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noncooperative game�

J. Ariny and V. Feltkampz
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Abstract
The paper adapts a non cooperative game presented by Dagan, Serrano

and Volij (1997) for bankruptcy problems to the context of TU veto bal-
anced games. We investigate the relationship between the Nash outcomes
of a noncooperative game and solution concepts of cooperative games such
as the nucleolus, kernel and the egalitarian core.

1. Introduction

In 1997, Dagan, Serrano and Volij presented a simple noncooperative game for
bankruptcy problems. In the game the player with highest claim has a special
role. He makes a proposal and the rest of the players in a given order, accept or
reject that proposal sequentially. In case of rejection the con�ict is solved bilater-
ally, applying a normative solution concept to a special two-claimant bankruptcy
problem. Therefore for any solution de�ned in the class of two-person bankruptcy
problems a noncooperative game can be formed. They prove that, if the solution
satis�es certain properties, the outcome of any Nash equilibrium of the game co-
incides with the consistent allocation of the solution used to solve the bilateral
con�ict. In their conclusions, Dagan, Serrano and Volij (1997) write:
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Thus, constructing consistency based noncooperative models that sup-
port consistent cooperative solutions concepts which are not monotonic
seems to us a di¢ cult task. Therefore there might be problems in sup-
porting the nucleolus or the Nash bargaining solution on general pies
by means of a noncooperative model.

The aim of this paper is to check the validity of this comment. We study a
similar noncooperative model in the context of coalitional games with veto players.
In our model, a veto player is the proposer and, similarly to Dagan, Serrano
and Volij, in case of a negative answer from a responder a bilateral resolution is
formulated.
In this bilateral resolution a two-person Davis-Maschler reduced game is de-

�ned. We consider two solutions for two-person games.
The �rst solution applied is the standard solution whenever a non negative

payo¤ is provided to the players. Under this resolution of the con�ict the nucleolus
appears as a candidate to be the Nash outcome of this game. The reason is that
in the class of veto balanced games the nucleolus and the prekernel coincide (Arin
and Feltkamp, 1997) and the prekernel is the maximal set satisfying the Davis-
Maschler reduced game property and standard solution1 (Peleg, 1986).
Given a veto balanced game and its associated noncooperative game we iden-

tify the set of allocations to which the outcome of any Nash equilibrium belong.
In general, the nucleolus does not belong to this set. On the other hand, any allo-
cation in this set (not necessarily e¢ cient allocations) can be obtained as a result
of an equilibrium. Therefore we identify the set of all Nash outcomes. We also
�nd necessary and su¢ cient conditions for which the nucleolus is a Nash outcome
of the game. Mainly, we identify a monotonicity requirement that the TU game
must meet.
The second solution we consider is the constrained egalitarian allocation. This

solution is de�ned by Dutta in 1990 in the class of balanced games. Arin and
Inarra (2002) study the concept of constrained egalitarianism in the class of all
TU games. With this solution, the elements in the egalitarian core appear as
the candidates to be Nash outcomes of the noncooperative game. The reason is
that in the class of veto balanced games the egalitarian core is the maximal set
satisfying the Davis-Maschler reduced game property and constrained egalitarian
property. We will see that the set of Nash outcomes and the egalitarian core could

1By �satisfying standard solution�we mean that the prekernel provides the standard solution
in any two-person game.
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have an empty intersection.
The paper is organized as follows: Section 2 introduces preliminaries on TU

games. Section 3 presents the noncooperative model and Section 4 characterizes
its Nash outcomes. Section 5 studies the conditions under which the nucleolus
is a Nash outcome. The last section analyzes the game when the constrained
egalitarian solution is applied.

2. Preliminaries

A cooperative n-person game in characteristic function form is a pair (N; v), where
N is a �nite set of n elements and v : 2N ! R is a real valued function on the
family 2N of all subsets of N with v(;) = 0: Elements of N are called players and
the real valued function v the characteristic function of the game. Any subset S
of the player set N is called a coalition. The number of players in a coalition S
is denoted by jSj. Given a set of players N and a coalition S � N we denote by
Sc the set of players of N that are not in S: Generally we shall identify the game
(N; v) by its characteristic function v: In this paper we only consider games where
the worth of all coalitions is non negative.

A distribution among the players is represented by a real valued vector x 2 RN
where xi is the payo¤ assigned by x to player i. A distribution of an amount lower
than or equal to v(N) is called a feasible distribution:We denote

P
i2S
xi by x(S). A

distribution satisfying x(N) = v(N) is called an e¢ cient allocation. An e¢ cient
allocation satisfying xi � v(i) for all i 2 N is called an imputation and the set of
imputations is denoted by I(N; v): The set of non negative feasible allocations is
denoted by D(N; v) and de�ned as follows

D(N; v) =
�
x 2 RN : x(N) � v(N) and xi � 0 for all i 2 N

	
:

The core of a game is the set of imputations that cannot be blocked by any
coalition, i.e.

