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ABSTRACT

The empirical support for a DSGE type of real business cycle model with
two technology shocks is evaluated using a Bayesian model averaging proce-
dure that makes use of a finite mixture of many models within the class of
vector autoregressive (VAR) processes. The linear VAR model is extended
to permit equilibrium restrictions and restrictions on long-run responses to
technology shocks apart from having a range of lag structures and determin-
istic processes. These model features are weighted as posterior probabilities
and computed using MCMC and analytical methods. Uncertainty exists as
to the most appropriate model for our data, with five models receiving signif-
icant support. The model set used has substantial implications for the results
obtained. We do find support for a number of features implied by the real
business cycle model. Business cycle volatility seems more due to investment
specific technology shocks than neutral technology shocks and this result is
robust to model specification. These technology shocks appear to account
for all stochastic trends in our system after 1984. We provide evidence on
the uncertainty bands associated with these results.

Key Words: Posterior probability; Real business cycle model; Cointe-
gration; Model averaging; Stochastic trend; Impulse response; Vector
autoregressive model.

JEL Codes: Cl11, C32, C52



1 Introduction.

In this paper we evaluate the robustness, in face of model uncertainty, of the
empirical support for a Dynamic Stochastic General Equilibrium (DSGE)
business cycle model subject to a investment-specific technology shock and
a neutral technology shock. We embed the DSGE model structure within a
set of VAR models and take into account model uncertainty using a Bayesian
model averaging approach. Our work is distinguished from most other model
averaging papers since averaging over systems of variables (rather than single
equation models) implies averaging over features of the model rather than
averaging over sets of regressors. Although averaging over models of systems
adds a level of complexity and requires careful consideration of prior distri-
butions, the approach we propose makes such as exercise feasible and the
empirical results suggest the exercise is worthwhile.

The DSGE model investigated in this paper is based upon one described
by Fisher (2006). This model has several empirical implications that can
be weighted: for example, the economic model suggests that the Great Ra-
tios (e.g., consumption to income, investment to income) are stationary,
that only investment-specific technology shocks have permanent effects on
the real investment good price, and only technology shocks affect produc-
tivity in the long run. Model uncertainty derives from uncertainty over the
number of stochastic trends present in the system, further on the form of the
deterministic trends, on lag length and, finally, on the form of the reduced
form equilibrium (cointegrating) relations. By considering the unconditional
evidence, where ‘unconditional’ means that the empirical evidence does not
depend upon a single model, it is possible to identify those features that have
stronger empirical support. The joint evidence for those features implied by
the model will indicate its empirical support.?

The idea underlying BMA is relatively straightforward. Model specific
estimates are weighted by the corresponding posterior model probability and
then averaged over the set of models considered. Although many statistical
arguments have been made in the literature to support model averaging (e.g.,
Leamer (1978), Hodges (1987), Draper (1995), Min and Zellner (1993) and
Raftery, Madigan and Hoeting (1997)), an increasing number of recent ap-
plications suggest its relevance for macroeconometrics (Ferndandez, Ley and

2We use the word ‘“features’ rather than ‘structures’ to avoid confusing our work with
structural VAR analyisis, although we later consider ‘structural breaks’ in the common
use sense of this term.



Steel (2001), Sala-i-Martin, Doppelhoffer and Miller (2004), Koop and Potter
(2003) and Wright (2008)). There are several arguments for model averag-
ing and only a few are mentioned here. At the simplest level, it is often
attractive to report inferences robust to model specification. A large body of
applied work has demonstrated that averaging results in gains in forecasting
accuracy (Bates and Granger (1969), Diebold and Lopez (1996), Newbold
and Harvey (2001), Terui and van Dijk (2002), Hoogerheide, Kleijn, Ravaz-
zolo, van Dijk and Verbeek (2010) and Wright (2008)). Some explanation for
this phenomenon in particular cases was provided by Hendry and Clements
(2002). Methodologically, averaging over models addresses to some degree
the well understood pre-test problem (see, for example, Poirier, 1995, pp.
519-523).

There is clear evidence from the literature that a structural break should
be considered around 1984 (see, for example, McConnell and Perez-Quiros
(2000) and Stock and Watson (2002)). This literature suggests there is ev-
idence of a break in possibly both the variances and mean equation coeffi-
cients. There is little work to date on changes in the overall structure or
features of the model, such as changes in lag dynamics or stability of vari-
ables. We find the empirical evidence suggests that allowing for structural
changes in the models, that is allowing the process to switch from one model
to another, rather than just the parameter values, is justified.® However,
as we discuss, incorporating this model switching is a computationally chal-
lenging task. It is a much simpler task to consider what was the most likely
model before the break and which was the most likely model after the break,
rather than trying to track the switch from one model structure to another
and compute the evidence for that change.

This paper makes three contributions. First, we show how to obtain pos-
terior inference from model averages in which the economically and econo-
metrically important features may have weights other than zero or one. In
other words, the inferences are based on a finite mixture of model structures.
Second, this paper treats a structural break as a change in the entire structure
of the model, not just a change in parameter values. We find strong evidence
that the entire structure, rather than just the parameter values, has changed.
This extension implies a very large model set but we demonstrate how to ob-

3The introduction of the structral break analysis was on the suggestion of a referee
to whom we are very grateful. This extension has significantly altered the results and
conclusions.



tain inference using some simple algebra and fast computation. Third, the
proposed methodology is demonstrated with an empirical investigation of a
DSGE model. Important in this model are the long run responses of in-
vestment prices and productivity to technology shocks and that technology
follows stochastic rather than deterministic trends.

The structure of the paper is as follows. In Section 2 the important and
empirically weighted features of the economic model used by Fisher (2006) are
outlined. In Section 3 the basic econometric models of interest in this paper
are introduced, including characterizations of the features implied by the
economic model. We present priors, likelihood and the sampling scheme used
in Section 4 together with the tools for inference in this paper including the
posterior predictive probabilities (Geweke (1996) and Geweke and Amisano
(2011)) of alternative model features and the Laplace approximation. The
posterior and predictive evidence of model features are presented in Section
5 as are estimates of important functions of parameters. In Section 6 we
summarize conclusions and discuss possibilities for further research.

2 A DSGE Business Cycle Model

In this section we outline the features of a DSGE model that is based upon
the real business cycle model of Fisher (2006), which is in turn is based
upon the competitive equilibrium growth model of Greenwood, Hercowitz,
and Krusell (1997). We impose two simplifications: capital is not separated
into equipment and structures; and technologies are given stochastic rather
then deterministic trends. The general model was developed in Kydland
and Prescott (1982) and detailed in King, Plosser and Rebelo (1988), and an
interesting early econometric analysis is provided in King, Plosser, Stock and
Watson (1991). The reader is directed to these papers for the development
of the model as we focus upon certain features that imply restrictions upon
our reduced form econometric model that we want to weight using Bayesian
model averaging.

The model suggests that a system of consumption, C, investment, X,
and output, W; = C; + X, will share a balanced growth path since each is
driven by shocks to two technologies: an investment specific technology, V;;
and neutral technology, A;. We denote the logs of C}, X;, and W; by ¢;, x4,
and w; respectively.

