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Biases in Bias EliitationGianarlo Manzi∗ Martin Forster†January 30, 2012
AbstratWe onsider the biases that an arise in bias eliitation when expert as-sessors make random errors. We illustrate the phenomenon for two souresof bias: that due to omitting important variables in a least squares regres-sion and that whih arises in adjusting relative risks for treatment e�etsusing an eliitation sale. Results show that, even when assessors' elii-tations of bias have desirable properties (suh as unbiasedness and inde-pendene), the nonlinear nature of biases an lead to eliitations of biasthat are, themselves, biased. We show the orretions whih an be madeto remove this bias and disuss the impliations for the applied literaturewhih employs these methods.Keywords: Bias redution; Expert eliitation; Eliitation sales; Omit-ted variable bias
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1 IntrodutionThere is growing interest in the use of experts to make eliitations about suspetedbiases in biomedial researh (Thompson et al., 2011; Wilks et al., 2011; Turneret al., 2009). Suh work sits within a broader literature whih onsiders the roleof expert opinion for dealing with unertainty in statistial researh (Oakley andO'Hagan, 2007; Greenland, 2005; Wolpert and Mengersen, 2004; Spiegelhalterand Best, 2003; Smith et al., 1995; Eddy et al., 1992). Aording to O'Hagan etal. (2006), expert opinion an add signi�antly more information to a study thanan better data analysis or higher quality data sets.Yet there is aknowledgement that the use of experts an present its ownproblems. Turner et al. (2009), in an analysis of a health tehnology appraisalin antenatal are, note that eliitation an be time-onsuming, hallenging andrequires knowledgeable and motivated assessors who have, ideally, been reruitedfrom a range of disiplines. Ioannidis (2011), ommenting on bias adjustment formeta-analyses of observational studies, notes that some biases might be di�ult toeliit with any degree of auray and that the sheer volume of potential biases anmake it di�ult for any expert to assess them rigorously. Kynn (2008) argues thatmuh reent statistial researh using probability eliitations has lagged behindpsyhologial researh. She presents a series of reommendations to improveeliitations, inluding the need to frame eliitation questions appropriately, todeompose the eliitation proess into manageable tasks, to hek for oherenyin the eliitations and, if possible, to repeat the eliitation proess at a later dateto hek the self-onsisteny of experts.This note onsiders the biases that an arise in bias eliitation when expertassessors make random errors in their eliitations. It shows that, even when theeliitation proess is arried out by assessors of high quality - we de�ne these asassessors who make unbiased, independent, eliitations of bias - bias eliitationan, itself, be biased. The result ours when the bias term to be eliited isa nonlinear funtion of the random errors made by eliitors. The value of thebias may be approximated in a straightforward manner using a Taylor seriespolynomial of degree two.We illustrate the phenomenon using two examples: eliitation for the lassial`omitted variables' problem in least squares regression, and the use of eliitationsales to assess bias in relative risk for studies used in a reent National Institute2



for Clinial Exellene tehnology appraisal in antenatal are (Turner et al., 2009).Proofs show the adjustments that must be made to remove the bias in the biaseliitation. We onlude by disussing the broader impliations of our resultsfor eliitations for other soures of bias that may be enountered in statistialresearh.2 Biased eliitation of bias2.1 Eliitation for omitted variables bias in least squaresregressionAssume that the true data generating proess (dgp) for an observation in a re-gression model is:
y = x′β + u, (1)where x is a K × 1 vetor of regressors, x = [x1, . . . , xK ]

′, β is a K × 1 vetorof parameters, β = [β1, . . . , βK ]
′, and u ∼ N(0, σ2

u). Least squares regression isused to estimate the relationship:
y = x̃′β̃ + v, (2)where the vetor x̃ = [x1, . . . , xK−L]
′ ontains a (K − L) × 1 subset of the regres-sors in x, suh that the variables xK−L+1, . . . , xK from x have been inorretlyomitted. β̃ = [β̃1, . . . , β̃K−L]