C(N; v) = fx 2 I(v) : x(S) � v(S) for all S � Ng :

A game with a nonempty core is called a balanced game. A game (N; v) is a
veto-rich game if it has at least one veto player and the set of imputations is
nonempty. A player i is a veto player if v(S) = 0 for all coalitions where player
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i is not present. A balanced game with at least one veto player is called a veto
balanced game.
A solution � on a class of games �0 is a correspondence that associates with

every game (N; v) in �0 a set �(N; v) in RN such that x(N) � v(N) for all
x 2 �(N; v). This solution is called e¢ cient if this inequality holds with equality.
The solution is called single-valued if the set contains a unique element for every
game in the class.
Given a two-person game (f1; 2g ; v) we use the term standard solution for the

following vector: (v(f1g) + d; v(f2g) + d) where d = v(f1;2g)�v(f1g)�v(f2g)
2

:
One of the simplest requirements of monotonicity that we ask for in a single-

valued solution is aggregate-monotonicity. Let � be a single-valued solution on
a class of games �0. We say that solution � satis�es aggregate-monotonicity
property (Meggido, 1974) if the following holds: for all v; w 2 �0, such that for
all S 6= N; v(S) = w(S) and v(N) < w(N); then for all i 2 N; �i(v) � �i(w):
Given a vector x 2 RN the excess of a coalition S with respect to x in a game

(N; v) is de�ned as e(S; x) := v(S) � x(S): Let �(x) be the vector of all excesses
at x arranged in non-increasing order of magnitude. The lexicographic order �L
between two vectors x and y is de�ned by x �L y if there exists an index k such
that xl = yl for all l < k and xk < yk and the weak lexicographic order �Lby
x �L y if x �L y or x = y:

Schmeidler (1969) introduced the nucleolus of a game v; denoted by �(N; v); as
the unique imputation that lexicographically minimizes the vector of non increas-
ingly ordered excesses over the set of imputations. In formula:

f�(N; v)g = fx 2 I(N; v) j�(x) �L �(y) for all y 2 I(N; v)g :

For any game (N; v) with a nonempty imputation set, the nucleolus is a single-
valued solution, is contained in the kernel and lies in the core provided that the
core is nonempty.
In the class of veto balanced games the kernel, the prekernel and the nucleolus

coincide (see Arin and Feltkamp (1997)).

3. The game

Given a veto balanced game (N; v) and an order of players, we de�ne a noncoop-
erative game associated with the TU game and denote it by G(N; v). The game
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has n stages and in each stage only one player is playing. In the �rst stage a veto
player is playing and he announces a proposal x1 that belongs to the set of feasible
and non negative allocations of the game (N; v): In the next stages the responders
are playing, each one once at one stage. They have two actions. To accept or to
reject. If a player, say i; accepts the proposal xt�1 at stage t, he leaves the game
with the payo¤ xt�1i and for the next stage the proposal xt coincides with the
proposal at t � 1; that is xt�1: If player i rejects the proposal then a two-person
TU game is formed with the proposer and the player i: In this two-person game
the value of the grand coalition is xt�11 + xt�1i and the value of the singletons is
obtained by applying the Davis-Maschler reduced game2 (Davis and Maschler
(1965)) given the game (N; v) and the allocation xt�1: The player i will receive as
payo¤ the result of a restricted standard solution applied in the two-person game.
Once all the responders have played and consequently have received their payo¤s
the payo¤ of the veto player is also determined.

Formally, the outcome of playing the game can be described by the following
algorithm.

Input : a veto balanced game (N; v) with a veto player, the player 1; and an
order in the set of the rest of the players (responders)
Output : a feasible and non negative distribution x:

1. Start with stage 1. The veto player makes a feasible and non negative
proposal x1 (not necessarily an imputation): The superscript denotes at the
stage at which the allocation is considered as the proposal in force.