The resource constraint and Cobb-Douglas production technology are



given by
Co+ X, <AKM!T, 0<A<1

and period t 4+ 1 capital stock is given by
Kiqn<(1-90)K,+VX;, 0<d<l

Fisher (2006) specifies technology as having stochastic rather than deter-
ministic trends. The log of investment-specific technology, v; = In (V}), and
the log of neutral technology, a; = In (A4;) , are assumed to be simple random
walks, possibly with drifts, and with independent innovations. In the em-
pirical analysis we evaluate the evidence on the importance of deterministic
and stochastic trends as well as the relative contribution to business cycle
volatility of investment specific and neutral technology shocks.

An implication of the production technology and the resource constraint
is that we can represent the log real price of an investment good in consump-
tions goods by p; = —v; and

Pt =DPt—1 —V — 21t

Since v > 0, this is in accordance with the downward trend we see in the
price of an investment good. Neutral technology evolves by the process

=7+ a1+ 2Ny

where v > 0 and (274, zNi)/ has zero mean and constant covariance matrix.
A first implication of this model is that the variables ¢;, z;, and w; will
all be integrated of order one due to a common stochastic trend given by
way + (1 — w) p; and the differences between any two will be stationary. This
is not an unusual result in the balanced growth literature (see, for example,
King, Plosser, Stock and Watson, 1991) and it implies that we can treat the
Great Ratio relations ¢; — w; and x; — w; as valid cointegrating relations.
Denote by h; = In (H;) the log number of hours worked which is assumed
to have no unit root. Although it may have a trend over short periods,
and this does appear to be the case over subsamples, it is not possible for
hours worked per capita to have a permanent trend. The log price of an
investment good, p;, and labour productivity, a; = In (W,/H;) = w; — hy,
are assumed to have unit roots but p; should not cointegrate with the other
variables. Since h; is assumed to be I (0), and ¢;, w; and x; are all assumed
to be I (1) sharing a common stochastic trend, the above assumptions imply
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that a; will be I (1) and the log Great Ratio relations will be I (0) and form
valid cointegrating relations. The assumptions of Fisher (2006) preclude the
above I (0) relations having deterministic trends and this is not a feature we
would expect to find over long samples. By allowing for structural breaks we
may find trends in one or more subsamples, perhaps as a trend in the second
period off-sets the effect of the trend in the first period, but we would expect
that they are inherently temporary features.

Two important final restrictions apply. First, Fisher (2006) assumes that
the long run response of p; to an investment-specific technology shock will
be nonzero, in fact negative, but its long run response to all other shocks
will be zero. Second, the long run response of a; to both an investment-
specific and a neutral technology shock will be nonzero, but the long run
response of a; to any other shock will be zero. These restrictions identify the
investment-specific technology shock, 2z, and the neutral technology shock,
ZN,t-

3 A Set of Vector Autoregressive Models.

When a VAR process cointegrates, the model may be written in the vector
error correction model (VECM) form. The VECM of the 1 x n vector time
series process y; = (P, g, Iy, ¢, ) , t = 1,..., T, conditioning on [+ 1 initial
observations is

Ay =y Ba+dypn + Ay 'y + 00+ Ay + & (1)

where Ay, = y; — y;—1. The 1 X n vector of errors ¢; are assumed to be
iidN (0,9)." The matricesT'; j =1,...,l are n X n and 3 and o are n X r
and assumed to have rank r. We define the deterministic terms d,u below.
The number cointegrating relations, r, determines the dimensions of 3
and o and the number of stochastic trends in the system as n — r, where
r = 0,1,...,n. Different overidentifying restrictions on [ are denoted by
o, where o € {0,1,2}. If o = 0 then no overidentifying restrictions are
imposed on . If o = 1 then it is assumed that p; has a unit root but
does not cointegrate with the other variables in the system. This restriction
implies the elements of the first row of 3 are zeros. If o = 2 then the

4Throughout the paper, we denote the Normal distribution with mean m and covariance
matrix ¢ by N (m,c).



restriction implied when o = 1 is imposed and, further, that hours worked,
h:, and the great ratios of consumption to income and investment to income,
¢ —wy = ¢g—a;— hy and xy —w; = xy—a; — hy, are stationary. The restrictions
o =1 and o = 2 imply a model specification in which § = Hyy or f = Hy)
respectively for appropriate H; and Hs :

0000 0 0 0
1 000 -1 -1 0
H={0100]|adH,=| -1 -1 1
0010 1 0 0
0001 0 1 0

The restriction o = 1 is allowed to hold when 0 < r < 5 and o = 2 when
r=3.

We allow for five different lag lengths such that [ € {2,3,4,5,6}. The
deterministic processes are denoted by d € {1,2,3,4,5} and these processes,
given in the table below, are the five most commonly used combinations (see,
for example, Johansen, 1995):

d Y3 Y

1  linear trend  quadratic drift
2 linear trend linear drift

3 non-zero mean linear drift
4 non-zero mean no drift

5 Zero mean no drift

Some models implied by the deterministic processes will be observation-
ally equivalent. For example, if » = 0 then the models with d = 2 or d = 3 will
be observationally equivalent as will the models with d = 3 and d = 4 when
r = n. The treatment of a priori impossible and observationally equivalent
models is explained in the next section when the prior is outlined.

Finally, the long run restriction to identify the technology shocks is em-
ployed. As discussed in the previous subsection, this restriction implies that
the long run response of p; is nonzero only for the investment-specific tech-
nology shocks and that the long run response of a; is nonzero only for the
investment-specific technology shock and the neutral technology shocks. This
restriction can be parameterized using the standard Beveridge-Nelson form
of the Wold representation of the VECM as

Ay, = 00"z} + C* (L) @Az where C = 3, (a.T5,) " au.
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The first two elements of z, = Q~/2¢, are the investment-specific technology

shock, 27, and the neutral technology shocks, zy;, respectively. Further,
I = I, — X!_,T;. The restriction on CQ'/? implies the matrix will have the
following zero entries:

et 0 0 0]
Co1 Cyp 0 -
cOY/? = * k% * (2)
* * ok *

where the asterisks (*) imply no restriction is imposed. This restriction is
obtained by the appropriate choice of Q2 such that Q = Q/2QY% and CQ/?
has the structure shown above. For an explanation of how such restrictions
are implemented see the Appendix, and see Chang and Schorfheide (2003)
and Del Negro and Schortheide (2010) for further examples and discussion.

Since C has rank n — 7, and Q'/2 must have rank n, the zero restrictions
on C'QY? and the assumption of nonzero responses of p; and a; stated above
imply C' must have at least rank two, then this identification scheme can
only apply if r € {0,1,...,n — 2}. This is consistent with the two technology
shocks entering the system as stochastic trends.

Fisher (2006) assumes a break date around 1982 Q3, although our results
suggest a slightly later date. We allow for a range of 16 break dates from the
first quarter of 1982 until the last quarter of 1985. We index these dates by
7€ {1,2,...,16} where 7 = 1 denotes the break at 1982Q1, 7 = 2 denotes
the break at 1982Q2, and so on.

