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Facultad de Ciencias Económicas
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1 Introduction

Patent data are widely recognized as an important source for analyses on innovation,

R&D and technical changes (e.g. Basberg (1987), Griliches (1990)). The book by Jaffe &

Trajtenberg (2002b) is without doubt one of the major elements encouraging widespread

use of patent data in economic research, as it includes a huge data base on U.S. patent

data and lists the main papers which analyze these data. These data1 represent the

culmination of long research and major effort by many researchers and institutions, as

described in Hall, Jaffe & Trajtenberg (2002). This patent data base includes, along with

other information, almost three million U.S. utility patents granted between January 1963

and December 1999 together with all citations of these patents made between 1975 and

1999. Detailed descriptions of the variables included and classification according to the

technological sectors to which the inventions patented belong (used also in the present

paper) can be found in Hall et al. (2002).

The number of citations itself does not indicate whether a patent is highly or lowly

cited. Such information should be used comparatively. As stated by Hall et al. (2002),

determining the appropriate benchmark is complicated due to unavoidable time truncation

of the number of citations given a start and end date of the data sample and due to time

and technological area differences which also affect citation intensity. Determining how to

treat this systematic differences in citation intensities is a challenging task.

Hall et al. (2002) propose two different generic approaches. The first one, called the

fixed-effect approach, proposes rescaling all citation intensities and expressing them as

ratios to the mean citation intensity for patents in the same group of patents to which

the patent in question belongs. This procedure eliminates any systematic changes over

time, the truncation effect and effects caused by changes in the number of patents making

citations. Unluckily many real effects can be lost because of this approach, as it does

not attempt to separate real differences between groups of patents from those caused by

truncation or propensity to cite.

The other approach, called the quasi-structural approach, is based on two identifying
1The data are also available on the NBER website at www.nber.org
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assumptions of proportionality and stationarity. The first of them states that the shape

of the lag distribution over time is independent of the total number of citations received

and the second that this distribution does not change over time. Our analysis is based on

this approach.

Then, focusing on the benchmarking of patents, to the best of our knowledge there

have been only parametric model based approaches to treating time and technological

sector differences between patents, which is one of the points to be taken into account

when comparing patent citations. In this paper we propose a more flexible solution to this

problem by using nonparametric estimation techniques.

The rest of the paper is organized as follows. Section 2 describes the model and the

estimation procedure applied based on Generalized Additive Models (GAM). Section 3

presents the outcomes obtained and compares them to already-published results based on

the nonlinear estimation method. Finally, Section 4 concludes.

2 Model specification and estimation

We focus our study on the analysis of the multiplicative citation model proposed by

Hall, Jaffe & Trajtenberg (2001) and Hall et al. (2002), which is based on the preliminary

model studied in Caballero & Jaffe (2002) and Jaffe & Trajtenberg (2002a). The linearized

logarithmic model equivalent to the multiplicative one proposed in the said papers is:

log[Ck,s,t/Pk,s] = α0 + αs + αt + αk + fk(L) + uk,s,t (1)

t = to, . . . , T s = so, . . . , t− 1 k = 1, . . . ,K

where Ck,s,t is the total number of citations to patents in year s and technological field

k coming from patents in year t and Pk,s is the total patents observed in technological

field k in year s. Hence the dependent variable represents the logarithm of the probability

of citing an (s, k) patent in the citing year t. The coefficients αj j = 0, s, t, k are the

logarithms of the coefficients from the initial multiplicative model. Coefficient α0 is the

common constant, the base, for a given field, cited-year and citing-year. The coefficients

αs, αt, αk correspond to the cited-year (s), citing-year (t) and field (k) effects and must be

interpreted relatively to the base group. That is, the value of exp(αk) indicates whether
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a patent belonging to technological field k, having the same cited-year and the citing-year

as the patents considered in the base group, is more or less likely to be cited than those

in the base group. Interpretations of αs and αt can be obtained in a similar way. The

unknown function fk(L) depends on the citation-lag distribution (L = t− s) and uk,s,t is

the error term.

Estimation of model (1) using parametric estimation methods is unfeasible without

specifying the function that relates the citation-lag distribution (fk(L)) with the lag (L) for

each technological field (k). Since there is no information about these functions, Hall et al.

