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Abstract

We consider the biases that can arise in bias elicitation when expert as-
sessors make random errors. We illustrate the phenomenon for two sources
of bias: that due to omitting important variables in a least squares regres-
sion and that which arises in adjusting relative risks for treatment effects
using an elicitation scale. Results show that, even when assessors’ elici-
tations of bias have desirable properties (such as unbiasedness and inde-
pendence), the nonlinear nature of biases can lead to elicitations of bias
that are, themselves, biased. We show the corrections which can be made
to remove this bias and discuss the implications for the applied literature

which employs these methods.
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1 Introduction

There is growing interest in the use of experts to make elicitations about suspected
biases in biomedical research (Thompson et al., 2011; Wilks et al., 2011; Turner
et al., 2009). Such work sits within a broader literature which considers the role
of expert opinion for dealing with uncertainty in statistical research (Oakley and
O’Hagan, 2007; Greenland, 2005; Wolpert and Mengersen, 2004; Spiegelhalter
and Best, 2003; Smith et al., 1995; Eddy et al., 1992). According to O’Hagan et
al. (2006), expert opinion can add significantly more information to a study than
can better data analysis or higher quality data sets.

Yet there is acknowledgement that the use of experts can present its own
problems. Turner et al. (2009), in an analysis of a health technology appraisal
in antenatal care, note that elicitation can be time-consuming, challenging and
requires knowledgeable and motivated assessors who have, ideally, been recruited
from a range of disciplines. Ioannidis (2011), commenting on bias adjustment for
meta-analyses of observational studies, notes that some biases might be difficult to
elicit with any degree of accuracy and that the sheer volume of potential biases can
make it difficult for any expert to assess them rigorously. Kynn (2008) argues that
much recent statistical research using probability elicitations has lagged behind
psychological research. She presents a series of recommendations to improve
elicitations, including the need to frame elicitation questions appropriately, to
decompose the elicitation process into manageable tasks, to check for coherency
in the elicitations and, if possible, to repeat the elicitation process at a later date
to check the self-consistency of experts.

This note considers the biases that can arise in bias elicitation when expert
assessors make random errors in their elicitations. It shows that, even when the
elicitation process is carried out by assessors of high quality - we define these as
assessors who make unbiased, independent, elicitations of bias - bias elicitation
can, itself, be biased. The result occurs when the bias term to be elicited is
a nonlinear function of the random errors made by elicitors. The value of the
bias may be approximated in a straightforward manner using a Taylor series
polynomial of degree two.

We illustrate the phenomenon using two examples: elicitation for the classical
‘omitted variables’ problem in least squares regression, and the use of elicitation

scales to assess bias in relative risk for studies used in a recent National Institute



for Clinical Excellence technology appraisal in antenatal care (Turner et al., 2009).
Proofs show the adjustments that must be made to remove the bias in the bias
elicitation. We conclude by discussing the broader implications of our results
for elicitations for other sources of bias that may be encountered in statistical

research.

2 Biased elicitation of bias

2.1 Elicitation for omitted variables bias in least squares

regression

Assume that the true data generating process (dgp) for an observation in a re-

gression model is:

y=x0B+u, (1)
where x is a K X 1 vector of regressors, x = [z1,...,2k], Bisa K x 1 vector
of parameters, 3 = (B, ..., Bk], and u ~ N(0,02%). Least squares regression is
used to estimate the relationship:

y=%xXpB+v, (2)
where the vector X = [z1,...,2x_r| contains a (K — L) x 1 subset of the regres-
sors in x, such that the variables xx_r.1,...,2x from x have been incorrectly

omitted. B = [Bl, o ,BK_L]’ is the corresponding (K — L) x 1 parameter vector.
Define z = [tk _141,...,%k] as the L x 1 vector containing the regressors from
Eq. (1) that are incorrectly omitted in Eq. (2). It is the case that v = Z'a + u,
where a is an L x 1 vector of parameters.

Assume that the statistician observes data with ¢ = 1,..., N observations on

y and X, and stack these by row so that:
y=XB+v. (3)

y is a N x 1 vector of observations on the dependent variable, X a N x (K —-1L)
matrix of observations on the regressors. As is well known, as long as the variables
in z are correlated with those in X and have non-zero correlation with y in Eq.

