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Abstra
tWe 
onsider the biases that 
an arise in bias eli
itation when expert as-sessors make random errors. We illustrate the phenomenon for two sour
esof bias: that due to omitting important variables in a least squares regres-sion and that whi
h arises in adjusting relative risks for treatment e�e
tsusing an eli
itation s
ale. Results show that, even when assessors' eli
i-tations of bias have desirable properties (su
h as unbiasedness and inde-penden
e), the nonlinear nature of biases 
an lead to eli
itations of biasthat are, themselves, biased. We show the 
orre
tions whi
h 
an be madeto remove this bias and dis
uss the impli
ations for the applied literaturewhi
h employs these methods.Keywords: Bias redu
tion; Expert eli
itation; Eli
itation s
ales; Omit-ted variable bias
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1 Introdu
tionThere is growing interest in the use of experts to make eli
itations about suspe
tedbiases in biomedi
al resear
h (Thompson et al., 2011; Wilks et al., 2011; Turneret al., 2009). Su
h work sits within a broader literature whi
h 
onsiders the roleof expert opinion for dealing with un
ertainty in statisti
al resear
h (Oakley andO'Hagan, 2007; Greenland, 2005; Wolpert and Mengersen, 2004; Spiegelhalterand Best, 2003; Smith et al., 1995; Eddy et al., 1992). A

ording to O'Hagan etal. (2006), expert opinion 
an add signi�
antly more information to a study than
an better data analysis or higher quality data sets.Yet there is a
knowledgement that the use of experts 
an present its ownproblems. Turner et al. (2009), in an analysis of a health te
hnology appraisalin antenatal 
are, note that eli
itation 
an be time-
onsuming, 
hallenging andrequires knowledgeable and motivated assessors who have, ideally, been re
ruitedfrom a range of dis
iplines. Ioannidis (2011), 
ommenting on bias adjustment formeta-analyses of observational studies, notes that some biases might be di�
ult toeli
it with any degree of a

ura
y and that the sheer volume of potential biases 
anmake it di�
ult for any expert to assess them rigorously. Kynn (2008) argues thatmu
h re
ent statisti
al resear
h using probability eli
itations has lagged behindpsy
hologi
al resear
h. She presents a series of re
ommendations to improveeli
itations, in
luding the need to frame eli
itation questions appropriately, tode
ompose the eli
itation pro
ess into manageable tasks, to 
he
k for 
oheren
yin the eli
itations and, if possible, to repeat the eli
itation pro
ess at a later dateto 
he
k the self-
onsisten
y of experts.This note 
onsiders the biases that 
an arise in bias eli
itation when expertassessors make random errors in their eli
itations. It shows that, even when theeli
itation pro
ess is 
arried out by assessors of high quality - we de�ne these asassessors who make unbiased, independent, eli
itations of bias - bias eli
itation
an, itself, be biased. The result o

urs when the bias term to be eli
ited isa nonlinear fun
tion of the random errors made by eli
itors. The value of thebias may be approximated in a straightforward manner using a Taylor seriespolynomial of degree two.We illustrate the phenomenon using two examples: eli
itation for the 
lassi
al`omitted variables' problem in least squares regression, and the use of eli
itations
ales to assess bias in relative risk for studies used in a re
ent National Institute2



for Clini
al Ex
ellen
e te
hnology appraisal in antenatal 
are (Turner et al., 2009).Proofs show the adjustments that must be made to remove the bias in the biaseli
itation. We 
on
lude by dis
ussing the broader impli
ations of our resultsfor eli
itations for other sour
es of bias that may be en
ountered in statisti
alresear
h.2 Biased eli
itation of bias2.1 Eli
itation for omitted variables bias in least squaresregressionAssume that the true data generating pro
ess (dgp) for an observation in a re-gression model is:
y = x′β + u, (1)where x is a K × 1 ve
tor of regressors, x = [x1, . . . , xK ]

′, β is a K × 1 ve
torof parameters, β = [β1, . . . , βK ]
′, and u ∼ N(0, σ2

u). Least squares regression isused to estimate the relationship:
y = x̃′β̃ + v, (2)where the ve
tor x̃ = [x1, . . . , xK−L]
′ 
ontains a (K − L) × 1 subset of the regres-sors in x, su
h that the variables xK−L+1, . . . , xK from x have been in
orre
tlyomitted. β̃ = [β̃1, . . . , β̃K−L]

