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Abstract

In this paper we analyze the valuation of options stemming from
the flexibility in an Integrated Gasification Combined Cycle (IGCC)
Power Plant.

First we use as a base case the opportunity to invest in a Natural
Gas Combined Cycle (NGCC) Power Plant, deriving the optimal
investment rule as a function of fuel price and the remaining life of the
right to invest. Additionally, the analytical solution for a perpetual
option is obtained.

Second, the valuation of an operating IGCC Power Plant is
studied, with switching costs between states and a choice of the best
operation mode. The valuation of this plant serves as a base to obtain
the value of the option to delay an investment of this type.

Finally, we derive the value of an opportunity to invest either
in a NGCC or IGCC Power Plant, that is, to choose between an
inflexible and a flexible technology, respectively.

Numerical computations involve the use of one- and two-dimensional
binomial lattices that support a mean-reverting process for the fuel
prices. Basic parameter values refer to an actual IGCC power plant
currently in operation.

Keywords: Real options, Power plants, Flexibility, Stochastic
Costs.
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1 Introduction

It is broadly accepted in the financial literature that the traditional valuation
techniques based on discounted cash flows are not the most appropriate tool
for evaluating uncertain investments, especially in presence of irreversibility
considerations, or a chance to defer investment, or when there is scope for
flexible management. In these cases, it is usually preferable to employ the
methods for pricing options, such as Contingent Claims Analysis or Dynamic
Programming.

On the other hand, the energy sector is of paramount importance for
the development of any society. Besides, its specific weight both in the real
and financial sectors of the economy cannot be neglected. Therefore the use
of inadequate instruments in decision making may be particularly onerous.
In addition, the high sums involved in the energy industry, its operating
flexibility and environmental impact, the progressive liberalization of the
markets for its inputs and outputs along with many types of uncertainties,
all of them render this kind of investments a suitable candidate to be valued
as real options.

The aim of this paper is to use the real options methodology to assess
decisions of investment in power plants. In particular, our firm is going
to decide simultaneously the time to invest and the choice of technology.
Specifically, we compare an inflexible technology (Natural Gas Combined
Cycle, or NGCC henceforth) with a flexible one (Integrated Gasification
Combined Cycle, or IGCC). We derive the best mode of operation, the
value of the investments and the optimal investment rule when there is
an option to wait. We consider two mean-reverting stochastic processes for
coal and natural gas prices, both of the Inhomogeneous Geometric Brownian
Motion (IGBM) type, and also switching costs between modes of operation.
The output (electricity) price, though, follows a deterministic path. Basic
parameter values in our computations refer to an actual IGCC power plant
currently in operation.

From a growing strand of related literature we would mention Herbelot
[7], who studied the fulfillment of restrictions on SO2 emissions, either
through the purchase of emission permits, or changing the fuel or deleting
polluting agents in the factory itself.1 On the other hand, Kulatilaka [10]
developes a dynamic model that allows to value the flexibility in a flexible
manufacturing system with several modes of operation, using a matrix of
transition probabilities between states. In this paper, the importance of
flexibility in the design of systems from the viewpoint of both engineers
and competitors is emphasized. Later on, Kulatilaka [12] analyzes the
choice between a flexible technology (fired by oil or gas) and two inflexible
technologies to generate electricity. Some numerical results appear in

1A brief summary of this work appears in Dixit and Pindyck [6].
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Kulatilaka [11], where he normalizes the gas price in terms of the oil price.
A similar problem with two stochastic processes is dealt with in Brekke and
Schieldrop [3], but in this case there are no switching costs while prices
follow standard geometric brownian motions. Finally, Robel [14] and Insley
[8] develop some aspects of the stochastic process that we have adopted.

The paper is organized as follows. In Section 2 we briefly introduce the
IGCC and NGCC technologies. Section 3 presents the stochastic model for
fuel price (IGBM), its main features and the binomial lattices for one and
two variables that we use later in the numerical applications. 2 Also in this
section, the differential equations for the value of a power plant and that for
an option to invest in it are derived. In particular, we focus on a perpetual
option to invest in an asset whose value depends on fuel price. We obtain
a solution in terms of Kummer’s confluent hypergeometric function. The
results serve later on to verify how the binomial lattices behave. In Section
4 first we report some basic parameter values from an actual power plant
that we use in our computations. Then we value an operating NGCC plant
and the option to invest in it. We also value an operating IGCC plant with
switching costs and the right to invest in this flexible technology. Finally we
derive the optimal investment rule when it is possible to choose between the
NGCC and IGCC alternatives. A section with our main findings concludes.

2 The NGCC and IGCC technologies

2.1 Some features of electric power plants

The production of electricity can be viewed as the exercise of a series of
nested real options to transform a type of energy (gas, oil, coal, or other)
into electric energy. There are two sets of outstanding information. The
first one has to do with the characteristics of the energy inputs used in the
production process. The second one comprises the operation features of the
electric power plants, among them: the net output, the rate of efficiency
(“operating heat rate”), the costs to start and stop, the fixed costs, the
starting and stopping periods, and the physical restrictions that prevent
instantaneous changes between states. These factors determine the wedge
between the prices of the energy consumed and produced. On this basis, at
each instant it is necessary to decide how much electricity to produce and
how, i.e. the possible state changes to realize.

2The choice of the binomial lattice as a resolution method is due both to its suitability
and acceptance by the industry. See Mun [13].
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2.2 Natural Gas Combined Cycle (NGCC) Technology

It is based on the employment of two turbines, one of natural gas and another
one of steam.3 The exhaust gases from the first one are used to generate the
steam that is used in the second turbine. Thus it consists of a Gas-Air cycle
and a Water-Steam cycle. This system allows for a higher net efficiency, 4

close to 55%; future trends aim at reaching net efficiencies of 60% in NGCC
plants of 500 Mw.

The advantages of a NGCC Power Plant are:5

• a) Lower emissions of CO2, estimated about 350 g/Kwh, which allow
an easier fulfillment of the Kyoto protocol;

• b) Higher net efficiency, between 50% and 60%;

• c) Low cost of the investment, about 500 AC/Kw installed;

• d) Less consumption of water and space requirements, which allow to
build in a shorter period of time and closer to consumer sites;

• e) Lower operation costs, with typical values of 0.35 cents AC/KWh.

In addition, a NGCC power plant can be designed as a base plant or
as a peak plant; in the latter case, it only operates when electricity prices
are high enough, what usually happens during periods of strong growth in
demand.

On the other hand, the disadvantages of a NGCC Power Plant are:

• a) The higher cost of the natural gas fired in relation to coal’s;

• b) The insecurity concerning gas supplies, since reserves are more
unevenly distributed over the world;

• c) The strong rise in the demand for natural gas, which can cause a
consolidation of prices at higher than historical levels.

2.3 Integrated Gasification Combined Cycle (IGCC)
Technology

It is based on the transformation of coal into synthesis gas, which is
composed principally of carbon monoxide (CO) and hydrogen (H2).6 This

3Also known as Combined Cycle Gas Turbines or CCGT.
4The net efficiency refers to the percentage of the heating value of the fuel that is

transformed into electric energy.
5Our reference is ELCOGAS (2003): “Integrated gasification combined cycle

technology: IGCC” and its actual application at the power plant in Puertollano (Spain).
6According to the following reactions: C + CO2 → 2 CO and C + H2O → CO + H2.
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gas keeps approximately 90% of the heating value of the original coal.
However, the appearance of CO as a by-product demands a special care
with this technology, given the harmful impact of small quantities of this
gas on human health. Besides, the process of gasification increases the costs
of the original investment and those of operating a plant of this type.

The synthesis gas obtained has several applications:

• a) Generation of electric energy in IGCC power plants;

• b) Production of hydrogen for diverse uses, like fuel cells; note the
promising future of hydrogen as a fuel in general;

• c) As an input to chemical products, like ammonia, for manufacturing
fertilizers;

• d) As an input to produce sulphur and sulphuric acid.

