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Abstract

We propose a two-stage procedure to estimate conditional beta pricing models that allow for

flexibility in the dynamics of assets’ covariances with risk factors and market prices of risk (MPR).

First, conditional covariances are estimated nonparametrically for each asset and period using

the time-series of previous data. Then, time-varying MPR are estimated from the cross-section

of returns and covariances using the entire sample. We prove the consistency and asymptotic

normality of the estimators. Results from a Monte Carlo simulation for the three-factor model of

Fama and French (1993) suggest that nonparametrically estimated betas outperform rolling betas

under different specifications of beta dynamics. Using return data on the 25 size and book-to-

market sorted portfolios, we find that MPR associated with the three Fama-French factors exhibit

substantial variation through time. Finally, the flexible version of the three-factor model beats

alternative parametric specifications in terms of forecasting future returns.
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1. Introduction

Beta pricing models, such as the Capital Asset Pricing Model (CAPM) of Sharpe (1964) and

Lintner (1965) or the Arbitrage Pricing Theory (APT) of Ross (1976), are used extensively in

portfolio management, risk management, and capital budgeting applications. In these models, an

asset’s risk premium (its expected return in excess of the risk-free interest rate) is linearly related

to the covariance of the asset’s return with one or more factors capturing market-wide sources of

risk. Re-scaled by the variance of each risk factor, covariances are referred to as betas, and are

interpreted as the asset’s exposure to risks that cannot be eliminated through diversification. The

slopes of the linear relation, which must be equal for all assets, are interpreted as the rewards per

unit of covariance risk or market prices of risk (MPR) associated with each factor.

The implementation of beta pricing models has traditionally relied on the assumption of constant

betas and constant MPR. This assumption contradicts the mounting empirical evidence that risk

premia vary through time (e.g., Keim and Stambaugh (1986), Fama and French (1989), Ferson

(1989), Ferson and Harvey (1991). As an alternative, some researchers have proposed conditional

beta pricing models in which the linear relation holds period by period and both time-varying factor

sensitivities and MPR are allowed to vary through time.1 A drawback of conditional models is that

estimation requires additional assumptions about the dynamics of risk exposures and/or MPR.

For instance, Bollerslev, Engle and Wooldridge (1988) model conditional covariances as an ARCH

process. Harvey (1989) assumes that conditional expected returns are a fixed linear function of a

vector of lagged state variables capturing conditioning information. Similarly, Jagannathan and

Wang (1996) assume that the conditional market risk premium is linear in one state variable. Ferson

and Schadt (1996), Ferson and Harvey (1999), and Lettau and Ludvigson (2001), among others,

assume that betas are a fixed linear function of the state variables. More recently, Ang and Chen

(2007) assume that conditional betas follow a first-order autoregressive process. To the extent that

such assumptions fail to capture the true dynamics of risk premia, the pricing errors of conditional

models may be larger than those of unconditional models (Ghysels (1998), Brandt and Chapman

(2006). In this paper, we propose a new nonparametric procedure to estimate conditional beta

pricing models that allow for flexibility in the dynamics of covariances and MPR and, therefore,

reduces misspecification error.

The method we develop in this paper can be seen as an extension of the popular Fama-MacBeth

two-pass method (Fama and MacBeth (1973)), originally developed in the context of unconditional

1It is worth noting that similar conditional asset pricing relations for option and bond returns are also obtained in
arbitrage-free models, such as Black and Scholes (1973), Cox, Ingersoll and Ross (1985), and their extensions, with
discrete returns replaced by instantaneous returns.
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models.2 In the first stage of the Fama-MacBeth method, asset betas are computed for every asset

and period using a time series regression of several periods of previous data, typically spanning

between three and five years. In the second stage, a cross sectional regression of returns on betas

is run at every period, which produces a time series of estimated slope coefficients. The constant

slope estimator is finally obtained as the sample mean of the corrresponding series of estimated

slope coefficients. Similarly, we propose to estimate conditional covariances nonparametrically for

each asset and period using previous information. However, unlike the Fama-MacBeth procedure,

conditional covariances are assumed to be smooth (but possibly nonlinear) functions of the state

variables. In the second stage, time-varying MPR are estimated at each point in time from the

cross-section of returns and estimated covariances (the regressors), but instead of running a single

cross-sectional regression, the method uses the entire sample. More specifically, in the second pass

we use a Seemingly Unrelated Regression Equations (SURE) model, introduced by Zellner (1962),

with each equation in the system corresponding to one asset. Time-varying slope coefficients (MPR)

are treated as free parameters that vary smoothly through time and are estimated nonparametrically

subject to the constraint of equality of slopes across assets, allowing for heteroscedastic and cross-

sectionally correlated errors. The method, therefore, enables us to estimate time-varying MPR in

conditional models under no specific parametric structure.