′ is the 
orresponding (K − L) × 1 parameter ve
tor.De�ne z = [xK−L+1, . . . , xK ]
′ as the L × 1 ve
tor 
ontaining the regressors fromEq. (1) that are in
orre
tly omitted in Eq. (2). It is the 
ase that v = z′α + u,where α is an L× 1 ve
tor of parameters.Assume that the statisti
ian observes data with i = 1, . . . , N observations on

y and x̃, and sta
k these by row so that:
y = X̃β̃ + v. (3)

y is a N × 1 ve
tor of observations on the dependent variable, X̃ a N × (K − L)matrix of observations on the regressors. As is well known, as long as the variablesin z are 
orrelated with those in x̃ and have non-zero 
orrelation with y in Eq.(1), the least squares estimator ˆ̃
β from Eq. (3) will be biased, but more e�
ient,3



than that from Eq. (1), as follows:
E
[

ˆ̃
β
]

= β∗ + bβ† (4)var( ˆ̃
β
)

= σ2

u(X̃
′X̃)−1. (5)In (4), β∗ = [β1, . . . , βK−L]

′ (the true parameters for the �rst K − L variablesin Eq. (1)), b is a (K − L) × L matrix 
ontaining the appropriate regression
oe�
ients from the auxiliary regressions, the regressions of the ex
luded variableson all of the in
luded variables1, and β† = [βK−L, . . . , βK ]
′, the true parametersfor the �nal L variables in Eq. (1):

y = X̃′β∗ + Z′β† + u, (6)where Z is the sta
ked matrix of the omitted variables.The bias term for the parameter ve
tor is therefore:
E
[

ˆ̃
β
]

− E
[

β̂∗
]

= bβ†. (7)And the di�eren
e in e�
ien
y of the two estimators is (Greene, 2003):var( ˆ̃
β
)

− var(β̂∗
)

= σ2

u(X̃
′X̃)−1 − σ2

u

[

X̃′X̃− X̃′Z(Z′Z)−1Z′X̃
]

−1

. (8)2.1.1 Bias eli
itationA group ofM expert assessors, indexed l = 1, . . . ,M and operating independentlyof ea
h other, is presented with the results of the estimation of Eq. (2) and isasked to make eli
itations about potential omitted variable biases in the point1The auxiliary regressions are:
xK−L+1 = αK−L+1 + bK−L+1,1x1 + . . .+ bK,K−LxK−L + wK−L+1

. . . = . . .

xK = αK + bK,1x1 + . . .+ bK,K−LxK−L + wK .where the ws are assumed to be zero mean and 
onstant varian
e random variables. The matrixof 
oe�
ients is therefore:
b =





bK−L+1,1 . . . bK,1

. . . . . . . . .

bK−L+1,K−L . . . bK,K−L



 .

4



estimates and their varian
es. Predi
ate the analysis on the following assump-tions: 1. that ea
h expert 
orre
tly judges that the true data generating pro
essis Eq. (1) and therefore that the variables in z have been in
orre
tly omittedfrom Eq. (2); 2. following the advi
e of Kynn, the omitted variable bias is brokendown into its 
onstituent parts and ea
h expert makes an eli
itation about theparameters that appear in Eqs. (7) and (8); 3. assessors' eli
itations are unbiased(that is, their eli
itations are random variables with expe
ted values equal to thetrue values of the omitted parameters); 4. (for simpli
ity) all eli
itations have
ommon varian
e (both within and between eli
itors); 5. the pooled eli
itationsof bias are obtained by averaging the assessors' eli
itations.Bias eli
itation for ˆ̃
βProposition 1 Under the dgp given by Eq. (1) and the assumptions made aboutthe assessors' eli
itations, the overall eli
itation of the bias term in Eq. (7) will,itself, be biased, unless there exists zero 
orrelation between the errors in the as-sessors' eli
itationsProof. Let an expert's eli
itation of the bias asso
iated with the parameters in

b and β† in Eq. (7) be denoted by the supers
ript e and the bias-eli
ited matri
esfor the expert be be and β†e, as follows:
be =













beK−L+1,1 beK−L+2,1 . . . beK,1

beK−L+1,2 . . . . . . . . .

. . . . . . . . . . . .

beK−L+1,K−L beK−L+2,K−L . . . beK,K−L













(9)and
β†e =













βe
K−L+1

βe
K−L+2

. . .