In summary, each model will be defined by the combination of the deter-
ministic process (d), lags of differences (1), cointegrating rank (), overiden-
tifying restrictions on the cointegrating space (0), and break date (7). As
the model features may change after the break date, we denote a model by
the product M;;, = MZ»O’TM;’T where Mib’T denotes the model i = (d,l,r,0)
with break date 7 prior to the break date if b = 0 and after the break date if
b = 1. The vectors ¢ and j index the features (d, [, r, 0) and may be different
to allow the model features to change post the break. The vectors i,j € =,
where Z is the set of all 7 and j considered. As an example of some mod-
els we will use, suppose prior to a break at 1984Q3, we allow a linear drift
and nonzero mean in the cointegrating relations (d = 3), two lags of differ-
ences (I =2), and stationary great ratios and hours worked (r = 3,0 = 2).

9



This model would be denoted as M (03;712173’2). The features of the VAR used in

Fisher (2006) can be represented as the model M&;f,oyo)M (03’,3:1*70’0). However,
Fisher uses additional restrictions - such as the equation for p; has an extra
lag of a; - and Fisher does not use the same set of variables. Further, his
specification does not capture all of the features of the economic model (such
as the implied cointegration and stability of the Great Ratios). For these
reasons we do not consider the econometric model of Fisher further.

In total we average using 255 models before the structural break, and 255
after the break.” As we allow the entire structure of the model to change
before and after the break, we therefore have (255)° models for each break
date. Further, we allow 12 possible values for the break dates giving a total
of over 780,000 models. Computation of marginal likelihoods for this many
multivariate models would be computationally challenging. As our interest
is in the date when the break occurs and modelling after the break date,
we need only estimate 510 marginal likelihoods for 12 break dates; a total
of 6120 marginal likelihoods. This is still a large number of computations,
but much more readily achievable. We provide further details on how this is
achieved in Section 4.3 and in the Appendix.

4 Priors, Posteriors and Model Averaging.

In this section the priors and resultant posterior are presented. We begin
by specifying the prior followed by a discussion of our choice of this prior.
We separate the discussion to allow readers more interested in the empirical
results to proceed directly to that section. For notational convenience we
collect the lag parameters into a k; x n matrix ® = [Iy --- TIY]" and
vectorize into ¢ = vec(®). Conditional upon [, the model in (1) is linear
in the equation parameters p, vec(«) and ¢. This fact makes it relatively
straightforward to elicit priors on €2, u, vec(a) and ¢, however we adopt a
transformation that improves the sampling scheme. For this reason we give
the full prior after we have given careful consideration to the prior for j,
before then presenting the method of posterior analysis.

>There are 450 models implied by the restrictions. However, this reduces to 255 models
when we exclude a priori impossible models, meaningless models and only consider one
in a set of observationally equivalent models.
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4.1 The Prior.

All models included for the averaging are treated equally likely. The set of
models, =, included for the averaging is a subset of the full set of models
that result from all combinations of d,[,r, and o and 16 break dates 7. We
exclude impossible and meaningless models and, if two or more models are
observationally equivalent, we include only one of them. The implications of
these choices are discussed below.

To avoid notational burden, and because we use the same prior for models
before and after the structural break, in this section we do not distinguish
between parameters and models before and after the break dates except
where necessary.

For €2 we use a proper inverted Wishart prior with scale matrix S = I,,10
and degrees of freedom v = n + 1 as this prior is rather uninformative.
The parameters in ®, the I';, are given a normal prior with zero mean and
covariance matrix

Vy=Uu+Vo(1—w)(I(1=u)+V,u)

where v € {0,1} with prior probabilities Pr(u=1) = Pr(u=0) = 0.5.5
Here V, = Q® I, and V; is the Litterman type prior for a VECM similar to
that specified in Villani (2001). We use a gamma prior with mean F () =5
and a relatively large variance V' (n) = 16.67 for 7.

We specify a weakly informative normal proper prior for vec (u1, a)" con-
ditional upon (2, 3, M;) (and hyperparameters discussed below) with zero
mean and covariance matrix %Ka where V, = Q® I,..” Further details on the
specification of the full prior 1s given at the end of the next subsection.

This paper uses a semi-orthogonal specification for 3, ie., 88 = I,
and a Uniform distribution for 5. This approach to identification is closer
to the identifying restrictions used in classical models with reduced rank
structures. For example, the well known Johansen method of identifying the
cointegrating vectors uses a similar approach, as do other nonlinear models.
See, for a further example, the multi-mode model discussed in Magnus and
Neudecker (1988).

6 Alternatively we could give u a continuous distribution over [0, 1] and mix continuously
over the two normals. Either approach seems reasonable.

"If an informative prior is used on for the cointegrating space then we recommend the
prior for a described in Koop, Leén-Gonzélez and Strachan (2008).
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For the cases in which identifying restrictions discussed in Section 2 of
the form 8 = Hv (0 = 1) are imposed, set 1) where ¢'¢) = I, and give 1 a
Uniform prior. For computational and mathematical simplicity, we convert
H to be semiorthogonal by the transformation H — H (H'H )71/ ® This
transformation is innocuous since the space of H, which is the important
parameter, is unchanged by this transformation.

As 3 is semiorthogonal, the posterior distribution will be nonstandard
regardless of the form chosen for the prior. To obtain an expression for the
posterior useful for obtaining draws of 3, we use an approach proposed in
Koop, Leén-Gonzélez and Strachan (2010). As the matrices a and (§ always
occur in a product form as fa, it is possible to introduce any full rank square
r X7 matrix x such that fa = Brk~la = B*a* without affecting the posterior.
The matrices a* and « have the same support, however, (3 is semiorthogonal
with the Stiefel manifold, V,,,, (see Muirhead, 1982 or James, 1954) as its
support while 8* has as its support the nr dimensional real space. The
matrix §* is given a Normal prior with zero mean and covariance matrix
n~'I,,.. Transforming back to the parameters of interest is straightforward
via B = *x! and o = a*k. The prior for 3* resembles that of Geweke
(1996) except that our prior implicitly specifies, in addition to a proper prior
for , that the marginal prior for 3 = 3*x~! is Uniform. The efficiency of
this approach is discussed in Koop, Leén-Gonzélez and Strachan (2010).

To give this a more formal explanation let the vector of all parameters in
the model that appear in the likelihood, i.e., 8, a, i, ¢, and € , be denoted
by 6 and the unrestricted support is ©, § € © = V,,, x Rk x RT”H) /2
(where RT"HV % denotes the blunt, one-sided cone that forms the support
of all n x n positive definite symmetric matrices) and let the full prior be
denoted as p ().

Let a* = (vec(a*)", vec (p)', ¢')/, b* = vec(f*) and

v, 0
K_{ 0 Kaﬁ}.