Although the Fama-MacBeth procedure was derived to estimate and test unconditional asset

pricing models, it also yields a time series of conditional factor sensitivities and MPR. Our method

exhibits a number of important advantages with respect to Fama-MacBeth. First, in our method

the weight of observations used in the estimation process is driven by the data, that is, it is

determined optimally for each data set rather than established ex-ante by the researcher. Second,

although both methodologies allow for time variation in betas (covariances) ours is more efficient

when betas (covariances) are believed to be functions of a set of variables capturing the state of the

system.3 Third, we derive the asymptotic distribution of the time-varying MPR, rather than that

of the constant MPR, which enables us to conduct inference on MPR at each point in time and not

only for the constant MPR. Fourth, under the assumption that MPR vary smoothly through time,

there is a substantial efficiency gain in our estimators of MPR relative to the time series of slope

coefficients since in order to estimate MPR at each point in time we use the entire sample rather

than a single cross section of asset returns and covariances. Finally, we assume locally stationary

variables as defined in Dalhaus (1997), which permit time-varying mean and, therefore, enable us

2Shanken and Zhou (2007) and Grauer and Janmaat (2009) study the small-sample properties of the two-pass
approach and alternative estimation and testing procedures.

3For instance, the large amount of empirical evidence on stock return predictability suggests that equity risk
premia vary with observable market-wide variables such as the dividend yield or the slope of the term structure of
interest rates.
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to drop the usual strong hypothesis of stationarity.

Our work is closely related to that of Stanton (1997), Jones (2006), Wang (2002, 2003), and

Lewellen and Nagel (2006). These authors also estimate flexible conditional beta pricing models in

different contexts. Stanton (1997) first estimates conditional covariances and conditional expected

returns nonparametrically, and then obtains MPR by solving directly the system of equations

imposed by the conditional asset pricing model for two assets at each point in time. One problem

with this approach is that it can generate highly unstable estimates of the MPR. Furthermore, the

method does not enable formal inference to be conducted on MPR. Jones (2006) uses Legendre

polynomials to approximate conditional expected returns and betas, which are estimated in a

Bayesian framework. He then solves for the parameters of the polynomial for the price of risk

that minimize mean squared pricing errors for the whole panel of returns. An advantage of our

method is that inference can be conducted on the basis of the closed-form asymptotic distribution of

the estimators instead of the numerically obtained posterior distribution of the model parameters.

Wang (2002, 2003) proposes a test statistic for the null hypothesis that conditional expected pricing

errors from a conditional asset pricing model are zero. The test is based on the idea that a regression

of pricing errors on a vector of instruments should yield zero coefficients. In the models considered

by Wang (2002, 2003) risk factors are portfolio returns, so conditional market prices of risk equal

conditional expected excess returns on factor portfolios and pricing errors can be estimated directly

as the intercepts from time series regressions of excess returns on the risk factors. In contrast, the

method we propose does not require that risk factors be portfolio returns, so it can be applied

to models where factors are identified with any aggregate variable. Moreover, while the focus of

Wang (2002, 2003) is on model testing, our focus is on the estimation of MPR, which may be used

together with estimates of factors sensitivities, to estimate expected returns for the purpose of asset

allocation or cost-of-capital computation. Finally, Lewellen and Nagel (2006) have recently used

rolling-window regressions to test the conditional CAPM. In particular, they use short windows

(ranging from one quarter to one year) to estimate both time-varying betas and pricing errors

associated with individual portfolios. Then, they test the null hypothesis that pricing errors are

zero. Like Wang (2002, 2003), Lewellen and Nagel (2006) consider only models in which risk factors

are portfolio returns and the focus of their work is not on the estimation of MPR.

The method proposed in this paper builds on previous econometric research in the context of

nonparametric time-varying regression models, that extends the original work by Robinson (1989).

Orbe, Ferreira and Rodriguez-Póo (2005) analyze a single equation regression model under the

assumptions of time-varying coefficients with seasonal pattern and locally stationary variables,

although neither a two-step procedure nor a multi-equation model is considered. In Orbe, Ferreira
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and Rodriguez-Póo (2006) a local constrained least squares estimation method is studied for a single

equation regression under the usual assumption of ergodicity. Cai (2007) proposes to estimate a

model with time-varying coefficients using local polynomial regression under stationarity of the state

variables. Kapetanios (2007) also uses the properties of locally stationary variables to estimate time-

varying variances for the error term in the regression model. As mentioned above, in this paper a

SURE model is estimated with time-varying coefficients subject to constraints across coefficients

corresponding to different equations for each time period. Further, the highest difficulty is related

to the fact that, in practice, the explanatory variables (the conditional covariances) are not observed

and must be estimated in advance. Hence, we deal with generated regressors that have been widely

studied by Zellner (1970) or Pagan (1984), among others, for the classical parametric regression

model. In order to avoid the inconsistency problems for the coefficient’s estimator derived from the

potential correlation between the estimated regressor and the error term, conditional covariances

are estimated at each date using only past information.

