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Abstract

The estimation of the memory parameter in perturbed long memory series has re-
cently attracted attention motivated especially by the strong persistence of the volatility
in many financial and economic time series and the use of Long Memory in Stochastic
Volatility (LMSV) processes to model such a behaviour. This paper discusses frequency
domain semiparametric estimation of the memory parameter and proposes an extension
of the log periodogram regression which explicitly accounts for the added noise, compar-
ing it, asymptotically and in finite samples, with similar extant techniques. Contrary
to the non linear log periodogram regression of Sun and Phillips (2003), we do not use
a linear approximation of the logarithmic term which accounts for the added noise. A
reduction of the asymptotic bias is achieved in this way and makes possible a faster
convergence in long memory signal plus noise series by permitting a larger bandwidth.
Monte Carlo results confirm the bias reduction but at the cost of a higher variability. An
application to a series of returns of the Spanish Ibex35 stock index is finally included.
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1 Introduction

The estimation of the memory parameter in perturbed long memory processes has recently

received considerable attention motivated especially by the strong persistence found in the

volatility of many financial and economic time series. Alternatively to the different exten-

sions of ARCH and GARCH processes, the Long Memory in Stochastic Volatility (LMSV)

has proved an useful tool to model such a strong persistent volatility. A logarithmic transfor-

mation of the squared series becomes a long memory process perturbed by an additive noise

where the long memory signal corresponds to the volatility of the original series. As a result

estimation of the memory parameter of the volatility component corresponds to a problem

of estimation in a long memory signal plus noise model. Several estimation techniques have

been proposed in this context (Harvey(1998), Breidt et al.(1998), Deo and Hurvich (2001),

Sun and Phillips (2003), Arteche (2004), Hurvich et al. (2005)).

The perturbed long memory series recently considered in the literature are of the form,

zt = µ + yt + ut (1)

where µ is a finite constant, ut is a weakly dependent process with a spectral density fu(λ)

that is continuous on [−π, π], bounded above and away from zero, and yt is a long memory

(LM) process characterized by a spectral density function satisfying

fy(λ) = Cλ−2d0(1 + O(λα)) as λ → 0 (2)

for a positive finite constant C, α ∈ [1, 2] and 0 < d0 < 0.5. The LMSV model considers ut

a non normal white noise but in a more general signal plus noise ut can be a serially weakly

dependent process as in Sun and Phillips (2003) and Arteche (2004). The constant α is a

spectral smoothness parameter which determines the adequacy of the local specification of

the spectral density of yt at frequencies around the origin. The interval 1 ≤ α ≤ 2 covers

the most interesting situations. In parametric standard LM processes, such as the fractional

ARIMA, α = 2 and α = 1 in the seasonal or cyclical long memory processes described in

Arteche and Robinson (1999) if the long memory takes part at some frequency different

from 0. The condition of positive memory 0 < d0 < 0.5 is usually imposed when dealing

with frequency domain estimation in perturbed long memory processes and guarantees the

asymptotic equivalence between spectral densities of yt and zt. Otherwise the memory of zt
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corresponds to that of the noise (d0 = 0). For ut uncorrelated with yt the spectral density

of zt is

fz(λ) = fy(λ) + fu(λ) = Cλ−2d0(1 + O(λα)) + fu(λ) ∼ Cλ−2d0

(
1 +

fu(0)
C

λ2d0 + O(λα)
)

(3)

as λ → 0 and zt inherits the memory properties of yt in the sense that both share the same

memory parameter d0. However the spectral smoothness parameter changes and for zt is

min{2d0, α} = 2d0.

The semiparametric estimators considered in this paper are based on the minimization

of some function of the difference between the periodogram and the local specification of the

spectral density in (3). The periodogram of zt does not approximate accurately Cλ−2d0 and

this causes a bias which translates into the different estimators. This is discussed in Section

2. As a result estimation techniques have been proposed that consider explicitly the added

noise in the local specification of the spectral density of zt. They are described in Section

3. Section 4 proposes an estimator based on an extension of the log periodogram regression

and establishes its asymptotic properties. Section 5 compares the “optimal” bandwidths

defined as the minimizers of an approximation of the mean square error of the different

semiparametric estimators considered. The performance in finite sample perturbed LM

series is discussed in Section 6 by means of Monte Carlo. Section 7 shows an application to

a series of returns of the Spanish Ibex35 stock index. Finally section 8 concludes. Technical

details are placed in the Appendix.

2 Periodogram and local specification of the spectral density

Define

Izj = Iz(λj) =
1

2πn

∣∣∣∣∣
n∑

t=1

zt exp(−iλjt)

∣∣∣∣∣
2

the periodogram of the series zt, t = 1, ..., n, at Fourier frequency λj = 2πj/n. The proper-

ties of several semiparametric estimators of d0 depend on the adequacy of the approximation

of the periodogram to the local specification of the spectral density. Hurvich and Beltrao

(1993), Robinson (1995a) and Arteche and Velasco (2005) in an asymmetric long memory

context, observed that the asymptotic relative bias of the periodogram produces the bias

typically encountered in semiparametric estimates of the memory parameters.
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Deo and Hurvich (2001), Crato and Ray (2002) and Arteche (2004) detected that the

bias is quite severe in perturbed long memory series if the added noise is not explicitly

considered in the estimation. It is then relevant to analyze the asymptotic bias of Izj as

an approximation of the local specification of the spectral density when the added noise is

ignored.

Consider the following assumptions:

A.1: zt in (1) is a long memory signal plus noise process with yt an LM process with

spectral density function in (2) with d0 < 0.5 and ut is stationary with positive and bounded

continuous spectral density function fu(λ).

A.2: yt and ut are independent.

Theorem 1 Let zt satisfy assumptions A.1 and A.2 and define

Ln(j) = E

[
Izj

Cλ−2d0
j

]
.

Then, considering j fixed:

Ln(j) = A1n(j) + A2n(j) + o(n−2d0)

where

lim
n→∞A1n(j) =

∫ ∞

−∞
ψj(λ)

∣∣∣∣
λ

2πj

∣∣∣∣
−2d0

dλ

and

lim
n→∞n2d0A2n(j) =

∫ ∞

−∞
ψj(λ)

fu(0)
C(2πj)−2d0

dλ

where

ψj(λ) =
2
π

sin2 λ
2

(2πj − λ)2
.

Remark 1: The influence of the added noise turns up in A2n(j) and is thus asymptotically

negligible if d0 > 0. However for finite n A2n(j) can be quite large if d0 is low and/or the long

run noise to signal ratio (nsr) fu(0)/C is large. This produces the high bias of traditional

semiparametric estimators which ignore the added noise in perturbed LM series and justify

the modifications recently proposed and described in the next section.

Remark 2: In the LMSV case fu(0) = σ2
ξ/2π. The influence of the noise is clear here,

the larger the variance of the noise the higher the relative bias of the periodogram.
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Remark 3: When d0 < 0 the bias diverges as n increases. This result was expected since

the memory of zt corresponds in this case to the memory of the noise. Then Ln(j) diverges

because we normalize the periodogram by a quantity that goes to zero as n → ∞. As a

result the estimation of a negative memory parameter of zt is not straightforward as noted

by Deo and Hurvich (2001) and Arteche (2004).

Remark 4: When j = j(n) is a sequence of positive integers such that j/n → 0 as

n → ∞, a straightforward extension of Theorem 2 in Robinson (1995a) shows that under

assumptions A.1 and A.2

Ln(j) = 1 + O

(
log j

j
+ λ

min(α,2d0)
j

)

noting that

fz(λj)− Cλ−2d0
j = fy(λj) + fu(λj)− Cλ−2d0

j

and by assumption A.1,
fz(λj)

Cλ−2d0
j

= 1 + O
(
λ

min(α,2d0)
j

)
.

3 Semiparametric estimation of the memory parameter

Let d0 be the true unknown memory parameter and d any admissible value and consider

hereafter the same notation for the rest of parameters to be estimated. The version of

Robinson (1995a) of the log periodogram regression estimator (LPE), d̂LPE , is based on the

least squares regression

log Izj = a + d(−2 log λj) + vj , j = 1, ..., m,

where m is the bandwidth such that at least m−1 + mn−1 → 0 as n → ∞. The original

regressor proposed by Geweke and Porter-Hudak was −2 log(2 sin λj

2 ) instead of −2 log λj

but both are asymptotically equivalent and the differences between using one or another are

minimal. The motivation of this estimator is the log linearization in (3) such that

log Izj = a + d0(−2 log λj) + Uzj + O(λ2d0
j ), j = 1, 2, ..., m, (4)

where a = log C − c, c = 0.577216... is Euler’s constant and Uzj = log(Izjf
−1
z (λj)) + c.

The bias of the least squares estimate of d0 is dominated by the O(λ2d0
j ) term which is not

explicitly considered in the regression such that a negative bias of order O(λ2d0
m ) arises which
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can be quite severe if d0 is low. Deo and Hurvich (2001) also show that
√

m(d̂LPE − d0)
d→

N(0, π2/24) as long as m = κnς for ς < 4d0/(4d0 + 1) and κ is hereafter a generic positive

constant which can be different in every case.

The main rival semiparametric estimator of the LPE is the local Whittle or Gaussian

semiparametric estimator (GSE), d̂GSE , proposed by Robinson (1995b) and defined as the

minimizer of

R(d) = log C̃(d)− 2d

m

m∑

j=1

log λj , C̃(d) =
1
m

m∑

j=1

λ2d
j Izj (5)

over a compact set. This estimator has the computational disadvantage of requiring non-

linear optimization but it is more efficient than the log periodogram regression. However

both share important affinities as described in Robinson and Henry (2003). Again the bias

can be approximated by a term of order O(λ2d0
m ) which is caused by the added noise, and

√
m(d̂GSE − d0)

d→ N(0, 1/4) as long as m = κnς for ς < 4d0/(4d0 + 1) (Arteche, 2004). As

in the LPE, this bandwidth restriction limits quite seriously the rate of convergence of the

estimators, especially if d0 is low.

In order to reduce the bias of the GSE, Hurvich et al. (2005), noting (3), suggested to

incorporate explicitly in the estimation procedure a βλ2d
j term which accounts for the effect

of the added noise and proposed a modified Gaussian semiparametric estimator (MGSE)

defined as

(d̂MGSE , β̂MGSE) = arg min
∆×Θ

R(d, β) (6)

where Θ = [0, Θ1], 0 < Θ1 < ∞, ∆ = [∆1, ∆2], 0 < ∆1 < ∆2 < 1/2,

R(d, β) = log


 1

m

m∑

j=1

λ2d
j Izj

1 + βλ2d
j


 +

1
m

m∑

j=1

log{λ−2d
j (1 + βλ2d

j )}

When ut is iid(0, σ2
u) then fu(λ) = σ2

u(2π)−1 and β0 = σ2
u(2πC)−1. The explicit con-

sideration of the noise in the estimation relaxes the upper bound of the bandwidth such

that
√

m(d̂MGSE − d0)
d→ N(0, Cd0/4) for Cd0 = 1 + (1 + 4d0)/4d2

0 as long as m = κnς for

ς < 2α/(2α + 1) which permits a larger m. When α = 2, as is typical in standard LM para-

metric models, d̂MGSE achieves a rate of convergence arbitrarily close to n2/5 which is the

upper bound of the rate of convergence of d̂GSE in the absence of additive noise. However

with an additive noise the best possible rate of convergence achieved by d̂GSE is n2d0/(4d0+1).

Regarding the bias of d̂MGSE , it can be approximated by a term of order O(λα
m) instead of
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O(λ2d0
m ) which is the order of the bias of d̂GSE in the presence of an additive noise.

Sun and Phillips (2003) extended the log periodogram regression in a similar manner.

From (3)

log Izj = log C − c + d0(−2 log λj) + log
(

1 +
fu(λj)

C
λ2d0

j + O(λα
j )

)
+ Uzj

= log C − c + d0(−2 log λj) + log
(

1 +
fu(0)

C
λ2d0

j

)
+ O(λα

j ) + Uzj (7)

= log C − c + d0(−2 log λj) +
fu(0)

C
λ2d0

j + O(λα∗
j ) + Uzj (8)

where α∗ = min(4d0, α). Noting (8) Sun and Phillips (2003) proposed the following non

linear regression

log Izj = a + d(−2 log λj) + βλ2d
j + Uzj (9)

for β0 = fu(0)/C, such that the non linear log periodogram regression estimator (NLPE) is

defined as

(d̂NLPE , β̂NLPE) = arg min
∆×Θ

m∑

j=1

(log∗ Izj + d(2 log λj)∗ − β(λ2d
j )∗)2 (10)

where for a general ξt we use the notation ξ∗t = ξt− ξ̄ where ξ̄ =
∑

ξt/n. The bias of d̂NLPE

is of order O(λα∗
m ) which is largely produced by the O(λα∗

j ) omitted in the regression in (9).

Correspondingly
√

m(d̂NLPE−d0)
d→ N(0, π2

24Cd0) as long as m = κnς for ς < 2α∗/(2α∗+1).

Sun and Phillips (2003) consider the case α = 2 so that α∗ = 4d0 and the behaviour of m

is restricted to be O(n8d0/(8d0+1)) with a bias of d̂NLPE of order O(λ4d0
m ). The upper bound

of m in the NLPE is higher than in the standard LPE but lower than in the MGSE when

α > 4d0. This is caused by the approximation of the logarithmic expression in (7). This

approach has been used by Andrews and Guggenberger (2003) in their bias reduced log

periodogram regression in order to get a linear regression model. However, the regression

model of Sun and Phillips (2003), although linear in β, is still non linear in d and the linear

approximation of the logarithmic expression does not imply a significant computational

advantage. Instead, noting (7) we propose the following non linear regression model

log Izj = a + d(−2 log λj) + log(1 + βλ2d
j ) + Uzj (11)

which only leaves an O(λα
j ) term out of explicit consideration. We call the estimator based

on a nonlinear least squares regression of (11) the augmented log periodogram regression

estimator (ALPE).
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4 Augmented log periodogram regression

The augmented log periodogram regression estimator (ALPE) is defined as

(d̂ALPE , β̂ALPE) = arg min
∆×Θ

Q(d, β) (12)

under the constraint β ≥ 0, where

Q(d, β) =
m∑

j=1

(log∗ Izj + d(2 log λj)∗ − log∗(1 + βλ2d
j ))2

Consider the following assumptions:

B.1: yt and ut are independent covariance stationary Gaussian processes.

B.2: When var(ut) > 0, fu(λ) is continuous on [−π, π], bounded above and away from

zero with bounded first derivative in a neighbourhood of zero.

B.3: The spectral density of yt satisfies

fy(λ) = Cλ−2d0(1 + Gλα + O(λα+ι))

for some ι > 0, finite positive C, finite G, 0 < d0 < 0.5 and α ∈ (4d0, 2]
⋂

[1, 2].

Assumption B.1 excludes LMSV models where ut is not Gaussian but a log chi-square.

We impose B.1 for simplicity and to directly compare our results with those in Sun and

Phillips (2003). Considering recent results, Guassianity of signal and noise could be relaxed.