2. In the next stage the �rst responder says yes or no to the proposal. If he
says yes he receives the payo¤ x12 and x

2 = x1:

2Let (N; v) be a game, T � N , and consider T 6= N; ; and a feasible allocation x. Then the
Davis-Maschler reduced game with respect to N n T and x is the game (N n T; vx) where

vNnTx (S) :=

8><>:
0 if S = ;
v(N)� x(T ) if S = N n T
max
Q�T

fv(S [Q)� x(Q)g for all S � N n T :

We also denote the game (N n T; vx) by vNnTx . Note that we de�ne a modi�ed Davis-Maschler
reduced game where the value of the grand coalition of the reduced game is obtained in a
di¤erent way. In our case, v(NnT ) = x(NnT ): If x is e¢ cient the two reduced games coincide.
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If he says no he will receive the payo¤ y2 where

y2 = max

�
0;
1

2
(x11 + x

1
2 � vx1(f1g))

�
and

vx1(f1g) = max
12S�Nnf2g

�
v(S)� x1(Sn f1g)

	

Now, x2 =

8<:
x11 + x

1
2 � y2 for player 1
y2 for player 2
x1i if i 6= 1; 2:

3. Let the stage t where the k responder plays be given the allocation xt�1: If
he says yes he receives the payo¤ xt�1k ; leaves the game, and xt = xt�1:

If he says no he will receive the payo¤

yk = max

�
0;
1

2
(xt�11 + xt�1t � vxt�1(f1g))

�
where

vxt�1(f1g)) = max
12S�Nnftg

�
v(S)� xt�1(Sn f1g)

	
:

Now, xt =

8<:
xt�11 + xt�1k � yt for player 1

yk for player k
xt�1i if i 6= 1; k

:

4. The game ends when stage n is played and we de�ne xn(N; v) as the vector
with coordinates

�
xnj
�
j2N :

In this game we assume that the con�ict between the proposer and a responder
is solved bilaterally. In the case of con�ict, the players face a two-person TU game
that shows the strength of the players given the fact that the rest of the responders
do not play. Once the game is formed the allocation proposed for the game is a
normative proposal, a kind of restricted standard solution3. It is restricted because
negative payo¤s are not allowed. If the two-person formed game is balanced, the
solution will be the standard solution that coincides with the prekernel and the
nucleolus.

3The main results of the paper do not change if we use the standard solution instead of the
restricted standard solution as the concept with which we solve the bilateral con�ict. Since our
main idea is to discuss simple mechanisms we think it is more credible to assume that no player
will accept a negative payo¤, a payo¤ lower than his individual worth.
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4. The Nash outcomes

The main question we try to solve is what outcomes we can expect from the equi-
libria of the game (we call the vector of payo¤s associates with a Nash equilibrium
a Nash outcome). One might think that the prekernel (that coincides with the
nucleolus in the class of veto balanced games) of the game was a good candidate
to be a Nash outcome: In case of con�ict, in many cases the players solve the
situation by applying the prekernel of a game obtained with the Davis-Maschler
reduction.
The �rst example shows that the nucleolus, in general, is not the outcome of

equilibrium of the game G(N; v).

Example 4.1. Let N = f1; 2; 3; 4; 5; 6g a set of players and consider the following
6-person veto balanced game (N; v) where

v(S) =

8<:
1 if jSj > 2 and 1 2 S and S 6= N
3 if S = N
0 otherwise.

Computing the nucleolus4 of this game we see that all the players receive the
same payo¤. It can be immediately checked that if the proposer starts with the
following proposal x1 = (1; 1; 1; 0; 0; 0) after the optimal5 answer of the rest by the
players the �nal outcome will be the vector x1: Therefore it is clear that in this
case the outcome of an equilibrium cannot be the nucleolus.
The main theorem of this section gives the necessary and su¢ cient conditions

to identify all the Nash outcomes of the game. We need some de�nitions and
lemmas before we introduce this main theorem.
Given a game (N; v) and a feasible allocation x we de�ne the complaint of the

player i against the player j as follows:

fij(x) = min
i2S�Nnfjg

fx(S)� v(S)g .

4Arin and Feltkamp (1997) present an algorithm for computing the nucleolus in the class of
TU games with veto players.

5If the responders are not playing optimally it is not true that with this proposal the �nal
payo¤ of the veto player will be at least 1: But it is true if the initial proposal is the vector
(1; 0; 0; 0; 0; 0):
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The set of bilaterally balanced allocations for player i is

Fi(N; v) = fx 2 D(N; v) : fji(x) � fij(x) for all j 6= ig

while the set of optimal allocations for player i in the set Fi(N; v) is de�ned
as follows:

Bi(N; v) = argmax
x2Fi(N;v)

xi:

Note that since Fi(N; v) is a nonempty (it contains the prekernel6) compact
set the set Bi(N; v) is nonempty.

Lemma 4.2. Let (N; v) be a veto balanced TU game and let G(N; v) be its
associated noncooperative game. Given a non negative proposal xt�1 at stage t
the responder playing optimally at this stage, say player i; will reject the proposal
xt�1 if fi1(xt�1) < f1i(xt�1) and will accept the proposal if fi1(xt�1) > f1i(xt�1):
If fi1(xt�1) = f1i(xt�1) the player is indi¤erent between accepting or rejecting.