(1), the least squares estimator B from Eq. (3) will be biased, but more efficient,



than that from Eq. (1), as follows:

B3] = g gt (4)

var <B) = 2(X'X)7L (5)

In (4), B* = [p1,...,0k-1]) (the true parameters for the first K — L variables
in Eq. (1)), bis a (K — L) x L matrix containing the appropriate regression
coefficients from the auxiliary regressions, the regressions of the excluded variables
on all of the included variables', and 87 = [Bx_p, ..., Bk|, the true parameters
for the final L variables in Eq. (1):

y=Xp* + 278" +u, (6)

where Z is the stacked matrix of the omitted variables.

The bias term for the parameter vector is therefore:

~

E[ﬁ} —E[B*} — bat. (7)

And the difference in efficiency of the two estimators is (Greene, 2003):

A

var (B) —var (8%) = 02X %) — 02 [K'X - X2(2'2) 7K TS

2.1.1 Bias elicitation

A group of M expert assessors, indexed [ = 1, ..., M and operating independently
of each other, is presented with the results of the estimation of Eq. (2) and is

asked to make elicitations about potential omitted variable biases in the point

!The auxiliary regressions are:

T 41 = ax-rpy1+bxk-py1171+ ..+ bk K LTK L+ WK-_L11

T = o +bxixri+... +brxK_LTK_L + WK.

where the ws are assumed to be zero mean and constant variance random variables. The matrix
of coefficients is therefore:

brk—r+11 .- bk
b p—

br_r+1,k-1 --- brxK-_L



estimates and their variances. Predicate the analysis on the following assump-
tions: 1. that each expert correctly judges that the true data generating process
is Eq. (1) and therefore that the variables in z have been incorrectly omitted
from Eq. (2); 2. following the advice of Kynn, the omitted variable bias is broken
down into its constituent parts and each expert makes an elicitation about the
parameters that appear in Eqs. (7) and (8); 3. assessors’ elicitations are unbiased
(that is, their elicitations are random variables with expected values equal to the
true values of the omitted parameters); 4. (for simplicity) all elicitations have
common variance (both within and between elicitors); 5. the pooled elicitations

of bias are obtained by averaging the assessors’ elicitations.
Bias elicitation for B

Proposition 1 Under the dgp given by Eq. (1) and the assumptions made about
the assessors’ elicitations, the overall elicitation of the bias term in Eq. (7) will,
itself, be biased, unless there exists zero correlation between the errors in the as-

sessors’ elicitations

PROOF. Let an expert’s elicitation of the bias associated with the parameters in
b and 3" in Eq. (7) be denoted by the superscript e and the bias-elicited matrices
for the expert be b® and 3¢, as follows:

[ (4 (& (&
K—L+1,1 K—L+2,1 e K1
(4
be _ K—L+1,2 “ e o e “ e (9)
be be (&
| 9k—L+1,k-L YK—L4+2,k—-L -+ YK K-IL
and
B —r+1
te __ /B;(—L+2
pgre = : (10)
| B

Given the assumptions about the elicitations, b5, = bjx + €, and 55 = [5; + ¢;,
where j = K — L+ 1,...,K and k = 1,..., K — L, where all €s are zero-mean
random variables with common variance o2. Substituting these expressions into

Egs. (9) and (10), obtaining the product b°3'¢ and applying the expectation



operator gives:

K
Zj:K—L—H cov(€j 1, €5)

E[b'Bt] = bp'+ Cimkorn 0¥ (G26) | (11)

K
Zj:K—LH cov(€j, kL, ;)

The expectation of the matrix product of the individual assessors’ elicitations
therefore equals the true bias in Eq. (7), plus a bias term, which will be non-zero
unless there exists zero correlation between the errors in the assessors’ elicita-

tions. [
Bias elicitation for var <B)

For ease of exposition, we consider a version of Eq. (1) which contains an inter-
cept term and only two regressors, z and w, one of which is incorrectly omitted.

The true dgp is therefore:
Y=o+ f.x+ Byw + u, (12)

and we assume that the incorrectly specified regression omits w. For simplicity,

we assume that 02, 02 and o2 are known.

