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Deṕosito Legal No.: BI-576-08
ISSN: 1134-8984
URN: RePEc:ehu:biltok:200801



Selection of the number of frequencies using bootstrap

techniques in log-periodogram regression

Josu Arteche and Jesus Orbe ∗

University of the Basque Country, Bilbao, Spain

12th February 2008

Abstract

The choice of the bandwidth in the local log-periodogram regression is of crucial im-
portance for estimation of the memory parameter of a long memory time series. Different
choices may give rise to completely different estimates, which may lead to contradictory
conclusions, for example about the stationarity of the series. We propose here a data
driven bandwidth selection strategy that is based on minimizing a bootstrap approx-
imation of the mean squared error and compare its performance with other existing
techniques for optimal bandwidth selection in a mean squared error sense, revealing
its better performance in a wider class of models. The empirical applicability of the
proposed strategy is shown with two examples: the widely analyzed in a long mem-
ory context Nile river annual minimum levels and the input gas rate series of Box and
Jenkins.

Keywords: Bootstrap, long memory, log-periodogram regression, bandwidth selection.

1 Introduction

Over the last years, log periodogram regression has become one of the most popular tools for

the estimation of the memory parameter in long memory time series. It has been widely ap-

plied for statistical inference in empirical research due to its simple implementation, pivotal

asymptotic normality and robustness thanks to its semiparametric or local condition. The

log periodogram regression estimation (LPE hereafter) is based on a simple least squares re-

gression of the logarithm of the periodogram over the logarithm of the m Fourier frequencies

closest to the origin, providing that m goes to infinity but more slowly than the sample size

such that the band of frequencies used in the estimation shrinks to zero. The parameter m,

known as the bandwidth in a local or semiparametric memory parameter estimation context,

plays an important role on the performance of the LPE. A large m reduces the variance at
∗Address for correspondence: Josu Arteche, Dpt. Econometŕıa y Estad́ıstica, University of the Basque

Country, Avda. Lehendakari Agirre 83, 48015 Bilbao, Spain. Tl: 34 94 601 3852. Fax: 34 94 601 3754.
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the cost of a higher bias, which in some situations can render meaningless estimates, as for

example in the presence of a significant short memory component. On the contrary a low

m guarantees a small bias but with larger variability. From an empirical perspective, the

estimates of the memory parameter usually vary significantly with the choice of m. Figures

9b) and 10b) show the LPE estimates for the Nile river annual minimum series and the input

gas rate series of Box and Jenkins (1976, series J), both analyzed in detail in Section 4, for

a grid of bandwidths. Depending on the bandwidth choice we can get different conclusions

about the persistence of the series or even about their stationarity since long memory series

are only stationary for a memory parameter lower than 0.5.

Optimal bandwidth selection techniques have been proposed as a way to balance bias

and variance in a compromise to minimize some approximation of the mean squared error

(MSE). Hurvich and Deo (1999) introduced a plug in version of the theoretical bandwidth

that minimizes an asymptotic approximation of the MSE whereas Giraitis et al. (2000)

suggest an adaptive LPE that adapts to an unknown local to zero spectral smoothness.

While the former is only valid for a particular local to zero spectral smoothness, the latter

does not give unique choices of the bandwidth and only offers bandwidths with an optimal

growth rate that can be arbitrarily changed by a multiplicative constant without affecting

its rate of increase. To our knowledge, there is not any other formal procedure for the choice

of an optimal bandwidth, despite the great dependence of the estimates on the bandwidth

choice. We propose here a nonparametric and fully data driven bandwidth selection strategy

based on choosing the bandwidth that minimizes a bootstrap mean squared error. This

strategy is justified by the likeness of the bootstrap MSE to the Monte Carlo MSE so that

it can be safely used for bandwidth selection.

We consider long memory series xt with a spectral density satisfying

f(λ) = |λ|−2dg(λ) λ ∈ [−π, π] (1)

where the memory parameter d ∈ (−0.5, 0.5) guarantees stationarity and invertibility. Usu-

ally the function g(λ) controls the weak dependence and is assumed to be positive and

bounded over all the frequencies such that

g(λ) = g(0) + ∆(λ) , |∆(λ)| ≤ C1|λ|α (2)

for some constant C1 and a positive local spectral smoothness parameter α. For α ≤ 1

condition (2) holds if g(λ) satisfies a Lipschitz condition of degree α and for 1 < α if g(λ) is
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[α] times differentiable around zero with zero derivatives at λ = 0 and the [α]-th derivative

satisfies a Lipschitz condition of degree α − [α] around zero. Fractional ARIMA processes

fall on this category with α = 2.

The LPE of the memory parameter d is based on the periodogram of the series xt,

t = 1, .., n, defined as

I(λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

xt exp(−itλ)

∣∣∣∣∣
2

.