Proof. The responder playing at stage t should compare the amount yi resulting
after rejection with the amount xt�1i that results after accepting. Note that xt�1i =
fi1(x

t�1) and vxt�1(f1g) = �f1i(xt�1) + xt�11 : Consequently, it holds that yi =
max(0; 1

2
(f1i(x

t�1) + fi1(x
t�1)):

Therefore yi > xt�1i if and only if fi1(xt�1) < f1i(xt�1):

Note that if a player i; playing optimally, rejects the proposal xt�1 at stage t
it holds that fi1(xt) = f1i(xt): This is so because
f1i(x

t) = f1i(x
t�1)� (xt�11 � xt1) and

xt1 = x
t�1
1 + fi1(x

t�1)� yi:
Combining the two equalities and knowing that yi = max(0; 1

2
(f1i(x

t�1) +
fi1(x

t�1)) we get fi1(xt) = f1i(xt):

Lemma 4.3. Let (N; v) be a veto balanced TU game and let G(N; v) be its as-
sociated noncooperative game. Given any proposal x1; if the responders play best
response strategies the �nal outcome of the game will be an element of F1(N; v):
That is, xn 2 F1(N; v):

6If we denote the prekernel by PK and (N; v) is a veto balanced games then PK(N; v) =
\
i2N

(Fi(N; v) \ I(N; v)): In general, the result is not valid and there exist TU games for which
some sets Fi are empty.
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Proof. Let i be a responder playing his best response at stage t: If he says yes
we have that fi1(xt�1) � f1i(xt�1) and if he says not we will have that fi1(xt) =
f1i(x

t): It is also clear that if all responders play optimally then xt1 � xt+11 for all
t 2 f1; :::; n� 1g : Note also that in each stage if there is any transfer, is a bilateral
transfer from the proposer to a responder. Let l be the responder playing at stage
t + 1: If player l accepts it is clear that f1i(xt) = f1i(x

t+1): If player l rejects
then either f1i(xt) = f1i(xt+1) or f1i(xt) > f1i(xt+1) depending on which players
are contained in the coalition that the proposer is using to complain against the
responder i; :Therefore f1i(xt) � f1i(xt+1) for all t 2 f1; :::; n� 1g and for all i 6= 1:

Remark 1. Note that as a consequence of the lemma if the initial proposal be-
longs to F1(N; v) then, assuming optimal behavior of the responders, the �nal
proposal will coincide with the initial proposal. That means that the proposer
can guarantee a payo¤ for himself just proposing an allocation of B1(N; v).

The following theorem is a result of this implication.

Theorem 4.4. Let (N; v) be a veto balanced TU game and let G(N; v) be its
associated noncooperative game. Let z be a feasible and non negative allocation.
Then z is a Nash outcome if and only if z 2 B1(N; v).

Proof. Let z 2 B1(N; v) and consider the following pro�le of strategies: z is
proposed by the proposer and the responders respond to any proposal by rejecting
it if and only if after rejection they increase their payo¤. Otherwise they accept.
It is immediate that this pro�le is a Nash equilibrium for which the �nal payo¤
vector is z:
Let z be a Nash outcome. By Lemma 4,3 z 2 F1(N; v): Let k = max

x2F1(N;v)
x1:

By de�nition z1 � k: By Remark 1 z1 � k: Therefore z1 = k and consequently
z 2 B1(N; v).

Remark 2. The result of Theorem 4.4 is independent of the order of the respon-
ders.

Analyzing Example 4.1 again we can check that the set B1(N; v) could contain
more than one element. To prove this, �rst of all we will prove that if z belongs
to B1(N; v) then z1 = 1:

9



Assume z = (z1; z2; z3; z4; z5; z6) 2 B1(N; v) � F1(N; v) and z1 > 1: Therefore
zi = fi1(z) � f1i(z) for all i 6= 1: Let i be the non veto player with the lowest
payo¤ according to z: If z1 > 1 it is clear that f1i(z) > 2zi � zi. Therefore it is
not true that z 2 F1(N; v):
It can be checked that any vector x, such that x1 = 1 and at least three

responders receive 0 will be an element of B1(N; v):
Note that if the responders are playing optimally, any proposal of the proposer

ending in an outcome of B1(N; v) will be a best strategy for the proposer.
For these reasons we call the elements of the set B1(N; v) outcomes of equilib-

rium of the game G(N; v):
We have seen that the elements of B1(N; v) are not necessarily imputations.

In some cases, the set B1(N; v) does not contain any e¢ cient allocation.