Proposition 2 Under the dgp given by Eq. (12), the elicitation of the bias
associated with the variance of B, in a regression which omits w: (a) cannot be
separated from elicitation of the bias for the point estimate and (b) will, itself, be
biased, even if there exists zero correlation between the errors in the assessors’

elicitations.

PROOF. For the two variable case, Eq. (8) simplifies to:
var <B*> = var <B) o,

where: .
o= > 1 (13)

(1= (b))




Parameter 0., 0c,., Bw bwr Ou 0z Ow Oecpews
Value 1 0.7 10 1 2 1 5 0.16667

Table 1: Simulation parameter values

is the multiplicative bias term. Since we have assumed that o, and o,, are known,
the assessors may use their elicitations 0, that would have been used for the
elicitation of bias for the point estimator (defined in section 2.1.1) and substitute
them into (13).

Substitute b, = bys + €4, into (13), rearrange and apply the expectation

operator to obtain:

El¢F| = E [ % } .

0-12[, - (bwm + 6wm>2ag

Use a Taylor series polynomial of degree two to approximate the term on the
right hand side:

(14)

B[] ~ ¢ + o2 (aiag (302 (b )’ +Ui))

(03 = 02(bua)?)’

Hence: (a) the appearance of the term b,, from the elicitation for the param-
eter estimator means that elicitation for the variance cannot be separated from
elicitation for the parameter estimator itself; (b) the expectation of the elicited
adjustment required to the variance of the estimator in Eq. (12) is, itself, bi-
ased. [

2.1.2 Simulation

To illustrate the results, consider a scenario in which ten assessors are asked
to make elicitations for omitted variable bias for a parameter estimate and its
variance in the two-regressor scenario of Eq. (12), using the methods and as-
sumptions described above. The parameter values we choose for the simulation
are summarised in Table 1. Note that the non-zero covariance implies that the
assessors’ elicitations are not independent. We run the elicitation exercise 100000

times and calculate the eliciation biases that are given in Eqs. (11) and (14).

e Elicitation for bias in B,. Given the result in Eq. (11), we would expect

the bias in the elicitations to equal the covariance between €, and €,,.
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From Table 1, the covariance equals 0.16667. The average of the bias in the
elicitations across the 100000 simulations is 0.16861, a difference of 1.2%.

e Elicitation for bias in Var(Bx). The true bias associated with the elicitations
for the adjustment required to the variance in (14) is 0.02501. The average

of the bias across the simulations is 0.02521, a difference of 0.8%.

2.2 Elicitation for bias in log relative risks using elicitation

scales

Turner et al. (2009) consider bias elicitation for a range of biases in a series
of studies in antenatal care. To illustrate biased elicitation of bias, we consider
elicitation for one possible source of bias in log relative risk from one published
study only, using the elicitation scale approach proposed by Turner et al.. In
this context, the study parameter estimate of log relative risk, é, is adjusted by
adding a value p°, a pooled estimate of bias, derived from assessors’ elicitations
ps, i =1,..., M, for M assessors (where, once again, we use the superscript ‘e’
to denote ‘elicitation’). The standard error of é, s?, is adjusted by adding the
pooled estimate of the bias for the standard error, (o¢)2.

Assessor i’s elicitations for the two bias parameters, pf and of, are given by:

1 ¢ log(1/b¢ 1 ¢

,UE — Og(az) _'_ Og( / z) _ lOg & and (15)
2 2\ b
. log(1/b5) —logas 1 1

where af and 0f are elicitor i’s chosen upper and lower ranges on an elicitation
scale for the degree of bias in the intervention group (left hand part of the scale,
running from 0.1 (risk much lower in the intervention group) to 1 (no bias)) and
the control group (right had part of the scale, running from 1 (no bias) to 0.1

2 Assume that the true values of the

(risk much lower in the control group)).
lower and upper ranges that should be selected are @ and b and that assessors, on
average, get their elicitations of these two values correct, but with random error
with constant variance. Then the elicitations of the range end-points in Eqgs. (15)

and (16) are given by the random variables af = @ + ¢, and b = b + ¢,, where

2A full description may be found in Turner et al. (2009, pages 29-30). If af = b¢, it implies
that the elicitor believes that the biases ‘cancel’; they are as likely to favour the intervention
group as they are the control.