Introduce 6" as the vector containing the elements of 5%, a*, and €. The full

81n an earlier version of the paper, without structural breaks, we restricted the support
to exclude explosive roots. With the structural breaks we found the stationary region
to capture virtually all of the posterior mass and so the restriction became effectively
redundant.
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prior distribution for the parameters in a given model is then
n
p (9*7 n, u|MZ) o exp {_ga*/z—la* _ Eb*,b*} e

— (V"N TTUR; 1 —
] (v+n+1+r+uk;)/2 exp{—§tr§2 1§}

For further details and proofs of results, see Strachan and van Dijk (2010).

4.2 Discussion of the Prior.

Ideally all models would be treated as a priori equally likely, however this
is not a straightforward issue in VECMs.? The priors for the individual el-
ements of ¢ = (d,[,r,0) are not independent, as certain combinations are
either impossible (such as when r = n and o = 2), meaningless (such as,
for example, r = 0 with o = 1) or observationally equivalent to another
combination (such as the models with » = n and d = 1 or 2). The prior
probability for impossible and meaningless models is set to zero. However,
the researcher must carefully consider how she wishes to treat observation-
ally equivalent models. Treating these models as just one model and then
assigning equal prior probabilities to all models biases the prior weight in
favour of models with 0 < r < n. This could shift the posterior weight of
evidence in favour of some economic theories for which we wish to determine
the support.!’ Alternatively, these could be treated as separate models. A
choice must be made and in this paper, observationally equivalent models
are treated as one model.

A referee has raised the interesting question as to whether it is appropriate
to specify independent priors for d, [, , and 0. One might expect, for example,
that a strong deterministic process such as d = 1 might reduce the prior
expectation of finding stochastic trends in the processes. This might imply
that the probability Pr(r < n|d) may decrease as d increases. Similarly a
shorter lag length, [, might be associated with a higher prior probability of

9The authors are grateful to Geert Dhaene, John Geweke and an anonymous referee
for useful comments on this issue.

10This issue could be viewed as a conflict between the desire to be uninformative across
statistical models and the desire to be uninformative across economic models.
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finding (more) stochastic trends. We do not pursue this idea further, but
note that it might be a worthwhile topic for investigation.

For T';, we had initially specified a normal prior with zero mean and
covariance matrix %Ko where V; = Q ® I, however a referee pointed out
that it would make more sense that coefficient matrices for higher lags are
more likely to be near zero. This suggests using the well known Litterman
prior (Litterman, 1980, 1986, Doan, Litterman and Sims, 1984). As we have
already mentioned, shrinkage tends to improve inference (Ni and Sun (2003))
which suggests a technical reason to prefer the Litterman prior. To express
our uncertainty as to which is the correct prior, we specify the prior for I'; to
be a mixture of two normal zero mean priors. One with covariance matrix
%Ko and the other with the covariance matrix similar to that in Villani

(2001), which we will denote by V.
n

The covariance matrix 2V, has zero off-diagonals and the variance of
each element of I'; shrinks toward zero the higher is ¢ and for off diagonal
elements of I';. The full covariance matrix for ¢ can be represented as %Kd)
where Vs = (Tu+V, (1 —u)) (I (1 —u) + V,u) where u € {0,1} with prior
probabilities Pr (u = 1) = Pr (u = 0) = 0.5. The posterior estimate of u will
inform us on the data’s preference between the two specifications and in
this sense produces an empirical Bayes prior for ¢. We found the posterior
was not very informative on the choice of u (either 0 or 1) with estimates
of Pr(u = 1|y) showing some preference for V), but not strong evidence for
either covariance matrix. It would seem, therefore, that mixing over the two
normals, rather choosing one, is a reasonable approach.

The parameter 1 determines the overall degree of shrinkage that is applied
to the mean equation parameters. Evidence on the influence of this parameter
can be found in Strachan and Inder (2004). The settings we use provide a
reasonable degree of shrinkage towards zero which has been shown to improve
estimation (see Ni and Sun (2003)). The posterior distribution of 7 from a
preliminary run, by contrast, is very tight with a mean of E (n|y) = 0.001
and variance V (n]y) = (0.0195). This result suggests the data prefer less
shrinkage, although the Litterman prior already imposes a significant degree
of shrinkage. Setting the prior mean of 1 (and therefore variance) to a larger
value did not significantly change the posterior estimates of other objects of
interest (such as impulse responses). We concluded that while the bulk of
the posterior mass of 7 is near zero, there is sufficient mass away from zero
to give enough shrinkage.
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The specification of 3 is semi-orthogonal, i.e., '3 = I,, with a Uniform
distribution for 3. This specification permits estimation with minimal restric-
tions (for background information, see Strachan (2003), Strachan and Inder
(2004), Strachan and van Dijk (2003) and Villani (2005)). This approach
does not preclude achieving interpretable coefficients by imposing such iden-
tifying restrictions as these restrictions can be imposed ex-post once a draw or
an estimate of 3 is obtained. As many choices of identifying restrictions can
be imposed to permit as many interpretations of the coefficients is desired.
The difference is that these restrictions are imposed on draws or estimates
from the posterior and not in the prior.!! The relevant point we make here
is that any inference that can be achieved with linear identifying restrictions
can be achieved with the identifying restrictions in this paper.

As in many reduced rank models, there is a well known identification is-
sue since 3 and « appear as a product in (1) such that Sa = vy la = S a*
and (f,a) and (5%, a*) are observationally equivalent. What is not often
recognized in the cointegration literature is that the space of § and the space
of a are fully identified under the likelihood and, without restrictions on «,
the data can only inform us about the space of 3. Any further restrictions,
such as to identify the elements of 5 and «a to permit interpretation, are nec-
essarily part of the prior and will potentially have implications for posterior
inference. In the Bayesian literature it is common to use linear identifying
restrictions to impose restrictions to permit interpretation and estimation.
That is, by assuming ¢ is invertible for known (r X n) matrix ¢ and the
restricted 3 to be estimated is § = /3 (cﬁ’)_1 . The free elements are collected
in B = ¢, 3 where ¢, ¢ = 0. For example, if ¢ = [I, 0] then 3 = [I, B']' and
a prior is then specified for B.'? By using the semiorthogonal restrictions
we can produce unique inference (see Lopes and West (2004) for an example
where choice of linear restrictions produces difference results), we have no
inconsistency between the model and our assumptions (Strachan and Inder

'More recently, the topic of invariance to rescaling of the data has been raised in
conversations with colleagues. Our prior is not invariant but, unfortunately, no uniform,
invariant prior exists in the literature. While it might be worth further investigation, we
do not consider invariance further as it has not proven to be an empirically important
issue.

12There exist practical problems with incorrectly selecting c. The implications for clas-
sical analysis of this issue are discussed in Boswijk (1996) and Luukkonen, Ripatti and
Saikkonen (1999) and in Bayesian analysis by Strachan (2003). In each of these papers
examples are provided which demonstrate the importance of correctly determining c.
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(2004) show how imposing linear restrictions has the unexpected and undesir-
able result that it makes the assumption supporting the restrictions a prior:
impossible), and ensure that moments exist, the posterior is always proper,
no local nonidentification problems arise and the Markov chain methods used
are irreducible (Kleibergen and van Dijk (1994 & 1998) and Bauwens and
Lubrano (1996)).