Taking logs in (1) and considering only Fourier frequencies of the type λj = 2πj/n we

have the following linear regression model

yj = c + dzj + uj , j = 1, 2, ..., m, (3)

where yj = log Ij , zj = −2 log λj , Ij = I(λj), c = log g0 + Evj , uj = vj + εj − Evj ,

εj = log(gj/g0) and vj = log(Ij/fj) for fj and gj defined similarly to Ij . The LPE, d̂(m), is

obtained by ordinary least squares and εj represents the error committed by assuming that

the function g() is constant in the interval [0, λm]. This is the main source of the bias of the

LPE, which depends on the smoothness of the function g() around frequency zero, that is on

the deviation of this function from a constant. Usually g() is an even function with bounded

second derivative around zero such that g(λ) = g(0) + O(λ2) (e.g. in ARFIMA models).

In this case the bandwidth has to satisfy m−1 + n4m−5 → 0 as n → ∞ for the bias to be

negligible with respect to the variance and the LPE to have the asymptotic distribution

√
m(d̂(m)− d) d→ N

(
0,

π2

24

)
as n →∞. (4)

Balance of variance and bias is achieved with a choice of m = Cn4/5, for a positive constant

C, which is the optimal choice in a MSE sense. The practical application of this optimal

bandwidth is however not feasible since the constant C is unknown. Hurvich and Deo

(1999) proposed a plug-in version of the optimal bandwidth based on a prior estimation of

C. However, even though α = 2 in the more common parametric long memory models (but

not in other cyclical long memory context), in practice the spectral smoothness is unknown

and the optimal bandwidth is generally of order O(n2α/(1+2α)). Giraitis et al. (2000) -see

also the version of Moulines and Soulier (2003)- introduced an adaptive LPE that adapts

the choice of the bandwidth to an unknown α such that it selects a bandwidth with the

optimal growth rate O(n2α/(1+2α)) for an unknown α. We propose here a bootstrap based

bandwidth selection strategy that does not require estimation of any nuisance parameter
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nor knowledge of the spectral smoothness of g, and is fully data driven. We compare its

performance with the plug-in bandwidth and the adaptive LPE which are to our knowledge

the only two rigorous bandwidth selection strategies proposed to date.

Section 2 describes our proposal together with the plug-in bandwidth selection of Hurvich

and Deo (1999) and the adaptive log periodogram version of Moulines and Soulier (2003).

The performance of the three strategies is analyzed in a Monte Carlo in Section 3. Section

4 shows two empirical applications of our bandwidth selection procedure. Finally Section 5

concludes and suggests further extensions.

2 Bandwidth selection

2.1 Plug-in bandwidth selection

Hurvich et al. (1998) determine the optimal value of m that minimizes an asymptotic

approximation of the mean squared error when the function g(λ) is an even continuous

function on [−π, π] with bounded derivatives up to order three near the origin such that the

smoothness of g(λ) corresponds to α = 2. It has the form

m(opt) = Cn4/5, for C =
(

27
128π2

)1/5 {
g(0)
g′′(0)

}2/5

(5)

where g′′(0) is the second derivative of the function g at the origin. Since this function is

not specified m(opt) is not feasible for practical purposes. A plug-in version based on an

estimate of C was proposed by Hurvich and Deo (1999), m̂hd = Ĉn4/5 where the constant

C is consistently estimated by

Ĉ =
(

27
128π2

)1/5

K̂−2/5

where K̂ is obtained as the third coefficient in an ordinary linear regression of log Ij on

(1, log λj , λ
2
j/2) for j = 1, 2, ..., Anδ, for 4/5 < δ < 1 and A an arbitrary constant.

2.2 Adaptive estimation

The plug-in bandwidth choice of Hurvich and Deo (1999) is designed for long memory series

where g() is an even function with bounded second derivative around the origin such that

α = 2. The local spectral smoothness determines the exponent of the optimal bandwidth

such that, for a general α, m(opt) = C2n
2α/(2α+1) for some positive constant C2. However, in

practice α is not known and some estimation is thus required for plug-in optimal bandwidth

selection. Giraitis et al. (2000) proposed instead an adaptive version of the LPE that
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adapts the bandwidth choice to the unknown local spectral smoothness around zero but

does not estimate the multiplicative constant C2. Thus, as they already pointed out, this

is not strictly speaking an optimal bandwidth selection criterion but a confirmation of the

existence of an estimator that achieves an optimal (up to a logarithmic term) adaptive

rate of convergence in a minimax sense. We consider here the version of Moulines and

Soulier (2003) that we found empirically more attractive because compares estimates based

on arbitrary values of m and does not depend on prior bounds of α. The adaptive estimator

of the bandwidth, m̂ad(κ) is obtained as the largest integer m such that

∀m′ < m, |d̂(m′)− d̂(m)| < κ
√

log n
π2

24m′ (6)

for some positive constant κ.

