (??) that

1=s¡
max ·

°°°(ªp
i )

1
2 xp

i

°°°
2

· 1=s¡
min(21)

where s¡
max and s¡

min denote the largest and smallest eigenvalues of S¡, respectively.
Thus, passing if necessary to a subsequence of ªp, we deduce that Ãp

js
p¤
i approaches

a …nite limit on the support of x0
i (the indices r for which x0

ir 6= 0) and a non-zero
limit for at least one r in the support. The limiting behaviour of Ãp

js
p¤
i is indicated

in the diagram:

Figure A1 The Box Diagram

The shaded areas indicate (i; j) pairs for which Ãjs¤
i approaches a non-zero limit.

The diagram incorporates the following properties:
1. The pairs (i; j) are arranged as non-overlapping boxes. Each i · r corresponds

to one box. If (i; j) and (i0; j0) belong to the same box then Ãjs¤
i =Ãj0s¤

i0 ; Ãj=Ãj0

and s¤
i =s¤

i0 all approach non-zero limits. To see this, observe that the boxes
could be constructed as follows. For each i, the j for which Ãjs¤

i approaches
a non-zero limit form a vertical line-segment by the monotonicity of Ãj with
respect to j. Next note that if two such line-segments were to overlap (share
a common j), they would lie in a box with the stated properties.

2. Above the boxes, Ãjs¤
i ! 0: This follows by construction.

3. Beneath the boxes, x0
ik = 0. This follows by construction since Ãjs¤

i ap-
proaches a …nite limit on the support of x0

i :
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4. The boxes start in the top left hand corner. If not we would have Ã1s¤
1 ! 0

and hence Ã1s¤
i ! 0 for all i. But trS¤ =

Pr
i=1 s¤

i =
Pn

i=1 sii=Ãi so then
0 = limÃ1

Pr
i=1 s¤

i ¸ s11 > 0:
5. The boxes are tall: their height is not exceeded by their breadth. To see this,

…rst de…ne

G(x0
i ) = lim

p!1
ªp 1

2 x0
i

and extend to the span by linearity; de…ne also

H(x) = (S¡)
1
2 G(x):

If u; v on the horizontal axis belong to the same box then

H(x0
u)0H(x0

v) = lim
p!1

x0
u

0ªp 1
2 S¡ ªp 1

2 x0
v

6= 0

since the limits of ªu and ªv di¤er by a non-zero multiplicative constant in
the same box. It follows that H and hence G preserve dimension on the span
of the x0

i corresponding to each box. But the support of each G(x0
i ) lies within

such a box so the result follows.

The Null Space
So far we have not de…ned limit eigenvectors in the null space N (Sp¤): Let

zr+1; :::; zn be a basis for N (S) in reduced column-echelon form and, for j = 1; :::; n;
de…ne V (j) as the largest index r+k for which the leading 1 has row-number greater
than or equal to j: In the event that the basis has rows of zeros at the bottom, we
de…ne V (j) = r for these rows. The step-shaped path (j; V (j)) thus de…nes the
frontier between the zero and non-zero regions of N (S): Let s be the minimum
number of non-zero entries among all non-zero vectors of N (S) and de…ne the
defect of S; d(S) by

s = r ¡ d(S) + 1

Reduction to echelon form will produce r + 1 or fewer non-zero entries in zn and
d(S) > 0 indicates extra structure in N (S): This can be so only if an algebraic
identity holds among the variates used to generate the covariance matrix S, typically
a zero-probability event. Note that each row of zeros in the null space contributes
one to the defect. It is possible, perhaps having …rst permuted the indices i; to write
a basis for N (S) in column-echelon form so that V (r ¡ d(S) + 1) = n. In this case
the right-most column in the null space has non-zero entries for j · r ¡ d(S) + 1,
zeros elsewhere. In general (without necessarily permuting the indices), column-
echelon form delivers V (r ¡ d + 1) = n for some d ¸ d(S) where r ¡ d + 1 is the
number of terms lying above (and including) the leading 1 in zn.17