(2002) choose the same specification as Caballero & Jaffe (2002), who based their selection

on rational features. They assume that each function fk(L) must be able to combine the

effects of obsolescence and the diffusion path. The first characteristic, obsolescence, does

not depend exactly on the course of time but is formed due to the accumulation of new

ideas (patents) over time. The second, diffusion lag, appears because new ideas (patents)

need some time to be seen by other inventors. Given this reasoning, the following function

for describing the shape of the citation-lag distribution is proposed

fk(L) = exp(−β1kL)(1− exp(β2kL)), (2)

where β1k represents the rate of obsolescence of knowledge and β2k measures the diffusion

rate. Despite the proposition of the same double exponential function for all technological

fields, both rates are allowed to vary from one field to another. The ratio 1/β1k becomes

the modal lag, the lag that receives the highest citation frequency, and consequently the

function fk(L) shifts to the left with larger values of β1k. That is, the maximum is achieved

earlier, so the obsolescence begins also earlier. The ratio β2k/β1k represents the highest

citation frequency, so, increases on β2k, ceteris paribus, result in higher citation intensities

(see Caballero & Jaffe (2002) for more details).

This paper has two aims. First, we propose an alternative method for estimating

(1) based on nonparametric techniques, which allows more flexible specifications of the

citation-lag distribution function. Its flexibility is due to the possibility of estimating the

citation-lag distribution function without imposing any structure, that is, we do not need

to specify anything about how it varies over the lag. This helps to avoid the well known

inconsistency problems derived from misspecification if the prior assumptions about spec-
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ified function are incorrect. A posteriori, the function estimated through nonparametric

techniques can be analyzed to verify whether it contains both obsolescence and lag diffu-

sion effects, and whether it follows a double exponential function.

The second objective of this paper is to generalize the specification of the citation

model, allowing for more variability over the coefficients. This generalized model includes

model (1) as a particular case and it reduces once again by introducing more variability

problems of misspecification and offers the possibility of analyzing whether the cited and

citing year coefficients are common for all technological fields.

The first objective is achieved by estimating model (1) using GAM. This estimation

procedure, introduced by Hastie & Tibshirani (1990), is based on the simple idea that a

dependent variable can be explained by the sum of a finite number of unknown functions

that depend on one or more explanatory variables. There are several advantages of using

this nonparametric estimation technique. First, because of its additive relation, it does

not suffer from the problem derived from dimensionality, which is one of the few common

problems in nonparametric estimation methods (see Härdle (1990), Eubank (1988)). Sec-

ond, it does not need to specify the unknown functions of the systematic part and the only

assumption to be made is that these functions are smooth enough over their corresponding

variables. Since each function can be any linear or nonlinear function, the classical linear

regression model can be obtained when all functions are equal to a coefficient multiplied by

the explanatory variable. In our case, model (1) brings together a combination of known

and unknown functions. The functions for the field, cited and citing effects are considered

as step functions (dummy variables) and the unknown functions correspond to the lag

distribution functions for each field.

The GAM estimation procedure is based on the minimization of the sum of squared

residuals subject to a penalizing term. Hastie & Tibshirani (1990) proved that using

the backfitting algorithm consisting of minimizing the penalized sum of squared residuals

converges to the unique solution of the system independently of the initial values. The

flexibility of this method is so great that each function can be estimated by using different

smoothers: Kernel methods, KNN, splines, local polynomials, etc. If the unknown func-

tions are estimated by smoothing splines, the optimization problem for the estimation of
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model (1) is given by the following penalized sum of squared residuals:

min
α0,αt,αs,αk,fk

{∑T

t=to+1

∑S

s=so+1

∑K

k=2
(log(Ck,s,t/Pk,s)− α0 − αt − αs − αk − fk(L))2

+
∑K

k=1
λk

∫ (
f ′′k (`)

)2
d`

}
(3)

where α0 represents the base, so that for identification of all coefficients first technological

field, citing-year and cited-year are dropped out from the first three sums. The function

f ′′k (·) stands for the second order derivative and λk, called the bandwidth or smoothness

parameter, regulates the amount of smoothness imposed over its corresponding function.

If λk is small, roughness is penalized lightly and consequently the amount of smoothness

is low. In the limit case of no smoothness (λk = 0 ∀k) when roughness is not penalized at

all, the optimization problem achieves its minimum with a null sum of squared residuals,

a null bias for f̂k(L) and an extremely high variance. In this case the resulting estimation

makes no sense. Alternatively, as λk becomes larger, roughness is penalized more and the

degree of smoothness imposed increases. In this case, the bias for f̂k(L) increases but its

variance tends to decrease. Finally, in the limit case of total smoothness (λk →∞ ∀k) the

estimated functions become linear, and the classical linear regression model is reached as

a particular case. Therefore, the role of the smoothness parameters is to reach a trade-off

between the asymptotic squared bias and error variance.