2
€q

€a ~ f(0,02) and €, ~ ¢(0,02), 02, > 0,02 > 0, f and g being two density

functions. We assume that the pooled elicitations are obtained by averaging the
;s and o;s, that is, pu® = sz‘i1 /M and o€ = Zf\il of/M >

Proposition 3 Under the bias elicitation process and assumptions described
above, the pooled elicitations of the bias terms p® and o° will, themselves, be

biased.

PROOF. Substitute af = @ + ¢, and b¢ = b + ¢, into Eqs. (15) and (16) and
calculate approximations to the expected values E[uf] and E[o¢], using a Talyor

series polynomial of degree two:

. 1 a\ o: o
Bl ~ slog () - 15+ 1 (17)
1 1 o2 o2
Elo°] ~ =log | — @ 4 G 18
o]~ S los (ab) P TR (18)

Hence the pooled bias elicitations u® and o¢ are themselves biased. [

Eq. (17) shows that the bias in the bias elicitation - the final two terms in
the equation - can be positive, zero, or negative. Eq. (16) shows that the bias
is strictly positive. Figure 1 plots the bias in bias elicitation term from Eq. (17)
using level curves. It shows how this bias in bias elicitation changes as @ and b -
the true lower and upper limits on the elicitation scale - change (for the purposes

2

of illustration, we assume that o2 = 02 = 1). The figure shows that, when

@ = b, the bias in the bias elicitation equals zero, because our assumptions on
0? and ¢ mean that the two bias terms in Eq. (17) cancel. Further, we know
from Eq. (15) that the true bias equals zero in this situation. Hence, if a = b,
which corresponds to there being no difference between intervention and control
in terms of: 1. the degree of bias favouring each and 2. the amount of bias
adjustment which is required to the elicited bias term, the overall adjustment of
6 for elicited bias and its bias equals zero. However, as Figure 1 shows, the more
a and b differ, the greater the bias in the bias elicitation: to the left of the line

@ = b, the bias term for the elicitation of bias is negative and decreasing; to the

30ther pooling methods - for example, using the median, as in Turner et al. (2009), could
be considered. We concentrate on averaging to illustrate the general point that the expected
value of a nonlinear function of a random variable is not the same as the function of its expected
value.
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Figure 1: Level curves for the bias in bias elicitation term for p in Eq.
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right of the line it is positive and increasing. Hence, deviations of either @ or b
from the line @ = b will lead to the bias adjustment being biased. The level curves
in Figure 1 show that the severity of the impact of a marginal change in either a
or b is higher the closer one moves to the point (1/10,1/10); for studies with large
biases, a relatively small difference between @ and b will lead to a greater absolute
bias in the bias adjustment term. This is due to the strictly concave nature of
the bias function for a® and the strictly convex nature of the bias function for 0°.
Figure 2 plots the level curves for the bias term for 0. The appendix gives more

on the intuition behind these results.

3 Discussion

Our results show that, even when high quality assessors are tasked with making
elicitations for bias, the nonlinearities in biases can lead to biased elicitations of
bias. For the case of omitted variables in least squares regression, Proposition 1
shows that the bias associated with the assessors’ elicitations for point estimators
will equal zero only if the elicitations have zero covariance. Proposition 2 shows
that bias in bias elicitations for the variance of the point estimators is present
even if the errors in the elicitations have zero covariance: it is sufficient that
assessors’ elicitations are random, that is, that they have non-zero variance (the
term o2 in Eq. (14)). In the case of bias elicitation for log relative risk in Turner
et al., if it is assumed that assessors make unbiased elicitations of the lower and
upper ranges on the elicitation scale, elicitations are biased.