2.3 Local Bootstrap bandwidth selection

We propose a fully data driven bandwidth selection strategy based on a bootstrap approxi-

mation of the MSE that does not require estimation either of the local spectral smoothness

nor of any multiplicative constant depending on unknown nuisance parameters. The optimal

bandwidth is selected as the bandwidth that minimizes a bootstrap MSE, which we use as

an approximation of the finite sample MSE. As in Arteche and Orbe (2005), the bootstrap

is applied to the residuals in the regression (3) based on the pivotal character of the asymp-

totic distribution of d̂(m). Since the errors are a function of the Studentized periodogram

ordinates Ij/fj this strategy is related to other frequency domain bootstraps that use this

ratio in different contexts (see Dahlhaus and Janas, 1996 or Franke and Härdle, 1992).

A blind bootstrap however should not be applied since the residuals are not i.i.d. but

show some structure due to the εj term. Consider for example an ARFIMA(1, d, 0) defined

as (1− φL)(1− L)dxt = ξt for ξt ∼ iid(0, 1). The spectral density of xt satisfies (1) with

g(λ) =
1
2π

[
2λ−1 sin(λ/2)

]−2d

1 + φ2 − 2φ cosλ
=

1
2π(1− φ)2

[
1 +

(
d

12
− φ

(1− φ)2

)
λ2 + O(λ4)

]

as λ → 0, such that

εj = log
(

gj

g0

)
=

(
d

12
− φ

(1− φ)2

)
λ2

j + O(λ4
j ).

Then εj , and consequently also the errors in the LPE regression, increase for frequencies

far from the origin, and this enlargement can be quite significant if φ approaches 1, when

the negative εj causes a positive bias on the LPE that is asymptotically negligible with
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an appropriate bandwdith choice, but can be significantly large in finite samples if a large

bandwidth is used.

Figure 1 shows the centered errors uj − ūj (solid-·- line) for j = 1, ..., 100 of the four

models analyzed in the Monte Carlo below for a sample size n = 512. Instead of showing

the results of one single simulation, which can be affected for any kind of randomness, we

show the average errors obtained with 1000 simulations. The distinct structure that turns

up in some cases renders the bootstrap techniques based on i.i.d. errors rather inappro-

priate for application here. Consider for example Figure 1b) that shows the errors in an

ARFIMA(1, 0.4, 0) with φ = 0.8. The significant short memory component, ignored in

the LPE regression, gives rise to a marked structure of the errors such that the bootstrap

procedure should preserve that structure over the bootstrap samples. For that purpose we

propose to use the local bootstrap suggested by Paparoditis and Politis (1999) and applied

for the estimation of the memory parameter in ARFIMA models by Silva et al. (2006), which

maintains the global structure of the bootstrapped series by resampling in a neighborhood of

each frequency. Our proposal differs from theirs in that we resample residuals instead of the

periodogram of the series. The local procedure applied directly to the periodogram is based

on the property that for a smooth spectral density the distribution of adjacent periodogram

ordinates is very similar and they are independent (at least asymptotically). This is not the

case in long memory series. However the regression errors are functions of the Studentized

periodogram ordinates, which show a more stable behaviour such that bootstrapping these

quantities gives more reliable results than a direct bootstrap applied to the periodogram or

its logarithm in the regression model (3). See Dahlhaus and Janas (1996) and Franke and

Härdle (1992) to that respect in a weak dependent context.

But our proposal requires a prior estimation of the memory parameter since the regres-

sion bootstraps are based on residuals rather than errors. We then first need residuals whose

behaviour approach that of the errors. The dotted-2- line in Figure 1 shows the average

(over the 1000 simulations) residuals obtained with a bandwidth m = 100. They do not

approximate at any extent the behaviour of the true errors, represented by a continuous-·-
line, in three out of four of the models considered, and any bootstrap based on them would

be misleading. A bandwidth m = 100 is too large and raises a positive bias which transmits

to the residuals. The dashed-+- line in Figure 1 displays the extended centered residuals

over the first 100 Fourier frequencies but obtained with LPE estimates based on a band-

width m = 10. We clearly avoid the large bias with this low bandwidth and get residuals
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whose behaviour largely resembles that of the true errors.

Figure 1: LPE errors and residuals
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With all these considerations we propose the following local bootstrap bandwidth selec-

tion procedure:

1. Estimate the model (3) for a prior bandwidth m1. Obtain ĉ1 and d̂1 = d̂(m1).

2. For m1 < m2 < [n/2] calculate the extended residuals ûj = yj − ĉ1 − d̂1zj , j =

1, 2, ...,m2.

3. Select a resampling width kn ∈ N and kn < [m2/2].

4. Define i.i.d. discrete random variables S1, ..., Sm2 taking values in the set {0,±1, , ...,±kn}
with equal probability 1/(2kn + 1).
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5. Generate B bootstrap series û∗bj = û|j+Sj | if |j + Sj | > 0, û∗bj = û1 if j + Sj = 0 for

b = 1, 2, ..., B, j = 1, ...,m2.