Example 4.5. LetN = f1; 2; 3; 4; 5g be a set of players and consider the following
5-person veto balanced games (N; v) and (N;w) where

v(S) =

8<: 8
if jSj > 3
and 1 2 S

0 otherwise
and w(S) =

8>><>>:
8

if jSj > 3, 1 2 S
and S 6= N

12 if S = N
0 otherwise.

It is clear that for the game G(N; v) the proposal x1 = (8; 0; 0; 0; 0) is the
optimal strategy for the proposer and the �nal outcome will be x1: The result
does not depend on the strategies of the responders.
For the game G(N;w) it is still true that the proposal x1 will end in itself

independently of the strategies of the responders7. Therefore, any equilibrium
should generate an outcome in which the �nal payo¤ of the proposer is at least
8. But that is not possible if the proposer is forced to make e¢ cient proposals.
The reason is that any imputation z in which z1 is 8 or higher is not an element
of F1(N;w); as the following argument shows.
Assume z = (z1; z2; z3; z4; z5) is an e¢ cient outcome of an equilibrium in the

game G(N;w) and that z1 � 8: Clearly, z 6= (12; 0; 0; 0): By lemma 4.3 z 2
F1(N;w): Therefore zi = fi1(z) � f1i(z) for all i 6= 1: But, if z1 � 8 it is true that

7This result does not hold if we use the original Davis-Maschler reduced two-person games.
Since in the game (N;w) the allocation z = (8; 0; 0; 0; 0) is not e¢ cient, z(S) and w(N)�z(NnS)
do not coincide.
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f1i(z) �
P
l 6=1;i

zl > zi if i is the responder with lowest payo¤. Therefore it is not

true that z 2 F1(N; v):
This contradictory example is a direct consequence of the fact that the nucle-

olus, in the class of veto balanced games, does not satisfy aggregate monotonicity
(Arin and Feltkamp, 2004). Section 5 deals with this aspect in detail.
The next example shows that in some cases, the order of the responders in-

�uences the outcome of equilibrium. The example does not contradict Remark 2.
The set of Nash outcomes of the game G(N; v) is independent of the order of the
responders.

Example 4.6. Let N = f1; 2; 3; 4g be a set of players and consider the following
4-person veto balanced game (N; v) where

v(S) =

8>><>>:
1

if jSj > 1, 1 2 S
and S 6= N

1:5 if S = N
0 otherwise.

Consider the following proposal: (1:5; 0; 0; 0): Given this proposal it can be
checked that the �nal outcome of the game if the players play optimally will
be the following: x1 = 1, the player answering �rst gets 0:25 and the last two
responders obtain 0:125 each. Therefore this outcome depends on the order of the
responders.
Moreover the �nal outcome, (1; 0:25; 0:125; 0:125); an element of B1(N; v); is

a Nash outcome. To see this we need to prove that if z 2 B1(N; v) then z1 = 1:
Assume in contrast that there is z such that z 2 B1(N; v) and z = (1+"; z2; z3; z4)
where " > 0:Without loss of generality let z4 be the lowest payo¤and z3 the second
lowest payo¤.
Since z 2 F1(N; v) the following inequalities hold:

f31(z) = z3 � f13(z) = "+ z4;

f41(z) = z4 � f14(z) = "+ z3;
and combining the two inequalities we have the following contradiction

z4 � "+ z3 � "+ "+ z4:
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The example shows that the set B1(N; v) does not satisfy the equal treatment
property8, that is, equal players do not receive equal payo¤. It is clear that the set
always contain elements where equal players are treated equally since it is always
possible to decrease the payo¤ of the player with highest payo¤ until the payo¤s
are equalized.

The main result of this section (Theorem 4.4) does not change if we consider
a non veto player as the proposer. That is, given a TU veto balanced game
and its associated noncooperative game G(N; v) where the proposer is player i,
not necessarily a veto player, the outcome of any equilibrium of the game will
be an element of Bi(N; v): And any element of Bi(N; v) is the result of at least
one equilibrium. The proofs should be modi�ed slightly taking into account the
following equalities:

vxt�1(fkg) = �fkl(xt�1) + xt�1k and vxt�1(flg) = �flk(xt�1) + xt�1l :

And consequently

y = max(0;
1

2
(xt�1l + xt�1k � vxt�1(flg)� vxt�1(fkg))) =

= max(0;
1

2
(fkl(x

t�1) + flk(x
t�1))):

In fact, similar results can be obtained if we take a TU game without veto
players as the game with which we formulate the gameG(N; v): In this case it is not
clear how to determine the proposer. These results depend on the nonemptiness of
the sets denoted by Fi(N; v): Non emptiness is guaranteed if PK(N; v) � D(N; v):
There are games for which those sets are empty.