′ is the orresponding (K − L) × 1 parameter vetor.De�ne z = [xK−L+1, . . . , xK ]
′ as the L × 1 vetor ontaining the regressors fromEq. (1) that are inorretly omitted in Eq. (2). It is the ase that v = z′α + u,where α is an L× 1 vetor of parameters.Assume that the statistiian observes data with i = 1, . . . , N observations on

y and x̃, and stak these by row so that:
y = X̃β̃ + v. (3)

y is a N × 1 vetor of observations on the dependent variable, X̃ a N × (K − L)matrix of observations on the regressors. As is well known, as long as the variablesin z are orrelated with those in x̃ and have non-zero orrelation with y in Eq.(1), the least squares estimator ˆ̃
β from Eq. (3) will be biased, but more e�ient,3



than that from Eq. (1), as follows:
E
[

ˆ̃
β
]

= β∗ + bβ† (4)var( ˆ̃
β
)

= σ2

u(X̃
′X̃)−1. (5)In (4), β∗ = [β1, . . . , βK−L]

′ (the true parameters for the �rst K − L variablesin Eq. (1)), b is a (K − L) × L matrix ontaining the appropriate regressionoe�ients from the auxiliary regressions, the regressions of the exluded variableson all of the inluded variables1, and β† = [βK−L, . . . , βK ]
′, the true parametersfor the �nal L variables in Eq. (1):

y = X̃′β∗ + Z′β† + u, (6)where Z is the staked matrix of the omitted variables.The bias term for the parameter vetor is therefore:
E
[

ˆ̃
β
]

− E
[

β̂∗
]

= bβ†. (7)And the di�erene in e�ieny of the two estimators is (Greene, 2003):var( ˆ̃
β
)

− var(β̂∗
)

= σ2

u(X̃
′X̃)−1 − σ2

u

[

X̃′X̃− X̃′Z(Z′Z)−1Z′X̃
]

−1

. (8)2.1.1 Bias eliitationA group ofM expert assessors, indexed l = 1, . . . ,M and operating independentlyof eah other, is presented with the results of the estimation of Eq. (2) and isasked to make eliitations about potential omitted variable biases in the point1The auxiliary regressions are:
xK−L+1 = αK−L+1 + bK−L+1,1x1 + . . .+ bK,K−LxK−L + wK−L+1

. . . = . . .

xK = αK + bK,1x1 + . . .+ bK,K−LxK−L + wK .where the ws are assumed to be zero mean and onstant variane random variables. The matrixof oe�ients is therefore:
b =





bK−L+1,1 . . . bK,1

. . . . . . . . .

bK−L+1,K−L . . . bK,K−L



 .
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estimates and their varianes. Prediate the analysis on the following assump-tions: 1. that eah expert orretly judges that the true data generating proessis Eq. (1) and therefore that the variables in z have been inorretly omittedfrom Eq. (2); 2. following the advie of Kynn, the omitted variable bias is brokendown into its onstituent parts and eah expert makes an eliitation about theparameters that appear in Eqs. (7) and (8); 3. assessors' eliitations are unbiased(that is, their eliitations are random variables with expeted values equal to thetrue values of the omitted parameters); 4. (for simpliity) all eliitations haveommon variane (both within and between eliitors); 5. the pooled eliitationsof bias are obtained by averaging the assessors' eliitations.Bias eliitation for ˆ̃
βProposition 1 Under the dgp given by Eq. (1) and the assumptions made aboutthe assessors' eliitations, the overall eliitation of the bias term in Eq. (7) will,itself, be biased, unless there exists zero orrelation between the errors in the as-sessors' eliitationsProof. Let an expert's eliitation of the bias assoiated with the parameters in

b and β† in Eq. (7) be denoted by the supersript e and the bias-eliited matriesfor the expert be be and β†e, as follows:
be =













beK−L+1,1 beK−L+2,1 . . . beK,1

beK−L+1,2 . . . . . . . . .

. . . . . . . . . . . .

beK−L+1,K−L beK−L+2,K−L . . . beK,K−L













(9)and
β†e =













βe
K−L+1

βe
K−L+2

. . .