Hall et al. (2002) estimate model (1) using minimization problem (3) without the

penalizing term by nonlinear methods and substituting each function fk(L) by the double

exponential function defined in (2) subject to the constraint
∑K

k=1 exp(fk(L)) = 1. Given

the parametric structure chosen for the lag distribution, not all coefficients are identified

so an additional restriction is needed. Instead of allowing the effect of the cited-years (αs)

to vary over all years, its variability is restricted to five year intervals and the first two

year interval is considered as the base.

As a first approach, we maintain the parametric part of model (1) almost unchanged.

We merely allow the cited-year effect to vary over the whole range of years, and our key

modification is introduced through the lag distribution functions since we do not impose

any structure or restriction on them. Thus, we propose estimating model (1) by mini-

mizing (3) using GAM methodology, not only because it offers a consistent estimator for

all coefficients, including the lag distribution functions, but also because the estimation
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outcomes stand for a first descriptive exercise of issues inherent in the data. The non-

parametric estimation method described is flexible enough to include the lag distribution

function defined in (2) and subsequently the results obtained by using this method should

be better than or at least as good as those obtained in Hall et al. (2002). In this sense

it seems more appropriate to estimate the lag functions without imposing any structure.

After that, the estimated function for each sector can be compared to the double expo-

nential function in order to verify its appropriateness. Therefore the GAM estimation is

a useful descriptive tool, since it can throw some light on the question of what parametric

function can be proposed in order to avoid problems of misspecification and to check a

priori suspects.

The second objective of our paper deals with the amount of variability allowed for

the remaining coefficients of the model, that is, whether the restrictions imposed on the

alpha-coefficients in (1) can be empirically supported by the data. Let us summarize the

assumptions of model (1): First, each technological field is assumed to have a different

effect, ceteris paribus, on the probability of being cited but each remains constant over

time. Second, the citing- and the cited-year effects are considered independent among

years and, finally, citing- and cited-year effects are assumed to be common across the

technological fields.

The first assumption seems to be quite reasonable since the technological fields have

been formed by aggregating classes with the same characteristics. If the fields have been

correctly classified a step function differentiating each field will be suffice.2

Nonetheless, the last two assumptions are hard to defend. First, let us analyze the

second assumption in detail. According to the specification of model (1), the citing-year

effect is independent over years. There is no doubt that this effect changes over years,

but it is also true that drastic changes are not expected. A more realistic specification is

to consider a smooth path, that is a smooth function varying over all citing-years, that is

αt = g1(t). The same can be said about the cited-year effect so a smooth function varying
2On the other hand, the assumption that the technological effect is constant over time can be questioned.

If the model incorporates a time tendency term (αt), then it is not appropriate to introduce another term
that varies over time because it would cause an identification problem. Further analysis could consist of
checking whether these two effects are additive, that is the appropriateness of considering αkt = αk + αt,
but for now we consider this first assumption reasonable.
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over the cited years αs = g2(s) is considered. Thus the dummy variables are substituted

by smooth functions, and the following generalization of model (1) is obtained:

log(Ck,s,t/Pk,s) = α0 + αk + g1(s) + g2(t) + fk(L) + uk,s,t , (4)

which can be estimated by GAM minimizing:

min
α0,αk,g1,g2,fk

{∑T

t=to

∑t−1

s=so

K∑

k=2

(log(Ck,s,t/Pk,s)− α0 − αk − g1(s)− g2(t)− fk(L))2

+λo
1

∫ (
g′′1(`)

)2
d` + λo

2

∫ (
g′′2(`)

)2
d` +

K∑

k=1

λk

∫ (
f ′′k (`)

)2
d`

}
, (5)

where in order to penalize roughness over the citing- and cited- year coefficients two penalty

terms, controlled by the smoothing parameters λo
1 and λo

2, have been added. Large values of

λo
1 and λo

2 imply a large amount of imposed smoothness and small differences in adjacent

year effects. The smoothness introduced over the citing- and cited-year effects in the

GAM estimation takes into account values of previous and subsequent years and not only

observations corresponding to the same year as when dummy variables are used. If the

control parameters λo
1 and λo

2 are equal to zero no smoothness is introduced, the functions

g1(s) and g2(t) are estimated using a subsample containing observations corresponding

to the same cited and citing years respectively. Subsequently, we reach the same results

which are obtained by dummy variable specification (Model (1)).