Example 4.7. Let N = f1; 2; 3g be a set of players and consider the following
3-person veto non balanced game (N; v) where

v(S) =

8>><>>:
8

if jSj > 1, 1 2 S
and S 6= N

4 if S = N
0 otherwise.

In this game the sets F2(N; v) and F3(N; v) are empty.

8A solution � satis�es the equal treatment property if for each (N; v) in �0 and for every
x 2 �(N; v) interchangeable players i; j are treated equally, i.e., xi = xj : Here, i and j are
interchangeable if v(S [ i) = v(S [ j) for all S � Nn fi; jg :
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5. Monotonicity, Nucleolus and Nash outcomes

In this section we prove the following result: The nucleolus (the kernel) of a veto
balanced game (N; v) is a Nash outcome of the game G(N; v) if and only if the
nucleolus has a monotonic behavior with respect to the proposer´s (a veto player)
payo¤.
A game is monotonic with respect to a player´s nucleolus if the decreasing of

the worth of the grand coalition implies the nonincreasing of the payo¤ provided
by the nucleolus to that player. Formally, referring to veto players

De�nition 5.1. A veto balanced game (N; v) is monotonic with respect to the
veto players nucleolus if for all (N;w) with a nonempty set of imputations such
that for all S 6= N , w(S) = v(S) and w(N) < v(N) it holds that �i(w) � �i(v)
for all i 2 T , where T is the set of veto players.

Note that the property refers to a �xed game and not to the solution. A game
could be monotonic with respect to the veto players nucleolus while the nucleolus
is not monotonic in the class of games to which the game belongs.
In the class of veto rich games (games with a veto player and a nonempty set

of imputations) the kernel and the nucleolus coincide. Therefore we can de�ne
the nucleolus as

�(N; v) = fx 2 I(N; v); fij(x) < fji(x) =) xj = 0g :

The next lemma shows that if for a feasible allocation the bilateral kernel
conditions hold for the veto player and the rest of the players then those bilateral
kernel conditions hold for any pair of players.

Lemma 5.2. Let (N; v) be a veto balanced TU game where player 1 is a veto
player. Let z be a feasible allocation such that f1i(z) = fi1(z) for all i 6= 1;
i 2 NnT and f1i(z) � fi1(z) for all i 6= 1; i 2 T where T = fi 2 N ; zi = 0g.
Then: a) fij(z) = fji(z) for all i; j 2 NnT , i 6= j: b) fji(z) � fij(z) for all i; j such
that j 2 NnT:

Proof. Note that fji(z) � zj and fi1(z) = zi:
a) Assume there exist players i; j such that f1i(z) = zi � fij(z) > fji(z):

Assume that fji(z) = zj: Then

f1i(z) = zi � fij(z) > fji(z) = zj = f1j(z):

13



If f1i(z) > f1j(z) then the coalition that player 1 is using to complain against
player j should contain player i and can therefore be used as a complaint of player
i against player j contradicting that fij(z) > f1j(z):
Therefore fji(z) < zj: That means that there exists a coalition S such that

j 2 S and i =2 S for which z(S) � v(S) = fij(z): But since (N; v) is a veto
balanced game such a coalition should contain the veto player 1: And therefore
f1i(z) � z(S)� v(S) = fji(z) < fij(z) � f1i(z):
This contradiction ends part a) of the proof.
b) The proof of this part is very similar to the previous one and is therefore

omitted.

Theorem 5.3. Let (N; v) be a veto balanced TU game where player 1 is a veto
player. Then �(N; v) 2 B1(N; v) if and only if the game (N; v) is monotonic with
respect to the veto players nucleolus.

Proof. Assume that the game (N; v) is not monotonic with respect to the veto
players nucleolus. That means that there exists a game (N;w) such that for all
S 6= N , w(S) = v(S) and w(N) < v(N) and it holds that �1(w) > �1(v): Since
�(w) 2 F1(v) it is clear that �(v) =2 B1(v):
Now assume that �(v) =2 B1(v) and let z be an element of B1(v): Let T =

fi 2 N ; zi = 0g : There are two cases:
a) f1i(z) = fi1(z) for all i 6= 1; i 2 NnT and f1j(z) � fj1(z) for all j 6= 1;

j 2 T: By Lemma 5.2 fij(z) = fji(z) for all i; j 2 NnT; i 6= j and fij(z) � fji(z)
for all i; j such that j 2 NnT and i 2 N: Therefore if z 6= �(v) it should be
because z(N) < v(N): And it is clear that the allocation z is the nucleolus of the
game (N;w) where for all S 6= N , w(S) = v(S) and w(N) = z(N): We conclude
that the game (N; v) is not monotonic with respect to the nucleolus.
b) f1i(z) < fi1(z) for any i 6= 1 and zi > 0: Since fi1(z) = zi by decreasing the