After the stage of gasification, it is time to clean the gas by means
of washing processes with water and absorption with dissolvents. This
makes it possible that an IGCC plant has significantly lower emissions of
SO2, NOx and particles, in relation to those generated in standard coal
power plants. The emissions of CO2 per Kwh are also lower, but in this
case the improvement derives mainly from the higher net efficiency of the
cycle (currently, typical values fluctuate around 42%, whith a trend towards
approaching 50%, provided this methodology enhances its design, which is
in its first steps). Right now, the emissions of CO2 from an IGCC power
plant (about 725 g/Kwh ) are estimated at 20% lower than those from a
classic coal power plant 7. However, they are clearly higher than those from
NGCC (around 350 g/Kwh ).

In addition to the gasification plant, the operation of an IGCC power
plant requires another costly element, namely the air separation unit, for
producing oxygen as an oxidizing agent. This unit may represent between
10% and 15% of total investment. Needless to say, the units for gasification,
air separation, and other auxiliary systems raise the initial outlay and imply
higher operation costs.

From the viewpoint of real options, it is necessary to highlight the
following aspects of this technology:

• a) The investment in an IGCC plant can be considered as a strategic
investment in a new technology, whose ultimate results will depend on
its final success or failure;

7Coal power plants are classified in subcritical, supercritical and ultrasupercritical,
depending on the pressure and the temperature of the steam. The net efficiency for coal
power plants rounds about 35% in the supercriticals, and increases with higher investment
costs but also entails an increased hazard due to working at higher temperatures.
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• b) The IGCC power plant is a flexible technology concerning the
possible fuels to use; apart from the synthesis gas, it may fire oil
coke, heavy refinery liquid fuels, natural gas, biomasss, and urban
solid waste, among others. In this way, at each time it is possible to
choose the best input combination according to relative prices. The
valuation of this operating flexibility between synthesis gas and natural
gas constitutes one of the aims of this paper.

3 The stochastic model for the fuel price

3.1 The Inhomogeneous Geometric Brownian Motion
(IGBM)

In a model for long-term valuation of energy assets, it is convenient to keep
in mind that prices tend to revert towards levels of equilibrium after an
incidental change. Among the models with mean reversion, we have chosen
the Integrated or Inhomogeneous Geometric Brownian Motion or IGBM
process (Bhattacharya [2], Sarkar [15]):

dSt = k(Sm − St)dt + σStdZt, (1)

where:
St: the price of fuel at time t.
Sm: the level fuel price tends to in the long run.
k: the speed of reversion towards the “normal” level. It can be computed

as k = log 2/t1/2, where t1/2 is the expected half-life, that is the time for the
gap between St and Sm to halve.

σ: the instantaneous volatility of fuel price, which determines the
variance of St at t.

dZt: the increment to a standard Wiener process. It is normally
distributed with mean zero and variance dt.

Some of the reasons for our choice are:

• a) This model satisfies the following condition (which seems
reasonable): if the price of one unit of fuel reverts to some mean value,
then the price of two units reverts to twice that same mean value.

• b) The term σStdZt in the differential equation precludes, almost
surely, the possibility of negative values.

• c) This model admits as a particular solution dSt = αStdt + σStdZt

when Sm = 0 and α = −k; therefore it includes Geometric Brownian
Motion (GBM) as a particular case.

• d) The expected value in the long run is: E(S∞) = Sm; this is not

true in Schwartz [16], where E(S∞) = Sm(e−
σ2

4k ).
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3.1.1 First and second moments of the actual process

Now we compute the first two moments of an actual path described by an
IGBM process.8Following Kloeden and Platen [9],9 for a linear stochastic
differential equation of the form:

dXt = (a1(t)Xt + a2(t))dt + (b1(t)Xt + b2(t))dWt, (2)

and denoting m(t) ≡ E(St) and P (t) ≡ E(S2
t ), we have:

dm(t)
dt

= a1(t)m(t) + a2(t), (3)

dP (t)
dt

= (2a1(t) + b2
1(t))P (t) + 2m(t)(a2(t) + b1(t)b2(t)) + b2

2(t). (4)

For our IGBM process, a1 = −k, a2 = kSm, b1 = σ and b2 = 0.

A) Expected value.
In this case, the expected value satisfies the following differential

equation:
dm(t)

dt
= −km(t) + kSm = k(Sm −m(t)). (5)

This equation can be easily integrated:

E(St) ≡ m(t) = Sm + (S0 − Sm)e−kt, (6)

where S0 stands for current price. As mentioned above, when t → ∞ the
expected value is E(S∞) = Sm.10

B) Second non-central moment.
For the second non-central moment of an IGBM process, the ordinary

differential equation is:

dP (t)
dt

= (−2k + σ2)P (t) + 2m(t)kSm. (7)

After substituting and rearranging, this can be rewritten as:

dP (t)
dt

+ (2k − σ2)P (t) = 2kSm

(
Sm + (S0 − Sm)e−kt

)
. (8)

Using an integration factor µ = e(2k−σ2)t:

µP (t) = 2kSm

∫ t

0
e(2k−σ2)t

(
Sm + (S0 − Sm)e−kt

)
dt + c. (9)

8The actual path obeys the real trend. Consequently it cannot be used for risk-neutral
valuation.

9Equations (2.10) and (2.11) in page 113.
10It can be verified that when k = −α and Sm = 0, the expected value of the GBM

model results: E(St) = S0e
αt.
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After some algebra:

P (t) ≡ E(S2
t ) =

2kS2
m

2k − σ2
(1−e(σ2−2k)t)+

2kSm(S0 − Sm)
k − σ2

(e−kt−e(σ2−2k)t)+

+S2
0e(σ2−2k)t, (10)

where we have substituted S2
0 for the constant c so that in t = 0 the moment

takes on the value S2
0 .

There are two especial situations, both highly unlikely in practice. They
involve cases in which denominators are zero or indeterminacies like 0

0
appear:

• a) k = σ2

2 . In this case, applying L’Hospital rule, P (t) simplifies to:

P (t) = 2kS2
mt + 2Sm(Sm − S0)(e−kt − 1) + S2

0 . (11)

• b) k = σ2. In this case, the solution reduces to:

P (t) = 2S2
m(1− e−kt)− 2kSm(Sm − S0)te−kt + S2

oe−kt. (12)

Now, from the formula for the second non-central moment, we can derive
the explicit solution for the variance:

V ar(St) = E
(
(St − E(St))2

)
=

= e(σ2−2k)t

(
S2

0 +
2kS2

m

σ2 − 2k
+

2kSm(S0 − Sm)
σ2 − k

)
+

+e−kt
(

2kSm(S0 − Sm)
k − σ2

+ 2Sm(Sm − S0)
)
−e−2kt(S0−Sm)2+

2kS2
m

2k − σ2
−S2

m.

(13)

In particular, when 2k > σ2 and t →∞, the variance tends to:

2kS2
m

2k − σ2
− S2

m. (14)

Only when the speed of reversion k is sufficiently high in relation to σ2,
the variance converges towards a finite value. Otherwise the variance grows
without limit with the passage of time.11

Finally, in subsequent sections it will be convenient to use simpler
expressions for the numerical computations. It is known that when the
increment ∆t is very small, given eat = 1 + at + (at)2

2 + . . . , then ea∆t ≈
1 + a∆t. Substituting in expressions (6) and (13), the usual results of
Euler-Maruyama’s approximation arise:

E(St) ≈ St−1 + k(Sm − St−1)∆t, (15)

V ar(St) ≈ σ2S2
t−1∆t. (16)

11When Sm = 0 and k = −α, we get: V ar(St) = S2
0e(σ2+2α)t−S2

0e2αt = S2
0e2αt(eσ2t−1).

That is, we get the formula corresponding to a standard GBM process.
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3.2 The Risk-Neutral IGBM Process

When using binomial lattices below, we will make use of the risk-neutral
valuation principle.

3.2.1 The fundamental pricing equation

The change from an actual process to a risk-neutral one is accomplished by
replacing the drift in the price process (in the GBM case, α) with the growth
rate in a risk-neutral world (r − δ, where r is the riskless interest rate and
δ denotes the net convenience yield). Note, though, that the convenience
yield is not constant in a mean-reverting process .12

In order to obtain the risk-neutral version of the IGBM process, we
simply discount a risk premium (which, according to the CAPM, is)

ρσφS (17)

to its actual rate of growth. In this expression, ρ is the correlation between
the returns on the market portfolio and the fuel asset, and σ is the asset’s
volatility. Finally, φ denotes the market price of risk, which is defined as:

φ ≡ rM − r

σM
, (18)

where rM is the expected return on the market portfolio and σM denotes its
volatility.