The hypothesis of Gaussianity of yt could be weakened as in Velasco (2000) and LMSV could

also be allowed as in Deo and Hurvich (2001). Assumption B.2 restricts the behaviour of

ut as in Assumption 1 in Sun and Phillips (2003). Assumption B.3 imposes a particular

spectral behaviour of yt around zero relaxing Assumption 2 in Sun and Phillips (2003). As

in Henry and Robinson (1996) this local specification permits to obtain the leading part of

the asymptotic bias of d̂ALPE in terms of G. We restrict our analysis to the case α > 4d0

where the ALPE achieves a lower bias and higher asymptotic efficiency than the NLPE by

permitting a larger m. When α ≤ 4d0 the ALPE and the NLPE share the same asymptotic

distribution with the same upper bound of m. In the standard fractional ARIMA process

considered in Sun and Phillips (2003) α = 2 > 4d0.

Theorem 2 Under assumptions B.1-B.3, as n →∞ d̂ALPE−d0 = op(1) if 1/m+m/n → 0,

and d̂ALPE − d0 = Op((m/n)2d0), β̂ALPE − β0 = op(1) if m/n + n4d0(1+δ)/m4d0(1+δ)+1 → 0

for some arbitrary small δ > 0.
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This is the same result as the consistency of the NLPE in Theorem 2 in Sun and Phillips

(2003) and can be proved similarly noting that

1
m

Q(d, β) =
1
m

m∑

j=1

{
U∗

zj + V ∗
j + O(λα

j )
}2

for V ∗
j = V ∗

j (d, β) = Vj(d, β)− V̄ (d, β), Vj(d, β) = 2(d−d0) log λj +log(1+β0λ
2d0
j )− log(1+

βλ2d
j ) and that log(1 + βλ2d

j ) = βλ2d
j + O(λ4d

j ) for (d, β) ∈ ∆×Θ.

The main difference of the ALPE with respect to the NLPE lies in the asymptotic

distribution, particularly in the term responsible of the asymptotic bias. The first order

conditions of the minimization problem are

S(d, β) = (0, Λ)′

Λβ = 0

where Λ is the Lagrange multiplier pertaining to the constraints β ≥ 0 and

S(d, β) =
m∑

j=1

(
x∗1j(d, β)
x∗2j(d, β)

)
Wj(d, β)

with

x1j(d, β) = 2

(
1− βλ2d

j

1 + βλ2d
j

)
log λj ,

x2j(d, β) = − λ2d
j

1 + βλ2d
j

,

Wj(d, β) = log∗ Izj + d(2 log λj)∗ − log∗(1 + βλ2d
j )

The Hessian matrix H(d, β) has elements

H11(d, β) =
m∑

j=1

(x∗1j)
2 − 4β

m∑

j=1

Wj

(log λj)2λ2d
j

(1 + βλ2d
j )2

H12(d, β) =
m∑

j=1

x∗1jx
∗
2j − 2

m∑

j=1

Wj

(log λj)λ2d
j

(1 + βλ2d
j )2

H22(d, β) =
m∑

j=1

(x∗2j)
2 +

m∑

j=1

Wj

λ4d
j

(1 + βλ2d
j )2

Define Dn = diag(
√

m, λ2d0
m

√
m) and the matrix

Ω =

(
4 − 4d0

(2d0+1)2

− 4d0
(2d0+1)2

4d2
0

(4d0+1)(2d0+1)2

)
,
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and consider the following assumptions

B.4: d0 is an interior point of ∆ and 0 ≤ β0 < Θ1.

B.5: As n →∞,
mα+0.5

nα
→ K

for some positive constant K.

The structure of the series, if perturbed or not, is not known beforehand. It is then

interesting to consider not only the case var(ut) > 0 but also the no added noise case,

var(ut) = 0, and analyze the behaviour of the ALPE in both situations.

Theorem 3 Let zt in (1) satisfy assumptions B.1-B.3 and m satisfy B.4. Then as n →∞

a) If var(ut) > 0

Dn

(
d̂ALPE − d0

β̂ALPE − β0

)
d→ N

(
Ω−1b,

π2

6
Ω−1

)

b) If var(ut) = 0

√
m(d̂ALPE − d0)

d→ −(Ω̃11η1 + Ω̃12η2){Ω̃12η1 + Ω̃22η2 ≤ 0} − Ω−1
11 η1{Ω̃12η1 + Ω̃22η2 > 0}

√
mλ2d0

m (β̂ALPE − β0)
d→ −(Ω̃12η1 + Ω̃22η2){Ω̃12η1 + Ω̃22η2 ≤ 0}

where Ω̃ = (Ω̃ij) = Ω−1, η = (η1, η2)′ ∼ N(−b, π2Ω/6) and

b = (2π)αK2

(
− α

(1+α)2
αd0

(2d0+α+1)(2d0+1)(1+α)

)
G.

Sun and Phillips (2003) consider yt = (1 − L)−d0wt with a weak dependent wt such

that fz(λ) = (2 sin λ
2 )−2d0(fw(λ) + (2 sin λ

2 )2d0fu(λ)) and then α = 2, C = fw(0), β0 =

fu(0)/fw(0) and G = (d0/6 + f ′′w(0)/fw(0)) /2. Whereas in Sun and Phillips (2003) the

term leading the asymptotic bias, b, is different when var(ut) = 0 and var(ut) > 0, we do

not need to discriminate both situations and in both cases the asymptotic bias is of the

same order. To eliminate this bias we have to choose a bandwidth of order o(nα/(α+0.5))

instead of that in assumption B.5.

When var(ut) > 0 the asymptotic bias of (d̂ALPE , β̂ALPE) can be approximated by

D−1
n Ω−1bn = D−1

n Ω−1√mλα
m2

(
− α

(1+α)2
αd0

(2d0+α+1)(2d0+1)(1+α)

)
G

=
λα

mα(2d0 + 1)G
4d0(1 + α)2(2d0 + α + 1)

(
α− 2d0

λ−2d0
m

(2d0+1)(4d0+1)α
d0

)
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which for the processes considered in Sun and Phillips (2003) corresponds to the result in

their Remark 2 but with the bn of their σu = 0 case and correcting the rate of convergence

in the asymptotic bias of β̂NLPE and the fw(0)2/fu(0)2 term which should be fu(0)2/fw(0)2

in their formula (48). The asymptotic bias of d̂ALPE can then be approximated by

ABias(d̂ALPE) =
(m

n

)α
K0 where K0 =

(2π)αα(2d0 + 1)(α− 2d0)G
4d0(1 + α)2(2d0 + α + 1)

In contrast to the LPE and NLPE, d̂ALPE has an asymptotic positive bias which decreases

with d0. The asymptotic variance is

AV ar(d̂ALPE) =
π2

24m
Cd0

and consequently the asymptotic mean squared error can be approximated by

AMSE(d̂ALPE) =
π2

24m
Cd0 +

(m

n

)2α
K2

0 .

5 Comparing “optimal” bandwidths

The role of the bandwidth on semiparametric memory parameter estimates is crucial to get

reliable estimates. A too large choice of m can induce a large bias whereas a too small m

generates a high variability of the estimates. An optimal choice of m is usually obtained

minimizing an approximate form of the mean square error (MSE). In this section we compare

the optimal bandwidths obtained in this way for the estimators considered above in the long

memory signal plus noise process characterized by assumptions B.1-B.3 with σ2
u > 0.

By Sun and Phillips (2003, Theorem 1), the asymptotic bias of d̂LPE can be approxi-

mated by

ABias(d̂LPE) = −β0
d0

(2d0 + 1)2
λ2d0

m (13)

and considering the asymptotic variance π2/(24m) the bandwidth that minimizes the ap-

proximate MSE is

mopt
LPE =

[
π2

24
(2d0 + 1)4

(2π)4d0β2
04d3

0

] 1
4d0+1

n
4d0

4d0+1 (14)

Using similar arguments to those employed by Henry and Robinson (1996) it is easy to

show that the asymptotic bias of d̂GSE can also be approximated by (13). In consequence

the optimal bandwidth is (Arteche, 2004)

mopt
GSE =

[
1
4

(2d0 + 1)4

(2π)4d0β2
04d3

0

] 1
4d0+1

n
4d0

4d0+1 =

(
AV ar(d̂GSE)

AV ar(d̂LPE)

) 1
4d0+1

mopt
LPE (15)
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and since AV ar(d̂GSE) < AV ar(d̂LPE) then mopt
GSE < mopt

LPE .

Similarly the optimal bandwidth of the NLPE is given by Sun and Phillips (2003)

mopt
NLPE =

[
π2Cd0(4d0 + 1)4(6d0 + 1)2

192d3
0(2d0 + 1)2(2π)8d0β4

0

] 1
8d0+1

n
8d0

8d0+1 (16)

The ALPE share the same asymptotic variance as the NLPE but the lower order bias

produces a higher optimal bandwidth. Minimizing AMSE(d̂ALPE) the optimal bandwidth

is

mopt
ALPE =

(
π2Cd0

48αK2
0

) 1
2α+1

n
2α

2α+1 .

The optimal bandwidth of the ALPE increases with n faster than mopt
NLPE . Correspond-

ingly AMSE(d̂ALPE) with mopt
ALPE converges to zero at a rate n−2α/(2α+1) which is faster that

the n−4d0/(4d0+1) rate of d̂LPE with mopt
LPE and faster than the n−8d0/(8d0+1) rate achieved

by d̂NLPE with mopt
NLPE if α > 4d0 (as in the usual α = 2 case).

The ALPE is comparable in terms of optimal bandwidth and bias with the MGSE. In

fact, using similar similar arguments to those suggested by Henry and Robinson (1996) it is

straightforward to show that the bias of d̂MGSE can be approximated by that of d̂ALPE

ABias(d̂MGSE) = ABias(d̂ALPE) =
(m

n

)α
K0

and then

mopt
MGSE =

(
AV ar(d̂MGSE)

AV ar(d̂ALPE)

) 1
4d0+1

mopt
ALPE =

(
Cd0

8αK2
0

) 1
2α+1

n
2α

2α+1 .

Contrary to d̂LPE , d̂GSE and d̂NLPE , the asymptotic bias of d̂ALPE and d̂MGSE do not

depend on β0 and consequently mopt
ALPE and mopt

MGSE are invariant to different values of nsr

fu(0)/C.

6 Finite sample performance

Deo and Hurvich (2001), Crato and Ray (2002) and Arteche (2004) have shown that the

bias in perturbed LM series of d̂LPE and d̂GSE is very high and increases considerably with

m, especially when the nsr is large. Consequently a very low bandwidth should be used to

get reliable estimates, at least in terms of bias. A substantial bias reduction is achieved by

12



including the added noise explicitly in the estimation procedure as in d̂NLPE , d̂ALPE and

d̂MGSE . We compare the finite sample performance of these estimators in a LMSV

zt = yt + ut

for (1− L)d0yt = wt and ut = log ε2
t , for εt and wt independent, εt is standard normal and

wt ∼ N(0, σ2
w) for σ2

w = 0.5, 0.1. We have chosen these low variances because they are close

to the values that have been empirically found when a LMSV model is fitted to financial

time series (e.g. Breidt et al. (1998), Pérez and Ruiz (2001)). These values correspond

to long run nsr fu(0)/fw(0) = π2, 5π2. The first one is close to the ratios considered in

Deo and Hurvich (2001), Sun and Phillips (2003) and Hurvich and Ray (2003). The second

corresponds more closely to the values found in financial time series. We consider d0 = 0.2,

0.45 and 0.8. For d0 = 0.8 the process is not stationary and is even larger than 0.75 so that

the proof of the asymptotic normality of d̂MGSE in Hurvich et al. (2005) does not apply.

However the estimators are expected to perform well as long as d0 < 1 (Sun and Phillips,

2003). Also, since εt is standard normal, ut is a log χ2
1 and assumption B.1 does not hold.

However we consider relevant to show that these estimators can be applied in LMSV models

which are an essential tool in the modelling of financial time series, and justify in that way

our conjecture of no necessity of Gaussianity of the added noise.

The Monte Carlo is carried out over 1000 replications in SPlus 2000, generating yt with

the option arima.fracdiff.sim and for the different non linear optimizations we use nlminb

for 0.01 < d < 1 and exp(−20) < β < exp(8) providing the gradient and the hessian. We

consider sample sizes n = 1024, 4096 and 8192 which are comparable with the size of many

financial series and permits the exact use of the Fast Fourier Transform. For each sample

size we take four different bandwidths m = [n0.4], [n0.6], [n0.8] and mopt
est for est = LPE,

NLPE, ALPE, GSE and MGSE with the constraint 5 ≤ mopt
est ≤ [n/2 − 1]. Table 1

displays mopt
est for the different values of d0, n and σ2

w. The lower constraint applies for the

LPE and GSE for low d0 and/or σ2
w and also for the NLPE for d0 = 0.2 and σ2

w = 0.1. The

upper limit is applicable for the ALPE and MGSE with the lower sample size. Note that

mopt
ALPE and mopt

MGSE do not depend on the nsr.

TABLES 1 AND 2 ABOUT HERE

Table 2 shows the bias and MSE of the estimators across the models considered. The

following conclusions can be deduced:

13



• The bias of the LPE and GSE is very high, especially for a large bandwidth and nsr.

The bias clearly reduces with the estimation techniques which account for the added

noise.

• In terms of bias the NLPE tends to be overcome by the ALPE and MGSE especially

for the high nsr case. The bias of the ALPE and MGSE is more invariant to different

values of the nsr and more stable with the bandwidth while a large choice of m produces

an extremely high bias of the NLPE. The NLPE tends to beat both ALPE and MGSE

in terms of MSE for an appropriate choice of m and low values of d0. In any other

case d̂ALPE and d̂MGSE are better choices.

• Regarding the behaviour of the different estimators using the “optimal” bandwidth,

the best performance in terms of MSE corresponds to the MGSE which has the lowest

MSE in 16 out of 18 cases, followed by the ALPE which has lower MSE than the

NLPE, GSE and LPE in 13 out of 18 cases. Only for d0 = 0.2 and d0 = 0.45 with

n = 1024 the ALPE is overwhelmed by the LPE, GSE or NLPE. It deserves special

mention the situation for d0 = 0.2 and n = 1024 since here the LPE and GSE are the

best choices. This was somehow expected because for such a low value of d there is

not much scope for bias and also the estimates are constrained to be larger than 0.01

limiting the size of the bias. For d0 = 0.45, 0.85 the MGSE and the ALPE have a

lower MSE than the LPE, GSE and NLPE (only for d0 = 0.45, n = 1024 and σ2
w = 0.5

the NLPE has a lower MSE than the ALPE).

• The “optimal” bandwidth performs better than the other three bandwidths for the

ALPE and MGSE suggesting that a large m should be chosen. However the NLPE

tends to have lower MSE with m = n0.6 in those cases where n0.6 is larger than mopt
NLPE

which occurs in every case when n = 1024, and for n = 4096 and n = 8192 except

when d0 = 0.8 and σ2
w = 0.5, suggesting that mopt

NLPE tends to be undervalued.

We also compute the coverage probabilities of the nominal 90% confidence intervals ob-

tained with the five estimators using the asymptotic normality of all of them (although

this is not true for d0 = 0.8 we keep the normality assumption for comparative purposes).