6. Generate B bootstrap samples y∗bj = ĉ1 + d̂1zj + û∗bj for b = 1, 2, ..., B, j = 1, ..., m2.

7. Estimate d for the B bootstrap samples and different bandwidths m ∈ [m,m2] such

that m < m1 and calculate the bootstrap MSE

MSE∗(m) =
1
B

B∑

b=1

(d̂(m)− d̂1)2

8. Chose m̂∗
1 such that MSE∗(m̂∗

1) ≤ MSE∗(m) for all m ∈ [m,m2].

9. With m̂∗
1 instead of m1 repeat the procedure from step 1 until

MSE∗(m̂∗
i )−MSE∗(m̂∗

i−1)
MSE∗(m̂∗

i−1)
< δ

for some small (in absolute value) δ < 0 stopping criterion.

Remark 1: We only consider residuals for positive j +Sj in step 5 because the regression

is only defined for positive frequencies. Also symmetry of the periodogram and spectral

density implies symmetry of the residuals if negative frequencies were included. However

the frequency zero can not be included because the spectral density is infinity at the origin

and the relation between periodogram and spectral density that motivates the LPE does no

hold. This implies a double probability of appearance of û1 in some bootstrap samples, but

this situation is not very frequent and we believe that its effect is negligible.

Remark 2: In other residual based bootstraps a prior centering and heteroscedasticity

correction is usually carried out by dividing the centered residuals by
√

1− hj for hj the

elements in the diagonal of the matrix I −X(X ′X)−1X ′ where X is a matrix with typical

k-th raw [X]k = (1, zk). In our extended residuals setup the precise correction should imply

dividing the centered extended residuals in step 2 by the square root of the elements in the

diagonal of the matrix MM ′ for M = I −X(X ′
1X1)−1X ′

1D, where X, and X1 are m2 × 2

and m1×2 matrices defined as X above, I is the identity matrix and D is a m1×m2 matrix

of zeros except ones in the m1 first diagonal elements. However, due to the local nature

of our resample strategy, we found this correction unnecessary (simulations not reported

and available upon request show that this correction does not affect the results obtained

hereafter).
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Remark 3: The procedure starts with a user chosen bandwidth m1. We found in the

simulations that a low value of m1 is more adequate since we reduce in that way the prob-

ability of a highly biased first estimate and the iterative bootstrap based procedure has a

faster convergence. For all the simulations in the next section the process converged in less

than 8 iterations.

Remark 4: We could have used other set of probabilities in step 4 but, as noted by

Paparoditis and Politis (1999), the choice of the probability scheme is not very relevant

(similar to the choice of the kernel in a nonparametric density estimation).

Remark 5: However the choice of the resampling width kn is more important. Silva et al.

(2006) suggest the use of a very low value kn = 1 or 2 in their local periodogram bootstrap.

However we have found that a larger kn gives better results in many situations due to the

higher stability of the residuals. We show below that the choice of the resampling width

is important up to a certain extent. A blind selection deteriorates significantly the results

but we can safely use different widths in a sensible region without affecting significantly the

performance of our strategy for the choice of the bandwidth. Simple data driven criteria for

resampling width selection are also described in next sections.

3 Monte Carlo

We generate 1000 replications of Gaussian series of length 512 satisfying equation (1) with

d = 0.4. We think these values are quite representative for the time series where the LPE is

usually applied. We have also consider other sample sizes and values of d in the stationary

region and similar conclusions apply. We consider four different type of models:

• Model 1: (1− 0.1L)(1− L)dxt = ut

• Model 2: (1− 0.8L)(1− L)dxt = ut

• Model 3: (1− 0.1 + 0.9)(1− L)dxt = ut

• Model 4: (1− L)d(1 + L2)0.2xt = ut

for ut a standard normal variable. The plug-in method of Hurvich and Deo (1999) is

designed for processes with α = 2 such as Models 1, 2 and 3. The first model is an

ARFIMA(1, d, 0) with a rather weak short memory component such that a large bandwidth

would be here appropriate. The opposite situation arises in the second model. The third

one is an ARFIMA(2, d, 0) with a short memory component that shows a spectral peak at
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frequency 1.518. Inclusion of neighbouring Fourier frequencies in the estimation generates

a large bias and the optimal strategy is to chose a frequency band closer to zero. The

last model shows a similar cyclical behaviour now at frequency π/2 but in this case the

cycle is strongly persistent such that the spectral density function diverges not only at

zero but also at π/2. There is here a combination of a cyclical long memory component

together with standard long memory at the origin. As in the previous models the standard

memory parameter is 0.4 and we consider a cyclical long memory parameter 0.2. This kind

of processes implies the presence of a persistent cycle of period four and fits adequately the

behaviour of many quarterly economic time series (Arteche and Robinson, 2000).

For the Hurvich and Deo (1999) plug-in bandwidth selection we use δ = 6/7 and A = 0.25

which are the values suggested by the authors for practical purposes. Regarding the adaptive

procedure, Moulines and Soulier (2003) proposed a value of κ ≥ 6. However such a choice

provides poor finite sample performance and we have found that a lower constant gives

better results. We follow here Andrews and Sun (2004) and κ is tuned to the Gaussian

ARFIMA(1, d, 0) model with autoregressive parameter φ = 0.6 and d = 0.4. That is, κ is

chosen as the value that minimizes the Monte Carlo MSE of the adaptive LPE in such a

model over 1000 replications with n = 512 for a grid of values {0.05, 0.1, ..., 6}. The constant

chosen in that way is κ = 1.1.