If certain ”complete market” assumptions hold, it can be shown that the
value of an investment V (S, t), which is a function of fuel price and calendar
time, follows the differential equation:

1
2
σ2S2 ∂2V

∂S2
+ [k(Sm − S)− ρσφS]

∂V

∂S
+

∂V

∂t
− rV + C(S, t) = 0, (19)

where C(S, t) is the instantaneous cash flow generated by the investment.

3.2.2 First and second moments of the risk-neutral process

Let Ŝt denote the risk-neutral version of St:

dŜt = [k(Sm − Ŝt)− ρσφŜt]dt + σŜtdZt. (20)

Then it can be shown that it has an expected value:

E(Ŝt) =
kSm

k + ρσφ
[1− e−(k+ρσφ)t] + S0e

−(k+ρσφ)t. (21)

12If we equate (r− δ)St to the difference between the coefficient of dt in (1) and the risk
premium, the resulting expression for δ is a function of St.
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Using the first two elements of a Taylor expansion, this can be approximated
by:

E(Ŝt) ≈ St−1 + (kSm − St−1(k + ρσφ))∆t. (22)

Concerning the second non-central moment, it is:

E(Ŝ2
t ) =

2k2S2
m

(k + ρσφ)
(1− e−(2k+2ρσφ−σ2)t)

(2k + 2ρσφ− σ2)
−

− 2k2S2
m

(k + ρσφ)
(e−(k+ρσφ)t − e−(2k+2ρσφ−σ2)t)

(k + ρσφ− σ2)
+

+2kSmS0
(e−(k+ρσφ)t − e−(2k+2ρσφ−σ2)t)

(k + ρσφ− σ2)
+ S2

0e−(2k+2ρσφ−σ2)t. (23)

After discretization, there results: V ar(Ŝt) ≈ σ2S2
t−1∆t.

3.3 Binomial Lattice for a risk-neutral IGBM variable

The time horizon T is subdivided in n steps, each of size ∆t = T/n. Starting
from an initial value S0, at time i, after j positive increments, the value of
the fuel asset is given by S0u

jdi−j , where d = 1/u.
Consider an asset whose risk-neutral behaviour follows the differential

equation:
dŜ = (k(Sm − Ŝ)− ρσφŜ)dt + σŜdZ. (24)

This can also be written as:

dŜ =

(
k(Sm − Ŝ)

Ŝ
− ρσφ

)
Ŝdt + σŜdZ = µŜdt + σŜdZ. (25)

Since it is usually easier to work with the processes for the natural logarithms
of asset prices, we carry out the following transformation: X = lnŜ. Thus
Xs = 1/Ŝ, Xss = −1/Ŝ2, Xt = 0, and by Ito’s Lemma:

dX = (
k(Sm − Ŝ)

Ŝ
− ρσφ− 1

2
σ2)dt + σdZ = µ̂dt + σdZ, (26)

where µ̂ ≡ k(Sm − Ŝ)/Ŝ − ρσφ− 1
2σ2 depends at each moment on the asset

value Ŝ.
Following Euler-Maruyama’s discretization, the probabilities of upward

and downward movements must satisfy three conditions:

• a) pu + pd = 1.

• b) E(∆X) = pu∆X − pd∆X =
(

k(Sm−Ŝ)

Ŝ
− ρσφ− 1

2σ2

)
∆t = µ̂∆t.

The aim is to equate the first moment of the binomial lattice (pu∆X−
pd∆X) to the first moment of the risk-neutral underlying variable
(µ̂∆t).
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• c) E(∆X2) = pu∆X2 + pd∆X2 = σ2∆t + µ̂2(∆t)2. In this case the
equality refers to the second moments. For small values of ∆t, we have
E(∆X2) ≈ σ2∆t.

From a) and b) we obtain the probabilities, which can be different at
each point of the lattice (because µ̂ depends on Ŝ, which may vary from
node to node):

pu =
1
2

+
µ̂∆t

2∆X
. (27)

From c) there results ∆X = σ
√

∆t; therefore, u = eσ
√

∆t. The
probability of an upward movement at point (i, j) is:

pu(i, j) =
1
2

+
µ̂(i, j)

√
∆t

2σ
, (28)

where:

µ̂(i, j) ≡ k(Sm − Ŝ(i, j))
Ŝ(i, j)

− ρσφ− 1
2
σ2. (29)

3.4 Binomial Lattice for two risk-neutral IGBM variables

Consider two assets whose prices are governed by the following risk-neutral
processes:

dŜ1 = (k1(Sm1 − Ŝ1)− ρ1σ1φŜ1)dt + σ1ŜdZ1, (30)

dŜ2 = (k2(Sm2 − Ŝ2)− ρ2σ2φŜ2)dt + σ2ŜdZ2, (31)

dZ1dZ2 = ρ12dt, (32)

where ρ1 and ρ2 denote the correlations of their respective returns with
those of the market portfolio. Adopting the transformations X1 = lnŜ1,
X2 = lnŜ2, and applying Ito’s Lemma:

dX1 =

(
k1(Sm1 − Ŝ1)

Ŝ1

− ρ1σ1φ−
1
2
σ2

1

)
dt + σ1dZ1 = µ̂1dt + σ1dZ1, (33)

dX2 =

(
k2(Sm2 − Ŝ2)

Ŝ2

− ρ2σ2φ−
1
2
σ2

2

)
dt + σ2dZ2 = µ̂2dt + σ2dZ2. (34)

Now it is necessary to solve a system of six equations:

• a) puu + pud + pdu + pdd = 1. The probabilities must sum to one.

• b) E(∆X1) = (puu + pud)∆X1 − (pdu + pdd)∆X1 = µ̂1∆t. This is the
expected value of the increment in X1.

• c) E(∆X2
1 ) = (puu + pud)∆X2

1 + (pdu + pdd)∆X2
1 = σ2

1∆t + µ̂1
2∆t2.

This is the expected value of the second non-central moment of the
increment in X1.
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• d) E(∆X2) = (puu + pdu)∆X2 − (pud + pdd)∆X2 = µ̂2∆t. This is the
expected value of the increment in X2.

• e) E(∆X2
2 ) = (puu + pdu)∆X2

2 + (pud + pdd)∆X2
2 = σ2

2∆t + µ̂2
2∆t2.

This is the expected value of the second non-central moment of the
increment in X2.

• f) E(∆X1∆X2) = (puu − pud − pdu + pdd)∆X1∆X2 = ρσ1σ2∆t +
µ̂1µ̂2∆t2. This is the expected value of the product ∆X1∆X2, which
amounts to satisfying the correlation condition.

The solution to this system of equations, ignoring the elements in ∆t2,
is:13

∆X1 = σ1

√
∆t, (35)

∆X2 = σ2

√
∆t, (36)

puu =
∆X1∆X2 + ∆X2µ̂1∆t + ∆X1µ̂2∆t + ρσ1σ2∆t

4∆X1∆X2
, (37)

pud =
∆X1∆X2 + ∆X2µ̂1∆t−∆X1µ̂2∆t− ρσ1σ2∆t

4∆X1∆X2
, (38)

pdu =
∆X1∆X2 −∆X2µ̂1∆t + ∆X1µ̂2∆t− ρσ1σ2∆t

4∆X1∆X2
, (39)

pdd =
∆X1∆X2 −∆X2µ̂1∆t−∆X1µ̂2∆t + ρσ1σ2∆t

4∆X1∆X2
. (40)

The branches of the lattice have been forced to recombine by taking constant
increments ∆X1 and ∆X2 once the step size ∆t has been chosen. Thus it
is easier to implement the model in a computer program. However, the
probabilities change from one node to another by depending on µ̂1 and µ̂2.
Besides, it is necessary that at any time the four probabilities take on values
between zero and one.