Column-echelon form ensures the following properties of the function V:
1. V (j) = n for j · r ¡ d + 1:
2. 0 ¸ ¢V (j) ¸ ¡1; where ¢V (j) = V (j) ¡ V (j ¡ 1):
3. ¢V (r ¡ d + 1) = ¡1:
Now de…ne F (j) by

V (j) ¡ F (j) = n ¡ j for j = 1; :::; n

17As de…ned, d is invariant to the particular column-echelon form.
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Then F inherits the properties:
1. F (j) = j for j · r ¡ d + 1:
2. 1 ¸ ¢F (j) ¸ 0:
3. ¢F (r ¡ d + 1) = 0:
4. i ¡ F (j) · 1 for j > r ¡ d + 1;
where property 4 follows from 2 and 3 immediately above.
Limit eigenvectors in N (Sp¤) are constructed as follows. In the event that N ·

r ¡ d + 1 then x0
r+i = ª0 1

2 zr+i , i = 1; :::; n ¡ r , are linearly independent, each a
limit of the sequence ªp 1

2 zr+i and orthogonal to x0
i ; i = 1; :::; r: When N > r¡d+1,

the last n ¡ V (N) vectors as de…ned above vanish, but these can be replaced by
limp!1(ªp=Ãk) 1

2 zr+i , where k is the row number of the leading 1 in zr+i: These
are all limits of sequences in N (Sp¤) and have some non-zero elements for indices
j less than N: In both cases we are led to limit null-space vectors x0

r+1; :::; x0
n for

which: (a) If N < r ¡ d + 1 then the limit vectors have zeros for indices less than
N: (b) If N ¸ r ¡ d + 1 then the limit vectors can be divided into two groups, one
with zero elements at indices above N , one with zero elements at indices below N ,
the dividing vertex being (N;V (N)): This structure is summarised in Figure A2
below.

LEMMA 1. In the box-diagram, the right-most box lies beneath j = N if and
only if F (N) < r + 1: In this case, the North-West vertex of the box lies on the
path (N;F (N)):

PROOF. We prove the second part …rst. Assume therefore that the right-most
box lies beneath j = N .: Taking limits in (??), we deduce that the subvectors of
each x0

i ; i = 1; :::; r lying above j = N belong to the limit null-space, analogously
truncated. Exploiting the orthogonality structure implicit in Figure A2, and the
mutual orthogonality between x0

1; :::; x0
r and x0

r+1; :::; x0
n , one can deduce that these

subvectors are identically zero. It follows that the limit eigenvectors in the right-
most box, together with the limit null space vectors up to index V (N) , all have
zeros above j = N , whereas all other eigenvectors have zeros below j = N: Figure
A3 illustrates the argument (note we have drawn the V and F functions as straight
lines for simplicity). Considerations of dimensionality now show that the submatrix
of the right-most box lying beneath j = N shown shaded in Figure 3, together with
the correspondingly truncated vectors in the adjacent region of the limit null space,
forms a square. The result now follows from the de…nition of the function F:
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Figure A2 Location of zeros in the limit null space

Figure A3 Interaction between the null space and the right-most box
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If there is no box beneath j = N then the above argument shows that the …rst
block of truncated vectors in the null space themselves form a square, and are
linearly independent by construction. It follows that

V (j) = j + r for j = 1; :::; N ¡ r

whence F (j) = 1+r: Clearly this argument is reversible, so the Lemma is proved.¤
Proof of Theorem 2
We …rst prove boundedness for m < r ¡ d(S): Assume, by way of contradiction,

Lc is unbounded for some sequence ªp ! ª0: In choosing the elements Ãp
j to

be monotonic in j , we have implicitly re-ordered the indices j: We have however
m < r ¡ d(S) · r ¡ d where V (r ¡ d + 1) = n: Clearly we may take all ªp to lie in
R \ F so that ª0 2 FnF . We …rst prove the following.

LEMMA 2. On the rim,

trS¤ ¡
m0X

i=1

s¤
i = n ¡ m0(22)

and, up to an additive constant,

Lc = ¡
Ã

nX

i=1

log Ãi +
m0X

i=1

log s¤
i

!
(23)

Moreover, m = m0; i.e. s¤
i ¸ 1 for i · m:

PROOF. For ± > 0, one has from (??)