According to Chavalarias (2010), there are 235 potential biases in biomedical
research. Since biases and elicitation methods are likely to differ across studies,
such analysis could proceed on a case-by-case basis, or a group of researchers
could catalogue the main approaches to bias elicitation and the biases therein.
We believe that the technique of Taylor series polynomials presented here offers
an accessible and elegant approach to approximating and interpreting these biases

in bias elicitations.
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A Bias for i using an elicitation scale for log rel-
ative risk

To aid exposition, assume that b is known to be equal to 1. Then the elicitations
of bias for assessor i become, from Eq. (15):

1
g = 5 log(af). (19)

fori=1,..., M. We assume that the elicitations are random with expectation
equal to a, which equals the true value of the lower range of the elicitation scale.
Again, to aid exposition, we assume that the density function for a® has a clear
upper and lower-bound (a' and a*). The mapping from a® to ¢ via the nonlinear
function A is shown in Figure 3.

The true bias adjustment is h(FE[a®]) = h(a). Under the transformation given
by h, the expectation of the u¢s will be biased downward, that is, E[h(a®)] <
h(E[af]) = h(a), as shown. Other things equal, the further to the left lies the
centre of mass of the distribution of a®, that is, the greater the true bias a, the
greater the divergence between Elh(a®)] and h(E[a®]), meaning the greater is the
bias in the bias elicitation. This is due to the increasing, strictly concave nature
of h and explains the shape of the level curves in Figure 1.

Random elicitations % log(a®)
such that Ela®] = a

Figure 3: Difference between p = E[h(a®)] and h(E[a®]) = h(a) for Eq. (17) and

the function h = (1/2)log(a®), where we assume b is known to equal 1

12



References

Chavalarias, D. and Ioannidis, J. P. (2010). Science mapping analysis characterizes 235 biases

in biomedical research. Journal of Clinical Epidemiology, 63:1205-1215.

Eddy, D., Hasselblad, V., and Schachter, R. (1992). Meta-analysis by the Confidence Profile
Method: the Statistical Synthesis of Evidence. Academic Press, San Diego.

Greene, W. (2003). Econometric Analysis. Prentice Hall, 5th edition.

Greenland, S. (2005). Multiple-bias modelling for analysis of observational data (with discus-
sion). Journal of the Royal Statistical Society, Series A, 168(1):267-306.

Ioannidis, J. (2011). Commentary: Adjusting for bias: a user’s guide to performing plastic
surgery on meta-analyses of observational studies. International Journal of Epidemiology,
40:777-779.

Kynn, M. (2008). The ’heuristics and biases’ bias in expert elicitation. Journal of the Royal
Statistical Society, Series A, 171(1):239-264.

Oakley, J. E. and O’Hagan, A. (2007). Uncertainty in prior elicitations: a nonparametric
approach. Biometrika, 94:427-441.

O’Hagan, A., Buck, C., Daneshkhah, A., Eiser, R., and P. Garthwaite, P. (2006). Uncertain

Jjudgements: eliciting experts’ opinion. Wiley.

Smith, T., Spiegelhalter, D., and Thomas, A. (1995). Bayesian approaches to random-effects
meta-analysis: a comparative study. Statistics in Medicine, 14:2685—2699.

Spiegelhalter, D. and Best, N. (2003). Bayesian approaches to multiple sources of evidence and
uncertainty in complex cost-effectiveness modelling. Statistics in Medicine, 22:3687-3709.

Thompson, S., Ekelund, U., Jebb, S., Lindroos, A., Mander, A., Sharp, S., Turner, R., and
Wilks, D. (2011). A proposed method of bias adjustment for meta-analyses of published
observational studies. International Journal of Epidemiology, 40:765-777.

Turner, R. M., Spiegelhalter, D. J., Smith, G. C. S., and Thompson, S. G. (2009). Bias modelling
in evidence synthesis. Journal of the Royal Statistial Society, Series A, 1:1-2.

Wilks, D., Mander, A., Jebb, S., Thompson, S., Sharp, S., Turner, R., and Lindroos, A. (2011).
Dietary energy density and adiposity: Employing bias adjustments in a meta-analysis of
prospective studies. BMC Public Health, 11:48.

Wolpert, R. and Mengersen, K. (2004). Adjusted likelihoods for synthesizing empirical evidence
from studies that differ in quality and design: effects of environmental tobacco smoke.
Statistical Science, 19:450-471.

13



	Discussion Papers in Economics
	Department of Economics and Related Studies
	York, YO10 5DD