For the local bootstrap bandwidth selection we take m = 5, m1 = 10, and different values

of m2 for each model. Thus, for Model 1 with low dependent short memory component,

we know that the best results are obtained with large bandwidths, therefore we consider

m2 = 256 that corresponds to the frequency λm2 = π. For the other three models the best

results are obtained with smaller bandwidths so we use m2 = 130. For Model 2, with a

highly dependent short memory component, a much lower value could have been considered.

From a practical point of view, the choice of m2 can be based on the plot of the extended

residuals. If they show a marked structure such as those of Models 2, 3 and 4 in Figure 1 the

optimal bandwidth should be low such that there is not need to consider large bandwidths

in the iterative procedure. In order to reduce the computational time of each iteration we

only consider odd values of the bandwidths. When applied to real series all bandwidths

between m and m2 could (and should) be used.

We consider four values of the resampling width for each model since the performance

of the local bootstrap depends on the choice of kn. Models with a weak short memory

component, such as Model 1, show a better performance with a large resampling width,
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since the errors and residuals do not have a marked structure (Figure 1a)). In fact, we have

found that in this case the naive regression bootstrap as described in Arteche and Orbe

(2005) and Franco and Reisen (2004), which can be compared with a local bootstrap with

sufficiently large resampling width, gives better results. On the contrary, when the short

memory component shows a higher dependence as in Figure 1b), a smaller kn gives better

results since the errors and extended residuals show a marked structure and a small kn is

needed to keep this structure over the bootstrap samples. The structure of the errors and

residuals in Models 3 and 4 are halfway between the previous ones such that a medium-large

resampling width is more appropriate. With these considerations we analyse resampling

widths kn = 1, 2, 4, 8 for Model 2 and kn = 25, 40, 55, 70 for Models 1, 3 and 4. The stoping

criterion for step 9 is δ = −0.02 such that the iterative bootstrap only continues if we get an

MSE improvement higher than 2%. The number of bootstrap samples considered is B = 200

which is large enough for the approximation of the MSE (Efron and Tibshirani, 1993).

The basic condition for the local bootstrap to be used for bandwidth selection is that the

bootstrap MSE should be a good approximation of the Monte Carlo MSE (taken as the best

approximation to the finite sample MSE) for the range of bandwidths considered, or at least

around the true optimal bandwidth, such that both achieve its infimum around the same m.

Figure 2 shows the results for the four models using four different resampling widths, except

for Model 1 where the basic residual bootstrap is used for the reasons explained above. The

resemblance of the bootstrap MSE and the Monte Carlo MSE is quite remarkable, even

though it can be improved with a more elaborated selection of the resampling width as

explained below.

The analogy of the bootstrap MSE and Monte Carlo MSE suggests that the local boot-

strap could be used to approximate the MSE for optimal bandwidth selection. Table 1

compares this strategy with the Hurvich and Deo (1999) and adaptive proposals described

above. For each model, Table 1 shows the Monte Carlo MSE of the LPE with each band-

width selection strategy and its infimum, the Monte Carlo mean, median and standard

deviation of the different bandwidth selections together with the bandwidth that minimizes

the Monte Carlo MSE over the 1000 replications, which represents here the best possible

situation. This information is complemented with Figures 3-5 displaying the histograms

of the different bandwidths selected over the 1000 replications for Model 2, 3 and 4. The

histograms corresponding to Model 1 are not shown to save space because it accumulates, as

expected, on the values close to m = 255, except for the Hurvich and Deo selection strategy
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Table 1: Optimal bandwidth selection under different strategies

Model type selection strategy MSE m-opt (mean) m-opt (dev) m-opt (med)

Model 1 Monte Carlo 0.00255 255
Adaptive 0.05969 176.2 106.8 255

Hurvich-Deo 0.01652 52.6 31.2 43
bootstrap 0.00260 253.2 3.42 255

Model 2 Monte Carlo 0.05393 19
Adaptive 0.19553 59.4 38.3 55

Hurvich-Deo 0.07967 36.5 17.6 31
local bootstrap kn = 1 0.06295 33.4 22.8 27
local bootstrap kn = 2 0.06680 35.7 25.0 27
local bootstrap kn = 4 0.06965 36.5 24.9 29
local bootstrap kn = 8 0.07710 38.3 25.8 31

Model 3 Monte Carlo 0.01368 49
Adaptive 0.08178 68.7 35.3 83

Hurvich-Deo 0.03655 48.7 24.8 40
local bootstrap kn = 25 0.02568 60.4 19.4 59
local bootstrap kn = 40 0.02005 54.4 14.7 53
local bootstrap kn = 55 0.01742 47.1 10.0 45
local bootstrap kn = 70 0.01937 42.3 10.7 41

Model 4 Monte Carlo 0.00700 89
Adaptive 0.07967 90.2 49.5 125

Hurvich-Deo 0.01968 50.6 24.8 42
local bootstrap kn = 25 0.01692 96 28.9 101
local bootstrap kn = 40 0.01367 95.7 26.1 93
local bootstrap kn = 55 0.01311 95.8 27.5 91
local bootstrap kn = 70 0.01581 101.6 30.4 121

where the values range mainly from m = 25 to m = 100.