βe
K













. (10)Given the assumptions about the eliitations, bej,k = bj,k + ǫj,k and βe
j = βj + ǫj ,where j = K − L + 1, . . . , K and k = 1, . . . , K − L, where all ǫs are zero-meanrandom variables with ommon variane σ2

ǫ . Substituting these expressions intoEqs. (9) and (10), obtaining the produt beβ†e and applying the expetation5



operator gives:
E
[

beβ†e
]

= bβ† +













∑K

j=K−L+1
ov(ǫj,1, ǫj)

∑K

j=K−L+1
ov(ǫj,2, ǫj)

. . .
∑K

j=K−L+1
ov(ǫj,K−L, ǫj)













. (11)The expetation of the matrix produt of the individual assessors' eliitationstherefore equals the true bias in Eq. (7), plus a bias term, whih will be non-zerounless there exists zero orrelation between the errors in the assessors' eliita-tions. �Bias eliitation for var( ˆ̃β)For ease of exposition, we onsider a version of Eq. (1) whih ontains an inter-ept term and only two regressors, x and w, one of whih is inorretly omitted.The true dgp is therefore:
y = α + βxx+ βww + u, (12)and we assume that the inorretly spei�ed regression omits w. For simpliity,we assume that σ2

x, σ2
w and σ2

u are known.Proposition 2 Under the dgp given by Eq. (12), the eliitation of the biasassoiated with the variane of β̂x in a regression whih omits w: (a) annot beseparated from eliitation of the bias for the point estimate and (b) will, itself, bebiased, even if there exists zero orrelation between the errors in the assessors'eliitations.Proof. For the two variable ase, Eq. (8) simpli�es to:var(β̂∗
)

= var( ˆ̃
β
)

φ,where:
φ =

1
(

1−
(

bwx
σw

σx

)2
) > 1 (13)
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Parameter σǫw σǫwx
βw bwx σu σx σw σǫwǫwxValue 1 0.7 10 1 2 1 5 0.16667Table 1: Simulation parameter valuesis the multipliative bias term. Sine we have assumed that σx and σw are known,the assessors may use their eliitations bewx that would have been used for theeliitation of bias for the point estimator (de�ned in setion 2.1.1) and substitutethem into (13).Substitute bewx = bwx + ǫwx into (13), rearrange and apply the expetationoperator to obtain:

E[φe] = E

[

σ2
w

σ2
w − (bwx + ǫwx)2σ2

x

]

.Use a Taylor series polynomial of degree two to approximate the term on theright hand side:
E[φe] ≈ φ+ σ2

ǫwx

(

σ2
wσ

2
x (3σ

2
x(bwx)

2 + σ2
w)

(σ2
w − σ2

x(bwx)2)
3

)

. (14)Hene: (a) the appearane of the term bwx from the eliitation for the param-eter estimator means that eliitation for the variane annot be separated fromeliitation for the parameter estimator itself; (b) the expetation of the eliitedadjustment required to the variane of the estimator in Eq. (12) is, itself, bi-ased. �2.1.2 SimulationTo illustrate the results, onsider a senario in whih ten assessors are askedto make eliitations for omitted variable bias for a parameter estimate and itsvariane in the two-regressor senario of Eq. (12), using the methods and as-sumptions desribed above. The parameter values we hoose for the simulationare summarised in Table 1. Note that the non-zero ovariane implies that theassessors' eliitations are not independent. We run the eliitation exerise 100000times and alulate the eliiation biases that are given in Eqs. (11) and (14).
• Eliitation for bias in ˆ̃

βx. Given the result in Eq. (11), we would expetthe bias in the eliitations to equal the ovariane between ǫw and ǫwx.7



From Table 1, the ovariane equals 0.16667. The average of the bias in theeliitations aross the 100000 simulations is 0.16861, a di�erene of 1.2%.
• Eliitation for bias in var(β̂x). The true bias assoiated with the eliitationsfor the adjustment required to the variane in (14) is 0.02501. The averageof the bias aross the simulations is 0.02521, a di�erene of 0.8%.2.2 Eliitation for bias in log relative risks using eliitationsalesTurner et al. (2009) onsider bias eliitation for a range of biases in a seriesof studies in antenatal are. To illustrate biased eliitation of bias, we onsidereliitation for one possible soure of bias in log relative risk from one publishedstudy only, using the eliitation sale approah proposed by Turner et al.. Inthis ontext, the study parameter estimate of log relative risk, θ̂, is adjusted byadding a value µe, a pooled estimate of bias, derived from assessors' eliitations