3.5 Valuation of the option to invest

Nex we want to derive the value F of an opportunity to invest in a project
whose value V depends on an asset whose price S follows an IGBM process.
Starting from quation (19) above, in general F will depend on S and t. Since
the option confers no cash flow to its owner, its value will satisfy:

1
2
σ2S2 ∂2F

∂S2
+ [k(Sm − S)− ρσφS]

∂F

∂S
+

∂F

∂t
− rF = 0. (41)

13Clewlow and Strickland [5] show a multidimensional lattice with two assets which
follow correlated GBM’s.
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3.5.1 Analytical Solution of the perpetual investment option

Let F be the value of a perpetual call option on an investment V which in
turn depends on the value of an asset S following an IGBM process. In this
case, the term Fτ disappears in (41):

1
2
Fssσ

2S2 + (k(Sm − S)− ρσφS)Fs − rF = 0. (42)

This equation may be rewritten as:

FssS
2 + (αS + β)Fs − γF = 0, (43)

where the following notation has been adopted:

α = −2(k + ρσφ)
σ2

,

β =
2kSm

σ2
,

γ =
2r

σ2
.

In order to find a solution to this equation, we define a function h(βS−1) by

F (S) = A0(βS−1)θh(βS−1). (44)

where A0 and θ are constants that will be chosen so as to make h(•) satisfy a
differential equation with a known solution. The first and second derivatives,
divided by A0β

θ, are:

FS(S)
A0βθ

= (−θ)S−θ−1h(βS−1) + S−θ−2h
′
(βS−1)(−β),

FSS(S)
A0βθ

= θ(θ + 1)S−θ−2h(βS−1) + (−θ)S−θ−3h
′
(βS−1)(−β) +

+S−θ−3(−θ − 2)(−β)h
′
(βS−1) + S−θ−4h

′′
(βS−1)β2.

Substituting these expressions in (43) and simplifying we get:

S−θh(βS−1) (θ(θ + 1)− αθ − γ) + S−θ−1
(
S−1β2h

′′
(βS−1) +

+h′(βS−1)(βθ + (θ + 2)β − αβ − S−1β2)− h(βS−1)θβ
)

= 0

For this equality to hold, first it must be:

θ(θ + 1)− θα− γ = θ2 + θ(1− α)− γ = 0. (45)
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This equation allows to determine the positive value of θ, since the remaining
terms are known constants.

Once the value of θ has been obtained, the remainder of the equation is:

(βS−1)h
′′
(βS−1) + h

′
(βS−1)(2θ + 2− α− βS−1)− θh(βS−1) = 0.

This is Kummer’s Differential Equation, 14 where: a = θ, b = 2θ + 2 − α,
and z = (βS−1). The general solution to this equation has the form:

h(βS−1) = A1U(a, b, z) + A2M(a, b, z), (46)

where U(a, b, z) is Tricomi’s or second-order hypergeometric function, and
M(a, b, z) is Kummer’s or first-order hypergeometric function.

Therefore, the general solution to (44) will be:

F (S) = A0(βS−1)θ(A1U(a, b, z) + A2M(a, b, z)). (47)

The second-order hypergeometric function has the following representation:

U(a, b, z) =
Γ(1− b)

Γ(1 + a− b)
M(a, b, z) +

Γ(b− 1)
Γ(a)z(b−1)

M(1 + a− b, 2− b, z), (48)

where Γ(.) is the gamma function and M(a,b,z) is Kummer’s function, whose
value is given by:

M(a, b, z) = 1 +
a

b
z +

a(a + 1)
b(b + 1)

z2

2!
+

a(a + 1)(a + 2)
b(b + 1)(b + 2)

z3

3!
+ . . . (49)

The derivatives of Kummer’s function have the following properties:

∂M(a, b, z)
∂z

=
a

b
M(a + 1, b + 1, z),

∂2M(a, b, z)
∂z2

=
a(a + 1)
b(b + 1)

M(a + 2, b + 2, z).

The derivatives of Tricomi’s function satisfy:

∂U(a, b, z)
∂z

= −aU(a + 1, b + 1, z),

∂2U(a, b, z)
∂z2

= a(a + 1)U(a + 2, b + 2, z).

14See Abramowitz and Stegun [1], equation 13.1.1.
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The boundary conditions will determine whether A1 or A2 in (47) are zero.
In our case, S refers to a fuel, so we face stochastic costs. An upward
evolution in S entails a reduction in profits, so F (∞) = 0 and z = 0, then
A1 = 0 and the term in Kummer’s function remains.15 The solution is:

F (S) = Am(βS−1)θM(a, b, z), (50)

with Am ≡ A0A2.16

The constant Am and the critical value S∗ below which it is optimal to
invest must be jointly determined by the remaining two boundary conditions:

• Value-Matching: F (S∗) = V (S∗)− I(S∗),

• Smooth-Pasting: FS(S∗) = VS(S∗)− IS(S∗).

4 Valuation of alternative technologies

4.1 Representative values used in the numerical applications

We have used the standard values that appear in Table 1 (ELCOGAS, 2003).

Table 1. Basic parameters
Concepts Coal Plant IGCC NGCC Base

Plant Size Mw (P) 500 500 500
Production Factor (%) (FP) 80% 80% 80%
Net Efficiency (%) (RDTO) 35% 41% 50.5%

Unit Investment Cost AC/Kw (i) 1,186 1,300 496
O&M cts. AC/Kwh (CVAR) 0.68 0.71 0.32

The Production Factor is the percentage of the total capacity used on
average over the year. Using these data, the heat rate, the plant’s
consumption of energy, and the total production of electricity can be
computed:

Heat Rate: HR = 3600/RDTO/1, 000, 000, in GJ/Kwh.17

Investment Cost I = 1000 ∗ i ∗ P , in Euros.18

Total annual production: A = 1000 ∗ P ∗ 365 ∗ 24 ∗ FP , in Kwh.
Fuel energy needs: B = 1000 ∗ P ∗ 365 ∗ 24 ∗ FP ∗HR, in GJ/year.
Now with these formula we estimate the parameters in Table 2.

15Due to the fact that U(a, b, 0) = ∞ if b > 1; this will be shown to hold with our
parameter values below.

16When a downward evolution of S entails a reduction in profits, so that F (0) = 0
and z = ∞, then A2 = 0 and the term in Tricomi’s function remains. The solution is
Au(βS−1)θU(a, b, z) with Au ≡ A0A1, since M(a, b,∞) =∞ and then it must be A2 = 0.
This would be the case of stochastic revenues.

17One Kwh amounts to 3,600 KJ, and a GJ (Gigajoules) is a million KJ (Kilojoules).
18Since power is measured in Mw.
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Table 2. Resulting values
Concepts Coal Plant IGCC NGCC Base

Heat Rate GJ/Kwh 0.0103 0.0088 0.0071
Total Investment (mill AC) (I) 593 650 248

Annual production (mill Kwh)(A) 3,504 3,504 3,504
Fuel Energy (GJ/year) (B) 36,041,143 30,766,829 24,979,010

4.2 Value of an operating NGCC plant

Our first purpose is to determine the value of a NGCC operating facility.
The revenues are the receipts from the electricity generated, whereas the

costs refer to the initial investment, the average operation costs and those
of the fuel consumed, in this case natural gas. We consider a deterministic
evolution of electricity prices and variable costs, both of which would grow
at a constant rate ra.

The present value of revenues over a finite number of periods would be
computed according to the following formula:

PV R = A.E.
(1− e−τ(r−ra))

r − ra
, (51)

and variable expenditures would amount to:

PV Cvar = A.Cvar.
(1− e−τ(r−ra))

r − ra
, (52)

where:
A = Annual production : 3,504 million Kwh.
E = Current electricity price : 0.035 AC/Kwh.
ra = rate of growth of electricity price and variable costs.
r = riskless interest rate: 5%.
Cvar = unit variable costs: 0.0032 AC/Kwh.
τ = Estimated useful life of the electric facility upon investment: up to

25 years.
The cost of the initial investment is I, in our case 248 million euros.