For each we use two different standard errors. First we use the variance in the asymp-

totic distributions. For d̂LPE and d̂GSE these are π2/(24m) and 1/(4m). The rest of

14



estimators have asymptotic variances which depend on the unknown memory parameter d0,

(1 + 2d0)2/(16d2
0m) for d̂MGSE and π2(1 + 2d0)2/(96d2

0m) for d̂NLPE and d̂ALPE . To get

feasible expressions we substitute the unknown d0 with the corresponding estimates. We

also use the finite sample hessian based approximations for the standard errors suggested by

Deo and Hurvich (2001), Hurvich and Ray (2003) and Sun and Phillips (2003). For d̂LPE ,

d̂GSE and d̂ALPE these are

v̂ar(d̂LPE) =
π2

24




m∑

j=1

(
log λj − 1

m

m∑

k=1

log λk

)2


−1

v̂ar(d̂GSE) =


4

m∑

j=1

(
log λj − 1

m

m∑

k=1

log λk

)2


−1

v̂ar(d̂ALPE) = SEJ + (SEH − SEJ)I(H(d̂ALPE , β̂ALPE) > 0)

SEH =
π2

6
H22(d̂ALPE , β̂ALPE)

H11(d̂ALPE , β̂ALPE)H22(d̂ALPE , β̂ALPE)−H12(d̂ALPE , β̂ALPE)2

SEJ =
π2

6
Jn,22(d̂ALPE , β̂ALPE)

Jn,11(d̂ALPE , β̂ALPE)Jn,22(d̂ALPE , β̂ALPE)− Jn,12(d̂ALPE , β̂ALPE)2

where I(H(d̂ALPE , β̂ALPE) > 0) = 1 if H(d̂ALPE , β̂ALPE) is positive definite and 0 otherwise

and Jn(d, β) is defined in the proof of Theorem 3. v̂ar(d̂NLPE) is similarly obtained as

defined in formulae (60) and (61) in Sun and Phillips (2003). We have also tried only SEJ

and while this approach performs significantly worse in the NLPE it renders slightly worse

ALPE confidence intervals for low m and n and similar for large values of the bandwidth

and sample size. v̂ar(d̂MGSE) is defined in formula (16) in Hurvich and Ray (2003)1 with

the unknowns substituted with the corresponding estimates.

TABLES 3, 4 AND 5 ABOUT HERE

Tables 3, 4 and 5 display the coverage frequencies, mean and median lengths of the

90% Gaussian based confidence intervals on d0 = 0.2, 0.45 and 0.8 respectively, constructed

using the asymptotic variances with estimated d0 (Prob.A, Mean.A and Med.A) and the

finite sample hessian approximation (Prob.H, Mean.H and Med.H). The following comment

deserve particular attention:

• The coverage frequencies of the LPE and GSE are satisfactory only for a low bandwidth

but as m increases they go rapidly towards zero. Here mean and median lengths are
1Note that b−1

1,0 in formula (16) of Hurvich and Ray (2003) corresponds to β0 in our notation.

15



equal because the approximations used for the standard errors do not depend on

estimates and do not vary across simulations. The finite sample approximation of the

standard error tends to give wider intervals and better (closer to the nominal 90%)

coverage frequencies.

• The NLPE has close to nominal coverage frequencies for d0 = 0.2 but as d0, n and m

increase the frequencies go down, being close to zero in several situations (d0 = 0.45,

m = n0.8, n = 4096, 8192, and d0 = 0.8, m = n0.8 for all n) . For d0 = 0.2 the

finite sample approximation of the standard error tends to give narrower intervals and

better coverage than the feasible asymptotic expression. However as d0 increases the

situation changes and for d0 = 0.8 the asymptotic expression gives in many cases

better coverage even with narrower intervals.

• For d0 = 0.2 the performance of the confidence intervals based on ALPE and MGSE

is quite poor with very wide intervals and with mean lengths much higher than the

median, especially for low m and n. This fact was also noted by Hurvich and Ray

(2003) and explained by the existence of outlying estimates of d0. The intervals based

on the finite sample approximation of the standard errors can be extremely wide,

especially with a large nsr, due to large variations in the estimated nsr that require

larger sample sizes and bandwidths to be accurately estimated. For higher values of

d0 and large n the ALPE and MGSE confidence intervals behave significantly better

when the finite sample approximation of the standard error is used. Overall the MGSE

confidence intervals tend to perform better than the intervals based on ALPE.

• Comparing the different estimators there is not one that outperforms the others in

every situation and the best choice depends on n, m, d0 and the nsr. Overall the

NLPE seems a good choice for low d0 and n but for values of d0 close to the stationary

limit or higher and a large sample size the MGSE (and the ALPE) with the finite

sample approximated standard error is a wiser choice.

7 LONG MEMORY IN IBEX35 VOLATILITY

Many empirical papers have recently exposed evidence of long memory in the volatility of

financial time series such as asset returns. In this section we analyze the persistence of the
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volatility of a series of returns of the Spanish stock index Ibex35 composed of the 35 more

actively traded stocks. The series covers the period 1-10-93 to 22-3-96 half-hourly. The

returns are constructed by first differencing the logarithm of the transaction prices of the

last transaction every 30 minutes, omitting incomplete days. After this modification we get

the series of intra-day returns xt, t = 1, ..., 7260. We use as the proxy of the volatility the

series yt = log(xt − x̄)2 which corresponds to the volatility component in a LMSV model

apart from an added noise. Arteche (2004) found evidence of long memory in yt by means

of the GSE and observed that the estimates decreased rapidly with the bandwidth which

could be explained by the increasing negative bias of the GSE found in LMSV models.

Figure 1 shows the LPE, GSE, NLPE, MGSE and ALPE for a grid of bandwidths

m = 25, ..., 300 together with the 95% confidence intervals obtained using both the feasible

asymptotic expression and the finite sample approximations of the standard errors described

in Section 6. We do not consider higher values of m to avoid distorting influence of seasonal-

ity. To elude the phenomenon encountered in the Monte Carlo of excessively wide intervals

we restrict the values of the standard errors to be lower than an arbitrary value of 0.6 such

that if it exceeds that value we take the standard error calculated with a bandwidth in-

creased by one. This situation only occurs with d̂NLPE for m = 29 when the approximated

standard error is 3.03. Both approximations of the standard errors provide similar intervals

for the LPE and GSE and for most of the bandwidths also for the NLPE. Only very low

values of m lead to significant different intervals. The situation is different for the MGSE

and ALPE where the finite sample approximations always give wider intervals, especially

for low values of m.

It is also observable that the LPE and GSE decrease with m faster than the other

estimates. This situation is more clearly displayed in Figure 2 which shows the five estimates

for a grid of bandwidth m = 25, ..., 200. The LPE and GSE behave similarly with a rapid

decrease with m. This can be due to a large negative bias caused by some unaccounted

for added noise. In this situations a sensible strategy is to estimate d by techniques that

account for the added noise such as the NLPE, ALPE or MGSE because the large bias of

the LPE and GSE can render these estimates meaningless. The NLPE remains high for

a wider range of values of m but finally decreases for lower values of m than the MGSE

and ALPE which behave quite similarly. This is consistent with the asymptotic and finite
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sample results described in the previous sections.

Finally Figure 3 shows estimates and confidence intervals for m = 150, ..., 300. The

GSE and LPE give strong support in favour of the stationarity of the volatility. However

the NLPE, ALPE and MGSE cast some doubt about it, at least with a 95% confidence.

Taking into account the results described in the previous sections, we should be cautious in

concluding in favour of the stationarity of the volatility of this series of Ibex35 returns.

FIGURES 1, 2 AND 3 ABOUT HERE

8 CONCLUSION

The strong persistence of the volatility in many financial and economic time series and

the use of LMSV models to capture such a behaviour has motivated a recent interest in

the estimation of the memory parameter in perturbed long memory series. The added

noise gives rise to a negative bias in traditional estimators based on a local specification

of the spectral density which can be reduced by including explicitly the added noise in

the estimation procedure as the NLPE and MGSE. We have proposed an additional log

periodogram regression based estimator, the ALPE, whose properties are close to those of

the MGSE, which seems the better option in a wide range of possibilities. In particular both

show a significant improvement in terms of bias but at the cost of a larger finite sample

variance than the NLPE for low values of d, bandwidth and sample size. However, for large

sample sizes and high values of d the ALPE and MGSE perform significantly better than

the NLPE, especially if the nsr is large as is often the case in financial time series.

A APPENDIX: TECHNICAL DETAILS

Proof of Theorem 1: The proof is similar to that of Theorem 1 in Hurvich and Beltrao

(1993) (see also Theorem 1 in Arteche and Velasco (2005)). Write

Ln(j) =
∫ n

−n
gnj(λ)dλ (A.1)

where

gnj(λ) = Kn(λj − λ)
fz(λ)

Cλ−2d0
j

, Kn(λ) =
1

2πn
|

n∑

t=1

eitλ|2 =
sin2(λ

2n)

2πn sin2 λ
2
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and the Fejer´s kernel satisfies

Kn(λ) ≤ constant×min(n, n−1λ−2) (A.2)

From (A.2) the integral in (A.1) over [−π,−n−δ]
⋃

[nδ, π] for some δ ∈ (0, 0.5) is

O(n−1|λj − n−δ|−2λ2d0

∫ π

−π
fz(λ)dλ) = O(n−1n2δn−2d0) = o(n−2d0).

The integral over (−n−δ, n−δ) is A1n(j) + A2n(j) where

A1n(j) =
∫ n1−δ

−n1−δ

sin2
(

2πj−λ
2

)

2πn2 sin2
(

2πj−λ
2n

) fy

(
λ
n

)

Cλ−2d0
j

dλ

A2n(j) =
∫ n1−δ

−n1−δ

sin2
(

2πj−λ
2

)

2πn2 sin2
(

2πj−λ
2n

) fu

(
λ
n

)

Cλ−2d0
j

dλ

and the theorem is proved letting n go to ∞. 2

Proof of Theorem 3: The theorem is proved as in Sun and Phillips (2003) noting that

x1j(d, β) = 2

(
1− βλ2d

j

1 + βλ2d
j

)
log λj = 2 log λj(1− βλ2d

j ) + O(λ4d
j log λj) (A.3)

x2j(d, β) = − λ2d
j

1 + βλ2d
j

= −λ2d
j + O(λ4d

j ) (A.4)

for (d, β) ∈ ∆ × Θ. This approximation leads to two main differences in the proof of

the asymptotic normality. Noting the consistency of d̂ALPE the first one is related to the

convergence of the Hessian matrix in Lemma 5 of Sun and Phillips (2003), in particular the

proof of part a),

sup
(d,β)∈Θn

||D−1
n (H(d, β)− Jn(d, β))D−1

n || = op(1) (A.5)

where Θn = {(d, β) : |λ−d0
m (d − d0)| < ε and |β − β0| < ε} for ε > 0 arbitrary small and

Jn,ab(d, β) =
∑m

j=1 x∗ajx
∗
bj , a, b = 1, 2. The proof that the (1,1), (1,2) and (2,1) elements of

the left hand side are o(1) is as in Sun and Phillips (2003) noting (A.3) and (A.4). However

the (2,2) element is not zero but

λ−4d
m

m

m∑

j=1

Wjλ
4d
j

(1 + βλ2d
j )2

=
1
m

m∑

j=1

a∗j (d, β)W1j(d, β)
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where

aj(d, β) =
(j/m)4d

(1 + βλ2d
j )2

W1j(d, β) = Vj(d, β) + εj + Uzj

Vj(d, β) = 2(d− d0) log λj + log(1 + β0λ
2d0
j )− log(1 + βλ2d

j )

εj =
λα

j G

1 + β0λ
2d0
j

+ O(λα+ι
j ).

Now

|aj(d, β)| = O

([
j

m

]4d
)

j = 1, 2, ..., m,

and |aj(d, β)− aj−1(d, β)| is bounded by
∣∣∣∣∣

(j/m)4d

(1 + βλ2d
j )2

− ([j − 1]/m)4d

(1 + βλ2d
j )2

∣∣∣∣∣ +

∣∣∣∣∣
([j − 1]/m)4d

(1 + βλ2d
j )2

− ([j − 1]/m)4d

(1 + βλ2d
j−1)2

∣∣∣∣∣

=

∣∣∣∣∣
(

j

m

)4d 1
(1 + βλ2d

j )2

[
1−

(
j − 1

j

)4d
]∣∣∣∣∣ +

∣∣∣∣∣
(

j − 1
m

)4d β2(λ4d
j−1 − λ4d

j ) + 2β(λ2d
j−1 − λ2d

j )

(1 + βλ2d
j )2(1 + βλ2d

j−1)2

∣∣∣∣∣

= O

(
j4d−1

m4d

)

since λa
j−1 − λa

j = O(j−1λa
j ) for a 6= 0. By lemma 3 in Sun and Phillips (2003)

sup
(d,β)∈Θn

∣∣∣∣∣∣
1
m

m∑

j=1

a∗j (d, β)Uzj

∣∣∣∣∣∣
= Op

(
1√
m

)
= op(1)

Also sup(d,β)∈Θn

∣∣∣m−1
∑m

j=1 a∗j (d, β)Vj(d, β)
∣∣∣ is bounded by

sup
(d,β)∈Θn

∣∣∣∣∣∣
1
m

m∑

j=1

a∗j (d, β)2(d− d0) log λj

∣∣∣∣∣∣
+ sup

(d,β)∈Θn

∣∣∣∣∣∣
1
m

m∑

j=1

a∗j (d, β) log

(
1 + β0λ

2d0
j

1 + βλ2d
j

)∣∣∣∣∣∣

= O

(
log λm sup

(d,β)∈Θn

|d− d0|
)

+ O

(
sup

(d,β)∈Θn

λ2d
m

)
= o(1)

since aj = O(1), and similarly

sup
(d,β)∈Θn

∣∣∣∣∣∣
1
m

m∑

j=1

a∗j (d, β)εj

∣∣∣∣∣∣
= O(λα

m) = o(1)

and (A.5) holds. With this result the convergence of sup(d,β)∈Θn
|D−1

n H(d, β)D−1
n | to Ω

follows as in Sun and Phillips (2003) noting (A.3) and (A.4).