βe
K













. (10)Given the assumptions about the eli
itations, bej,k = bj,k + ǫj,k and βe
j = βj + ǫj ,where j = K − L + 1, . . . , K and k = 1, . . . , K − L, where all ǫs are zero-meanrandom variables with 
ommon varian
e σ2

ǫ . Substituting these expressions intoEqs. (9) and (10), obtaining the produ
t beβ†e and applying the expe
tation5



operator gives:
E
[

beβ†e
]

= bβ† +













∑K

j=K−L+1

ov(ǫj,1, ǫj)

∑K

j=K−L+1

ov(ǫj,2, ǫj)

. . .
∑K

j=K−L+1

ov(ǫj,K−L, ǫj)













. (11)The expe
tation of the matrix produ
t of the individual assessors' eli
itationstherefore equals the true bias in Eq. (7), plus a bias term, whi
h will be non-zerounless there exists zero 
orrelation between the errors in the assessors' eli
ita-tions. �Bias eli
itation for var( ˆ̃β)For ease of exposition, we 
onsider a version of Eq. (1) whi
h 
ontains an inter-
ept term and only two regressors, x and w, one of whi
h is in
orre
tly omitted.The true dgp is therefore:
y = α + βxx+ βww + u, (12)and we assume that the in
orre
tly spe
i�ed regression omits w. For simpli
ity,we assume that σ2

x, σ2
w and σ2

u are known.Proposition 2 Under the dgp given by Eq. (12), the eli
itation of the biasasso
iated with the varian
e of β̂x in a regression whi
h omits w: (a) 
annot beseparated from eli
itation of the bias for the point estimate and (b) will, itself, bebiased, even if there exists zero 
orrelation between the errors in the assessors'eli
itations.Proof. For the two variable 
ase, Eq. (8) simpli�es to:var(β̂∗
)

= var( ˆ̃
β
)

φ,where:
φ =

1
(

1−
(

bwx
σw

σx

)2
) > 1 (13)

6



Parameter σǫw σǫwx
βw bwx σu σx σw σǫwǫwxValue 1 0.7 10 1 2 1 5 0.16667Table 1: Simulation parameter valuesis the multipli
ative bias term. Sin
e we have assumed that σx and σw are known,the assessors may use their eli
itations bewx that would have been used for theeli
itation of bias for the point estimator (de�ned in se
tion 2.1.1) and substitutethem into (13).Substitute bewx = bwx + ǫwx into (13), rearrange and apply the expe
tationoperator to obtain:

E[φe] = E

[

σ2
w

σ2
w − (bwx + ǫwx)2σ2

x

]

.Use a Taylor series polynomial of degree two to approximate the term on theright hand side:
E[φe] ≈ φ+ σ2

ǫwx

(

σ2
wσ

2
x (3σ

2
x(bwx)

2 + σ2
w)

(σ2
w − σ2

x(bwx)2)
3

)

. (14)Hen
e: (a) the appearan
e of the term bwx from the eli
itation for the param-eter estimator means that eli
itation for the varian
e 
annot be separated fromeli
itation for the parameter estimator itself; (b) the expe
tation of the eli
itedadjustment required to the varian
e of the estimator in Eq. (12) is, itself, bi-ased. �2.1.2 SimulationTo illustrate the results, 
onsider a s
enario in whi
h ten assessors are askedto make eli
itations for omitted variable bias for a parameter estimate and itsvarian
e in the two-regressor s
enario of Eq. (12), using the methods and as-sumptions des
ribed above. The parameter values we 
hoose for the simulationare summarised in Table 1. Note that the non-zero 
ovarian
e implies that theassessors' eli
itations are not independent. We run the eli
itation exer
ise 100000times and 
al
ulate the eli
iation biases that are given in Eqs. (11) and (14).
• Eli
itation for bias in ˆ̃

βx. Given the result in Eq. (11), we would expe
tthe bias in the eli
itations to equal the 
ovarian
e between ǫw and ǫwx.7



From Table 1, the 
ovarian
e equals 0.16667. The average of the bias in theeli
itations a
ross the 100000 simulations is 0.16861, a di�eren
e of 1.2%.
• Eli
itation for bias in var(β̂x). The true bias asso
iated with the eli
itationsfor the adjustment required to the varian
e in (14) is 0.02501. The averageof the bias a
ross the simulations is 0.02521, a di�eren
e of 0.8%.2.2 Eli
itation for bias in log relative risks using eli
itations
alesTurner et al. (2009) 
onsider bias eli
itation for a range of biases in a seriesof studies in antenatal 
are. To illustrate biased eli
itation of bias, we 
onsidereli
itation for one possible sour
e of bias in log relative risk from one publishedstudy only, using the eli
itation s
ale approa
h proposed by Turner et al.. Inthis 
ontext, the study parameter estimate of log relative risk, θ̂, is adjusted byadding a value µe, a pooled estimate of bias, derived from assessors' eli
itations