payo¤ of player i we can construct a new allocation y such that f1i(y) = fi1(y) or
f1i(y) < fi1(y) and yi = 0. In any case, z1 = y1 and therefore y 2 B1(N; v):
Now if there exists another player l such that f1l(y) < fl1(y) and yl > 0

we construct a new allocation x such that f1l(x) = fl1(x) or f1i(x) < fi1(x) and
xi = 0. Again, x1 = y1 and x 2 B1(N; v): Repeating this procedure we will end up
with an allocation that is the kernel (nucleolus) of a game where the only change
with respect to the game (N; v) is the fact that we have decreased the worth of the
grand coalition. If q is the �nal outcome of this procedure, q is the nucleolus of
the game (N; vq) where vq(N) = q(N) and vq(S) = v(S) for all S 6= N: This is so
because of the previous lemma; once the kernel bilateral conditions hold between
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the veto player and the rest of the players, those kernel bilateral conditions hold
for any pair of players. Therefore the game (N; v) is not monotonic with respect
to the veto players nucleolus.

A direct implication of the proof is the following corollary that could be useful
for computing B1(N; v).

Corollary 5.4. Let (N; v) be a veto balanced TU game where player 1 is a veto
player. Then there exist z 2 B1(N; v) and a game (N;w) where for all S 6= N ,
w(S) = v(S) and w(N) � v(N) such that z = �(N;w):

The results are not valid for the class of balanced games. The following exam-
ple is a 4-person balanced game that is monotonic with respect to the nucleolus
payo¤ of plater 1. But the nucleolus is not a Nash outcome of the game where
player 1 is the proposer.

Example 5.5. Let N = f1; 2; 3; 4g be a set of players and consider the following
4-person balanced game (N; v) where

v(S) =

8>>>><>>>>:
2 if S 2

�
f1; 2g ; f1; 3g ; f1; 4g ;

f1; 2; 3g ; f1; 2:4g ; f1; 3; 4g ;

�
1 if S 2 f2; 3; 4g
3 if S = N
0 otherwise.

Consider player 1 as the proposer. This game is monotonic with respect to
player 1

0
s nucleolus. And �(N; v) = (1:8; 0:4; 0:4; 0:4): But z = (2; 1; 0; 0) 2

F1(N; v) and therefore �(N; v) =2 B1(N; v):
In the class of balanced games Lemma 5.2 does not apply. The fact that given

an allocation the proposer equals the complaint of all the responders does not
imply that those complaints are bilaterally equalized among the responders.
This is one of the main characteristics of the mechanism. Only the bilateral

complaint between the proposer and the responder matters.

In Serrano (1997) a more complex non-cooperative model is analyzed. In
each period a pair of players bargains facing a given status quo (an allocation).
Once this bilateral bargaining is solved a new status quo is �xed (with at most
two coordinates changed) and a new pair of players is chosen for a bargaining
procedure. At the end all pair of players have faced a bargaining procedure.

15



6. Constrained egalitarianism: Egalitarian core and Nash
outcomes

In Section 3 we introduce a noncooperative game where the con�ict between the
proposer and the responder is solved by applying the standard solution in a special
two person game. In this section we modify this noncooperative game slightly:
The con�ict is solved by applying the constrained egalitarian allocation in a two
person game that is constructed as in the model of Section 3. Therefore we omit
the formal presentation of the new noncooperative game and we will refer to it as
the noncooperative game where two person games are solved by applying CEA:
The main theorem of this section gives the necessary and su¢ cient conditions to
identify all the Nash outcomes of this new game.
Dutta (1990) de�nes the constrained egalitarian solution for 2-person balanced

games. Let (fi; jg ; v) be a 2-person balanced game:With no loss of generality, let
v(fig) � v(fjg): The constrained egalitarian solution of the game, CE(fi; jg ; v),
provides

CEj(fi; jg ; v) : = max

�
v(fi; jg)

2
; v(fjg)

�
,

CEi(fi; jg ; v) = v(fi; jg)� CEj(fi; jg ; v):

If the two-person game is not balanced we apply the following de�nition (Arin
and Inarra, 2002). Let (fi; jg ; v) be a 2-person non balanced game:With no loss of
generality, let v(fig) � v(fjg) and denote by d = v(fi; jg)� v(fig)� v(fjg): The
constrained egalitarian solution of the game, CE(fi; jg ; v), provides

CEj(fi; jg ; v) : = max

�
v(fi; jg)

2
; v(fjg+ d

�
;

CEi(fi; jg ; v) = v(fi; jg)� CEj(fi; jg ; v):