With all this information we can emphasize the following conclusions:

• The four models considered cover a complete range of values for optimal bandwidth,

Model 1 with a weak short memory component corresponds to a very large optimal

bandwidth, Model 2 on the contrary agrees with a low m and Models 3 and 4 have

medium optimal bandwidths.

• The MSE of the LPE estimates obtained with the bootstrap bandwidth selection

strategy are always lower than those obtained with the Hurvich and Deo and adaptive

selection criteria for any resampling width. The proposal of Hurvich and Deo tends to
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Figure 2: Monte Carlo MSE and bootstrap MSE
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be positively biased in Model 2, which corresponds to a low optimal bandwidth, and

negatively biased in the other models, which need a larger bandwidth. The adaptive

has the worst behaviour overall.

• The performance of the local bootstrap depends on the choice of the resampling width

kn, a low kn being more adequate for those cases with a marked structure in the

residuals. For Model 2 a resampling width kn = 1 works better while in Models 3

and 4 larger resampling widths seems more appropriate. Model 1 shows very little

structure in the residuals such that a large kn is more appropriate. In fact the typical

naive residual bootstrap that considers all the residuals in the resampling procedure
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Figure 3: Histogram of optimal m under different selection strategies in Model 2
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The straight vertical line represents the bandwidth that minimizes the Monte Carlo MSE.
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Figure 4: Histogram of optimal m under different selection strategies in Model 3
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Figure 5: Histogram of optimal m under different selection strategies in Model 4
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The straight vertical line represents the bandwidth that minimizes the Monte Carlo MSE.
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gives here better results.

• The bootstrap optimal bandwidths tend to be closer in mean and median to the

Monte Carlo optimal bandwidth than the other selection techniques. In addition, in

Models 1 and 3 the bootstrap gives rise to the smallest standard deviations whereas

in Models 2 and 4 the standard deviation is not much larger than the lowest one that

corresponds to the (biased) Hurvich and Deo selection strategy. The histograms of

the optimal bandwidths in Figures 3-5 displays further information. In general, we

find an accumulation of the bootstrap selected bandwidths around the Monte Carlo

optimal bandwidth represented by a thick straight line.

• The bootstrap bandwidth selection performs satisfactorily well in all cases, especially

in Models 1 to 3, which correspond to a local spectral smoothness of α = 2. In Model

4 we observe many cases where the selected optimal bandwidth is the superior bound

of the values considered, but this happens in the three strategies here analyzed and

in general the bootstrap bandwidth selection overcomes the others in terms of MSE,

with a choice closer to the minimizer of the Monte Carlo MSE.

• It is noteworthy the performance of the bootstrap in Model 3 that corresponds to a

medium optimal bandwidth. Whereas the Hurvich and Deo selection shows a signif-

icant bias and the behaviour of the adaptive is really poor, our bootstrap proposal

shows lower MSE and an empirical distribution concentrated around the optimal value

with a dispersion that decreases with the resampling width. This behaviour was also

found by Paparoditis and Politis (1999) in estimating the spectral density function, in-

creasing kn increases the bias and decreases the variance. This satisfactory behaviour

is explained by the good approximation of the bootstrap MSE to the Monte Carlo

MSE around those values where the minimum is achieved (see Figure 2). A resam-

pling width of 70 is definitely too large and the poorer approximation of the MSE

generates the negative bias in Table 1 and Figure 4.

As it stands our procedure is not fully data driven since it requires the participation

of the user in the selection of the resampling width. Although the bootstrap bandwidth

selection overcomes other strategies for all the different resampling widths here considered,

different choices of kn lead to different results and some criterion should be established. We

propose two rules that can be used for a prior selection of kn:
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• Based on the graph of the extended residuals, a large kn should be chosen if they show

a stable behaviour. The more marked structure in the residuals the lower kn should

be chosen.

• Based on the graph of the bootstrap MSE with different resampling widths, a high kn

should be used if their shape do not vary with kn and they get a minimun at a large

m. Otherwise choose a lower kn.

In this manner we can chose a resampling width that will give rise to satisfactory results,

bearing in mind that we do not need a sharp selection of kn since the conclusions are not

altered by the use of similar widths. Further refinements on the resampling width selection

can also be used. Table 2 shows the results for Model 3 considering a thinner grid of values

for kn in the range [40, 55]. Some MSE reduction is achieved but in general the results are

quite robust to the resampling width selection in this range of values. The histograms of

the selected bandwidths in Figure 6 indicate that a further refinement in the choice of kn

has a slight improvement in the bias of the selected bandwidth. The bootstrap MSEs in

Figure 7a) show also a similar pattern compared with the Monte Carlo MSEs.