µe
i , i = 1, . . . ,M , for M assessors (where, on
e again, we use the supers
ript `e'to denote `eli
itation'). The standard error of θ̂, s2, is adjusted by adding thepooled estimate of the bias for the standard error, (σe)2.Assessor i's eli
itations for the two bias parameters, µe

i and σe
i , are given by:

µe
i =

log(aei ) + log(1/bei )

2
=

1

2
log

(

aei
bei

) and (15)
σe
i =

log (1/bei )− log aei
2

=
1

2
log

(

1

aei b
e
i

)

, (16)where aei and bei are eli
itor i's 
hosen upper and lower ranges on an eli
itations
ale for the degree of bias in the intervention group (left hand part of the s
ale,running from 0.1 (risk mu
h lower in the intervention group) to 1 (no bias)) andthe 
ontrol group (right had part of the s
ale, running from 1 (no bias) to 0.1(risk mu
h lower in the 
ontrol group)).2 Assume that the true values of thelower and upper ranges that should be sele
ted are ā and b̄ and that assessors, onaverage, get their eli
itations of these two values 
orre
t, but with random errorwith 
onstant varian
e. Then the eli
itations of the range end-points in Eqs. (15)and (16) are given by the random variables aei = ā + ǫa and bei = b̄ + ǫb, where2A full des
ription may be found in Turner et al. (2009, pages 29-30). If aei = bei , it impliesthat the eli
itor believes that the biases `
an
el'; they are as likely to favour the interventiongroup as they are the 
ontrol. 8



ǫa ∼ f(0, σ2
ǫa
) and ǫb ∼ g(0, σ2

ǫb
), σ2

ǫa
> 0, σ2

ǫb
> 0, f and g being two densityfun
tions. We assume that the pooled eli
itations are obtained by averaging the

µis and σis, that is, µe =
∑M

i=1
µe
i/M and σe =

∑M

i=1
σe
i /M .3Proposition 3 Under the bias eli
itation pro
ess and assumptions des
ribedabove, the pooled eli
itations of the bias terms µe and σe will, themselves, bebiased.Proof. Substitute aei = ā + ǫa and bei = b̄ + ǫb into Eqs. (15) and (16) and
al
ulate approximations to the expe
ted values E[µe] and E[σe], using a Talyorseries polynomial of degree two:

E[µe] ≈
1

2
log

( ā

b̄

)

−
σ2
ǫa

4ā2
+

σ2
ǫb

4b̄2
, (17)

E[σe] ≈
1

2
log

(

1

āb̄

)

+
σ2
ǫa

4ā2
+

σ2
ǫb

4b̄2
. (18)Hen
e the pooled bias eli
itations µe and σe are themselves biased. �Eq. (17) shows that the bias in the bias eli
itation - the �nal two terms inthe equation - 
an be positive, zero, or negative. Eq. (16) shows that the biasis stri
tly positive. Figure 1 plots the bias in bias eli
itation term from Eq. (17)using level 
urves. It shows how this bias in bias eli
itation 
hanges as ā and b̄ -the true lower and upper limits on the eli
itation s
ale - 
hange (for the purposesof illustration, we assume that σ2

ǫa
= σ2

ǫa
= 1). The �gure shows that, when

ā = b̄, the bias in the bias eli
itation equals zero, be
ause our assumptions on
σ2
ǫa
and σ2

ǫb
mean that the two bias terms in Eq. (17) 
an
el. Further, we knowfrom Eq. (15) that the true bias equals zero in this situation. Hen
e, if ā = b̄,whi
h 
orresponds to there being no di�eren
e between intervention and 
ontrolin terms of: 1. the degree of bias favouring ea
h and 2. the amount of biasadjustment whi
h is required to the eli
ited bias term, the overall adjustment of