4.3 Posterior Analysis.

We conduct the empirical investigation in two stages. In the first, we compute
the estimated model probabilities and the timing of the structural break. In
the second stage, we estimate the functions of interest such as impulse re-
sponses and variance decompositions. We estimate the model probabilities
using a Laplace approximation of predictive densities, and the impulse re-
sponses and variance decompositions are estimated using a Gibbs sampler.
When investigating the evidence on structural breaks we encounter two
issues that need to be addressed: the strength of the prior information; and
proliferation of models to compute. As we have a separate prior for the pa-
rameters before and after the break, we have effectively doubled the amount
of prior information in the posterior and halved the amount of data (on aver-
age) used to estimate the parameters. This introduces the problem that the
prior information is strong relative to the data. We could make the priors
less informative, but then that increases their influence in the computation
of the posterior probabilities (see discussion on Bartlett’s paradox in Geweke
(2005), Section 2.6.2). This situation implies a trade off between prior un-
certainty about the parameters and posterior uncertainty about the models.
To mitigate this issue we compute predictive probabilities (see, for example,
Geweke (1996) and Geweke and Amisano (2011)) from predictive densities.
The predictive densities can be derived for each model via the expression

_ Jor (y%ﬂ’y%, M;, p) p (y%\Mz, p) p (p|M;) dp
Jorp (?J%(HMZ, p) p (p|M;) dp

b,
P =p (i lyz, M)

(3)
where p = (6%, u,n) and yfé is the data from observation ¢y to ;. For a model
prior to the structural break at time 7, then 7, = 1 and 75 = 7. For a
model after the structural break, 7o = 7+ 1 and T = T. As T, — oo or
Ty — 0, then p (y% +1|y%,M,-) becomes the standard marginal likelihood.

The notation p?’T denotes the predictive density for model M; with a break
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date 7 for the time period before the break if b = 0 and in the time period
after the break if b = 1. Thus the full predictive density for a process that

switches from model M; to model M; at time 7 is the product pj = p?’ijl-’T.

We estimate the numerator and denominator in (3), and therefore p?’T,
using the Laplace approximation. This technique approximates the integral
by a second order expansion around the mode of the log of the integrand
(see Tanner (1993)). Although often described as a normal approximation,
the Laplace approximation has been shown to work very well with very non-
normal distributions. For example, Strachan and Inder (2004) apply the
approach to the VECM where the integral is over linear subspaces which
have bounded supports and non-standard distributions.

At a given break date 7, using the fact that assume all prior model prob-
abilities are equal, we can compute the posterior predictive probability of a
model M" holding before (b = 0) or after (b = 1) the break using the p’”
as

b,
p (M) = Ee (4)
p;
jEE
While using the Laplace approximation greatly speeds up the computa-
tion of the model probabilities, as discussed earlier, we allow the entire model
structure to change at the break. This implies we have a very large number
of models because the process is allowed to switch from any model before the
break to any model after the break. To further reduce computation time, we
make use of the fact that we are only interested in computing the probability
that a break occurs at a point in time, and not which model after the break
followed a specific model before the break. This observation greatly reduces
the number of necessary computations.
If we have M models and n possible break dates, then the posterior
probability of a break at date 7 = 7* is obtained by

1

H (Zi\ilP?’T*)

b=0
1 .
n b, T
ZT:1 H <2j]\/i1pj >
b=0

This expression is explained with a simple example in the Appendix. The
probability of a particular feature (e.g., d = 2) holding after the break is then

p(r="y) =
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obtained by summing the products of the probabilities of the models with
that feature and the probabilities of their break dates.

As we did for the presentation of the priors for the parameters, in pre-
senting the posterior parameter distributions we suppress notation indicating
which sample is being discussed. Thus models are denoted by M; to repre-
sent Mib’T and no notation is included on the parameters indicating pre or
post break or which break is assumed. This simplification is to reduce the
notational burden and little information is lost by doing so.

To estimate the impulse responses we require draws from the posteriors
of the models with non-negligible posterior weight. An expression for the
posterior distribution of the parameters for any model given the data is ob-
tained by combining the prior, p (6%, n, u|M;) , with the likelihood for the data
L (y|6*, M;) where y represents all data. That is,'?

As the sampler uses a Gibbs sampling scheme, it is necessary to present the
conditional posterior for each parameter.

In the following results, we gather together terms to keep expressions no-
tationally concise. Collect y;—1 3 and the vector 2oy = (day, Aye—1, ..., Ays_y)
into the vector zz = (y;—10", 224). Next define the k; x n matrix & =
(1,1, ..., T}) and the (r + k;) x n matrix A = [, ®']".

As the model is linear conditional upon b* = vec (3"), standard results
show that the posterior for a* = vec (A) conditional on all other parameters
will be normal with mean @ and covariance matrix ' constructed as

T
a =V (Q—l ® Ik:i—}-r) vec (Z zszt>
t=1
and

T —1
V = ((Ql ®y) zgzt> - nZ‘1> :
t=1

Next, the posterior for b* conditional upon the other parameters will be

13Note that as 1 and u are hyperparameters, do not enter the likelihood.
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normal with mean b and covariance matrix V', which are constructed as

T

b = Vy ("' ®1,) vec (Z Yi1 (Ay, — Zzﬂ’))
t=1

and

T
(a*Qla*' X Z y;1yt1> + n[nr

t=1

-1

Vi =

The posterior for  will be Gamma with degrees of freedom 7,y = n (k; + 1)+
3 and mean 7, = 1/ (a”V"'a* +5/3) /7, (see, for example, Koop (2003)).
Finally, u will have a Bernoulli conditional posterior distribution with p =
Pr(u = 1|a*, 2, 5%, y) equal to

P =exp {—ga*’zgla*} / [exp {—ﬁa*’zala*} + exp {—ga*'zfla*}] :

2

We use the following scheme at each step ¢ to obtain draws of (a*, 2, 5%, 1, u) :

1.

2.

4.4

Initialize (2,b*, a*,n,u) = (Q(O), b+, a*(o),n(o),u(o));

Draw Q|b*, a*,n, u from IW (§—|— unA’A + Zle erer, T + uk; + r) :

. Draw a*|Q, b*,n,u from N (E,V) ;

Draw b*|€2, a*,n, u from N (5, Vb);
Draw 7S, b*, a*, u from Gamma(fz,, 7, );
Draw u|$, b*, a*,n from Bernoulli (p);

Repeat steps 2 to 6 for a suitable number of replications.

Bayesian Model Averaging with MCMC.