Lc (±ª) = ¡
Ã

log detª +
m0X

i=1

log s¤
i + (n ¡ m0) log ± + (tr S¤ ¡

m0X

i=1

s¤
i )=±

!

Now trS¤ =
Pn

i=1 s¤
i so tr S¤ >

Pm0
i=1 s¤

i in virtue of the assumption that m <
rank S = rank S¤: The integer m0 can depend on ± but, irregardless, Lc (±ª) can
be made arbitrarily negative by choice of ± su¢ciently small or large. Continuity
of Lc (±ª) then guarantees that a maximum, at ±m say, is attained. Fixing m0 to

be the value at this maximum, one deduces that ±m = (trS¤ ¡
m0P
i=1

s¤
i )=(n ¡ m0):

Since ±m = 1 if ª already belongs to the rim, the …rst result follows and the second
is obtained by direct substitution in ??. Finally, m0 can be smaller than m only if
sm0+1 < 1; however ?? implies that the average of the numbers s¤

i ; i = m0+1; :::; n;
some of which are zero, is unity, inconsistent with this. ¤

The implication of (??) is that, for ªp on the rim, 0 · s¤
i · 1 for i = m+1; :::; n.

We may thus choose a subsequence of ªp for which each s¤
i converges, which implies

that Ãjs¤
i converges to a …nite limit for j ¸ N; r ¸ i > m: (??) further implies

that at least one of these limits is non-zero. It follows that the right-most box lies
beneath j = N in the box diagram and hence that the North-West vertex of this
box is given by (N;F (N)) where m + 1 ¸ F (N): If N > r ¡ d + 1 then, since
m < r ¡ d; we have
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m + 1 < r ¡ d + 1 · F (N)

by properties (i) and (ii) of F above. This is contrary to m + 1 ¸ F (N) and we
conclude that N · r¡d+1:18 It follows that F (N) = N by property (i) of F above
i.e. the NW vertex of the right-most box lies on the diagonal. But since boxes are
“tall”, all boxes must then lie along the diagonal with the implication that Ãis¤

i
converges to a non-zero limit for all i · r: If (??) is recast in the form

Lc = ¡
Ã

mX

i=1

log Ãis
¤
i +

nX

i=m+1

log Ãi

!

then boundedness now follows since N = F (N) · m + 1: This completes the proof
of Theorem 2(iii).

Now assume that m ¸ r ¡ d(S) , r < n: We assume d > 0; for otherwise
unboundedness would follow from Proposition 3. Thus m · r ¡ 2: We re-order the
indices j so that a reduced column-echelon form for N (S) has leading 1 in place
r ¡ d(S) + 1 for zn. We choose a convergent sequence ªp with N = m + 2 so that
n ¸ N > r ¡ d(S) + 1: No harm is done by assuming m0 is …xed as p changes. If
m0 < m , we must have sp¤

m0+1 · 1, so it follows that m0 + 1 ¸ F (N): Write (??)
in the form

Lc = ¡
Ã

m0X

i=1

log Ãis
¤
i +

nX

i=m0+1

s¤
i +

nX

i=m0+1

log Ãi

!

Considering these three terms in turn, note that the …rst approaches a …nite limit or
+1 since the diagonal in the box diagram intersects the boxes or lies above them;
the second is bounded because since m0 + 1 ¸ F (N); while the third contains a
term in ¡ log Ãm0+1 which approaches +1 since m0+1 < N: This proves Theorem
2(ii) so the proof of Theorem 2 is now complete.

Figure 4 gives the box-diagram for a convergent ML estimation of the factor
model.

18This argument has shown, in fact, that N > r¡ d+1 implies the sequence ªp is not on the
rim.
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Figure A4 The box diagram for convergent maximum likelihood

In the shaded boxes, Ãjs¤
i approaches a non-zero limit, above them, zero; beneath

the boxes the limit eigenvectors x0
i have zero support. The …gure also gives the zero-

structure for the limit null space. We have also established that m ¸ N ¡1: De…ne
the multiplicity of a Heywood solution as the number of indices for which Ãj ! 0,
N ¡ 1 in our terminology. Thus our proof of Theorem 2 has established:

COROLLARY. The multiplicity of a Heywood solution is less than or equal to
the number of …tted factors.