Thus:
PV R− PV Cvar − I = 1, 342, 055, 454 AC. (53)

As for the fuel costs, first we compute the value (cost) of one fuel unit
consumed per year over the whole useful life of the plant (see expression (62)
in the Appendix). Then multiplying by the annual consumption we get the
present value of fuel costs :

PV C = B[
kSm(1− e−rτ)

r(k + ρσφ)
+

S − kSm
k+ρσφ

r + k + ρσφ
(1− e−(r+k+ρσφ)τ )], (54)



4 VALUATION OF ALTERNATIVE TECHNOLOGIES 18

where B is the annual fuel energy needed in GJ and S stands for the
natural gas price. Assuming the additional values: Sm = 3.25 AC/GJ, ρ = 0,
φ = 0.40, k = 0.25, σ = 0.20 and substituting them in the above formula
we obtain the average cost per unit consumed yearly during the facility’s
life: 35.5498 + 3.3315S. Now multiplying the annual unit cost by annual
consumption (B in Table 2) we get 887, 999, 971 + 83, 217, 315S. For the
specific value S = 5.45 AC/GJ, we finally compute:

NPV (NGCC) = PV R− PV Cvar − I − PV C = 521, 120AC. (55)

4.3 Valuation of the opportunity to invest in a NGCC plant

4.3.1 The perpetual option

Consider the case of a NGCC plant described by the last column in Table 1.
As already seen, the present value of revenues minus the investment outlay
and the present value of variable costs amounts to 1, 342, 055, 454 AC, whereas
the present value of fuel costs is 887, 999, 971+83, 217, 315S. Thus the value
of the investment if realized now is: V (S)−I = 454, 055, 483−83, 217, 315S.

In this case, the boundary conditions would be:

• Value-Matching: F (S∗) = Am(β(S∗)−1)θM(a, b, β(S∗)−1) =
454,055,483-83,217,315S∗ = V (S∗)− I(S∗)

• Smooth-Pasting: FS(S∗) =
Am(β(S∗)−1)θ( − θ(S∗)−1M(a, b, β(S∗)−1) − aβ

b(S∗)2 M(a + 1, b +
1, β(S∗)−1)) = −83, 217, 315 = VS(S∗)− IS(S∗)

By computing α = −12.5, β = 40.625, γ = 2.5, and θ = 0.1827, we
derive a and b: a = 0.1827, b = 14.8654.

Thus we have a system of two equations that will allow us to determine
Am and S∗. Substituting the value Am(β(S∗)−1)θ, from the Value-Matching
condition, in the Smooth-Pasting condition, there results an equation in S∗

which has as its solution S∗ = 2.7448.
Next it is easy to determine that Am = 94, 394, 000 and, finally, that the

value of the option for a gas price S is:

F (S) = 94, 394, 000 ∗ (
40.625

S
)0.1827M(0.1827, 14.8654,

40.625
S

)

In our case, with S = 5.45, initially the option value is 153, 870, 000 AC,
against a NPV = 521, 120 AC; thus it is optimal to wait.

If there were no other option but to invest now or never, the hurdle
point would be V (S∗∗) = I(S∗∗), whence we get S∗∗ = 5.4563. However,
with a perpetual option it is preferable to wait, since in principle and in
the long run natural gas price is going to decrease and fluctuate around a
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price Sm = 3.25, and then keep on waiting until it reaches S∗ = 2.7448 or
below this value, so that the option value be equal to the net value of the
investment. When the option may be exercised only during a finite period,
the threshold S∗ will take on a value between 5.4563 and 2.7448.

The deterministic case
In this case σ = 0 and hence the fuel cost follows a deterministic path:

St = Sm + [S0 − Sm]e−kt, which corresponds exactly to the mathematical
expectation of the stochastic case. If an investment is made at time T , it
will be worth: 454, 055, 483 − 83, 217, 315ST , which is the same value as in
the stochastic case when ρ = 0. The only difference is that this is a future
value and that ST = Sm + [S0 − Sm]e−kT = 3.25 + 2.2e−0.25T . Therefore
the present value at initial time of an investment to be made at time T is
derived by discounting at the riskless interest rate:

[454, 055, 483− 83, 217, 315[3.25 + 2.2e−0.25T ]]e−0.05T .

Differentiating with respect to T , the optimal investment time is T ∗ = 7.1557
years. In that moment the benefits from waiting for a sure drop in gas prices
fail to balance the effect of discounting. Thus investment would take place
when S∗ = ST = 3.6177. This is the value S∗ will approach to as σ → 0.

Sensitivity analysis
Next we analyze the sensitivity of the results with respect to changes in

σ, k and Sm.

• We assume several values for σ while the others remain the same (k =
0.25, Sm = 3.25).

Table 3. Trigger price S∗ as a function of σ

σ 0.00 0.02 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
S∗ 3.62 3.59 3.49 3.25 2.99 2.74 2.52 2.30 2.11 1.94

As can be inferred from Table 3, the value of the option to wait
increases with volatility, which is reflected in a lower threshold S∗.

• We consider several values for k while σ = 0.20 and Sm = 3.25. First
the special case in which k = 0 is computed;19 then the differential
equation (42) has the form: 1

2Fssσ
2S2 − rF = 0, whose solution is:

F (S) = A1S
γ1 + A2S

γ2 , where γ1 > 0 and γ2 < 0 are the roots of a
quadratic equation. Since F (∞) = 0, it must be A1 = 0. In our case,
γ2 = −1.1583.

19The same results can be obtained by using equation (47) noting that if k = 0 then
α = 0, β = 0, γ = 2.5, θ = 1.1583, A1 = 0 and M(a, b, 0) = 1. In this case Am(β)θ = A2.
This shows that the solution using Kummer’s hypergeometric function includes other
simpler kinds of options as particular solutions.
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The boundary conditions are:

Value-Matching: A2(S∗)γ2 = 1, 342, 055, 454− 356, 448, 075S∗,

Smooth-Pasting: A2γ2(S∗)γ2−1 = −356, 448, 075.

They suffice to determine the value of S∗ for k = 0, which is 2.0206.

Computing the remaining parameters by the usual procedure, the
results are shown in Table 4.

Table 4. Trigger price S∗ as a function of k

k V (S)− I(S) S∗

k = 0.00 1, 342, 055, 454− 356, 448, 075S 2.0206
k = 0.05 928, 778, 968− 229, 286, 079S 2.2594
k = 0.10 712, 083, 008− 162, 610, 399S 2.4276
k = 0.20 507, 699, 469− 99, 723, 156S 2.6608
k = 0.25 454, 055, 483− 83, 217, 315S 2.7448
k = 0.30 415, 510, 405− 71, 357, 291S 2.8143
k = 0.40 364, 000, 824− 55, 508, 189S 2.9225

According to (54), natural gas costs depend on k. Therefore, V (S)−
I(S) also depends on k. An increase in k pushes the trigger price S∗

upwards, since prices will drop faster. In the limit, with an infinite
reversion speed, prices reach the equilibrium value instantaneously
thus offsetting the opportunity to wait until they fall. When k tends
to zero, the result converges towards the values of the above case in
which k = 0.

• Finally, let us consider several values of Sm while σ = 0.20 and k =
0.25. First the special case in which Sm = 0 is computed; although it is
not very realistic, it allows to analyze the convergence towards another
type of option. In this case, the differential equation has the form:
1
2Fssσ

2S2 − kS − rF = 0, whose solution is: F (S) = A1S
γ1 + A2S

γ2 .
Given that F (∞) = 0, it must be A1 = 0. In our case γ2 = −0.182712.

In this case the conditions:

Value-Matching: A2(S∗)γ2 = 1.342.055.454− 83.217.315S∗,

Smooth-Pasting: A2γ2(S∗)γ2−1 = −83.217.315,

allow to determine the value of S∗ for Sm = 0, which is 2.4914.

After obtaining the remaining parameters by the usual procedure,
Table 5 shows the results.



4 VALUATION OF ALTERNATIVE TECHNOLOGIES 21

Table 5. Trigger price S∗ as a function of Sm

Sm V (S)− I(S) S∗

Sm = 0.00 1, 342, 055, 454− 83, 217, 315S 2.4914
Sm = 0.05 1, 328, 393, 916− 83, 217, 315S 2.5016
Sm = 0.50 1, 205, 440, 074− 83, 217, 315S 2.5884
Sm = 1.00 1, 068, 824, 964− 83, 217, 315S 2.6737
Sm = 2.00 795, 593, 934− 83, 217, 315S 2.7925
Sm = 3.00 522, 363, 173− 83, 217, 315S 2.7848
Sm = 3.25 454, 055, 483− 83, 217, 315S 2.7448
Sm = 3.50 385, 747, 793− 83, 217, 315S 2.6769
Sm = 3.75 317, 440, 103− 83, 217, 315S 2.5645
Sm = 4.00 249, 132, 413− 83, 217, 315S 2.3687

It can be observed that changes in the trigger price S∗ are relatively
small in the range between Sm = 1.00 and Sm = 3.50.