µe
i , i = 1, . . . ,M , for M assessors (where, one again, we use the supersript `e'to denote `eliitation'). The standard error of θ̂, s2, is adjusted by adding thepooled estimate of the bias for the standard error, (σe)2.Assessor i's eliitations for the two bias parameters, µe

i and σe
i , are given by:

µe
i =

log(aei ) + log(1/bei )

2
=

1

2
log

(

aei
bei

) and (15)
σe
i =

log (1/bei )− log aei
2

=
1

2
log

(

1

aei b
e
i

)

, (16)where aei and bei are eliitor i's hosen upper and lower ranges on an eliitationsale for the degree of bias in the intervention group (left hand part of the sale,running from 0.1 (risk muh lower in the intervention group) to 1 (no bias)) andthe ontrol group (right had part of the sale, running from 1 (no bias) to 0.1(risk muh lower in the ontrol group)).2 Assume that the true values of thelower and upper ranges that should be seleted are ā and b̄ and that assessors, onaverage, get their eliitations of these two values orret, but with random errorwith onstant variane. Then the eliitations of the range end-points in Eqs. (15)and (16) are given by the random variables aei = ā + ǫa and bei = b̄ + ǫb, where2A full desription may be found in Turner et al. (2009, pages 29-30). If aei = bei , it impliesthat the eliitor believes that the biases `anel'; they are as likely to favour the interventiongroup as they are the ontrol. 8



ǫa ∼ f(0, σ2
ǫa
) and ǫb ∼ g(0, σ2

ǫb
), σ2

ǫa
> 0, σ2

ǫb
> 0, f and g being two densityfuntions. We assume that the pooled eliitations are obtained by averaging the

µis and σis, that is, µe =
∑M

i=1
µe
i/M and σe =

∑M

i=1
σe
i /M .3Proposition 3 Under the bias eliitation proess and assumptions desribedabove, the pooled eliitations of the bias terms µe and σe will, themselves, bebiased.Proof. Substitute aei = ā + ǫa and bei = b̄ + ǫb into Eqs. (15) and (16) andalulate approximations to the expeted values E[µe] and E[σe], using a Talyorseries polynomial of degree two:

E[µe] ≈
1

2
log

( ā

b̄

)

−
σ2
ǫa

4ā2
+

σ2
ǫb

4b̄2
, (17)

E[σe] ≈
1

2
log

(

1

āb̄

)

+
σ2
ǫa

4ā2
+

σ2
ǫb

4b̄2
. (18)Hene the pooled bias eliitations µe and σe are themselves biased. �Eq. (17) shows that the bias in the bias eliitation - the �nal two terms inthe equation - an be positive, zero, or negative. Eq. (16) shows that the biasis stritly positive. Figure 1 plots the bias in bias eliitation term from Eq. (17)using level urves. It shows how this bias in bias eliitation hanges as ā and b̄ -the true lower and upper limits on the eliitation sale - hange (for the purposesof illustration, we assume that σ2

ǫa
= σ2

ǫa
= 1). The �gure shows that, when

ā = b̄, the bias in the bias eliitation equals zero, beause our assumptions on
σ2
ǫa
and σ2

ǫb
mean that the two bias terms in Eq. (17) anel. Further, we knowfrom Eq. (15) that the true bias equals zero in this situation. Hene, if ā = b̄,whih orresponds to there being no di�erene between intervention and ontrolin terms of: 1. the degree of bias favouring eah and 2. the amount of biasadjustment whih is required to the eliited bias term, the overall adjustment of