Finally, when considering the third implicit assumption, there is no previous informa-

tion that leads to restricting the citing and cited year effects to being the same across the

different technological fields. In this sense, a natural generalization consists of allowing

these effects to vary across defined industrial sectors, that is3

log(Ck,s,t/Pk,s) = α∗k + g1k(s) + g2k(t) + fk(L) + uk,s,t. (6)

The functions g1k(s) and g2k(t) have the same meaning as in (4) but correspond to the

k-th technological field. Model (6) can be estimated by GAM minimizing the following

penalized sum of squared residuals:

min
α∗

k
,g1k,g2k,fk

{∑T

t=to

∑t−1

s=so

∑K

k=1
(log(Ck,s,t/Pk,s)− α∗k − g1k(s)− g2k(t)− fk(L))2

+
K∑

k=1

(
λo

1k

∫ (
g′′1k(`)

)2
d` + λo

2k

∫ (
g′′2k(`)

)2
d` + λk

∫ (
f ′′k (`)

)2
d`

)}
. (7)

3The relation between the alpha-coefficients is that α∗k = α0 +αk except for the base technological field
for which α∗k = α0.
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The restricted case of common citing-year and cited-year effects across technological fields

leads to the same smoothness parameters for all technological fields, that is: λo
1k = λo

1 and

λo
2k = λo

2, ∀k.

From this last generalized model, models (1) and (4) can be obtained as particular

cases for determined smoothness degrees. In this sense, the selection of the smoothness

parameters is an important prior step that must be tackled before minimizing the penalized

sum of squared residuals. In order to select these smoothing parameters, several data

driven methods have been proposed and analyzed in nonparametric estimation literature.

3 Empirical Results

In this section we present parametric and semiparametric estimations of models (1), (4)

and (6). First, we describe the results obtained by Hall et al. (2002) and Hall et al. (2001)

where model (1) is estimated using nonlinear methods in order to solve the problem

of truncated citations with the aim of constructing a citation-weighted stock of patents

held by a firm. So the total citations of any patent which portion of the citation life

we observe can be straightforwardly estimated by dividing the observed citations by the

fraction of the population distribution that lies in the time interval for which citations are

observed. Their results show that there are significant technological field effects and that

the citing-year effect is clearly significant, presenting an increasing trend. By contrast,

the cited-year effect is less variable and shows no clear pattern. The estimations of the

parameters β1 and β2 define the citation-lag distribution by field after removing cited-year

and citing-year effects. According their estimation results, citations in the Computers and

Communications field appear as the fastest and citations in the Drugs and Medical field

the slowest.

Our data set is the same as that used in Hall et al. (2002) and aggregates records from

six technological fields (Chemical, Computers and Communications, Drugs and Medical,

Electrical and Electronics, Mechanical and Others). The application years run from 1963

to 1999 and the citation years from 1976 to 1999. Hall et al. (2002) updates through 1999

the estimations presented in previous paper (Hall et al. (2001)) based on data running
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from 1963 to 1994.4

Figures 1 and 2 present the estimation of model (1) using two different approaches.

The first one, used by Hall et al. (2002, Table 6) and labelled as Param. Model in the

legend, assumes that the functions fk(L) are defined as double exponential functions of

two parameters (see equation (2)) and the model is estimated by nonlinear least squares.

The second one (labelled as GAM in the legend) leaves these functions unspecified and

estimates them through smoothing splines (see minimization function (3)).

Figure 1 shows the estimated citation-lag distribution under the two criteria together

with the 95% confidence interval from the GAM estimation. As can be observed, for all

technological fields the specification of fk(L) as double exponential functions proposed by

Caballero & Jaffe (2002) for model (1) belongs to the 95% confidence interval of the GAM

estimation. Thus, the parametric functions they propose for the citation-lag distribution

functions are supported by the data. Figure 2, on the other hand, shows the estimated

citing- and cited-year effects and the corresponding 95% confidence interval of the GAM

estimation. Taking into account these results, there are no significant differences between

these two approaches in the citing and cited years (αs and αt in model (1)) when both are

treated through dummy variables and only the non-linear part of the model, that is the

citation-lag distribution, is treated differently.