θ̂ for eli
ited bias and its bias equals zero. However, as Figure 1 shows, the more
ā and b̄ di�er, the greater the bias in the bias eli
itation: to the left of the line
ā = b̄, the bias term for the eli
itation of bias is negative and de
reasing; to the3Other pooling methods - for example, using the median, as in Turner et al. (2009), 
ouldbe 
onsidered. We 
on
entrate on averaging to illustrate the general point that the expe
tedvalue of a nonlinear fun
tion of a random variable is not the same as the fun
tion of its expe
tedvalue. 9



Figure 1: Level 
urves for the bias in bias eli
itation term for µ in Eq. (17):
−σ2

ǫa
/(4ā2) + σ2

ǫb
/(4b̄2) , assuming σ2

ǫa
= σ2

ǫb
= 1

Figure 2: Level 
urves for the bias in bias eli
itation term for σ in Eq. (18):
σ2
ǫa
/(4ā2) + σ2

ǫb
/(4b̄2), assuming σ2

ǫa
= σ2

ǫb
= 110



right of the line it is positive and in
reasing. Hen
e, deviations of either ā or b̄from the line ā = b̄ will lead to the bias adjustment being biased. The level 
urvesin Figure 1 show that the severity of the impa
t of a marginal 
hange in either āor b̄ is higher the 
loser one moves to the point (1/10,1/10); for studies with largebiases, a relatively small di�eren
e between ā and b̄ will lead to a greater absolutebias in the bias adjustment term. This is due to the stri
tly 
on
ave nature ofthe bias fun
tion for ae and the stri
tly 
onvex nature of the bias fun
tion for be.Figure 2 plots the level 
urves for the bias term for σ. The appendix gives moreon the intuition behind these results.3 Dis
ussionOur results show that, even when high quality assessors are tasked with makingeli
itations for bias, the nonlinearities in biases 
an lead to biased eli
itations ofbias. For the 
ase of omitted variables in least squares regression, Proposition 1shows that the bias asso
iated with the assessors' eli
itations for point estimatorswill equal zero only if the eli
itations have zero 
ovarian
e. Proposition 2 showsthat bias in bias eli
itations for the varian
e of the point estimators is presenteven if the errors in the eli
itations have zero 
ovarian
e: it is su�
ient thatassessors' eli
itations are random, that is, that they have non-zero varian
e (theterm σ2
ǫ in Eq. (14)). In the 
ase of bias eli
itation for log relative risk in Turneret al., if it is assumed that assessors make unbiased eli
itations of the lower andupper ranges on the eli
itation s
ale, eli
itations are biased.A

ording to Chavalarias (2010), there are 235 potential biases in biomedi
alresear
h. Sin
e biases and eli
itation methods are likely to di�er a
ross studies,su
h analysis 
ould pro
eed on a 
ase-by-
ase basis, or a group of resear
hers
ould 
atalogue the main approa
hes to bias eli
itation and the biases therein.We believe that the te
hnique of Taylor series polynomials presented here o�ersan a

essible and elegant approa
h to approximating and interpreting these biasesin bias eli
itations.
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A Bias for µ using an eli
itation s
ale for log rel-ative riskTo aid exposition, assume that b̄ is known to be equal to 1. Then the eli
itationsof bias for assessor i be
ome, from Eq. (15):
µe
i =

1

2
log(aei ). (19)for i = 1, . . . ,M . We assume that the eli
itations are random with expe
tationequal to ā, whi
h equals the true value of the lower range of the eli
itation s
ale.Again, to aid exposition, we assume that the density fun
tion for ae has a 
learupper and lower-bound (al and au). The mapping from ae to µe via the nonlinearfun
tion h is shown in Figure 3.The true bias adjustment is h(E[ae]) = h(ā). Under the transformation givenby h, the expe
tation of the µe

i s will be biased downward, that is, E[h(ae)] <
h(E[ae]) = h(ā), as shown. Other things equal, the further to the left lies the
entre of mass of the distribution of ae, that is, the greater the true bias ā, thegreater the divergen
e between E[h(ae)] and h(E[ae]), meaning the greater is thebias in the bias eli
itation. This is due to the in
reasing, stri
tly 
on
ave natureof h and explains the shape of the level 
urves in Figure 1.

ae

h(ae)

āal au 1
h(ā)

E[h(ae)]

1

2
log(ae)Random eli
itationssu
h that E[ae] = ā

Figure 3: Di�eren
e between µ = E[h(ae)] and h(E[ae]) = h(ā) for Eq. (17) andthe fun
tion h = (1/2) log(ae), where we assume b̄ is known to equal 112
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