Given S = 5.45, for very low values of Sm the option value increases
more than the immediate investment value, with the equilibrium being
reached for lower values of S∗. For high values of Sm the option value
is low, while the net investment value takes on negative values which
are offset if the trigger price S∗ falls more.

4.3.2 The non-perpetual option

Now we want to determine the value of an investment option and the
optimal investment rule in a NGCC facility when the opportunity is available
between time 0 and T.

The costs of the initial investment are Ierbt, with 0 ≤ t ≤ T , where I
is the initial investment at time t = 0 and rb is its rate of growth (both
electricity price and variable costs are now supposed to remain constant).

In the final moment t = T , there is no other option but to invest right
then or not to invest. The decision to go ahead with the investment is taken
if the present value of revenues exceeds that of costs:

NPV = PV (Revenues)− PV (Expenditures) > 0.

A binomial lattice is arranged with the following values in the final nodes:

W = max(NPV, 0).

In previous moments, that is, when 0 ≤ t < T , depending on the current
fuel price, we compute the present value of investing (NPV ) and compare
it with the value of waiting, choosing the maximum between them:

W = Max(NPV, e−r∆t(puW+ + pdW
−)).
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The lattice is solved backwards, which provides the time-0 value. If
we compare this value with that of an investment made at the outset, the
difference will be the value of the option to wait. Logically, this option’s
value will always be nonnegative.

By changing the initial value of the fuel unit cost it is possible to
determine the fuel price at which the option value switches from positive to
zero. This will be the optimal exercise price at t = 0. Similarly, arranging
a binomial lattice for the investment opportunity with maturity t < T and
changing the fuel price, the optimal exercise price for intermediate moments
is determined.

At the final date, investment is realized only if NPV > 0. The optimal
point to invest will be found by computing the gas price for which NPV = 0;
in our case, this value is S∗0 = 5.4563. As could be expected, when ra =
rb = 0, it must be S∗∞ = 2.7448, which comes from the analytical solution
for the perpetual option. These results appear in Table 6. They show a
convergence towards those of the perpetual option when the maturity of the
investment opportunity increases.

Table 6. Trigger price S∗ with finite time
Term ra = 0, rb = 0 ra = 0, rb = 0.025 ra = 0, rb = 0.05

0 5.4563 5.4563 5.4563
1
2 3.3268 3.5587 3.7823
1 3.2200 3.4417 3.6503
2 3.0864 3.3035 3.5107
3 3.0040 3.2250 3.4394
4 2.9480 3.1751 3.3982
5 2.9079 3.1413 3.3731
6 2.8782 3.1179 3.3575
7 2.8557 3.1012 3.3481
8 2.8386 3.0893 3.3423
9 2.8253 3.0808 3.3392
10 2.8151 3.0746 3.3378
∞ 2.7448 - -

It can be observed that a higher rb, ceteris paribus, quickens the time to
invest, as can be seen from the higher S∗. When the time to maturity is
zero, though, there is no influence from the rate of growth of the initial
investment.

Next we analyze the optimal choice between investing or waiting, when
the investment opportunity is available for five years, depending on the
initial fuel price.
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Table 7. NPV and option values with T = 5 years
S0 NPV(AC) Option value Max(NPV,Option) Optimal decision

5.45 521,120 119,170,000 119,170,000 Wait
5.00 37,969,000 129,040,000 129,040,000 Wait
4.50 79,578,000 141,640,000 141,640,000 Wait
4.00 121,190,000 156,820,000 156,820,000 Wait
3.50 162,790,000 176,420,000 176,420,000 Wait
3.00 204,400,000 205,010,000 205,010,000 Wait

2.9079 212,070,000 212,070,000 212,070,000 Indifferent
2.50 246,010,000 245,900,000 246,010,000 Invest
2.00 287,620,000 287,450,000 287,620,000 Invest

As shown in Table 7, when S0 = 5.45, the NPV is very low and the option to
wait is worth more than 119 million euros. As the value of S0 decreases, the
option to wait increases in value but less than the NPV, with the equality
being reached when S0 = 2.9079. For lower values, it is preferable to invest
immediately.

4.4 Valuation of an operating IGCC plant

Now we must compute the value of an operating IGCC power station, both
right upon the initial outlay and at any moment along its useful life to derive
its remaining value. We accomplish this by means of two two-dimensional
binomial lattices which refer to initial states consuming either coal or natural
gas, respectively.

At the end of the plant’s useful life, its value is zero, whether that instant
has been reached consuming coal or natural gas:

Wc = 0 if useful life is finished consuming coal,
Wg = 0 if useful life is finished consuming natural gas,

where Wc stands for the values of the lattice nodes for coal and Wg denotes
those of the lattice nodes for natural gas. At earlier times t we compute, for
a time interval ∆t, the profits by mode of operation, which are determined
as the difference between electricity revenues and the sum of variable plus
fuel costs:

πc = A.E.erat (1− e−∆t(r−ra))
r − ra

−Bc∆tSc −A.Cvarc .e
rat (1− e−∆t(r−ra))

r − ra
,

(56)

πg = A.E.erat (1− e−∆t(r−ra))
r − ra

−Bg∆tSg −A.Cvarg .e
rat (1− e−∆t(r−ra))

r − ra
.

(57)
where:
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πc : Net profits from operating with coal.
πg : Net profits from operating with natural gas.
Sc: current coal price,
Sg: current natural gas price.

A.E.erat (1−e−∆t(r−ra))
r−ra

: value at time t of revenues from electricity over
the period ∆t.

A.Cvar.e
rat (1−e−∆t(r−ra))

r−ra
: value at time t of variable costs incurred over

∆t.
Bc: the coal energy needed per year in GJ,
Bg: the natural gas energy needed per year in GJ,
Bc∆tSc : Costs of coal consumed during ∆t.
Bg∆tSg : Costs of natural gas consumed during ∆t.
I(c → g) : Switching cost from coal to gas.
I(g → c) : Switching cost from gas to coal.
If initially the IGCC plant was consuming coal, the best of two options

is chosen:20

• continue: the present value of the coal lattice is obtained, plus the
profits from operating in coal-mode at that instant.

• switch: the present value of the gas lattice is obtained, plus the
profits from operating in gas-mode at that instant, minus the costs
to switching from coal to gas, I(c → g).

Thus the binomial lattices will take on the following values:21

Wc = Max(πc+e−r∆t(puuWc+++pudWc+−pduWc−++pddWc−−), πg−I(c → g)+

+e−r∆t(puuWg++ + pudWg+−pduWg−+ + pddWg−−)). (58)

Similary, when the initial state corresponds to operating with natural gas,
we would compute:

Wg = Max(πc−I(g → c)+e−r∆t(puuWc+++pudWc+−pduWc−++pddWc−−),

πg + e−r∆t(puuWg++ + pudWg+−pduWg−+ + pddWg−−)). (59)

Finally, at time zero the optimal initial mode of operation is chosen by:

Max(Wc, Wg).
20We have not considered the option not to operate, though it could be taken into

account easily. It could be included by a third lattice, corresponding to an idle initial
state. At every time we should maximize over three possible values, taking into account
the switching costs between states. If we denote the idle state by p, in this case there could
be a stopping cost: I(c→ p) or I(g → p), and a restarting cost: I(p→ c) or I(p→ g). If
restarting costs were very high, stopping could amount to abandone.

21We follow a similar procedure to Trigeorgis [20], pp. 177-184 (the case with switching
costs).
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In this way, we have derived the value of a flexible plant in operation.
In this computation, for a plant operating for some time, the cost of the

initial investment plays no role, but it could be included at the outset in
order to compare this outlay with the present value of expected profits.

Table 8 shows the values adopted in the base case. Some of them are
taken from Table 1 but are repeated here for convenience.