Figures 3 and 4 compare the parametric estimation results of model (1) using the

exponential citation-lag distribution and the nonparametric estimation results obtained

from model (4). The differences between these two models rest not only on the specification

of the citation-lag distribution, as before, but also on more flexibility in the specifications

of the citing and cited effects. Notwithstanding the fact that these effects are still required

to be the same for all technological fields, smooth time functions are considered for them,

instead of treating them through dummies. As expected, the major differences appear in

the shapes of these two effects.

Finally, Figure 5 compares the estimation results obtained from models (1) and (6).
4The added years however suffer from missing observations due to the truncation problem, which affects

any approach. As the time gets closer to the final year, there is a considerable lack of patents filed in the
last years that have not been granted yet and are therefore not included in the data set. Thus the estimated
values for these years should be interpreted with caution.
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Figure 1: Fraction of 30-Years Citation Total. GAM: Parametric (Common Citing-
and Cited-year effects) + Nonparametric (Sector dependent Citation lag)
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This last model is the most flexible approach analyzed here since it allows time citing-

and cited-year effects to be different across the technological fields. Given this important

generalization, significant differences between the two approaches can be found. The

major differences can be observed in the citing-year effect, which in the GAM approach

presents a more stable behavior. Regarding the citation-lag distribution estimation, the

most important difference between the two estimations is found for the Computers &

Communication sector, where the the citation-lag distribution estimated by GAM presents

a lower peak for the first years at the expense of its fatter tail.

Table 1 presents the residual sum of squares for the parametric model (see Hall et al.

(2002, Table 6)) and the three models estimated by the nonparametric method presented
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Figure 2: Citing and Cited Year Effects. GAM: Nonparametric (Sector dependent
Citation lag)
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Table 1: Residual sum of squares

Param. Model GAM
Model (1) Model (1) Model (4) Model (6)

RSS 112.49 73.71 71.79 57.05

above. It can be concluded that as well as introducing more flexibility into the original

dummy-variable-based model, smaller residual sums of squares are obtained.

Let us focus now on the pure propensity-to-cite effect (Hall et al. (2002, Table 7))

in order to understand the importance of treating each field separately. The citing-year

effect estimated is decomposed into the rise in the number of citing patents and the pure

propensity-to-cite, which is obtained just by dividing the estimated citing-year function

g2k(t) by the index of the number of potential citing patents by application year of the

corresponding sector.

Figure 6 compares the pure propensity-to-cite effect. The common effect for all sectors

obtained from the parametric model is represented by the solid line. The effects estimated

for each field using GAM methodology are in dashed or dotted lines. The general conclu-

sion obtained for the parametric model, to wit on that the pure propensity-to-cite is rising

until 1995, accounting for about a 50% increase in citations made, is not sustainable for all

sectors. Taking into account the differences between sectors, we can say that for sectors
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Figure 3: Fraction of 30-Years Citation Total. GAM: Nonparametric (Common
Citing- and Cited-year effects, Sector dependent Citation lag)
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including Chemical, Mechanical and Others the pure propensity-to-cite is rising until 1995

by approximately 50%, as stated by the parametric model, but for the Electrical sector the

increase is only about 30%. For the Drugs & Medical and Computers & Communication

sectors this propensity has a decreasing trend for almost the whole sample period.

The next interesting step is a comparison between the common estimated pure propensity-

to-cite effect and the raw change in the average number of citations per patent. Figure

7 shows these values, where averages present an increasing trend. For the common pure

propensity-to-cite estimated by the parametric model there is an increase of about 5 to 10

between 1975 and 1995 (100%). It is observed that half of this increase is due to a rising

pure propensity-to-cite but the other half is due to the higher number of patents available
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Figure 4: Citing- and Cited-Year Effects. GAM: Nonparametric (Common Citing-
and Cited-year effects, Sector dependent Citation lag)

Citing Year Effect

d
f=

2
3

.4

1975 1980 1985 1990 1995

0
1

2
3

GAM
95% CI
Param. Model

Cited Year Effect

d
f=

1
5

.1

1970 1980 1990

0
.0

0
.5

1
.0

1
.5

GAM
95% CI
Param. Model

to be cited (see Hall et al. (2002, p. 446)). However if this comparison is made for each

sector an interesting conclusion can be drawn. Figure 7 shows that the average number

of citations per sector rises between 1975 and 1995 by about 100% in all sectors, but the

pure propensity-to-cite effect presented in Figure 6 behaves differently for each sector. So

following the previous reasoning, we can say that for the Drugs & Medical and Computers