The second difference with the NLPE lies on the bias term. Consider

D−1
n S(d0, β0) =

1√
m

m∑

j=1

Bj(Uzj + εj)
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where Bj = (x∗1j(d0, β0) , λ−2d0
m x∗2j(d0, βo))′. The asymptotic bias comes from m−1/2

∑
Bjεj

such that

1√
m

m∑

j=1

x∗1j(d0, β0)εj =
2√
m

m∑

j=1

[
(1− β0λ

2d0
j ) log λj

]∗(
Gλα

j

1 + β0λ
2d0
j

+ O
(
λα+ι

j

))

+ O(
√

mλ4d0+α
m log λm)

=
2√
m

m∑

j=1

log∗ λj

(
Gλα

j + O(λ2d0+α
j )

)
+ O(

√
mλα+ι

m log λm)

+ O(
√

mλ2d0+α
m log λm) + O(

√
mλ4d0+α

m log λm)

=
2G√
m

m∑

j=1

(
log j − 1

m

∑

k

log k

)
λα

j + o
(√

mλα
m

)

=
2Gα

(1 + α)2
√

mλα
m(1 + o(1))

λ−2d0
m√
m

m∑

j=1

x∗2j(d0, β0)εj = −λ−2d0
m G√

m

m∑

j=1

(
λ2d0

j − 1
m

∑

k

λ2d0
k

)
λα

j

1 + β0λ
2d0
j

+ O
(√

mλα+ι
m

)

= − 2d0αG

(2d0 + α + 1)(2d0 + 1)(1 + α)
λα

m

√
m(1 + o(1))

Then as n →∞

D−1
n S(d0, β0) + bn =

1√
m

m∑

j=1

BjUzj + o(1) d→ N

(
0,

π2

6
Ω

)

as in (A.34)-(A.37) in Sun and Phillips (2003) with minor modifications to adapt their proofs

to our assumption B.1-B.3. Since the rest of the proof relies heavily on Sun and Phillips

(2003) and Robinson (1995a) we omit the details. The proof when var(ut) = 0 follows as in

Theorem 4 in Sun and Phillips (2003). 2
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Table 1: “Optimal” bandwidths
σ2

w = 0.5 σ2
w = 0.1

n d0 LPE GSE NLPE ALPE MGSE LPE GSE NLPE ALPE MGSE
0.2 6 5 12 511 511 5 5 5 511 511

1024 0.45 13 11 29 511 502 5 5 7 511 502
0.8 27 24 53 511 511 12 11 22 511 511
0.2 12 9 29 1895 1715 5 5 5 1895 1715

4096 0.45 32 27 87 1681 1522 10 8 21 1681 1522
0.8 79 70 177 2047 1936 36 32 74 2047 1936
0.2 16 12 45 3299 2987 5 5 5 3299 2987

8192 0.45 51 42 149 2927 2650 16 13 36 2927 2650
0.8 134 119 323 3723 3370 62 55 135 3723 3370

24



T
ab

le
2:

B
ia

s
an

d
M

SE
m

=
n
0

.4
m

=
n
0

.6
m

=
n
0

.8
m

=
m

o
p

t
e

s
t

n
σ
2 w

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

d
0

=
0
.2

1
0
2
4

0
.5

B
ia

s
-0

.0
7
5

-0
.1

0
1

0
.1

1
0

0
.1

1
1

0
.0

4
2

-0
.1

3
2

-0
.1

4
4

-0
.0

1
3

0
.0

7
8

0
.0

3
7

-0
.1

6
3

-0
.1

6
7

-0
.0

8
0

0
.0

4
9

0
.0

2
8

-0
.0

0
5

-0
.0

1
5

0
.1

4
9

0
.0

4
3

0
.0

2
2

M
S
E

0
.0

2
5

0
.0

2
3

0
.0

7
3

0
.1

2
8

0
.0

9
7

0
.0

2
2

0
.0

2
3

0
.0

1
9

0
.1

0
9

0
.0

9
2

0
.0

2
7

0
.0

2
8

0
.0

1
4

0
.0

9
1

0
.0

8
1

0
.0

5
7

0
.0

5
8

0
.1

0
2

0
.0

7
9

0
.0

6
7

0
.1

B
ia

s
-0

.1
0
3

-0
.1

2
7

0
.0

9
0

0
.0

5
4

-0
.0

0
1

-0
.1

5
2

-0
.1

6
4

-0
.0

4
1

-0
.0

0
4

-0
.0

3
7

-0
.1

7
5

-0
.1

8
0

-0
.1

0
2

-0
.0

3
2

-0
.0

5
8

0
.0

1
8

-0
.0

2
9

0
.2

8
8

-0
.0

3
2

-0
.0

6
1

M
S
E

0
.0

2
5

0
.0

2
5

0
.0

7
1

0
.1

1
0

0
.0

8
3

0
.0

2
6

0
.0

2
8

0
.0

2
0

0
.0

8
2

0
.0

7
2

0
.0

3
1

0
.0

3
3

0
.0

1
7

0
.0

7
0

0
.0

6
4

0
.0

7
5

0
.0

5
4

0
.2

2
8

0
.0

7
0

0
.0

6
3

4
0
9
6

0
.5

B
ia

s
-0

.0
9
3

-0
.1

0
6

0
.0

7
6

0
.1

0
5

0
.0

5
3

-0
.1

3
7

-0
.1

4
3

-0
.0

4
7

0
.0

6
9

0
.0

3
3

-0
.1

6
2

-0
.1

6
4

-0
.0

9
3

0
.0

5
5

0
.0

3
3

-0
.0

4
6

-0
.0

6
2

0
.0

6
2

0
.0

3
1

0
.0

1
6

M
S
E

0
.0

1
9

0
.0

1
9

0
.0

5
0

0
.0

9
3

0
.0

6
9

0
.0

2
1

0
.0

2
2

0
.0

1
3

0
.0

7
2

0
.0

5
8

0
.0

2
7

0
.0

2
7

0
.0

1
3

0
.0

5
7

0
.0

4
4

0
.0

3
1

0
.0

3
2

0
.0

4
3

0
.0

4
1

0
.0

3
0

0
.1

B
ia

s
-0

.1
2
5

-0
.1

4
2

0
.0

3
9

0
.0

1
6

-0
.0

2
7

-0
.1

6
5

-0
.1

7
0

-0
.0

7
6

-0
.0

1
7

-0
.0

4
1

-0
.1

8
2

-0
.1

8
4

-0
.1

2
5

-0
.0

2
3

-0
.0

3
6

0
.0

1
5

-0
.0

2
6

0
.1

9
9

-0
.0

5
4

-0
.0

6
9

M
S
E

0
.0

2
3

0
.0

2
5

0
.0

4
2

0
.0

6
9

0
.0

5
7

0
.0

2
9

0
.0

3
0

0
.0

1
6

0
.0

6
2

0
.0

5
2

0
.0

3
3

0
.0

3
4

0
.0

1
9

0
.0

5
5

0
.0

5
1

0
.0

7
6

0
.0

5
9

0
.1

5
0

0
.0

4
7

0
.0

4
3

8
1
9
2

0
.5

B
ia

s
-0

.0
9
1

-0
.1

0
5

0
.0

6
0

0
.0

9
8

0
.0

5
6

-0
.1

3
6

-0
.1

3
9

-0
.0

5
5

0
.0

6
6

0
.0

3
7

-0
.1

6
2

-0
.1

6
2

-0
.0

9
2

0
.0

3
7

0
.0

0
6

-0
.0

5
7

-0
.0

6
4

0
.0

3
3

0
.0

2
2

-0
.0

0
1

M
S
E

0
.0

1
7

0
.0

1
7

0
.0

3
7

0
.0

7
5

0
.0

5
9

0
.0

2
0

0
.0

2
0

0
.0

1
2

0
.0

6
0

0
.0

4
5

0
.0

2
6

0
.0

2
6

0
.0

1
2

0
.0

3
4

0
.0

2
2

0
.0

2
4

0
.0

2
6

0
.0

2
7

0
.0

2
5

0
.0

1
5

0
.1

B
ia

s
-0

.1
3
2

-0
.1

4
6

0
.0

0
9

0
.0

0
3

-0
.0

3
4

-0
.1

6
9

-0
.1

7
3

-0
.0

9
0

-0
.0

1
2

-0
.0

4
5

-0
.1

8
4

-0
.1

8
5

-0
.1

3
8

-0
.0

4
5

-0
.0

5
0

0
.0

2
6

-0
.0

1
4

0
.1

8
3

-0
.0

4
3

-0
.0

4
1

M
S
E

0
.0

2
3

0
.0

2
5

0
.0

2
9

0
.0

5
7

0
.0

4
7

0
.0

2
9

0
.0

3
1

0
.0

1
6

0
.0

5
5

0
.0

4
6

0
.0

3
4

0
.0

3
4

0
.0

2
2

0
.0

4
5

0
.0

4
2

0
.0

7
9

0
.0

6
3

0
.1

3
1

0
.0

4
1

0
.0

3
7

d
0

=
0
.4

5

1
0
2
4

0
.5

B
ia

s
-0

.1
0
7

-0
.1

3
2

0
.0

8
1

0
.1

6
2

0
.0

9
1

-0
.2

2
2

-0
.2

2
5

-0
.0

6
5

0
.1

1
1

0
.0

4
2

-0
.3

2
1

-0
.3

1
5

-0
.1

7
3

0
.0

6
2

0
.0

1
2

-0
.1

0
5

-0
.1

2
3

0
.0

0
0

0
.0

4
9

0
.0

1
9

M
S
E

0
.0

4
9

0
.0

4
7

0
.0

7
5

0
.1

2
7

0
.1

0
3

0
.0

5
7

0
.0

5
6

0
.0

2
4

0
.0

9
5

0
.0

7
2

0
.1

0
5

0
.1

0
0

0
.0

3
9

0
.0

6
2

0
.0

4
2

0
.0

5
6

0
.0

5
9

0
.0

4
1

0
.0

4
8

0
.0

3
0

0
.1

B
ia

s
-0

.2
4
7

-0
.2

7
6

-0
.0

3
1

0
.0

3
3

-0
.0

4
5

-0
.3

4
4

-0
.3

5
4

-0
.1

9
2

-0
.0

0
7

-0
.0

4
5

-0
.4

0
0

-0
.4

0
1

-0
.2

8
6

-0
.0

3
9

-0
.0

6
1

-0
.0

9
6

-0
.1

4
1

0
.1

2
2

-0
.0

2
8

-0
.0

3
2

M
S
E

0
.0

8
8

0
.0

9
6

0
.0

7
1

0
.1

3
1

0
.1

1
8

0
.1

2
4

0
.1

2
9

0
.0

6
0

0
.1

2
9

0
.1

1
9

0
.1

6
1

0
.1

6
2

0
.0

9
0

0
.1

1
7

0
.1

0
7

0
.1

2
1

0
.1

1
4

0
.1

4
0

0
.1

1
6

0
.1

0
3

4
0
9
6

0
.5

B
ia

s
-0

.0
5
4

-0
.0

7
3

0
.0

8
1

0
.1

3
0

0
.0

7
1

-0
.1

6
5

-0
.1

6
6

-0
.0

4
2

0
.0

4
5

0
.0

0
8

-0
.2

9
4

-0
.2

8
1

-0
.1

6
0

0
.0

1
6

0
.0

0
5

-0
.0

6
9

-0
.0

7
6

-0
.0

1
1

0
.0

1
7

0
.0

0
9

M
S
E

0
.0

2
5

0
.0

2
1

0
.0

4
9

0
.0

6
9

0
.0

5
1

0
.0

3
1

0
.0

3
0

0
.0

1
2

0
.0

3
1

0
.0

2
1

0
.0

8
7

0
.0

7
9

0
.0

3
4

0
.0

1
2

0
.0

0
7

0
.0

2
2

0
.0

2
0

0
.0

1
4

0
.0

0
8

0
.0

0
5

0
.1

B
ia

s
-0

.1
8
1

-0
.1

9
8

0
.0

0
2

0
.0

7
0

0
.0

1
7

-0
.3

1
0

-0
.3

0
8

-0
.1

5
7

0
.0

5
1

0
.0

0
9

-0
.3

9
2

-0
.3

8
5

-0
.2

5
8

0
.0

3
3

0
.0

0
7

-0
.0

9
4

-0
.1

2
2

0
.0

2
3

0
.0

2
8

0
.0

0
7

M
S
E

0
.0

5
1

0
.0

5
3

0
.0

4
5

0
.0

7
2

0
.0

6
3

0
.1

0
0

0
.0

9
7

0
.0

3
7

0
.0

6
3

0
.0

5
1

0
.1

5
4

0
.1

4
8

0
.0

7
0

0
.0

4
8

0
.0

3
3

0
.0

7
4

0
.0

7
9

0
.0

5
9

0
.0

4
0

0
.0

2
7

8
1
9
2

0
.5

B
ia

s
-0

.0
3
9

-0
.0

5
0

0
.0

8
7

0
.1

2
7

0
.0

7
8

-0
.1

4
1

-0
.1

4
0

-0
.0

3
3

0
.0

2
3

0
.0

0
3

-0
.2

8
2

-0
.2

6
7

-0
.1

2
7

0
.0

1
2

0
.0

0
4

-0
.0

5
3

-0
.0

5
5

-0
.0

1
2

0
.0

1
0

0
.0

0
5

M
S
E

0
.0

1
8

0
.0

1
3

0
.0

3
8

0
.0

5
3

0
.0

3
7

0
.0

2
2

0
.0

2
1

0
.0

0
8

0
.0

1
7

0
.0

1
1

0
.0

8
0

0
.0

7
2

0
.0

1
8

0
.0

0
6

0
.0

0
3

0
.0

1
2

0
.0

1
1

0
.0

0
8

0
.0

0
4

0
.0

0
2

0
.1

B
ia

s
-0

.1
5
4

-0
.1

6
1

-0
.0

0
1

0
.0

5
8

0
.0

1
9

-0
.2

8
4

-0
.2

8
0

-0
.1

3
3

0
.0

2
8

0
.0

0
2

-0
.3

8
3

-0
.3

7
2

-0
.2

4
0

0
.0

3
2

0
.0

1
0

-0
.0

8
5

-0
.0

9
7

0
.0

0
8

0
.0

2
7

0
.0

1
0

M
S
E

0
.0

3
9

0
.0

3
7

0
.0

3
5

0
.0

5
1

0
.0

4
3

0
.0

8
3

0
.0

8
0

0
.0

2
6

0
.0

3
6

0
.0

2
8

0
.1

4
7

0
.1

3
9

0
.0

5
9

0
.0

2
1

0
.0

1
3

0
.0

4
7

0
.0

4
8

0
.0

3
3

0
.0

1
8

0
.0

1
1

d
0

=
0
.8

1
0
2
4

0
.5

B
ia

s
-0

.0
1
9

-0
.0

3
1

0
.0

5
7

0
.0

7
0

0
.0

4
3

-0
.1

4
1

-0
.1

4
8

-0
.0

0
7

0
.0

3
2

0
.0

0
7

-0
.4

1
0

-0
.3

7
2

-0
.1

7
4

0
.0

4
1

0
.0

2
4

-0
.0

3
7

-0
.0

3
9

0
.0

1
0

0
.0

3
9

0
.0

2
6

M
S
E

0
.0

3
5

0
.0

2
8

0
.0

3
7

0
.0

3
8

0
.0

3
3

0
.0

3
0

0
.0

2
9

0
.0

1
7

0
.0

2
3

0
.0

1
9

0
.1

7
1

0
.1

4
1

0
.0

3
5

0
.0

1
6

0
.0

1
1

0
.0

2
4

0
.0

1
8

0
.0

1
8

0
.0

1
4

0
.0

1
0

0
.1

B
ia

s
-0

.1
1
0

-0
.1

3
8

0
.0

2
7

0
.0

5
0

0
.0

0
1

-0
.3

4
4

-0
.3

3
9

-0
.1

2
4

0
.0

2
1

-0
.0

0
9

-0
.5

8
9

-0
.5

4
1

-0
.3

5
6

0
.0

2
6

0
.0

0
9

-0
.0

8
2

-0
.0

9
5

0
.0

0
1

0
.0

3
2

0
.0

1
4

M
S
E

0
.0

5
5

0
.0

5
3

0
.0

4
2

0
.0

4
5

0
.0

4
3

0
.1

2
9

0
.1

2
3

0
.0

3
5

0
.0

3
5

0
.0

3
3

0
.3

4
9

0
.2

9
6

0
.1

3
7

0
.0

2
6

0
.0

2
0

0
.0

5
7

0
.0

5
3

0
.0

3
5

0
.0

2
5

0
.0

2
0

4
0
9
6

0
.5

B
ia

s
0
.0

1
6

0
.0

0
7

0
.0

7
4

0
.0

8
3

0
.0

6
2

-0
.0

6
0

-0
.0

6
5

0
.0

2
3

0
.0

4
1

0
.0

2
1

-0
.3

5
2

-0
.3

0
7

-0
.1

3
2

0
.0

3
0

0
.0

2
1

-0
.0

1
0

-0
.0

1
2

0
.0

1
1

0
.0

2
8

0
.0

2
1

M
S
E

0
.0

2
1

0
.0

1
5

0
.0

2
6

0
.0

2
7

0
.0

2
1

0
.0

0
8

0
.0

0
7

0
.0

0
8

0
.0

1
1

0
.0

0
7

0
.1

2
5

0
.0

9
6

0
.0

1
9

0
.0

0
5

0
.0

0
3

0
.0

0
8

0
.0

0
6

0
.0

0
7

0
.0

0
4

0
.0

0
3

0
.1

B
ia

s
-0

.0
1
5

-0
.0

3
2

0
.0

5
5

0
.0

6
3

0
.0

3
6

-0
.2

1
6

-0
.2

1
0

-0
.0

4
4

0
.0

3
5

0
.0

2
1

-0
.5

3
8

-0
.4

6
4

-0
.2

9
4

0
.0

3
2

0
.0

1
9

-0
.0

2
9

-0
.0

3
5

0
.0

0
7

0
.0

3
1

0
.0

2
4

M
S
E

0
.0

2
2

0
.0

1
6

0
.0

2
6

0
.0

2
8

0
.0

2
1

0
.0

5
2

0
.0

4
8

0
.0

1
0

0
.0

1
5

0
.0

1
1

0
.2

9
0

0
.2

1
7

0
.0

8
8

0
.0

1
0

0
.0

0
6

0
.0

1
8

0
.0

1
4

0
.0

1
4

0
.0

0
8

0
.0

0
6

8
1
9
2

0
.5

B
ia

s
0
.0

2
5

0
.0

1
4

0
.0

7
8

0
.0

8
3

0
.0

6
2

-0
.0

3
6

-0
.0

3
9

0
.0

2
5

0
.0

3
5

0
.0

2
2

-0
.3

2
1

-0
.2

7
9

-0
.1

1
2

0
.0

2
5

0
.0

2
0

-0
.0

0
6

-0
.0

0
8

0
.0

1
2

0
.0

2
5

0
.0

1
9

M
S
E

0
.0

1
4

0
.0

0
9

0
.0

2
0

0
.0

2
1

0
.0

1
5

0
.0

0
4

0
.0

0
3

0
.0

0
6

0
.0

0
7

0
.0

0
5

0
.1

0
4

0
.0

7
9

0
.0

1
4

0
.0

0
3

0
.0

0
2

0
.0

0
4

0
.0

0
3

0
.0

0
4

0
.0

0
3

0
.0

0
2

0
.1

B
ia

s
0
.0

1
2

-0
.0

0
3

0
.0

7
1

0
.0

7
5

0
.0

5
1

-0
.1

6
4

-0
.1

5
9

-0
.0

2
0

0
.0

3
1

0
.0

2
1

-0
.5

1
4

-0
.4

3
3

-0
.2

7
1

0
.0

2
7

0
.0

1
9

-0
.0

1
2

-0
.0

1
5

0
.0

1
6

0
.0

2
9

0
.0

2
2

M
S
E

0
.0

1
5

0
.0

1
1

0
.0

2
1

0
.0

2
1

0
.0

1
6

0
.0

3
0

0
.0

2
8

0
.0

0
6

0
.0

1
0

0
.0

0
6

0
.2

6
5

0
.1

8
8

0
.0

7
5

0
.0

0
6

0
.0

0
3

0
.0

1
0

0
.0

0
8

0
.0

0
9

0
.0

0
5

0
.0

0
3

25



T
ab

le
3:

90
%

C
on

fid
en

ce
In

te
rv

al
s

(d
0

=
0.