Table 8. An IGCC Plant
Concepts Coal Mode Gas Mode

Plant Size Mw (P) 500 500
Production Factor(FP) 80% 80%

Net Efficiency(%) (RDTO) 41.0% 50.5%
Investment cost AC/Kw (i) 1,300 1,300

Operation cost (ACcents/Kwh) (CVAR) 0.71 0.32
Fuel price (AC/GJ) 1.90 5.45

Reversion value Sm(AC/GJ) 1.40 3.25
Reversion speed (k) 0.125 0.25

Plant’s useful life (years)(τ) 25 25
Risk-free interest rate (r) 0.05 0.05
Market price of risk (φ) 0.40 0.40

Volatility (σ) 0.05 0.20
Correlation with the market (ρ1, ρ2) 0 0

Correlation between fuels (ρ12) 0.15 0.15
Investment cost rate of growth (rb) 0 0
Electricity price rate of growth (ra) 0 0

Switching costs (AC) 20,000 20,000

Making the computations with a lattice of 300 steps (one for each month
of useful life), Table 9 shows the ensuing results, as a function of switching
costs.

Table 9. Value of an IGCC Plant
Switching costs (AC) Plant’s value Plant’s value - Initial investment

0 702,662,000 52,662,000
10,000 702,598,000 52,598,000
20,000 702,534,000 52,534,000
50,000 702,345,000 52,345,000
100,000 702,129,000 52,129,000

1,000,000 700,049,000 50,049,000
∞ 691,987,000 41,987,000

When there are no switching costs, the value of the plant exceeds the initial
investment (650,000,000 AC) by 52,662,000 AC. Thus it is worth an 8.10%
more than the amount disbursed.

Comparing the value in each case with that of infinite switching costs,
the difference shows the value of flexibility, which amounts to 10,675,000
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AC in the absence of switching costs, just 1.5% over the initial investment.
Note tha flexibility in the IGCC plant may be valuable because of reasons
different from harnessing at each instant the best fuel option. For instance,
it may be due to failures in elements necessary to operate in coal-mode,
but that do not prevent the plant from operating in gas-mode and avert the
total stopping of the facility. The same could happen in the case of problems
concerning supplies of a certain kind of fuel.

In the case of infinite switching costs, in which operation is only in
coal-mode, the value of the plant changes with the number of steps in the
lattices. With 3,000 steps we reach a value (net of investment cost) of
43,353,000 AC, a figure which is very close to the 43,594,000 AC obtained by
following an analytical procedure like that for a natural gas plant.
The plant’s value as a function of coal and natural gas prices appears in
Figure 1.

Figure 1: Value of an IGCC Plant AC (a=0.00,τ = 25).

Table 10 shows the value of the plant as a function of the remaining
life, for the base case with switching costs of 20,000 AC, without taking into
account the initial investment of 650,000,000 AC. For the sake of consistence
again we have used one step per month.
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Table 10. Value of an operating IGCC plant as a function of the
growth rate of electricity price and variable cost (ra)

Remaining life Plant value ra = 0.00 Plant value ra = 0.03
25 years 702,534,000 1,245,700,000
20 years 613,835,000 999,120,000
15 years 501,490,000 742,186,000
10 years 361,090,000 479,990,000
5 years 191,020,000 223,980,000
4 years 153,950,000 175,460,000
3 years 116,150,000 128,500,000
2 years 77,806,000 83,409,000
1 year 39,044,000 40,477,000
0 year 0 0

The shape of the curve for ra = 0 has to do with the discount rate
r = 0.05, since the electricity price remains unchanged. If ra = 0.03, the
value with two years to operate exceeds twice that with one year since,
because of the reversion effect, a bigger drop in fuel cost would be expected
over two remaining years.

4.5 Valuation of the opportunity to invest in an IGCC plant

Let us assume that the investment opportunity is available from time 0 to
T . In this case, the procedure is very similar to that for the optimal timing
to invest in a NGCC plant. However, the value of an operating plant must
be determined at each node of the two-dimensional lattice from another
two-dimensional lattice which takes as a starting point the prices at that
node.

At the final date, the choice must be made between investing then if the
plant’s value is positive or not to invest:

W = max(NPVigcc, 0).

With switching costs of 20,000 AC as in the base case, Table 11 shows
combinations of coal and natural gas prices that imply a zero value (that is,
the plant value matches initial outlay) at maturity.
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Table 11. IGCC Critical curve at t = T

Gas price (AC/GJ) Coal price (AC/GJ)
∞ 2.1410

5.4563 2.2325
5.45 2.2327
5.00 2.2446
4.50 2.2642
4.00 2.2974
3.50 2.3684
3.25 2.4485
3.00 2.5802
2.50 3.0682
2.00 4.0610
1.50 6.2646
1.00 18.9226

0.9897 ∞

If, with a very high price for coal, the IGCC plant is to be profitable, it
is necessary that natural gas prices remain below 0.9897. This is due to the
fact that the reversion process pushes gas prices towards 3.25 AC/GJ.

At previous instants, the best of the two options (to invest or to continue)
has to be chosen:

W = Max(NPVigcc, e
−r∆t(puuW++ + pudW

+−pduW−+ + pddW
−−)). (60)

At t = 0, the value obtained from the lattice is compared with that of an
investment realized right then. The difference is the value of the option to
wait.

By using a lattice with quarterly steps for the option to wait, and one
with monthly steps to value the plant, we get the valuations in Table 12,
for the base case, as a function of the time to maturity of the investment
option:

Table 12. Value of the option to wait (IGCC plant)
Term (years) Plant NPV Option to wait Option to wait - Plant NPV

5 52,534,000 76,398,000 23,864,000
4 52,534,000 74,179,000 21,645,000
3 52,534,000 71,048,000 18,514,000
2 52,534,000 66,651,000 14,117,000
1 52,534,000 60,592,000 8,058,000

0.5 52,534,000 56,835,000 4,301,000
0 52,534,000 52,534,000 0

The second column refers to the plant value under the assumption of a “now
or never” investment in the flexible technology. It includes the value of the
plant’s flexibility.
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The value of the option to wait, given the starting point of the prices,
increases with the maturity of the opportunity to invest. The highest yearly
increase takes place in the first period (8, 058, 000 AC); henceforth, that
increase is much lower, since the effect of reversion is stronger in the initial
periods.22

The optimal investment rule in an IGCC technology can be derived following
a procedure akin to that used for the NGCC technology in the base case.
Nonetheless, in this case and at each time, we will have to compute the
combinations of coal price and gas price for which the option to wait is
worthless.

At any t, a range of initial prices for coal is chosen; then, for each one of
them, we compute the natural gas price for which the option to wait turns
from positive to zero. For an option to wait up to two years, we get Table
13.

Table 13. Optimal values with option to wait 2 years (IGCC)
Gas price Coal price

∞ 1.57
5.45 1.56
5.00 1.56
4.50 1.56
4.00 1.56
3.50 1.56
3.25 1.57
3.00 1.57
2.50 1.59
2.25 1.85
2.00 2.98
1.50 5.15
0.96 ∞

These results are shown in Figure 2. It can be observed that the curve has
shifted downwards and to the left, in relation to the case in which there is no
option to wait (Table 11). In other words, it makes sense to give up (“kill”)
the option to wait if the prices are relatively lower but not otherwise.
For a natural gas price of 5.00AC/GJ, the resulting values for the investment
in the IGCC plant and for the option to wait appear in Figure 3. As can
be observed, given a natural gas price of 5.00AC/GJ, it is better to invest if
coal price is low, but one must wait if coal price is high.

22With t1/2 = ln(2)
k

one would guess that gas price will change from 5.45 AC/GJ to
4.35 AC/GJ in 2.77 years time. On the other hand, the expected price for coal 5.55 years
from now would be 1.65 AC/GJ. The value of t1/2 results from solving: S0 − (S0−Sm

2
) =

Sm + (S0 − Sm)e−kt1/2 .
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Figure 2: Border of Continuation area for investment in an IGCC Power
Plant with option to wait for two years.

4.6 Valuation of the opportunity to invest in NGCC or
IGCC

Up to now we have considered both the flexible and the inflexible
technologies in isolation. When there is an opportunity to invest in either
one of the two technologies, at each moment we face the choice:

• to invest in the inflexible technology (NGCC),

• to invest in the flexible technology (IGCC),

• to wait and at maturity give up the investment.