& Communication sectors (fast developing sectors for the years analyzed) the increase in

the average number of citations per patent is because there are more patents available to

be cited and not because of a rising propensity-to-cite. This conclusion is also confirmed in

Table 2, where the increases in the number of patents applications for the years mentioned

in these two sectors are 390% and 496% respectively, approximately eight and ten times

higher than for the Chemical, Mechanical and Other sectors. The situation is similar for

the Electrical & Electronics sector, where the increase in the number of applied patents is

125% and pure propensity-to-cite increases more slowly than in the Chemical, Mechanical

and Other sectors for which the numbers of patent applications only rise 52%, 43% and

54% respectively.
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Table 2: Total patent applications by sectors

Chemical Computers Drugs Electrical Mechanical Other
& & &

Communication Medical Electronics
1975 15 436 4 129 3 807 10 361 16 924 15 231
1976 14 970 4 201 3 681 10 352 16 825 15 775
1977 15 063 4 237 3 775 10 387 16 568 15 948
1978 14 955 4 420 3 746 10 610 16 154 15 716
1979 14 675 4 651 4 143 10 543 16 252 15 462
1980 15 067 5 328 4 194 11 119 15 826 14 957
1981 14 466 5 458 4 313 10 693 14 843 14 137
1982 14 570 5 862 4 538 11 028 15 070 13 941
1983 13 395 5 750 4 408 10 428 14 038 13 544
1984 14 346 6 067 5 074 11 300 15 420 14 864
1985 14 852 6 626 5 706 12 125 16 694 15 439
1986 14 884 7 332 6 116 12 918 17 400 16 438
1987 16 112 8 334 6 990 13 865 18 345 17 812
1988 17 724 9 763 7 654 15 675 20 211 19 107
1989 18 961 10 910 8 166 17 129 21 005 19 906
1990 19 140 11 707 8 820 17 500 21 578 20 509
1991 18 800 12 899 8 805 18 108 21 544 19 860
1992 19 490 13 701 9 994 18 668 21 310 20 144
1993 19 407 14 872 11 427 18 791 21 363 20 988
1994 20 347 19 377 14 345 21 433 22 637 22 241
1995 23 496 24 602 18 659 23 306 24 147 23 451

1975-1995
Increase 52% 496% 390% 125% 43% 54%

4 Conclusion

The estimation of the citation model using GAM methodology allowing for different behav-

iors of the cited- and citing-year effect for each technological sector brings new knowledge

about the NBER Patent-Citations Data File. This methodology generalizes the paramet-

ric model estimated in Hall et al. (2002), but for adequate values of smoothness degrees,

these results can be obtained as a particular case. As mentioned above, results of the non-

parametric methods can be employed as a descriptive tool. Regarding the lag-distribution,

and answering the first question of our paper, we conclude that the double exponential
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function defined in Hall et al. (2002) is a reasonable proposal supported by the data. In

answer to the second question of our paper, important differences between sectors are

obtained for the citing- and cited-year effects. Thus the requirement that these effects

must be common to all sectors is not supported by the data and its imposition leads to

misspecification and incorrect conclusions.

Hall et al. (2002, p. 415) describe important changes in the shares of total patent

applications over time according to the six technological categories, and find a steady

decline in the three traditional fields (Chemical, Mechanical, and Others), stable behavior

for Electrical & Electronics and steep increases for the Computers & Communication and

Drugs & Medical fields (see Table 2). They state that “this reflects the much-heralded

technological revolution of our times, associated with the rise of information technologies

and the growing importance of health care technologies”. We add to this conclusion that

the pure propensity-to-cite proper to each technological field is closely related to these

shares and it highlights a clear difference between traditional and advanced fields.

Treating all technological sectors together could lead to the erroneous conclusion that

the common rising propensity-to-cite is a reflection of higher fertility for more recent co-

horts of patents or for an artifactual change in the propensity. Nevertheless, the decreasing

propensity to cite accompanied by an increasing number of citations in advanced sectors

invalidates this reasoning, showing that the only cause in these fields is the high fertility

of recent cohorts. Nonetheless, we do not know whether the differences between sectors

in citations reflects a real phenomenon or different citation practices that are artifactual.

They are probably a result of a mixture of the two causes and should be analysed in future

research.
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Figure 5: Parametric and nonparametric estimation results for models (1) and (6)
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Figure 6: Pure propensity to cite effectPure propensity-to-cite effect
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Figure 7: Average number of citations made by sectorsAverage number of citations made by sectors
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