θ̂ for eliited bias and its bias equals zero. However, as Figure 1 shows, the more
ā and b̄ di�er, the greater the bias in the bias eliitation: to the left of the line
ā = b̄, the bias term for the eliitation of bias is negative and dereasing; to the3Other pooling methods - for example, using the median, as in Turner et al. (2009), ouldbe onsidered. We onentrate on averaging to illustrate the general point that the expetedvalue of a nonlinear funtion of a random variable is not the same as the funtion of its expetedvalue. 9



Figure 1: Level urves for the bias in bias eliitation term for µ in Eq. (17):
−σ2

ǫa
/(4ā2) + σ2

ǫb
/(4b̄2) , assuming σ2

ǫa
= σ2

ǫb
= 1

Figure 2: Level urves for the bias in bias eliitation term for σ in Eq. (18):
σ2
ǫa
/(4ā2) + σ2

ǫb
/(4b̄2), assuming σ2

ǫa
= σ2

ǫb
= 110



right of the line it is positive and inreasing. Hene, deviations of either ā or b̄from the line ā = b̄ will lead to the bias adjustment being biased. The level urvesin Figure 1 show that the severity of the impat of a marginal hange in either āor b̄ is higher the loser one moves to the point (1/10,1/10); for studies with largebiases, a relatively small di�erene between ā and b̄ will lead to a greater absolutebias in the bias adjustment term. This is due to the stritly onave nature ofthe bias funtion for ae and the stritly onvex nature of the bias funtion for be.Figure 2 plots the level urves for the bias term for σ. The appendix gives moreon the intuition behind these results.3 DisussionOur results show that, even when high quality assessors are tasked with makingeliitations for bias, the nonlinearities in biases an lead to biased eliitations ofbias. For the ase of omitted variables in least squares regression, Proposition 1shows that the bias assoiated with the assessors' eliitations for point estimatorswill equal zero only if the eliitations have zero ovariane. Proposition 2 showsthat bias in bias eliitations for the variane of the point estimators is presenteven if the errors in the eliitations have zero ovariane: it is su�ient thatassessors' eliitations are random, that is, that they have non-zero variane (theterm σ2
ǫ in Eq. (14)). In the ase of bias eliitation for log relative risk in Turneret al., if it is assumed that assessors make unbiased eliitations of the lower andupper ranges on the eliitation sale, eliitations are biased.Aording to Chavalarias (2010), there are 235 potential biases in biomedialresearh. Sine biases and eliitation methods are likely to di�er aross studies,suh analysis ould proeed on a ase-by-ase basis, or a group of researhersould atalogue the main approahes to bias eliitation and the biases therein.We believe that the tehnique of Taylor series polynomials presented here o�ersan aessible and elegant approah to approximating and interpreting these biasesin bias eliitations.
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A Bias for µ using an eliitation sale for log rel-ative riskTo aid exposition, assume that b̄ is known to be equal to 1. Then the eliitationsof bias for assessor i beome, from Eq. (15):
µe
i =

1

2
log(aei ). (19)for i = 1, . . . ,M . We assume that the eliitations are random with expetationequal to ā, whih equals the true value of the lower range of the eliitation sale.Again, to aid exposition, we assume that the density funtion for ae has a learupper and lower-bound (al and au). The mapping from ae to µe via the nonlinearfuntion h is shown in Figure 3.The true bias adjustment is h(E[ae]) = h(ā). Under the transformation givenby h, the expetation of the µe

i s will be biased downward, that is, E[h(ae)] <
h(E[ae]) = h(ā), as shown. Other things equal, the further to the left lies theentre of mass of the distribution of ae, that is, the greater the true bias ā, thegreater the divergene between E[h(ae)] and h(E[ae]), meaning the greater is thebias in the bias eliitation. This is due to the inreasing, stritly onave natureof h and explains the shape of the level urves in Figure 1.

ae

h(ae)

āal au 1
h(ā)

E[h(ae)]

1

2
log(ae)Random eliitationssuh that E[ae] = ā

Figure 3: Di�erene between µ = E[h(ae)] and h(E[ae]) = h(ā) for Eq. (17) andthe funtion h = (1/2) log(ae), where we assume b̄ is known to equal 112
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