At the final date, since there is no remaining option, the best alternative
among the three available is chosen:

W = max(NPVigcc, NPVngcc, 0),

where the value NPVigcc, at each point in the binomial lattice, is
computed by means of a two-dimensional binomial lattice with the fuel prices
at that node.

If, at time T , the only possibility is to invest in the NGCC technology,
the investment is realized whenever the natural gas price is lower than 5.4563
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Figure 3: Values of the investment and the option to wait for two years.

AC/GJ; see Table 6. Similarly, if, at time T , the only alternative is to invest in
the IGCC technology, the plant is built when the combinations of gas price
and coal price lay below the curve resulting from Table 11. Now Figure 4
shows both decision rules, but it must be remembered that, in this case, it
is not possible to choose the best possibility.

When, at time T , it is possible to choose between the two alternatives
(Figure 5), there is a set of combinations natural gas price-coal price such
that the value of the investment is positive for the two plants; consequently
the investment with the highest value will be chosen. This area will be
divided into two by a line starting at the point (Sg = 5.4563;Sc = 2.2325),
along which there is indifference among investing in IGCC, investing in
NGCC, and not investing. There is also a region in which the optimal
decision is not to invest.

At previous moments, the choice is:

W = max(NPVigcc, NPVngcc, e
−r∆t(puuW+++pudW

+−pduW−++pddW
−−)).

This computing procedure is iteratively followed until the initial value is
obtained. At that instant, the NGCC technology will be adopted if W =
NPVngcc; similarly, the IGCC technology is chosen if W = NPVigcc. If there
is no investment at t = 0, this means that the best option is to wait.

The points along the optimal exercise curve are those for which the value
of the option to wait changes from positive to zero. In principle, there may
be two curves, one for the IGCC plant and another one for the NGCC plant.
See Figure 6 for an option to invest with two years to maturity. It can be
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Figure 4: Border of Continuation areas without choosing between
alternatives at time T.

observed that:

• In order to invest, prices must be rather lower than those when there
is no option to wait. The reversion effect, given the initial prices,
promotes this behaviour.

• For a very high natural gas price, there will be investment in an IGCC
plant if coal price is below 1.57 AC/GJ, which is the same that we
computed for the waiting option in the IGCC investment and this was
the only technology available (Table 13).

• Similarly, for a very high coal price, there will be investment in a
GNCC plant if gas price is below 3.17 AC/GJ.23

• For values close to the iso-value line between immediate investment
in NGCC and IGCC, the best choice is to wait in order to see how
uncertainty unfolds. The waiting zone expands into the regions of
immediate investment like a wedge.

23This result would apply as an option to wait for two years in a NGCC plant with a
lattice of 8 steps, the same step size used in the option to wait with the two technologies
on offer.
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Figure 5: Border of Continuation areas when choosing between alternatives
at time T.

The shape of the three zones in Figure 6 somehow resembles that in
Brekke and Schieldrop [3] derived as the analytic result of a perpetual option
to wait. In our case the solution is numerical because the option to wait is
finite.

5 Concluding remarks

Many investments in the energy sector can be conveniently valued as real
options. Frequently appearing features are the operating flexibility and
the possibility to delay the investment or even not to invest at the final
moment. Special attention in the valuation must be paid to the nature of
the stochastic processes that govern the underlying variables.

In this paper we have analyzed the valuation of the opportunity to invest
in an IGCC power plant, as opposed to the alternative of an NGCC power
plant, according to the current prices of natural gas and coal when these
follow a mean-reverting process, namely an IGBM. As a reference point we
have computed also the value of a perpetual option to wait. The IGCC
power plant has been valued with switching costs and choice of the optimal
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Figure 6: Border of Continuation areas when selecting between alternatives
with option to wait for two years.

mode of operation; actual parameters from an operating plant have been
used.
First we have computed the value of an operating NGCC plant. This is
relatively easy since there is no special flexibility in its usage. Then the
value of a perpetual option to invest in it has been estimated; besides, a
sensitivity analysis has been developed. It has served as a limiting case or
reference point for the finite-lived option. This has been valued by means
of a binomial lattice for different maturities and growth rates of electricity
price and investment outlay. The optimal investment rule for a given term
as a function of natural gas price has also been analyzed.
Second we have valued an IGCC plant in operation using two
two-dimensional lattices, depending on whether initially the plant is coal- or
natural gas-fired. The value of the plant has been computed as a function of
switching costs and for different useful life spans with constant or growing
electricity prices. Next the non-perpetual option to invest in an IGCC
plant has been considered, assuming again that this is the only technology
available. In this case, an optimal locus of fuel prices arises above which it
is optimal to wait. As could be expected, the longer the option’s maturity
the closer the locus is to the origin in the prices space.
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Third we have assumed that both technologies are on offer. Our results
show the influence of the mean-reverting process on the critical values when
current fuel prices are above their level expected in the long run. The value
of the operating flexibility in the IGCC power plant seems to be low, because
it is designed to function mainly with coal. We show that prior to option‘s
maturity there is a small region in the prices space in which it is optimal
to wait instead of investing, since the values of both technologies are very
close; outside it, optimal decisions are clear-cut.

A Valuation of an annuity in presence of mean
reversion

Our aim is to value an asset V wich pays Xdt continuously over a
finite number of periods τ of remaining asset life, with X following a
mean-reverting process of the type:

dX = k(Xm −X)dt + σXdZt.

It can be shown that the asset V satisfies the differential equation:

1
2
VXXσ2X2 + (k(Xm −X)− ρσφX)VX − rV − Vτ = −X, (61)

where it is assumed that the existing traded assets dynamically span the
price X. Let ρ denote the correlation with the market portfolio, and φ the
market price of risk:

φ =
(rM − r)

σM
,

where rM stands for the expected return on the market portfolio and σM its
standard deviation. The solution V (X, τ) to the differential equation must
satisfy the following boundary conditions:

• At τ = 0 the value must be zero: V (X, 0) = 0,

• Bounded derivative as X →∞: VX(∞, τ) < ∞,

• Bounded derivative as X → 0: VX(0, τ) < ∞.

Using Laplace transforms we get:

1
2
hXXσ2X2 + (k(Xm −X)− ρσφX)hX − h(r + s) = −X

s
.

Rearranging:

1
2
hXXσ2X2 − (k + ρσφ)XhX − h(r + s) = −kXmhX −

X

s
.
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The general solution has the form:

h(X) = A1X
β1 + A2X

β2 +
X − kXm

k+ρσφ

s(s + r + k + ρσφ)
+

kXm

(k + ρσφ)s(s + r)
.

The derivative is bounded; thus A1 = 0. Besides, h(0) = 0; therefore A2 = 0.
The solution simplifies to:

h(X) =
X − kXm

k+ρσφ

s(s + r + k + ρσφ)
+

kXm

(k + ρσφ)s(s + r)
.

With the first and second derivatives: hX = 1
s(s+r+k+ρσφ) , hXX = 0, it is

possible to show, by substitution, that the differential equation applies.
At this moment, the inverse Laplace transforms are taken. To do so we

use formula 29.3.12 in Abramowitz and Stegun [1], the final result being:

V =
kXm(1− e−rτ)

r(k + ρσφ)
+

X − kXm
k+ρσφ

r + k + ρσφ
(1− e−(r+k+ρσφ)τ ). (62)

This formula may be useful to compute the present value of fuel costs over
the whole life of a plant with inflexible technology, like an NGCC or coal
plant.24

A series of particular, frequently used, cases may be derived from the
above general solution:

• a) If φ = 0 or ρ = 0, then the formula reduces to

V =
Xm(1− e−rτ )

r
+

X −Xm

r + k
(1− e−(r+k)τ ).

• b) If τ →∞:

V =
kXm

r(k + ρσφ)
+

X − kXm
k+ρσφ

r + k + ρσφ
. (63)

In this case, it can be observed that the project value is the sum of
two components: one related to the reversion value and another one
which is a function of the initial difference between the observed value
and the ”normal” level of X.

• c) When it is a perpetuity and also Xm = 0 and k + ρσφ = −α, then:

V =
X

r − α
. (64)

• d) When it is a perpetuity and also Xm = 0 and k + ρσφ = −r + δ,
then:

V =
X

δ
. (65)

24See Bhattacharya [2](eq. 15) and Sarkar [15] (eq. 2-4).
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