2)
m

=
n
0

.4
m

=
n
0

.6
m

=
n
0

.8
m

=
m

o
p

t
e

s
t

σ
2 w

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

n
=

1
0
2
4

0
.5

P
ro

b
.A

0
.9

7
7

0
.9

8
2

0
.9

0
6

0
.7

6
4

0
.7

9
8

0
.3

9
6

0
.2

0
8

0
.9

8
3

0
.7

3
9

0
.7

6
8

0
.0

0
2

0
.0

0
0

0
.9

9
8

0
.7

0
9

0
.7

2
8

0
.9

3
0

0
.9

0
6

0
.8

8
2

0
.6

7
3

0
.6

9
3

M
e
a
n
.A

0
.5

2
7

0
.4

1
1

6
.5

0
8

1
1
.1

3
9
.7

6
9

0
.2

6
4

0
.2

0
6

3
.2

2
5

5
.0

4
7

4
.0

4
8

0
.1

3
2

0
.1

0
3

1
.7

1
3

2
.4

1
2

1
.8

8
5

0
.8

6
1

0
.7

3
6

7
.3

3
4

1
.6

3
1

1
.2

4
1

M
e
d
.A

0
.5

2
7

0
.4

1
1

1
.4

5
1

2
.1

6
8

3
.0

5
0

0
.2

6
4

0
.2

0
6

1
.0

1
3

1
.2

8
3

1
.4

6
3

0
.1

3
2

0
.1

0
3

0
.7

4
8

0
.8

9
8

0
.8

8
8

0
.8

6
1

0
.7

3
6

1
.5

9
2

0
.5

1
3

0
.4

7
0

P
ro

b
.H

0
.9

9
4

0
.9

9
3

0
.9

2
4

0
.9

8
5

1
.0

0
0

0
.4

7
6

0
.2

5
4

0
.9

4
7

0
.9

6
4

1
.0

0
0

0
.0

0
3

0
.0

0
0

0
.8

8
6

0
.9

6
6

0
.9

9
8

0
.9

8
6

0
.9

8
0

0
.9

0
4

0
.9

7
4

0
.9

9
9

M
e
a
n
.H

0
.6

9
0

0
.5

3
8

1
.8

7
8

8
2
7
8
3
.5

6
3
4
4
7
.0

0
.2

9
4

0
.2

2
9

0
.8

1
7

1
9
9
7
1
.3

1
4
4
4
8
.7

0
.1

3
7

0
.1

0
7

0
.4

7
7

5
7
9
1
.7

3
8
2
0
.4

1
.4

2
4

1
.2

9
4

2
.0

8
7

3
0
9
3
.3

1
9
8
8
.4

M
e
d
.H

0
.6

9
0

0
.5

3
8

1
.3

1
9

6
.0

8
2

1
1
.5

6
0
.2

9
4

0
.2

2
9

0
.6

4
5

3
.1

9
9

4
.4

3
3

0
.1

3
7

0
.1

0
7

0
.3

7
9

2
.1

2
6

2
.3

6
0

1
.4

2
4

1
.2

9
4

1
.5

7
6

1
.5

8
2

1
.7

3
7

0
.1

P
ro

b
.A

0
.9

8
8

0
.9

9
3

0
.9

0
2

0
.8

0
0

0
.8

3
1

0
.2

8
7

0
.0

8
4

0
.9

8
8

0
.8

2
4

0
.8

2
9

0
.0

0
2

0
.0

0
0

1
.0

0
0

0
.8

0
1

0
.8

3
2

0
.9

1
5

0
.9

0
9

0
.7

7
2

0
.7

8
5

0
.8

1
7

M
e
a
n
.A

0
.5

2
7

0
.4

1
1

7
.3

2
2

1
3
.4

9
8

1
1
.5

3
0
.2

6
4

0
.2

0
6

4
.1

4
4

6
.9

4
6

5
.8

4
0

0
.1

3
2

0
.1

0
3

2
.4

5
5

3
.7

2
3

3
.1

8
3

0
.9

4
4

0
.7

3
6

9
.9

0
5

2
.7

2
4

2
.2

9
4

M
e
d
.A

0
.5

2
7

0
.4

1
1

1
.5

8
1

5
.1

1
6

1
6
.8

3
0
.2

6
4

0
.2

0
6

1
.2

4
1

4
.3

4
5

5
.4

0
6

0
.1

3
2

0
.1

0
3

0
.9

7
2

3
.2

6
4

5
.2

4
3

0
.9

4
4

0
.7

3
6

1
.9

3
7

3
.3

7
2

3
.5

0
5

P
ro

b
.H

0
.9

9
8

0
.9

9
5

0
.8

9
9

0
.9

8
4

1
.0

0
0

0
.3

4
0

0
.1

1
9

0
.9

6
2

0
.9

8
0

1
.0

0
0

0
.0

0
2

0
.0

0
0

0
.8

4
3

0
.9

8
5

1
.0

0
0

1
.0

0
0

0
.9

8
5

0
.9

0
7

0
.9

8
4

1
.0

0
0

M
e
a
n
.H

0
.6

9
0

0
.5

3
8

1
.7

2
6

1
0
1
8
8
8
.4

7
7
3
2
8
.3

0
.2

9
4

0
.2

2
9

0
.8

2
2

2
8
8
2
0
.7

2
3
4
6
2
.4

0
.1

3
7

0
.1

0
7

0
.4

7
6

1
0
2
8
2
.9

9
0
1
6
.2

1
.6

6
0

1
.2

9
4

5
.9

1
6

6
7
9
4
.8

5
2
6
5
.9

M
e
d
.H

0
.6

9
0

0
.5

3
8

1
.3

0
6

1
4
.9

0
1

5
1
.8

7
0
.2

9
4

0
.2

2
9

0
.6

7
5

8
.3

3
8

1
3
.8

0
5

0
.1

3
7

0
.1

0
7

0
.3

8
3

4
.8

9
9

1
0
.4

5
6

1
.6

6
0

1
.2

9
4

3
.8

4
1

4
.4

8
8

5
.0

5
0

n
=

4
0
9
6

0
.5

P
ro

b
.A

0
.9

9
1

0
.6

0
1

0
.9

0
0

0
.6

9
6

0
.7

4
2

0
.1

5
7

0
.0

3
4

0
.9

9
0

0
.6

8
6

0
.7

1
8

0
.0

0
0

0
.0

0
0

1
.0

0
0

0
.6

2
9

0
.6

4
2

0
.9

5
1

0
.9

5
0

0
.9

3
0

0
.6

4
1

0
.6

4
3

M
e
a
n
.A

0
.4

0
6

0
.3

1
7

4
.5

5
4

7
.1

6
0

5
.5

5
0

0
.1

7
4

0
.1

3
6

1
.9

5
4

2
.3

5
0

1
.8

0
5

0
.0

7
6

0
.0

5
9

0
.8

0
3

0
.8

1
5

0
.5

4
1

0
.6

0
9

0
.5

4
8

4
.3

8
0

0
.4

9
8

0
.3

5
9

M
e
d
.A

0
.4

0
6

0
.3

1
7

1
.2

3
1

1
.3

9
9

1
.4

1
2

0
.1

7
4

0
.1

3
6

0
.7

8
6

0
.7

4
6

0
.7

4
8

0
.0

7
6

0
.0

5
9

0
.4

3
2

0
.2

5
9

0
.2

2
2

0
.6

0
9

0
.5

4
8

1
.1

7
5

0
.1

7
1

0
.1

4
2

P
ro

b
.H

0
.9

9
5

0
.9

9
7

0
.8

8
9

0
.9

5
6

1
.0

0
0

0
.1

8
5

0
.0

4
4

0
.9

3
5

0
.9

5
5

1
.0

0
0

0
.0

0
0

0
.0

0
0

0
.8

0
6

0
.9

4
0

0
.9

9
0

0
.9

8
6

0
.9

8
5

0
.9

1
4

0
.9

6
2

0
.9

8
4

M
e
a
n
.H

0
.4

9
2

0
.3

8
3

1
.3

9
2

3
8
3
7
5
.2

2
5
9
8
4
.9

0
.1

8
5

0
.1

4
4

0
.6

3
0

5
7
6
8
.3

3
8
4
5
.2

0
.0

7
7

0
.0

6
0

0
.2

9
6

7
7
6
.0

2
7
6
.6

0
.8

4
2

0
.8

0
9

1
.2

5
8

3
0
4
.0

6
9
4
.3

5
5

M
e
d
.H

0
.4

9
2

0
.3

8
3

1
.0

0
8

3
.3

9
6

4
.9

5
9

0
.1

8
5

0
.1

4
4

0
.4

7
4

1
.7

5
1

1
.9

7
0

0
.0

7
7

0
.0

6
0

0
.2

4
7

1
.0

3
7

0
.9

1
7

0
.8

4
2

0
.8

0
9

0
.9

8
2

0
.7

6
3

0
.6

5
7

0
.1

P
ro

b
.A

0
.9

9
6

0
.4

0
5

0
.9

3
3

0
.8

0
2

0
.8

1
8

0
.0

3
7

0
.0

0
7

0
.9

9
8

0
.7

7
8

0
.8

0
1

0
.0

0
0

0
.0

0
0

1
.0

0
0

0
.7

3
3

0
.7

5
3

0
.9

0
8

0
.9

0
3

0
.9

6
9

0
.7

7
0

0
.7

8
7

M
e
a
n
.A

0
.4

0
6

0
.3

1
7

5
.8

7
8

1
0
.1

1
8
.6

4
0

0
.1

7
4

0
.1

3
6

2
.8

4
7

4
.4

0
3

3
.5

1
5

0
.0

7
6

0
.0

5
9

1
.4

3
2

1
.9

6
6

1
.5

6
2

0
.9

4
4

0
.7

3
6

1
0
.3

1
1
.3

8
9

1
.1

7
9

M
e
d
.A

0
.4

0
6

0
.3

1
7

1
.3

8
9

3
.5

9
7

6
.5

2
3

0
.1

7
4

0
.1

3
6

0
.9

8
8

2
.3

4
5

2
.1

9
9

0
.0

7
6

0
.0

5
9

0
.6

7
4

1
.5

3
3

1
.4

0
3

0
.9

4
4

0
.7

3
6

2
.1

3
7

1
.5

1
9

1
.4

8
3

P
ro

b
.H

0
.9

9
9

1
.0

0
0

0
.9

1
1

0
.9

7
4

1
.0

0
0

0
.0

4
7

0
.0

0
7

0
.9

2
7

0
.9

8
3

1
.0

0
0

0
.0

0
0

0
.0

0
0

0
.7

4
4

0
.9

7
8

1
.0

0
0

1
.0

0
0

0
.9

7
4

0
.8

9
6

0
.9

8
3

1
.0

0
0

M
e
a
n
.H

0
.4

9
2

0
.3

8
3

1
.2

9
5

5
7
6
6
1
.7

4
5
0
3
0
.0

0
.1

8
5

0
.1

4
4

0
.5

9
1

1
3
5
5
5
.5

1
1
0
5
7
.0

0
.0

7
7

0
.0

6
0

0
.3

3
2

3
9
4
2
.6

2
9
3
8
.7

1
.6

6
0

1
.2

9
4

8
.3

5
4

2
4
1
6
.8

1
9
6
7
.8

M
e
d
.H

0
.4

9
2

0
.3

8
3

0
.9

9
3

8
.6

2
8

1
9
.7

4
0
.1

8
5

0
.1

4
4

0
.4

6
6

3
.9

7
7

4
.9

1
3

0
.0

7
7

0
.0

6
0

0
.2

6
7

2
.3

6
0

2
.7

3
1

1
.6

6
0

1
.2

9
4

4
.0

5
2

2
.2

1
1

2
.5

5
7

n
=

8
1
9
2

0
.5

P
ro

b
.A

0
.6

9
4

0
.5

6
0

0
.9

3
9

0
.7

0
5

0
.7

2
5

0
.0

6
2

0
.0

0
5

0
.9

9
5

0
.6

6
6

0
.6

9
8

0
.0

0
0

0
.0

0
0

1
.0

0
0

0
.6

1
6

0
.6

7
6

0
.9

6
7

0
.9

5
3

0
.9

4
9

0
.6

1
4

0
.5

0
8

M
e
a
n
.A

0
.3

5
2

0
.2

7
4

3
.7

2
1

5
.4

2
5

4
.2

2
6

0
.1

4
2

0
.1

1
0

1
.4

2
5

1
.5

3
0

1
.0

2
3

0
.0

5
7

0
.0

4
5

0
.4

9
5

0
.4

2
6

0
.3

0
6

0
.5

2
7

0
.4

7
5

2
.9

8
7

0
.2

7
1

0
.1

9
8

M
e
d
.A

0
.3

5
2

0
.2

7
4

1
.0

7
1

1
.1

1
0

1
.0

6
8

0
.1

4
2

0
.1

1
0

0
.6

5
8

0
.5

7
1

0
.4

8
4

0
.0

5
7

0
.0

4
5

0
.3

1
0

0
.1

9
0

0
.1

6
0

0
.5

2
7

0
.4

7
5

1
.0

2
0

0
.1

2
4

0
.1

0
6

P
ro

b
.H

0
.9

9
8

0
.6

5
1

0
.9

0
8

0
.9

5
0

1
.0

0
0

0
.0

7
1

0
.0

0
8

0
.9

1
9

0
.9

4
1

0
.9

9
6

0
.0

0
0

0
.0

0
0

0
.8

2
3

0
.9

5
2

0
.9

8
0

0
.9

8
5

0
.9

8
0

0
.9

3
4

0
.9

5
5

0
.9

6
9

M
e
a
n
.H

0
.4

1
2

0
.3

2
1

1
.1

5
7

2
4
0
1
3
.3

1
6
0
7
0
.3

0
.1

4
8

0
.1

1
6

0
.5

7
9

2
6
2
9
.3

1
0
1
9
.3

0
.0

5
8

0
.0

4
5

0
.2

3
6

7
9
.3

3
1
5
.1

3
2

0
.6

9
0

0
.6

5
6

1
.0

7
3

3
0
.4

8
2

1
0
.0

4
3

M
e
d
.H

0
.4

1
2

0
.3

2
1

0
.8

8
7

2
.4

7
4

3
.6

8
7

0
.1

4
8

0
.1

1
6

0
.4

0
6

1
.2

7
1

1
.2

6
2

0
.0

5
8

0
.0

4
5

0
.1

9
4

0
.7

1
6

0
.5

7
5

0
.6

9
0

0
.6

5
6

0
.8

3
4

0
.5

2
4

0
.4

3
6

0
.1

P
ro

b
.A

0
.5

2
5

0
.3

3
1

0
.9

7
0

0
.8

0
4

0
.8

2
5

0
.0

0
7

0
.0

0
0

0
.9

9
9

0
.7

4
0

0
.7

8
6

0
.0

0
0

0
.0

0
0

1
.0

0
0

0
.7

4
8

0
.7

5
0

0
.8

9
9

0
.8

9
4

0
.9

6
5

0
.7

1
7

0
.6

5
2

M
e
a
n
.A

0
.3

5
2

0
.2

7
4

5
.0

8
3

8
.3

6
0

6
.9

0
6

0
.1

4
2

0
.1

1
0

2
.3

3
2

3
.3

2
8

2
.7

3
9

0
.0

5
7

0
.0

4
5

1
.2

6
7

1
.5

3
4

1
.1

7
7

0
.9

4
4

0
.7

3
6

9
.5

5
9

0
.9

7
0

0
.7

3
6

M
e
d
.A

0
.3

5
2

0
.2

7
4

1
.3

0
0

2
.7

7
3

3
.0

8
6

0
.1

4
2

0
.1

1
0

0
.8

9
1

1
.6

5
4

1
.8

1
1

0
.0

5
7

0
.0

4
5

0
.6

6
2

1
.3

1
9

1
.0

8
1

0
.9

4
4

0
.7

3
6

2
.0

7
7

0
.9

3
3

0
.3

6
9

P
ro

b
.H

1
.0

0
0

0
.4

3
7

0
.9

4
6

0
.9

8
5

1
.0

0
0

0
.0

0
8

0
.0

0
0

0
.9

0
1

0
.9

8
0

1
.0

0
0

0
.0

0
0

0
.0

0
0

0
.5

8
1

0
.9

7
9

0
.9

9
9

1
.0

0
0

0
.9

7
0

0
.9

2
9

0
.9

7
3

0
.9

9
8

M
e
a
n
.H

0
.4

1
2

0
.3

2
1

1
.2

3
4

4
1
1
1
5
.5

3
1
0
3
4
.2

0
.1

4
8

0
.1

1
6

0
.5

4
0

8
6
4
4
.6

6
4
1
1
.0

0
.0

5
8

0
.0

4
5

0
.2

9
5

2
5
8
0
.1

1
8
6
0
.5

1
.6

6
0

1
.2

9
4

1
0
.0

6
1
3
6
2
.8

9
2
5
.6

7
M

e
d
.H

0
.4

1
2

0
.3

2
1

0
.8

7
5

5
.9

7
0

8
.6

6
3

0
.1

4
8

0
.1

1
6

0
.4

1
5

2
.8

4
3

3
.7

0
1

0
.0

5
8

0
.0

4
5

0
.2

3
3

2
.1

2
4

2
.0

0
7

1
.6

6
0

1
.2

9
4

4
.4

2
4

1
.5

8
6

1
.5

3
6

P
ro

b
.A

,
M

e
a
n
.A

,
M

e
d
.A

d
e
n
o
te

c
o
v
e
ra

g
e

fr
e
q
u
e
n
c
ie

s,
m

e
a
n

le
n
g
th

s
a
n
d

m
e
d
ia

n
le

n
g
th

s
o
f
th

e
n
o
m

in
a
l
9
0
%

c
o
n
fi
d
e
n
c
e

in
te

rv
a
ls

w
it

h
th

e
a
sy

m
p
to

ti
c

e
x
p
re

ss
io

n
fo

r
st

a
n
d
a
rd

e
rr

o
rs

w
it

h
e
st

im
a
te

d
p
a
ra

m
e
te

rs
.

P
ro

b
.H

,
M

e
a
n
.H

,
M

e
d
.H

d
e
n
o
te

c
o
v
e
ra

g
e

fr
e
q
u
e
n
c
ie

s,
m

e
a
n

le
n
g
th

s
a
n
d

m
e
d
ia

n
le

n
g
th

s
o
f
th

e
n
o
m

in
a
l
9
0
%

c
o
n
fi
d
e
n
c
e

in
te

rv
a
ls

w
it

h
th

e
fi
n
it

e
sa

m
p
le

H
e
ss

ia
n

b
a
se

d
a
p
p
ro

x
im

a
ti

o
n

o
f
th

e
st

a
n
d
a
rd

e
rr

o
rs

w
it

h
e
st

im
a
te

d
p
a
ra

m
e
te

rs
.

26



T
ab

le
4:

90
%

C
on

fid
en

ce
In

te
rv

al
s

(d
0

=
0.

45
)