In this section we outline how we implement Bayesian model averaging to
provide unconditional inference. For this discussion we again abstract from
the structural break and specific model features and use M; to denote a
generic model. This might be, for example, a specific model before or after

a break M; = M”" with posterior probability p (M;|y) = p (Mf”]y) :
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Suppose we have an economic object of interest ¢ which is a function of
the parameters for a given model (6*|M;), ¢ = ¢ (0"|M;). Examples include
estimates of impulse responses, forecasts, or loss functions. To report the
unconditional (upon any particular model) expectation of this object it is
necessary to estimate

E(Cly) = E (Cly, Mi) p (Mi]y)

1€2

where E (C|y, M;) is the expectation of ¢ from model i. Denote the ¢*" draw of

the parameters from the posterior distribution for model M; as (9*((;)) and so

the ¢ draw of ¢ as (@ = ¢ (9*(‘1) \MZ> . Using J draws of the parameters from

the posterior distribution for each of the M models, first obtain estimates of
E (¢|y, M;) from each model by

B (¢ly, Mi) = 39046,

These estimates are then averaged as

E(¢ly) = ZE (Cly, M;) b (M;ly)

in which p(M;|y) is an estimate of p (M;|y) presented in Section 4.3.

5 The Application and the Results.

In this section we provide empirical evidence on the support for the real
business cycle model with two technology shocks and the various restrictions
that this economic model implies for the econometric model. We begin with
providing evidence on the timing of the structural break, and the posterior
probabilities of the features of the reduced form VECM that are implied by
this RBC model. We estimate the posterior probability of a structural break
occurring at a range of dates and, in subsequent analysis, focus upon the
results for the data after the structural break. We then report the estimates
of objects of interest including impulse response functions.

The variables and the data: The variables of interest are: log real
price of an investment good measured in consumptions units, p;; log labour
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productivity, a;; log number of hours worked, h;; log of consumption, ¢;; and
log investment, x;. The data, which are seasonally adjusted, start in the first
quarter of 1948 and end in the second quarter of 2009. Where appropriate,
the data are measured in 1996 dollars deflated using a chain-weighted index
of consumption prices.

We measure the investment price using an investment deflator divided by
a consumption deflator and we follow the approach using real total invest-
ment price from the National Income and Product Accounts (NIPA) for the
investment price. Alternative approaches to constructing p; are discussed
quite extensively in Fisher (2006) and Greenwood, Hercowitz, and Krusell
(1997). These papers raise the issue of the lack of quality adjustment in the
NIPA series. However, in a related study, Fisher (2005) concludes important
findings are robust to using the NIPA-based total investment price rather
than alternatives that address these issues. Therefore, we do not explore
the alternative approaches as we assume that the NIPA based measure will
be appropriate. We compute the consumption deflator using a Fisher index
and data from the Bureau of Economic Analysis on nondurable goods and
services.

Productivity is constructed from nonfarm output per hour measured in
consumption units and hours worked. Hours worked is hours of all persons in
the nonfarm business sector obtained from the FRED (Federal Reserve Eco-
nomic Data), which sourced this data from the U.S. Department of Labor:
Bureau of Labor Statistics. Consumption is personal consumption expendi-
tures less durable goods and investment is gross private domestic investment
in consumption units sourced from the Bureau of Economic Analysis.

Break Dates and Stability of Great Ratios: As discussed in Section
3, for each break date, excluding observationally equivalent, impossible or
meaningless models leaves 255 models to estimate. Three break dates receive
measurable support, 1984 Q3, 1984 Q4 and 1985 Q1 with probabilities of
0.01%, 57.78% and 42.21% respectively. Of the 765 models over these three
dates, there were 62 post break models with measurable support and 12
pre-break models with measurable support. From the pre-break models, the
model ]\4(0 4}2%170) has 57.8% of the probability mass and M&};LO) has 41.2%
posterior probability. The models prior to the break provide strong evidence
against the features we would expect under the economic model. While the
results prior to 1984 have important information in them, there is evidence
of several breaks in the 1970. As the aim of this paper is not a comprehensive
treatment of all breaks, the remainder of the discussion focuses on the post
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break results as this period is well represented by a single, stable model.

Among the post break models, one model accounted for half the posterior
mass and twenty models accounted for 99.99% of the posterior probability
mass. The posterior probabilities of the top six models are presented in Table
1. Post the break, the models M, (12”122’372) with a break at 1984 Q4 and M, (14’,133’271)
with a break at 1985 Q1 capture 79% of the probability mass. Although
relatively few models get any support, it is clear that support is fairly strong
for the top five models.

According to the model of Fisher, it might be reasonable to expect few de-
terministic processes in the system and so to see d < 3 as the technologies are
commonly described as random walks possibly with drifts, but the economic
model does not suggest we would expect trends in the cointegrating relations
(d = 2) or quadratic trends in the variables (d = 1). Table 2 presents the
marginal probabilities of the various features of the VECM. There is a 76%
probability that there is a drift in the levels and a trend in the cointegrating
relations (d = 2) and 24% probability of a drift in levels but no trend in the
equilibria (d = 3). With a 76% posterior probability that the cointegrating
relations are the Great Ratios of consumption to income and investment to
income, the trend may be picking up the decline in the savings that occurred
since the mid 1990s.

Table 1: Posterior probabilities, P (M;|y), of the top five models.

Cumulative
d | r o Break Date P (M;ly) probabilities
2 2 3 2 1984 .4 0.5552 0.5552
4 3 2 1 1985.1 0.2343 0.7895
2 2 3 2 1985.1 0.0968 0.8863
2 3 3 2 1985.1 0.0884 0.9747
2 3 3 2 1984 .4 0.0226 0.9973

Table 2: Posterior probabilities of model
features after the break.
d=2 d=4 d=5 1[1=2 r=3
0.7636 0.2347 0.0019 0.6546 0.3454
r=2 r=3 o=1 o=1 o0=2
0.2364 0.7638 0.0019 0.2348 0.7635
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The posterior probability of having only two stochastic trends is 76%,
although there is evidence of a third if the break is delayed until 1985 Q1. As
the primary aim of this paper is to investigate the degree and role of model
uncertainty in the empirical evidence on technology shocks and important
features of RBC models, we discuss the results with reference to a number
of important papers in the literature. The RBC is driven by technology
shocks which, in Fisher and KPSW, are stochastic trends. These are the
only stochastic trends described in the economic model and KPSW assume a
unique technology is (in the three variable model) the only stochastic trend
that enters the system. The economic model of Fisher implies there are only
two common stochastic trends. CC report evidence of an extra stochastic
trend in a three variable system, but they then choose use the single trend
model for inference. We conclude the evidence on an extra unit root is an
empirical issue. It is possible the extra stochastic trend could be entering
from the hours worked variable, h;. While h; does not display a trend, it does
display a very large and slow cyclical component with peak-to-peak cycles of
around 10 years duration and a sudden drop in 2009. Such large cycles and
outliers are not easily captured in linear models (such as the VECM) and may
be manifesting as evidence of a third unit root. An alternative explanation
is provided in Chang, Doh and Schorfheide (2007), that hours may appear
nonstationary if labour adjustment costs are not explicitly incorporated into
the model.

The data are positively informative about the form of the cointegrating
relations. That is, there is a 76% probability that the Great Ratios are
stable and that the investment price has a unit root and does not cointegrate
with the other variables. The assumptions that the price of an investment
good is nonstationary and does not cointegrate with any other variable in
the system, with 99% probability mass on 0 = 1 and 0 = 2, have very strong
support. Since the posterior probability that (r = 3,0 = 2) is 76%, and the
posterior probability of (r = 3,0 =0 or o = 1) is zero, the evidence that the
Great Ratios are stationary is positive, although not compelling.