THEOREM 4. Assume m < r ¡ d. Then there exists an invertible §0 in R\F
or its boundary to maximise L:

PROOF. By Theorems 2 and 3, if m < r ¡ d , there exists a sequence ªp in
R \ F with limit ª0 such that supL = lim

p!1
Lc(ªp): It was shown in the proof of

2(iii) that F (N) = N: If §0 corresponds to ª0 then

§0 = lim
p!1

(ªp + ¤p¤p0
)

= lim
p!1

ªp 1
2 (I + ¤¤¤¤0

)ªp 1
2(24)

where ¤¤ consists of the …rst m eigenvectors of Sp¤ with modulus determined by
(??). Let xp

i , i = 1; :::n , be an orthonormal basis of eigenvectors of S¤p , ranked
by eigenvalue, and de…ne qp

i = s¤p
i for i · m, 1 for i > m: Then I =

Pn
i=1 xp

i x
p0

i so
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it follows that

§0 = lim
p!1

ªp 1
2 (

nX

i=1

qp
i xp

i x
p0

i )ªp 1
2

=
N¡1X

i=1

G(x0
i )G(x0

i )
0 +

nX

i=N

q0
i ª0 1

2 x0
i x

00
i ª0 1

2

where G is as de…ned in the proof of property (v) of the box-diagram, Ã0
j > 0

for j ¸ N; and qp
i ¸ 1. The G(x0

i ) are linearly independent in the same box and
orthogonal between boxes, as well as orthogonal to each ª0 1

2 x0
i , i ¸ N , in virtue of

the structure of the box-diagram. Exploiting the fact that the ª0 1
2 x0

i vanish above
j = N for i ¸ N , one deduces that the ª0 1

2 x0
i are linearly independent and the

result follows.¤
Maximising the Likelihood
There is a voluminous literature on ML estimation of the factor model (see

e.g. Lee and Jennrich, 1979, Rubin and Thayer, 1982). Analytic maximisation
function is intractable, so numerical techniques are used. Our prime requirement
for numerous Monte Carlo experiments was guaranteed convergence, at the expense,
if necessary, of speed. Our reading of the literature on factor ML algorithms is that
choice of algorithm can a¤ect convergence speed by a factor of about 3, though not
by factors of 10 or more. Given the speed of modern machines this would indicate
that the particular algorithm chosen may be of secondary importance. After some
experimentation, we have chosen a mixture of steepest ascent and Fletcher-Powell
algorithms. Use of steepest ascent alone can be very time consuming, the geometry
of the likelihood function being such that a large number of very small steps can
be required (hem-stitching). Fletcher-Powell, on the other hand, can get stuck
where, in the search direction, there is no appreciable likelihood value improvement,
but the gradient is non-zero in a di¤erent direction i.e. the likelihood function is
not well-approximated by an ellipsoid in certain regions. Mixing the two schemes
ensures that the speed of Fletcher-Powell is used where it improves the likelihood
function, but, if it runs into problems, we switch to the more robust steepest ascent
to move the search along. We also implement a scheme whereby the step length
increases following a successful step (i.e. one that improves the likelihood). It
seems likely that the appropriate mix of steepest ascent and Fletcher-Powell and
the step expansion, is problem dependent; we have not attempted to optimise in this
direction. We have found that this mixture provides a very robust maximisation
procedure. For the regressions in this paper we used the following scheme. The
starting values are derived by assuming that ª0 is scalar with magnitude the average
of the smallest n ¡ m + 1 eigenvalues of S; and as ¤0 the implied square root of
S¡ª0. The search method uses steepest ascent for the …rst 100 steps, then switches
to Fletcher-Powell. Following a successful step, the step-length is expanded by 20%.
Convergence is checked by the change in the likelihood function being below some
tolerance. At this point the gradient of the likelihood function is also checked. If
the gradient exceeds a critical value we switch back to steepest ascent for a further
40 steps and then revert to Fletcher-Powell. This process continues until both
the change in the likelihood and the slope of the likelihood fall beneath required
thresholds. Convergence characteristics with this algorithm seem good; in several
thousand Monte Carlo we have never failed to …nd a maximum.
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