m
=

n
0

.4
m

=
n
0

.6
m

=
n
0

.8
m

=
m

o
p

t
e

s
t

σ
2 w

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

n
=

1
0
2
4

0
.5

P
ro

b
.A

0
.7

4
7

0
.6

2
5

0
.8

8
1

0
.6

7
7

0
.7

1
0

0
.1

5
3

0
.0

3
7

0
.9

8
8

0
.6

3
2

0
.7

1
7

0
.0

0
0

0
.0

0
0

0
.7

2
4

0
.5

1
5

0
.4

4
3

0
.7

4
5

0
.6

5
3

0
.9

4
4

0
.3

9
3

0
.3

8
2

M
e
a
n
.A

0
.5

2
7

0
.4

1
1

2
.2

3
6

2
.6

5
8

2
.0

0
2

0
.2

6
4

0
.2

0
6

0
.7

2
1

0
.6

8
5

0
.5

4
0

0
.1

3
2

0
.1

0
3

0
.5

5
0

0
.3

2
4

0
.2

5
7

0
.5

8
5

0
.4

9
6

1
.3

2
4

0
.2

2
5

0
.1

7
1

M
e
d
.A

0
.5

2
7

0
.4

1
1

1
.0

2
2

0
.9

4
0

0
.8

0
8

0
.2

6
4

0
.2

0
6

0
.5

9
8

0
.5

1
0

0
.4

4
2

0
.1

3
2

0
.1

0
3

0
.3

5
8

0
.2

6
6

0
.2

1
7

0
.5

8
5

0
.4

9
6

0
.8

2
8

0
.1

9
0

0
.1

5
3

P
ro

b
.H

0
.8

6
4

0
.7

7
6

0
.9

2
2

0
.9

9
5

1
.0

0
0

0
.1

9
2

0
.0

5
5

0
.9

4
3

0
.9

8
4

1
.0

0
0

0
.0

0
0

0
.0

0
0

0
.4

1
5

0
.9

7
7

0
.9

3
9

0
.8

8
2

0
.8

0
7

0
.9

2
3

0
.9

5
6

0
.9

3
4

M
e
a
n
.H

0
.6

9
0

0
.5

3
8

1
.8

2
4

1
2
6
5
8
.2

6
9
4
7
.8

0
.2

9
4

0
.2

2
9

0
.6

3
7

3
4
2
.4

8
7
3
.8

1
3

0
.1

3
7

0
.1

0
7

0
.3

9
7

2
6
.7

6
9

2
1
.0

9
8

0
.7

9
6

0
.6

9
8

1
.1

3
9

1
7
.5

7
7

0
.5

6
3

M
e
d
.H

0
.6

9
0

0
.5

3
8

1
.3

9
9

2
.3

0
4

2
.5

4
0

0
.2

9
4

0
.2

2
9

0
.5

7
2

1
.2

8
5

1
.0

4
6

0
.1

3
7

0
.1

0
7

0
.2

7
8

0
.7

7
6

0
.6

1
6

0
.7

9
6

0
.6

9
8

0
.9

6
3

0
.6

3
0

0
.5

0
7

0
.1

P
ro

b
.A

0
.4

9
1

0
.3

0
6

0
.9

4
8

0
.7

6
7

0
.7

6
5

0
.0

0
5

0
.0

0
0

0
.9

9
7

0
.6

5
8

0
.6

7
8

0
.0

0
0

0
.0

0
0

0
.5

1
3

0
.6

1
2

0
.4

8
1

0
.9

0
6

0
.5

5
0

1
.0

0
0

0
.4

6
2

0
.3

8
4

M
e
a
n
.A

0
.5

2
7

0
.4

1
1

3
.8

2
1

6
.0

1
9

5
.0

1
7

0
.2

6
4

0
.2

0
6

1
.9

3
3

2
.8

2
6

1
.9

6
5

0
.1

3
2

0
.1

0
3

1
.0

8
6

1
.4

8
6

1
.0

2
1

0
.9

4
4

0
.7

3
6

5
.9

5
6

1
.0

6
6

0
.7

2
1

M
e
d
.A

0
.5

2
7

0
.4

1
1

1
.1

7
4

1
.1

2
5

1
.0

8
0

0
.2

6
4

0
.2

0
6

0
.7

8
0

0
.6

3
8

0
.5

4
9

0
.1

3
2

0
.1

0
3

0
.5

1
1

0
.3

0
9

0
.2

5
4

0
.9

4
4

0
.7

3
6

1
.4

5
8

0
.2

1
7

0
.1

6
5

P
ro

b
.H

0
.6

4
7

0
.4

4
0

0
.9

5
6

0
.9

8
9

1
.0

0
0

0
.0

1
0

0
.0

0
0

0
.8

7
4

0
.9

9
0

1
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

9
0

0
.9

8
5

0
.9

9
9

1
.0

0
0

1
.0

0
0

0
.9

9
9

0
.9

8
6

0
.9

8
5

M
e
a
n
.H

0
.6

9
0

0
.5

3
8

1
.8

3
5

3
9
9
6
0
.7

2
7
8
3
1
.6

0
.2

9
4

0
.2

2
9

0
.7

3
5

9
3
1
9
.8

5
2
0
7
.6

0
.1

3
7

0
.1

0
7

0
.4

2
4

3
3
3
3
.6

1
7
8
6
.2

1
.6

6
0

1
.2

9
4

3
.4

5
7

2
2
0
1
.4

1
2
6
7
.4

M
e
d
.H

0
.6

9
0

0
.5

3
8

1
.3

6
3

3
.0

9
3

4
.5

9
7

0
.2

9
4

0
.2

2
9

0
.6

1
3

1
.9

6
0

2
.4

6
8

0
.1

3
7

0
.1

0
7

0
.3

3
8

1
.5

8
2

1
.6

1
8

1
.6

6
0

1
.2

9
4

2
.5

9
3

1
.4

0
8

1
.4

9
2

n
=

4
0
9
6

0
.5

P
ro

b
.A

0
.8

0
5

0
.7

5
0

0
.8

8
4

0
.7

4
5

0
.7

6
9

0
.0

8
5

0
.0

1
5

0
.9

8
5

0
.7

4
2

0
.7

4
8

0
.0

0
0

0
.0

0
0

0
.2

1
9

0
.5

5
9

0
.5

3
4

0
.7

8
1

0
.7

2
4

0
.9

6
6

0
.4

8
6

0
.4

9
4

M
e
a
n
.A

0
.4

0
6

0
.3

1
7

1
.0

3
7

1
.1

0
6

0
.7

5
6

0
.1

7
4

0
.1

3
6

0
.4

0
4

0
.3

7
6

0
.3

0
1

0
.0

7
6

0
.0

5
9

0
.4

8
2

0
.1

6
2

0
.1

2
7

0
.3

7
3

0
.3

1
7

0
.5

2
4

0
.1

0
9

0
.0

8
9

M
e
d
.A

0
.4

0
6

0
.3

1
7

0
.7

9
3

0
.7

5
5

0
.6

3
4

0
.1

7
4

0
.1

3
6

0
.3

8
4

0
.3

5
1

0
.2

8
7

0
.0

7
6

0
.0

5
9

0
.1

9
7

0
.1

5
7

0
.1

2
4

0
.3

7
3

0
.3

1
7

0
.4

8
7

0
.1

0
7

0
.0

8
8

P
ro

b
.H

0
.8

8
6

0
.8

2
2

0
.8

9
9

0
.9

2
7

0
.9

9
7

0
.1

1
0

0
.0

2
1

0
.9

5
6

0
.9

6
0

0
.9

5
9

0
.0

0
0

0
.0

0
0

0
.1

1
0

0
.9

0
5

0
.8

9
6

0
.8

6
4

0
.8

1
3

0
.9

4
4

0
.9

0
3

0
.8

9
3

M
e
a
n
.H

0
.4

9
2

0
.3

8
3

1
.3

1
7

1
4
1
5
.0

2
6
3
.9

0
0
.1

8
5

0
.1

4
4

0
.3

9
5

0
.6

8
3

0
.4

9
9

0
.0

7
7

0
.0

6
0

0
.2

9
7

0
.3

5
3

0
.2

7
2

0
.4

4
3

0
.3

8
3

0
.5

8
9

0
.2

9
1

0
.2

3
0

M
e
d
.H

0
.4

9
2

0
.3

8
3

1
.0

7
2

1
.4

1
5

1
.2

9
0

0
.1

8
5

0
.1

4
4

0
.3

6
4

0
.6

2
0

0
.4

8
4

0
.0

7
7

0
.0

6
0

0
.1

4
8

0
.3

4
5

0
.2

6
9

0
.4

4
3

0
.3

8
3

0
.5

0
9

0
.2

8
3

0
.2

2
7

0
.1

P
ro

b
.A

0
.5

6
4

0
.3

7
3

0
.9

4
5

0
.8

1
1

0
.7

5
6

0
.0

0
0

0
.0

0
0

1
.0

0
0

0
.6

0
6

0
.5

5
8

0
.0

0
0

0
.0

0
0

0
.0

2
8

0
.3

2
4

0
.2

8
5

0
.7

1
8

0
.6

3
1

0
.9

1
8

0
.2

5
2

0
.2

3
4

M
e
a
n
.A

0
.4

0
6

0
.3

1
7

1
.5

2
8

1
.8

9
0

1
.3

0
9

0
.1

7
4

0
.1

3
6

0
.6

7
0

0
.5

8
9

0
.3

9
9

0
.0

7
6

0
.0

5
9

0
.3

1
6

0
.2

3
4

0
.1

4
9

0
.6

6
7

0
.5

8
2

1
.8

4
8

0
.1

4
5

0
.1

0
2

M
e
d
.A

0
.4

0
6

0
.3

1
7

0
.8

5
1

0
.7

7
3

0
.6

6
1

0
.1

7
4

0
.1

3
6

0
.4

5
7

0
.3

4
4

0
.2

8
4

0
.0

7
6

0
.0

5
9

0
.2

6
6

0
.1

5
4

0
.1

2
5

0
.6

6
7

0
.5

8
2

0
.9

4
8

0
.1

0
7

0
.0

8
9

P
ro

b
.H

0
.6

8
8

0
.4

8
3

0
.9

2
8

0
.9

5
8

1
.0

0
0

0
.0

0
0

0
.0

0
0

0
.8

5
0

0
.9

4
0

0
.9

9
7

0
.0

0
0

0
.0

0
0

0
.0

0
6

0
.9

3
1

0
.9

4
4

0
.9

8
4

0
.9

7
6

0
.9

1
4

0
.9

0
6

0
.9

1
7

M
e
a
n
.H

0
.4

9
2

0
.3

8
3

1
.3

2
1

6
2
4
7
.8

2
9
1
2
.0

0
.1

8
5

0
.1

4
4

0
.4

6
4

4
9
9
.1

9
1
4
6
.5

3
0
.0

7
7

0
.0

6
0

0
.2

0
5

7
9
.4

9
5

0
.6

1
9

0
.9

5
9

0
.8

8
4

1
.5

0
8

1
3
.2

4
9

0
.5

3
5

M
e
d
.H

0
.4

9
2

0
.3

8
3

0
.9

9
0

1
.6

3
7

1
.8

7
0

0
.1

8
5

0
.1

4
4

0
.3

7
6

0
.9

3
7

0
.8

7
4

0
.0

7
7

0
.0

6
0

0
.1

7
7

0
.6

7
8

0
.5

5
7

0
.9

5
9

0
.8

8
4

1
.1

4
3

0
.5

8
8

0
.4

8
3

n
=

8
1
9
2

0
.5

P
ro

b
.A

0
.8

1
5

0
.7

7
3

0
.8

8
7

0
.7

4
9

0
.7

6
7

0
.0

5
1

0
.0

1
0

0
.9

7
6

0
.7

9
3

0
.7

5
9

0
.0

0
0

0
.0

0
0

0
.0

3
7

0
.5

7
8

0
.5

7
8

0
.8

1
2

0
.7

7
4

0
.9

8
3

0
.4

9
2

0
.5

2
0

M
e
a
n
.A

0
.3

5
2

0
.2

7
4

0
.7

9
0

0
.7

6
9

0
.5

7
4

0
.1

4
2

0
.1

1
0

0
.3

1
9

0
.3

0
3

0
.2

3
9

0
.0

5
7

0
.0

4
5

0
.1

6
6

0
.1

2
1

0
.0

9
5

0
.2

9
5

0
.2

5
4

0
.3

8
0

0
.0

8
2

0
.0

6
7

M
e
d
.A

0
.3

5
2

0
.2

7
4

0
.6

7
4

0
.6

5
0

0
.5

4
6

0
.1

4
2

0
.1

1
0

0
.3

1
1

0
.2

9
4

0
.2

3
3

0
.0

5
7

0
.0

4
5

0
.1

4
5

0
.1

1
9

0
.0

9
4

0
.2

9
5

0
.2

5
4

0
.3

6
8

0
.0

8
1

0
.0

6
7

P
ro

b
.H

0
.8

8
3

0
.8

3
2

0
.8

9
3

0
.9

1
8

0
.9

9
1

0
.0

6
4

0
.0

1
1

0
.9

5
8

0
.9

5
0

0
.9

3
9

0
.0

0
0

0
.0

0
0

0
.0

1
1

0
.9

0
3

0
.8

9
4

0
.8

7
2

0
.8

4
3

0
.9

6
8

0
.9

1
0

0
.9

0
6

M
e
a
n
.H

0
.4

1
2

0
.3

2
1

1
.0

3
2

1
0
5
.4

4
1
.0

6
5

0
.1

4
8

0
.1

1
6

0
.3

1
0

0
.4

7
8

0
.3

5
3

0
.0

5
8

0
.0

4
5

0
.1

1
9

0
.2

4
1

0
.1

8
7

0
.3

3
5

0
.2

9
3

0
.4

1
6

0
.1

9
9

0
.1

5
9

M
e
d
.H

0
.4

1
2

0
.3

2
1

0
.8

5
5

1
.1

1
1

0
.9

8
9

0
.1

4
8

0
.1

1
6

0
.2

9
0

0
.4

4
9

0
.3

4
9

0
.0

5
8

0
.0

4
5

0
.1

0
8

0
.2

3
8

0
.1

8
6

0
.3

3
5

0
.2

9
3

0
.3

6
3

0
.1

9
7

0
.1

5
8

0
.1

P
ro

b
.A

0
.5

8
7

0
.4

1
7

0
.9

4
7

0
.8

5
7

0
.7

8
1

0
.0

0
0

0
.0

0
0

0
.9

3
1

0
.6

5
3

0
.5

2
3

0
.0

0
0

0
.0

0
0

0
.0

0
1

0
.3

7
5

0
.3

3
3

0
.7

6
2

0
.6

8
3

0
.9

4
0

0
.2

7
1

0
.2

6
5

M
e
a
n
.A

0
.3

5
2

0
.2

7
4

1
.1

6
0

1
.1

9
1

0
.8

1
5

0
.1

4
2

0
.1

1
0

0
.4

0
5

0
.3

3
1

0
.2

6
0

0
.0

5
7

0
.0

4
5

0
.2

0
2

0
.1

2
5

0
.0

9
7

0
.5

2
7

0
.4

5
6

0
.9

8
4

0
.0

8
6

0
.0

6
9

M
e
d
.A

0
.3

5
2

0
.2

7
4

0
.7

3
8

0
.6

8
0

0
.5

8
0

0
.1

4
2

0
.1

1
0

0
.3

6
1

0
.2

9
0

0
.2

3
1

0
.0

5
7

0
.0

4
5

0
.1

9
2

0
.1

1
7

0
.0

9
4

0
.5

2
7

0
.4

5
6

0
.7

3
4

0
.0

8
0

0
.0

6
7

P
ro

b
.H

0
.6

6
8

0
.5

0
6

0
.9

3
3

0
.9

5
6

1
.0

0
0

0
.0

0
0

0
.0

0
0

0
.7

1
0

0
.9

4
3

0
.9

4
5

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.9

3
2

0
.9

2
0

0
.8

6
6

0
.8

2
2

0
.9

3
2

0
.9

1
9

0
.8

9
9

M
e
a
n
.H

0
.4

1
2

0
.3

2
1

1
.1

1
9

1
8
6
5
.9

6
5
4
.2

6
0
.1

4
8

0
.1

1
6

0
.3

3
6

0
.7

4
3

0
.5

8
9

0
.0

5
8

0
.0

4
5

0
.1

3
3

0
.4

8
7

0
.3

6
7

0
.6

9
0

0
.6

2
0

1
.1

3
1

6
.4

6
8

0
.3

3
0

M
e
d
.H

0
.4

1
2

0
.3

2
1

0
.8

5
6

1
.3

0
4

1
.2

7
6

0
.1

4
8

0
.1

1
6

0
.2

9
2

0
.6

8
2

0
.5

5
9

0
.0

5
8

0
.0

4
5

0
.1

2
6

0
.4

4
3

0
.3

5
1

0
.6

9
0

0
.6

2
0

0
.8

3
4

0
.3

9
6

0
.3

1
7

P
ro

b
.A

,
M

e
a
n
.A

,
M

e
d
.A

d
e
n
o
te

c
o
v
e
ra

g
e

fr
e
q
u
e
n
c
ie

s,
m

e
a
n

le
n
g
th

s
a
n
d

m
e
d
ia

n
le

n
g
th

s
o
f
th

e
n
o
m

in
a
l
9
0
%

c
o
n
fi
d
e
n
c
e

in
te

rv
a
ls

w
it

h
th

e
a
sy

m
p
to

ti
c

e
x
p
re

ss
io

n
fo

r
st

a
n
d
a
rd

e
rr

o
rs

w
it

h
e
st

im
a
te

d
p
a
ra

m
e
te

rs
.

P
ro

b
.H

,
M

e
a
n
.H

,
M

e
d
.H

d
e
n
o
te

c
o
v
e
ra

g
e

fr
e
q
u
e
n
c
ie

s,
m

e
a
n

le
n
g
th

s
a
n
d

m
e
d
ia

n
le

n
g
th

s
o
f
th

e
n
o
m

in
a
l
9
0
%

c
o
n
fi
d
e
n
c
e

in
te

rv
a
ls

w
it

h
th

e
fi
n
it

e
sa

m
p
le

H
e
ss

ia
n

b
a
se

d
a
p
p
ro

x
im

a
ti

o
n

o
f
th

e
st

a
n
d
a
rd

e
rr

o
rs

w
it

h
e
st

im
a
te

d
p
a
ra

m
e
te

rs
.

27



T
ab

le
5:

90
%

C
on

fid
en

ce
In

te
rv

al
s

(d
0

=
0.