Overall the evidence in the estimated probabilities for the features of
the econometric model suggested by the RBC of Fisher (2006) positively to
strongly supported. But, with 25% of the mass on features not supported by
the economic model, the evidence is not decisive and there remains consid-
erable model uncertainty.

Business Cycle Volatility due to Investment and Neutral Tech-
nology Shocks: An important area of interest in RBC models is the dy-
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namics of wy, ¢;, and z;, including the role of the investment specific and
neutral technology shocks in the business cycle. By decomposing the vari-
ance into the components due to these technology shocks, it is possible to
gain an impression of the relative importance of these effects for the variabil-
ity of the consumption, investment and output. As the model set includes
models with the same features (d,l,r, and s) as those used in other studies,
specifically King, Plosser, Stock and Watson (1991, hereafter KPSW) and
Centoni and Cubadda (2003, hereafter CC), it is possible to compare results
across models used in other studies. KPSW and CC did not consider the
two technology shocks per se, rather the role of permanent (possibly tech-
nology) shocks and transitory shocks. As the model in this paper has two
additional variables (p; and h;), the results will differ from those if we had
used exactly the models in KPSW and CC unless (p;, h;) is strongly exoge-
nous to (¢, x4, wy) . KPSW and CC use output, w;, whereas this paper uses
productivity, a; = w; — hy. As a; is a linear function of h; which is also in-
cluded in the model, the decomposition for w; can be readily obtained from
the estimation output.

KPSW derive an identification scheme for a decomposition based upon
a single productivity shock entering these variables. This model is extended
in Fisher to permit two types of permanent shocks, however in both cases
the economic model implies that the Great Ratios (¢; — w; and x; — w;) will
be stationary. As discussed above, results from our study suggest there is
some uncertainty associated with this aspect of the theory as the evidence
suggests there may be more than two stochastic trends entering the system.
However, the equilibrium relations appear to be well described by the Great
Ratios. Notwithstanding this ambiguity, it is not evident that the excess of
stochastic trends affects estimates of other outputs such as proportions of
the variance over the business cycle that can be attributed to the technology
shocks.

Our interest is in the proportion of business cycle fluctuations due to
the technology shocks in total, and the investment specific shocks, z;,, and
neutral technology shocks, zy ¢, specifically. Therefore we adapt the approach
of CC who consider the variance decomposition within the frequency domain.

Figure 1 presents the posterior distribution averaged over all models, of
the proportion of the variance of ¢;, z; and w; over the business cycle due to
investment specific technology shocks and Figure 2 presents the posterior dis-
tribution of the proportion due to neutral technology shocks constructed by
averaging over all models. These estimates are obtained from 30,000 draws

24



from the posterior of each model. This plot shows an amount of mass at zero
for all three variables suggesting a slightly larger role for non-technology
shocks. Relatively, the investment specific technology shocks are far more
important the neutral technology shocks and the proportions have consid-
erable mass away from zero. The proportion of variation due to neutral
technology shocks has little mass above 15%. We computed the same poste-
rior densities as those reported in Figures 1 and 2 but using the CC, KPSW
and the best models, as well as for all models in which the Great Ratios are
the cointegrating relations. These estimates all share similar forms and pair-
wise comparisons showed no stochastic dominance of any distribution over
any other.

Table 3 reports estimates of the mean proportions of the variance over
the business cycle due to z;; and 2y, for a range of models and model sets.
The single models considered are those used by CC, KPSW and the best
model in our model set. The model sets we consider are, first, the set of
all models and, second, the set of all models in which the Great Ratios are
stable. Comparing across different models and model sets, the proportions
appear relatively robust to specification. The CC model is the only one that
does not include the Great Ratios as stable cointegrating relations and we
see that this results in slightly higher proportions of the variance due to
investment specific technology shocks for output and consumption, although
the difference is not large. Imposing the Great Ratios (as in KPSW, the best
model and the set of all models with stable Great Ratios) slightly reduced
the role of z;, in business cycle variation for consumption and output, but
not for investment. Overall, the technology shocks explain between 26% and
38% of the variation over the business cycle for these variables.

Table 3: Estimated proportion of variance over the
business cycle due to the investment-specific technology
shock, zr+, and the neutral technology shocks, zy;

CC KPSW Best All Balanced

model model model models Growth models
¢ zry 0299 0179 0.212 0.223 0.212
znvy  0.050  0.018  0.041  0.038 0.040
r, zry 0254 0320 0.233 0.227 0.234
vy 0.051 0.01 0.035  0.033 0.035
wy zry 0281 0.160 0.202  0.216 0.202
zvy 0.097  0.045  0.082  0.076 0.081
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Relatively speaking, the investment specific technology shocks seem far
more important than the neutral technology shocks as they explain between
70% and 97% of the total variation due to technology shocks.

Investment

v == Output  =eeeee Consumption

0.01 013 0.25 0.37 0.49 0.61 0.73 0.85 0.97

Figure 1: Posterior densities of the proportion of the variance over the busi-
ness cycle of output, consumption and investment that is due to investment
specific technology shocks, 2y ;.

Propagation of Shocks: We conclude by discussing the responses in
investment price, hours, output, consumption and investment to technology
shocks. The percentiles of the posterior distribution of the response of in-
vestment price p; to an investment specific shock are shown in Figure 3. This
path is very much as would be expected from the model of Fisher and agrees
with the form of his estimates. The plot of the percentiles of the posterior
response of p; (not reported but see Figure 7 discussed below) to a neutral
technology shock, zy;, shows little response, again agreeing with the results
of Fisher. Figures 4, 5 and 6 show the posterior mean impulse responses to
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Figure 2: Posterior densities of the proportion of the variance over the busi-
ness cycle of output, consumption and investment that is due to neutral
technology shocks, zy ;.

the technology shocks constructed from 30,000 draws of the parameters in
each included model. Output has a positive response to both shocks while
consumption does not seem to react. Investment has an initially negative and
then positive response to investment specific technology shocks, but declines
in response to neutral technology shocks. The response of hours worked
shows a clear difference depending upon the type of technology shock. In-
vestment specific shocks lead to a gradual fall in hours worked while the
neutral shocks have an initially positive effect that quickly dies away. The
mean responses of hours worked to the two technology responses is presented
in Figure 6. This figure tells a similar story to the results of Fisher that the
response of hours to neutral technology shocks is short lived. However, they
suggest quite different responses to investment specific shocks those reported
in Fisher (2006). Both our results and those of Fisher suggest persistence in
the response, however ours show a negative response while Fisher’s results
suggest an increase in hours worked.
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While many of these figures agree in form with those of Fisher (2006),
they differ in magnitude by a factor of 10. With the exception of the response
of investment price to z;;, the mean paths are not far from zero if we take the
full posterior as the metric for distance. The posterior credible intervals for
many of the responses encompass the origin. The densities for the responses
of the investment price to a neutral technology shock in Figure 7 at three
horizons give an impression of the general form and evolution of the response
densities for other variables. The leptokurtic form and mass generally around
zero is representative of the responses of a;, w;, h:, ¢; and x; to investment
specific shocks, and of h; to neutral technology shocks.