A solution � de�ned on a class of games, �0; satis�es the constrained egalitar-
ian property, CEP, if it coincides with the constrained egalitarian solution for all
2-person games belonging to �0.
In the class of veto balanced games the egalitarian core (Arin and Inarra9,

2001) is the maximal set satisfying the Davis-Maschler reduced game property and

9See also Hougaard, Peleg and Thorlund-Petersen (2001).
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CEP10. The egalitarian core of a balanced game (N; v) denoted by EC(N:v), is
the set

EC(N; v) := fx 2 C(N; v) j xi > xj ) fij(x) = 0g :
There are di¤erent single-valued core solutions that satisfy Davis-Maschler

reduced game property and CEP. Clearly, they all belong to the egalitarian core.
The following question arises immediately: Which is the set of Nash outcomes

of the noncooperative game where two person games are solved by applying CEA?
Given the characterization of the egalitarian core, the allocations contained in it
appear as candidates to be Nash outcomes of the new game. But, in general, this
is not the case. We identify the set of Nash outcomes and we provide an example
for which this set and the egalitarian core have an empty intersection.
The results and proofs are quite similar to the ones obtained in Section 4.

Roughly speaking, the role played by bilateral kernel conditions between the pro-
poser and the responders is now played by egalitarian core bilateral conditions
between the proposer and the responders.
Let (N; v) be a veto balanced game where player 1 is a veto player. The set

of bilaterally egalitarian balanced allocations for player 1 is

EF1(N; v) = fx 2 D(N; v) : x1 > xj ) f1j(x) � 0g

while the set of optimal allocations for player 1 in the set EF1(N; v) is de�ned
as follows:

EB1(N; v) = argmax
x2EF1(N;v)

x1:

Note that since EF1(N; v) is a nonempty (it contains the egalitarian core)
compact set the set EB1(N; v) is nonempty.
The following lemma characterizes the optimal behavior of the responders

facing a proposal x.

Lemma 6.1. Let (N; v) be a veto balanced TU game and let G(N; v) be its
associated noncooperative game where two person games are solved by applying
CEA. Let xt�1 be a non negative proposal at stage t and let i be the responder
playing optimally at this stage. If xt�1i < xt�11 and f1i(xt�1) > 0 then player i will
reject the proposal xt�1.

10The egalitarian set (Arin and Inarra, 2002) is the maximal set satisfying the Davis-Maschler
reduced game property and CEP. In the class of veto balanced games the egalitarian set and
the egalitarian core coincide.
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Proof. The responder playing at stage t should compare the amount yi that
results after rejection with the amount xt�1i resulting after accepting. Note that
vxt�1(f1g) = �f1i(xt�1) + xt�11 : If yi > xt�1i then

yi = min
n
xt�11 +xt�1i

2
; xt�11 + xt�1i � (f1i(xt�1) + xt�11 )

o
=

min
n
xt�11 +xt�1i

2
; xt�1i + f1i(x

t�1)
o
> xt�1i :

Therefore if xt�1i < xt�11 and f1i(xt�1) > 0 then yi > xt�1i :
Note that after rejection, either xti = x

t
1 or x

t
1 = �f1i(xt�1) + xt�11 and conse-

quently f1i(xt) = �f1i(xt�1)� (xt1 � (�f1i(xt�1) + xt�11 )) = 0:

With the previous lemma the proof of the following lemma and theorem are
almost identical to the proof of Lemma 4.3 and Theorem 4.4.

Lemma 6.2. Let (N; v) be a veto balanced TU game and let G(N; v) be its
associated noncooperative game where two person games are solved applying by
CEA. Given any proposal x1; and if the responders play best response strategies,
the �nal outcome of the game will be an element of EF1(N; v): That is, xn 2
EF1(N; v):

Theorem 6.3. Let (N; v) be a veto balanced TU game and let G(N; v) be its
associated noncooperative game where two person games are solved applying by
CEA. Let z be a feasible and non negative allocation. Then z is a Nash outcome
if and only if z 2 EB1(N; v).

In general, the set of Nash outcomes does not need to contain egalitarian
single-valued solutions.

Example 6.4. Let N = f1; 2; 3g be a set of players and consider the following
3-person veto non balanced game (N; v) where

v(S) =

8>><>>:
8

if jSj > 1, 1 2 S
and S 6= N

12 if S = N
0 otherwise.

It can immediately be checked that EB1(N; v) = f(8; 0; 0)g. On the other
hand, the egalitarian core of this game is EC(N; v) = f(4; 4; 4)g : Therefore the
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egalitarian single-valued solutions cannot be obtained as Nash outcomes of the
noncooperative game associated with (N; v). Egalitarian single-valued solutions
do not satisfy the aggregate-monotonicity property in the class of veto balanced
games.
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