8)
m

=
n
0

.4
m

=
n
0

.6
m

=
n
0

.8
m

=
m

o
p

t
e

s
t

σ
2 w

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

L
P
E

G
S
E

N
L
P
E

A
L
P
E

M
G

S
E

n
=

1
0
2
4

0
.5

P
ro

b
.A

0
.8

9
1

0
.8

5
9

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.4

4
8

0
.2

9
4

0
.9

0
0

0
.7

5
9

0
.7

3
1

0
.0

0
0

0
.0

0
0

0
.1

8
2

0
.5

4
7

0
.5

4
3

0
.8

6
3

0
.7

6
8

0
.9

7
9

0
.4

3
6

0
.4

4
4

M
e
a
n
.A

0
.5

2
7

0
.4

1
1

0
.8

9
5

0
.8

9
0

0
.6

7
6

0
.2

6
4

0
.2

0
6

0
.4

3
5

0
.4

2
8

0
.3

3
7

0
.1

3
2

0
.1

0
3

0
.2

3
9

0
.2

1
2

0
.1

6
6

0
.4

0
6

0
.3

3
6

0
.4

7
5

0
.1

5
0

0
.1

1
7

M
e
d
.A

0
.5

2
7

0
.4

1
1

0
.8

0
9

0
.7

9
6

0
.6

4
0

0
.2

6
4

0
.2

0
6

0
.4

2
6

0
.4

1
8

0
.3

3
1

0
.1

3
2

0
.1

0
3

0
.2

3
7

0
.2

1
0

0
.1

6
5

0
.4

0
6

0
.3

3
6

0
.4

6
7

0
.1

4
8

0
.1

1
7

P
ro

b
.H

0
.9

4
0

0
.9

1
1

0
.9

9
6

1
.0

0
0

1
.0

0
0

0
.5

1
1

0
.3

4
3

0
.9

7
5

0
.9

9
8

0
.9

6
5

0
.0

0
0

0
.0

0
0

0
.1

2
5

0
.9

4
5

0
.8

8
4

0
.9

2
1

0
.8

9
7

0
.9

9
4

0
.9

0
0

0
.8

6
2

M
e
a
n
.H

0
.6

9
0

0
.5

3
8

1
.5

2
2

2
3
1
.8

3
1
.2

7
0

0
.2

9
4

0
.2

2
9

0
.4

9
6

0
.6

7
0

0
.5

0
4

0
.1

3
7

0
.1

0
7

0
.2

0
0

0
.4

2
6

0
.3

3
0

0
.4

9
2

0
.4

1
3

0
.5

7
9

0
.3

8
0

0
.2

9
6

M
e
d
.H

0
.6

9
0

0
.5

3
8

1
.2

8
9

1
.5

0
3

1
.1

8
4

0
.2

9
4

0
.2

2
9

0
.4

6
4

0
.6

3
9

0
.4

9
9

0
.1

3
7

0
.1

0
7

0
.1

9
8

0
.4

1
5

0
.3

2
8

0
.4

9
2

0
.4

1
3

0
.5

3
2

0
.3

7
0

0
.2

9
2

0
.1

P
ro

b
.A

0
.7

8
7

0
.6

5
7

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.0

2
3

0
.0

0
6

0
.8

2
9

0
.5

9
3

0
.5

6
9

0
.0

0
0

0
.0

0
0

0
.0

2
4

0
.4

1
4

0
.3

9
3

0
.8

4
1

0
.7

8
3

1
.0

0
0

0
.2

7
6

0
.2

8
9

M
e
a
n
.A

0
.5

2
7

0
.4

1
1

0
.9

7
1

1
.0

1
2

0
.7

2
7

0
.2

6
4

0
.2

0
6

0
.4

7
0

0
.4

3
8

0
.3

4
5

0
.1

3
2

0
.1

0
3

0
.4

3
0

0
.2

1
6

0
.1

6
9

0
.6

0
9

0
.4

9
6

0
.7

7
6

0
.1

5
2

0
.1

1
9

M
e
d
.A

0
.5

2
7

0
.4

1
1

0
.8

2
2

0
.8

0
1

0
.6

5
2

0
.2

6
4

0
.2

0
6

0
.4

5
6

0
.4

1
5

0
.3

3
1

0
.1

3
2

0
.1

0
3

0
.2

7
7

0
.2

1
0

0
.1

6
6

0
.6

0
9

0
.4

9
6

0
.7

2
0

0
.1

4
8

0
.1

1
7

P
ro

b
.H

0
.8

6
7

0
.7

7
3

0
.9

9
2

1
.0

0
0

1
.0

0
0

0
.0

2
7

0
.0

0
7

0
.8

5
1

0
.9

8
6

0
.9

3
0

0
.0

0
0

0
.0

0
0

0
.0

2
3

0
.9

4
9

0
.9

4
8

0
.9

2
0

0
.8

7
7

0
.9

9
4

0
.9

5
2

0
.9

2
9

M
e
a
n
.H

0
.6

9
0

0
.5

3
8

1
.5

0
3

1
1
5
2
.4

3
1
6
0
.5

0
2

0
.2

9
4

0
.2

2
9

0
.4

7
3

0
.9

2
3

0
.7

0
1

0
.1

3
7

0
.1

0
7

0
.3

0
2

0
.6

9
7

0
.5

3
5

0
.8

4
2

0
.6

9
8

1
.1

3
3

0
.6

4
4

0
.4

9
9

M
e
d
.H

0
.6

9
0

0
.5

3
8

1
.2

7
8

1
.6

4
9

1
.3

5
4

0
.2

9
4

0
.2

2
9

0
.4

4
6

0
.8

4
5

0
.6

7
8

0
.1

3
7

0
.1

0
7

0
.2

1
0

0
.6

4
8

0
.5

1
7

0
.8

4
2

0
.6

9
8

0
.9

7
4

0
.6

0
5

0
.4

8
4

n
=

4
0
9
6

0
.5

P
ro

b
.A

0
.9

2
3

0
.7

7
8

1
.0

0
0

1
.0

0
0

0
.9

9
1

0
.6

3
6

0
.4

9
9

0
.8

6
5

0
.7

6
3

0
.8

0
9

0
.0

0
0

0
.0

0
0

0
.0

6
2

0
.5

9
2

0
.5

9
4

0
.8

2
3

0
.8

2
4

0
.8

6
2

0
.4

3
6

0
.4

4
0

M
e
a
n
.A

0
.4

0
6

0
.3

1
7

0
.6

4
7

0
.6

4
4

0
.5

0
5

0
.1

7
4

0
.1

3
6

0
.2

8
1

0
.2

7
9

0
.2

1
9

0
.0

7
6

0
.0

5
9

0
.1

3
3

0
.1

2
2

0
.0

9
5

0
.2

3
7

0
.1

9
7

0
.2

5
7

0
.0

7
5

0
.0

6
0

M
e
d
.A

0
.4

0
6

0
.3

1
7

0
.6

2
7

0
.6

2
3

0
.4

9
6

0
.1

7
4

0
.1

3
6

0
.2

7
9

0
.2

7
7

0
.2

1
8

0
.0

7
6

0
.0

5
9

0
.1

3
3

0
.1

2
1

0
.0

9
5

0
.2

3
7

0
.1

9
7

0
.2

5
6

0
.0

7
5

0
.0

6
0

P
ro

b
.H

0
.9

4
6

0
.8

6
7

1
.0

0
0

1
.0

0
0

1
.0

0
0

0
.6

7
4

0
.5

3
2

0
.8

9
3

0
.8

9
6

0
.8

9
5

0
.0

0
0

0
.0

0
0

0
.0

4
0

0
.8

4
1

0
.8

3
1

0
.8

6
7

0
.8

5
8

0
.8

7
9

0
.8

0
9

0
.8

0
7

M
e
a
n
.H

0
.4

9
2

0
.3

8
3

1
.0

0
4

1
.0

4
8

0
.7

7
8

0
.1

8
5

0
.1

4
4

0
.3

0
5

0
.3

6
8

0
.2

7
2

0
.0

7
7

0
.0

6
0

0
.1

1
0

0
.2

0
4

0
.1

5
8

0
.2

6
1

0
.2

1
8

0
.2

6
9

0
.1

7
5

0
.1

3
7

M
e
d
.H

0
.4

9
2

0
.3

8
3

0
.8

7
4

0
.9

5
7

0
.7

5
7

0
.1

8
5

0
.1

4
4

0
.2

9
2

0
.3

5
1

0
.2

7
1

0
.0

7
7

0
.0

6
0

0
.1

0
9

0
.2

0
3

0
.1

5
8

0
.2

6
1

0
.2

1
8

0
.2

6
3

0
.1

7
3

0
.1

3
7

0
.1

P
ro

b
.A

0
.8

9
3

0
.8

0
0

1
.0

0
0

1
.0

0
0

0
.9

8
5

0
.0

4
3

0
.0

1
2

0
.8

6
5

0
.6

9
5

0
.6

9
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.4

3
8

0
.4

4
6

0
.8

1
3

0
.7

8
8

0
.8

9
5

0
.3

2
2

0
.3

1
9

M
e
a
n
.A

0
.4

0
6

0
.3

1
7

0
.6

5
5

0
.6

5
3

0
.5

1
3

0
.1

7
4

0
.1

3
6

0
.2

9
1

0
.2

8
1

0
.2

2
0

0
.0

7
6

0
.0

5
9

0
.1

5
1

0
.1

2
2

0
.0

9
5

0
.3

5
2

0
.2

9
1

0
.4

0
1

0
.0

7
5

0
.0

6
0

M
e
d
.A

0
.4

0
6

0
.3

1
7

0
.6

3
4

0
.6

3
0

0
.5

0
2

0
.1

7
4

0
.1

3
6

0
.2

8
9

0
.2

7
7

0
.2

1
8

0
.0

7
6

0
.0

5
9

0
.1

5
1

0
.1

2
1

0
.0

9
5

0
.3

5
2

0
.2

9
1

0
.3

9
6

0
.0

7
5

0
.0

6
0

P
ro

b
.H

0
.9

2
2

0
.8

7
2

0
.9

9
9

1
.0

0
0

1
.0

0
0

0
.0

5
1

0
.0

1
5

0
.8

6
1

0
.9

4
7

0
.8

8
4

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.8

8
0

0
.8

7
4

0
.9

0
9

0
.8

5
3

0
.9

4
4

0
.8

6
5

0
.8

5
1

M
e
a
n
.H

0
.4

9
2

0
.3

8
3

1
.0

0
8

1
.1

0
3

0
.8

0
4

0
.1

8
5

0
.1

4
4

0
.2

8
2

0
.4

2
9

0
.3

3
2

0
.0

7
7

0
.0

6
0

0
.1

1
2

0
.3

0
3

0
.2

3
4

0
.4

1
2

0
.3

4
5

0
.4

8
9

0
.2

7
8

0
.2

1
7

M
e
d
.H

0
.4

9
2

0
.3

8
3

0
.8

8
3

0
.9

8
4

0
.7

8
4

0
.1

8
5

0
.1

4
4

0
.2

7
6

0
.4

1
9

0
.3

3
0

0
.0

7
7

0
.0

6
0

0
.1

1
2

0
.2

9
9

0
.2

3
3

0
.4

1
2

0
.3

4
5

0
.4

3
2

0
.2

7
4

0
.2

1
5

n
=

8
1
9
2

0
.5

P
ro

b
.A

0
.8

3
5

0
.8

2
7

0
.9

9
9

0
.9

9
9

0
.9

9
7

0
.7

1
8

0
.5

9
1

0
.8

5
9

0
.7

9
9

0
.8

1
3

0
.0

0
0

0
.0

0
0

0
.0

4
2

0
.5

9
3

0
.5

7
5

0
.8

4
6

0
.8

4
0

0
.8

7
9

0
.4

4
8

0
.4

4
7

M
e
a
n
.A

0
.3

5
2

0
.2

7
4

0
.5

5
6

0
.5

5
5

0
.4

3
6

0
.1

4
2

0
.1

1
0

0
.2

2
8

0
.2

2
7

0
.1

7
8

0
.0

5
7

0
.0

4
5

0
.0

9
9

0
.0

9
2

0
.0

7
2

0
.1

8
2

0
.1

5
1

0
.1

9
0

0
.0

5
6

0
.0

4
6

M
e
d
.A

0
.3

5
2

0
.2

7
4

0
.5

4
7

0
.5

4
5

0
.4

3
2

0
.1

4
2

0
.1

1
0

0
.2

2
7

0
.2

2
6

0
.1

7
8

0
.0

5
7

0
.0

4
5

0
.0

9
9

0
.0

9
2

0
.0

7
2

0
.1

8
2

0
.1

5
1

0
.1

9
0

0
.0

5
6

0
.0

4
6

P
ro

b
.H

0
.9

7
3

0
.8

9
0

0
.9

9
9

0
.9

9
7

1
.0

0
0

0
.7

4
0

0
.6

2
2

0
.8

7
6

0
.8

8
2

0
.8

8
1

0
.0

0
0

0
.0

0
0

0
.0

3
3

0
.8

0
9

0
.7

7
6

0
.8

6
7

0
.8

6
2

0
.8

8
3

0
.7

8
2

0
.7

9
2

M
e
a
n
.H

0
.4

1
2

0
.3

2
1

0
.8

8
8

0
.8

3
1

0
.6

2
2

0
.1

4
8

0
.1

1
6

0
.2

4
6

0
.2

8
6

0
.2

0
8

0
.0

5
8

0
.0

4
5

0
.0

8
2

0
.1

4
4

0
.1

1
2

0
.1

9
5

0
.1

6
2

0
.1

9
1

0
.1

2
3

0
.0

9
7

M
e
d
.H

0
.4

1
2

0
.3

2
1

0
.7

2
2

0
.7

6
9

0
.6

1
5

0
.1

4
8

0
.1

1
6

0
.2

3
6

0
.2

7
0

0
.2

0
7

0
.0

5
8

0
.0

4
5

0
.0

8
2

0
.1

4
4

0
.1

1
2

0
.1

9
5

0
.1

6
2

0
.1

8
9

0
.1

2
2

0
.0

9
7

0
.1

P
ro

b
.A

0
.8

2
5

0
.7

9
6

0
.9

9
8

0
.9

9
8

0
.9

9
4

0
.0

6
7

0
.0

2
3

0
.8

7
2

0
.7

2
5

0
.7

2
1

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.4

4
0

0
.4

5
2

0
.8

0
7

0
.7

8
2

0
.8

7
7

0
.3

0
6

0
.3

4
1

M
e
a
n
.A

0
.3

5
2

0
.2

7
4

0
.5

5
9

0
.5

5
8

0
.4

3
8

0
.1

4
2

0
.1

1
0

0
.2

3
3

0
.2

2
8

0
.1

7
8

0
.0

5
7

0
.0

4
5

0
.1

1
2

0
.0

9
2

0
.0

7
2

0
.2

6
8

0
.2

2
2

0
.2

9
4

0
.0

5
6

0
.0

4
6

M
e
d
.A

0
.3

5
2

0
.2

7
4

0
.5

4
8

0
.5

4
6

0
.4

3
3

0
.1

4
2

0
.1

1
0

0
.2

3
2

0
.2

2
7

0
.1

7
7

0
.0

5
7

0
.0

4
5

0
.1

1
2

0
.0

9
2

0
.0

7
2

0
.2

6
8

0
.2

2
2

0
.2

9
2

0
.0

5
6

0
.0

4
6

P
ro

b
.H

0
.9

6
0

0
.8

7
3

0
.9

9
9

0
.9

9
9

1
.0

0
0

0
.0

7
6

0
.0

2
6

0
.8

6
7

0
.8

7
3

0
.8

7
3

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.8

2
5

0
.8

3
3

0
.8

6
0

0
.8

4
1

0
.8

9
4

0
.8

2
9

0
.8

0
7

M
e
a
n
.H

0
.4

1
2

0
.3

2
1

0
.8

1
2

0
.8

1
6

0
.6

3
2

0
.1

4
8

0
.1

1
6

0
.2

2
6

0
.3

1
3

0
.2

4
2

0
.0

5
8

0
.0

4
5

0
.0

8
3

0
.2

1
0

0
.1

6
3

0
.2

9
9

0
.2

5
0

0
.3

2
8

0
.1

9
1

0
.1

4
9

M
e
d
.H

0
.4

1
2

0
.3

2
1

0
.7

2
0

0
.7

7
1

0
.6

2
4

0
.1

4
8

0
.1

1
6

0
.2

2
3

0
.3

0
9

0
.2

4
2

0
.0

5
8

0
.0

4
5

0
.0

8
3

0
.2

0
8

0
.1

6
2

0
.2

9
9

0
.2

5
0

0
.3

0
4

0
.1

8
9

0
.1

4
9

P
ro

b
.A

,
M

e
a
n
.A

,
M

e
d
.A

d
e
n
o
te

c
o
v
e
ra

g
e

fr
e
q
u
e
n
c
ie

s,
m

e
a
n

le
n
g
th

s
a
n
d

m
e
d
ia

n
le

n
g
th

s
o
f
th

e
n
o
m

in
a
l
9
0
%

c
o
n
fi
d
e
n
c
e

in
te

rv
a
ls

w
it

h
th

e
a
sy

m
p
to

ti
c

e
x
p
re

ss
io

n
fo

r
st

a
n
d
a
rd

e
rr

o
rs

w
it

h
e
st

im
a
te

d
p
a
ra

m
e
te

rs
.

P
ro

b
.H

,
M

e
a
n
.H

,
M

e
d
.H

d
e
n
o
te

c
o
v
e
ra

g
e

fr
e
q
u
e
n
c
ie

s,
m

e
a
n

le
n
g
th

s
a
n
d

m
e
d
ia

n
le

n
g
th

s
o
f
th

e
n
o
m

in
a
l
9
0
%

c
o
n
fi
d
e
n
c
e

in
te

rv
a
ls

w
it

h
th

e
fi
n
it

e
sa

m
p
le

H
e
ss

ia
n

b
a
se

d
a
p
p
ro

x
im

a
ti

o
n

o
f
th

e
st

a
n
d
a
rd

e
rr

o
rs

w
it

h
e
st

im
a
te

d
p
a
ra

m
e
te

rs
.

28



Figure 1: Estimates and CI(95%) of the memory parameter of volatility
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Figure 2: Estimates of the memory parameter of volatility (m=25...200)
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Figure 3: Estimates and CI(95%) of the memory parameter of volatility (m=150...300)
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