The responses of a;, wy, ¢; and z; to neutral technology shocks show a very
different response. As an example, Figure 8 presents the percentiles of the
posterior distribution of the response of output w; to an neutral technology
shock at three different horizons. These densities all have platykurtic forms
at short horizons, responses after one or two periods. However, they become
increasingly bimodal at the time since the shock increases. This bimodality
is not due to different models producing different paths as the responses
for the best model in Table 1 produced very similar responses. A number
of possible explanations exist, and one is that the identifying restrictions, at
least for zy;, disagree with the data. However, as we are using just identifying
restrictions it is not possible for us to report evidence at this point on this
question.

6 Conclusion.

This paper presents a Bayesian approach to investigating the support for
an economic model by considering the empirical support for the features
that model implies for a reduced form econometric model. The economic
model is the a real business cycle model of Fisher (2006), with reference to
other papers that use this class of model such as Greenwood, Hercowitz,
and Krusell (1997) and KPSW. An important component of this model is
the restrictions of long run responses that are used to identify investment
specific and neutral technology shocks. For many of the features implied by
this model we find reasonable support and some, such as stability of the Great
Ratios, receive quite strong support, although not before 1984. Further, the
impulse responses demonstrate that the predictions of the model are quite
plausible although there is considerable uncertainty around these estimates.
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Figure 3: The 20%, 40%, 50%, 60% and 80% percentiles of the posterior
distribution of the response of investment price to an investment specific
technology shock. The x-axis is periods since the shock and the y-axis is in
percent.

The methodology is an important contribution of this paper. The ap-
proach results in unconditional inference on these features of the vector au-
toregressive model as the effect of any one model on the inference has been
averaged out, and so model uncertainty is incorporated into the analysis.
Techniques are developed for estimating marginal likelihoods for models de-
fined by structural features such as cointegration, deterministic processes,
short-run dynamics and overidentifying restrictions upon the cointegrating
space. To account for structural breaks and model switching, methods are
presented to make inference computationally feasible in a very large set of
multidimensional models.

The methods presented in this paper, without the structural breaks, have
already found applications in several other areas. Koop, Potter and Strachan
(2005) investigate the support for the hypothesis that variability in US wealth
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Figure 4: Mean impulse responses of output, consumption and investment
to an investment specific technology shock, z;,. The x-axis is time since the
shock and the y-axis is percent.

is largely due to transitory shocks. They demonstrate the sensitivity of this
conclusion to model uncertainty. Koop, Leén-Gonzélez and Strachan (2008)
develop methods of Bayesian inference in a flexible form of cointegrating
VECM panel data model. These methods are applied to a monetary model
of the exchange rate commonly employed in international finance. Other
current work includes investigating the impact of oil prices on the probability
of encountering the liquidity trap in the UK and stability of the money
demand relation for Australia.

We end with mentioning two topics for further research. First, although
our mixing over priors partially addresses this issue, there remains the is-
sue of the robustness of the results with respect to wider prior and model
specifications. Very natural extensions of the approach in this paper are to
consider forms of time variation in the model itself as Cogley and Sargent
(2001, 2005) and Primiceri (2005) do for the VAR. These papers suggest
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Figure 5: Mean impulse responses of output, consumption and investment
to an neutral technology shock, zy;. The x-axis is time since the shock and
the y-axis is percent.

there is considerable variation in the parameters, particularly over the 1970s.
However, the reduced rank restrictions due to cointegration introduce fur-
ther conceptual and computational issues for time varying models and a first
example of how to implement such a time varying VECM is presented in
Koop, Leon-Gonzales and Strachan (2011). Alternatively, in using a SVAR
for business cycle analysis one may use prior information on the length and
amplitude of the period of oscillation (see Harvey, Trimbur and van Dijk
(2007)). Unresolved issues in this work include systematic use of inequality
conditions which imply a more intense, or better, use of MCMC algorithms.
Extending this approach to large model sets is yet to be considered and,
given the computational issues, remains a challenge. Second, one may use
the results of our approach in explicit decision problems in international and
financial markets like hedging currency risk or evaluation of option prices.
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to N), The x-axis is time since the shock and the y-axis is percent.
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8 Appendix

Identification of the technology shocks: In this appendix we detail how
the two technology shocks are identified by the zero restrictions on cOY?
shown in (2). Let Q2 denote any unique decomposition of € such that
Q = QY2QY%. This could be the unique Cholesky decomposition into a
lower triangular matrix or taken from the square root of the singular value
decomposition. As we use the singular value decomposition below we will
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give this definition for QY2 Take the singular value decomposition of the
nxn matrix A as A = USV’' where U € O (n), V € O (n) where O (n) is the
orthogonal group of nxn matrices, and S = diag (s1, s2, - . ., S,) where s; > 0.
A square root of A may be obtained by the construction Al/ 2=Usyv2y,
_ Toidentify z; we need to choose an orthogonal matrix U such that Q2 =
Q20U such that Q = QY2QY% = QY2UU'QY/? = QY2012
Let ¢ be (1 xn) vector of the first row of CQY2 and let ¢ be the
(1 x n — 1) of the second to last elements in the second row of C Q12 Next let
the projection matrix projecting into the space of ¢! be P! = ¢V (clcl’ )t
Similarly, let the projection matrix projecting into the space of c? be P2
Then U = U'U? where U! is the orthogonal matrix spanning the column
space of the singular value decomposition of P! = U'SV"’. Further,

1 0
iy
where U?? is the orthogonal matrix spanning the column space of the singular
value decomposition of P? = U?2SV’. We can then define 2, as z, = Q~ /%,

Computation of break date probabilities: To demonstrate the ap-
proach we use to computing the probabilities of the structural break occurring
at different dates, first assume we have only three models before the break
date and three models after the break date. Index the models by i € {1,2,3}.
Next, we assume we are considering only two break dates and these are in-
dexed by 7 € {0, 1} and denote the models for the pre-break sample by b = 0
and for the post-break sample by b = 1. Thus the predictive density for
model i at date 7 for sample b is pf’T. The predictive densities play the role
of the marginal likelihoods for the models and the predictive density for a

process that switches from model M; to model M; at time 7 is the product

0,7 ].T
pi =p; pj’

The probability of a break at time 7 = 0 is therefore

1
53 y3 OOpl,O H ( 1pl )
i=1

j=1Pi P; o b=0

22,58 0t + 2 3 pdtplt ! '
7' OH( 1pz >

Writing the probability this way reveals a simplification that can be used to
compute the probabilities of breaks by ignoring the path that the process
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takes over models. That is, in the above example, we need not estimate each
of the eight combinations p?’ijl»’T. Instead we can simply compute the sums
33 p2° which in this simple example reduces the number of computations
from 18 to 12. As the size of the model set increases, the gains become more
significant. If we have n break periods and M models in each period, the
computations reduce from nM? to 2nM. In our application with 7 = 12 and
M = 255, this is a reduction from 780300 to 6120 computations.
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