Table 2: Further refinements of the resampling width

Model type selection strategy MSE m-opt (mean) m-opt (dev) m-opt (med)

Model 3 local bootstrap kn = 25 0.02568 60.4 19.4 59
local bootstrap kn = 40 0.02005 54.4 14.7 53
local bootstrap kn = 43 0.01899 52.8 13.7 51
local bootstrap kn = 46 0.01780 51.1 12.5 49
local bootstrap kn = 49 0.01727 49.8 11.6 47
local bootstrap kn = 52 0.01748 48.4 10.8 47
local bootstrap kn = 55 0.01742 47.1 10 45
local bootstrap kn = 70 0.01937 42.3 10.7 41

Model 4 local bootstrap kn = 25 0.01692 96 28.9 101
local bootstrap kn = 40 0.01367 95.7 26.1 93
local bootstrap kn = 55 0.01311 95.8 27.5 91
local bootstrap kn = 70 0.01581 101.6 30.4 121

local bootstrap moving kn 0.00961 101.5 20.6 109
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Figure 6: Further refinements of the resampling width in Model 3: Histograms
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The straight vertical line represents the bandwidth that minimizes the Monte Carlo MSE.

We may also consider the possibility of a moving resampling width, as proposed by

Paparoditis and Politis (1999). This strategy could be adequate when we observe an unstable

behaviour in the extended residuals. For example, the residuals in Model 4 show a flat

behaviour at low frequencies and then increase, quite rapidly at the end of the range of

frequencies. Table 2 shows the results with a resampling width kn = 70 for the first 50

frequencies, kn = 40 for 50 < j < 100, and kn = 1 for frequencies j > 100. The improvement

here is quite remarkable, with a reduction in the MSE over 25% and a bootstrap MSE that

closely resembles the Monte Carlo MSE (see Figure 7b)). Finally the histogram in Figure

8 displays a smaller concentration at extreme values than with the previous resampling
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schemes.

As a conclusion, Table 3 shows the increments in the Monte Carlo MSE of the LPE due

to the use of different bandwidth selection criteria compared with the MSE of the LPE using

the best bandwidth in a minimum Monte Carlo MSE sense. We only report the results of

the bootstrap bandwidth selection linked with the best selection of the resampling. The

improvement of this strategy over the other criteria is noteworthy with a MSE that is much

closer to the optimal.

Table 3: LPE-Bandwidth selection MSE increment w.r.t. Monte Carlo optimal MSE

Model type selection strategy diff. MSE (%) diff. MSE

Model 1 Adaptive 2235.77 0.05713
Hurvich-Deo 546.54 0.01396
bootstrap 1.84 0.00004

Model 2 Adaptive 262.53 0.14159
Hurvich-Deo 47.72 0.02574

local bootstrap kn = 1 16.73 0.00902

Model 3 Adaptive 497.60 0.06810
Hurvich-Deo 167.12 0.02287

local bootstrap kn = 49 26.25 0.00359

Model 4 Adaptive 847.20 0.07266
Hurvich-Deo 157.15 0.01268

local bootstrap moving kn 37.30 0.00261

4 Empirical application

This section applies the different bandwidth selection strategies discussed above to two real

time series, namely the Nile river annual minimum levels recorded between 622 and 1284

A.D. and the input gas rate which corresponds to series J in Box and Jenkins (1976). The

first series has been widely analyzed in the long memory literature and also for bandwidth

selection in the local Whittle estimation by Henry and Robinson (1996), and comprises

a total of 663 observations. The second series represents the methane rate incorporated

every nine seconds in a furnace to form a mixture of gases containing CO2. This last series

corresponds to series J in the seminal Box and Jenkins (1976) book for time series analysis
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Figure 7: Monte Carlo MSE and bootstrap MSE
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Figure 8: Further refinements of the resampling width in Model 4: Histogram

Bandwidth

Fre
que

ncy

20 40 60 80 100 120

0
10

20
30

40
50

The straight vertical line represents the bandwidth that minimizes the Monte Carlo MSE.

21



and consists of 296 observations. Both series are displayed in the first panel of Figures 9

and 10. Panel b) in both figures shows the LPE estimates of the memory parameter over a

grid of bandwidths. The variability of these estimates is quite remarkable and the statistical

conclusions about the stationarity of the series depend heavily on the bandwidth selected.

Table 4 shows the bandwidth selected with the bootstrap, Hurvich and Deo and adaptive

criteria, together with the LPE estimate with the corresponding bandwidth selection and

the standard deviation calculated as π2(6
∑

(zj − z̄)2)−1 which has been proven to give

better results in finite samples than the standard deviation in the asymptotic distribution

in formula (4). Regarding the Nile river series, the stable behaviour of the extended residuals

in Figure 9c) suggests that a large resampling width for the local bootstrap should be used.

This is confirmed by the bootstrap MSE in Figure 9d) whose shape is quite robust to the

resampling width selection. The results displayed in the upper half of Table 4 correspond to

the basic naive bootstrap, but similar choices are attained with the local bootstrap with a

large resampling width. According to this selection the memory parameter of the series falls

in the stationary region with a high confidence, and of course the whole 95% Gaussian based

confidence interval belongs to this region. However the bandwidth selected by the Hurvich

and Deo strategy is much smaller and arises some uncertainty about the stationarity of the

series, the 95% confidence interval including values of the memory parameter corresponding

to both the stationary and nonstationary region. This bandwidth choice is close to the

values found in Henry and Robinson (1996) who proposed a bandwidth selection technique

for the local Whittle estimator of the memory parameter which is very similar in spirit to

the proposal of Hurvich and Deo. They obtained an optimal bandwidth estimation between

53 and 71, depending on the number of iterations of their strategy, which seems to be too

low according to our analysis.

The extended residuals of the input gas rate series in Figure 10c) show a marked structure

such that a lower resampling width seems here more adequate for the local bootstrap.

Figure 10d) shows the bootstrap MSE for different resampling widths. While kn = 70 and

kn = 40 seems to be too large, we get similar bandwidth selections for a resampling width

between 1 and 10, with bandwidth choices between 27 and 30 (we have also proved different

moving resampling widths as suggested in the previous sections and the minimum of the

bootstrap MSE was always attained between those two values). Table 4 shows the results for

a bandwidth choice of 27 which was the most frequent selection. In this case the bootstrap

selects a value quite close to the bandwidth selected by the criteria of Hurvich and Deo,
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Table 4: LPE-Bandwidth selection and estimation of the memory parameter

Bootstrap Hurvich-Deo Adaptive

Nile river m− opt 250 40 259
d̂(m− opt) 0.372 0.475 0.367
ŝd(m− opt) 0.042 0.118 0.042

Gas rate m− opt 27 24 46
d̂(m− opt) 0.412 0.467 0.732
ŝd(m− opt) 0.149 0.161 0.108

but the adaptive gives a too large selection with an LPE estimate that clearly falls in the

nonstationary region.

5 Conclusion and possible extensions

The finite sample performance of the LPE depends considerably on the bandwidth used in

the estimation, such that for the same series we can get different conclusions. For example

we can get stationarity or nonstationarity depending on the bandwidth choice such that

estimates below and above 0.5 are possible just by using a different number of frequencies.

We propose here a data driven minimum MSE bandwidth selection criterion that clearly

outperforms other existing techniques such as the plug-in version of Hurvich and Deo (1999)

or the adaptive LPE of Moulines and Soulier (2003). The technique is based on the local

bootstrap such that a prior selection of the resampling width is necessary. We have also

proposed data driven strategies for the choice of this resampling width and have shown,

via Monte Carlo and with empirical examples, that our proposal is quite robust to the re-

sampling width selection as long as you do not misinterpret the signals extracted from the

data and make a pervert choice. The technique is easy to apply and can be extended to

more general regression contexts such as the non linear versions of the LPE of Sun and

Phillips (2003) and Arteche (2006) or to the bias reduced LPE of Andrews and Guggen-

berger (2003). Further research about the theoretical properties of the proposed bandwidth

selection procedure and its applicability in other more general contexts seem to be worthy.
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[10] Franke, J. and Härdle, W. (1992) On bootstrapping kernel spectral estimates. Ann.

Statist. 20, 121-145.

[11] Giraitis, L., Robinson, P.M. and Samarov, A. (2000) Adaptive semiparametric estima-

tion of the memory parameter. J. Multiv. Anal., 72, 183-207.

24



[12] Henry, M. and Robinson, P.M. (1996) Bandwidth choice in Gaussian semiparametric

estimation of long range dependence. In Athens Conference on Applied Probability and

Time Series, Vol. II. Lecture Notes in Statistics (eds P.M. Robinson and M. Rosen-

blatt), vol. 115, pp. 220-232. New York: Springer-Verlag.

[13] Hurvich, C.M. and Deo, R.S. (1999) Plug-in selection of the number of frequencies in

regression estimates of the memory parameter of a long-memory time series. J. Time

Ser. Anal. 20, 331-341.

[14] Hurvich, C.M., Deo, R.S. and Brodsky, J. (1998) The mean squared error of Geweke

and Porte-Hudak’s estimator of the memory parameter of a long memory time series.

J. Time Ser. Anal. 19, 19-46.

[15] Moulines, E. and Soulier, P. (2003) Semiparametric spectral estimation for fractional

processes. In Theory and Applications of Long-Range Dependence (eds P. Doukhan, G.

Oppenheim and M-S. Taqqu), pp. 251-301. Boston: Birkhäuser.
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Figure 9: Nile river annual minimum
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Figure 10: Input gas rate (series J of Box and Jenkins)
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