To evaluate the performance of the method in practice, we first carry out a Monte Carlo

simulation and then apply the method to data on stock returns. We base both analyses on the

Fama and French (1993) three-factor model. More specifically, for the purpose of the simulation

study we consider different specifications for the dynamics of beta, all of which assume that beta is

a function of observable state variables. Results indicate that the nonparametric estimator clearly

outperforms the traditional rolling estimator under all specifications. When we apply the method

to the 25 Fama-French portfolios sorted on size and book-to-market for the 1963-2005 period, we

find that nonparametrically estimated MPR exhibit substantial time variation, which supports the

use of flexible estimation methods. Further, the nonparametric method proposed in this paper

is clearly superior to different parametric alternatives in terms of its ability to forecast the cross-

section of future returns. A purely empirical model, however, appears to dominate even our flexible

version of the Fama-French model.

The rest of the paper is organized as follows. Section 2 presents the general conditional beta

pricing model; Section 3 describes the estimation method and presents the main asymptotic results;

Section 4 deals with the implementation of the method; Section 5 describes the Monte Carlo

simulation and discusses the results; Section 6 contains the empirical application of the method to

equity return data; and, finally, Section 7 concludes. The Appendix contains the proofs.
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2. The Model

In unconditional beta pricing models, asset returns are assumed to be driven by a set of common

risk factors

Rit = µi + βi1F1t + . . . + βipFpt + νit, i = 1, . . . , N t = 1, . . . , T, (1)

where Rit denotes the return on asset i from time t − 1 to t in excess of the risk-free interest

rate and Fℓt denotes the realization of the ℓth risk factor at time t, for ℓ = 1, . . . , p. Risk factors

are assumed to be orthogonal to each other. Without loss of generality, we assume that factor

realizations have zero mean, i.e., E(Fℓt) = 0. The error term νit is serially independent with zero

mean and nonsingular covariance matrix, conditional on factor realizations. The sample size of the

time series is T , and N is the sample size of the cross section. The standard asset pricing relation

is

E(Rit) = µi = γ1βi1 + . . . + γpβip (2)

where E(Rit) is the expected return on the ith asset and βi1, ..., βip are the coefficients from equation

(1). βiℓ represents the sensitivity of asset i’s return to the ℓth risk factor and, under the assumption

that the risk factors are orthogonal to each other and to the error term, it equals the covariance

between the factor and the asset return re-scaled by the variance of the risk factor. The coefficient

γℓ, which is equal across assets, is interpreted as the reward (in terms of increase in expected return)

per unit of beta risk associated with factor ℓ.

The first stage of the two-pass estimation procedure of Fama and MacBeth (1973), consists

of estimating betas in equation (1) for each asset and time from a time-series regression. In the

second stage, γ’s are estimated as the slope coefficients of a cross-sectional regression of returns on

estimated betas. See Shanken (1992) for an analysis of different aspects of the two-pass procedure

and a derivation of the asymptotic distribution of the second-pass estimators, and Shanken and

Zhou (2007) for a study of the small-sample properties of the methods and a comparison with

alternative approaches.

The asset pricing relation (2) can be equivalently rewritten as

E(Rit) = γ1

Cov (Rit, F1t)

V ar(F1t)
+ . . . + γp

Cov (Rit, Fpt)

V ar(Fpt)
. (3)

In conditional beta pricing models, such as those studied by Harvey (1989), Jagannathan and

Wang (1996) or Lettau and Ludvigson (2001), the asset pricing relation is assumed to hold period

by period, unconditional expected returns and betas are replaced by conditional moments, and the

rewards per unit of risk are allowed to change over time. Therefore, the conditional beta pricing
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model is given by

Rit = E(Rit|It−1) +
Cov (Rit, F1t|It−1)

V ar(F1t|It−1)
F1t + . . . +

Cov (Rit, Fpt|It−1)

V ar(Fpt|It−1)
Fpt + νit, (4)

E(Rit|It−1) = γ1t
Cov (Rit, F1t|It−1)

V ar(F1t|It−1)
+ . . . + γpt

Cov (Rit, Fpt|It−1)

V ar(Fpt|It−1)
, (5)

where It−1 represents investors’ information set at time t − 1. In empirical applications, the con-

ditioning information set is replaced by an m−dimensional vector of observable state variables

Xt−1 = (X1t−1 . . . Xmt−1)
′.

Following Harvey (1989), we are interested in estimating the reward per unit of covariance risk

or market price of risk associated with the ℓth factor. Denoting by σ2
ℓt the conditional variance

of the ℓth factor, by ciℓt the conditional covariance between the ith asset return and the ℓth risk

factor, and by λℓt ≡ γℓt/σ2
ℓt the market price of risk, equation (5) can be rewritten as

E(Rit|Xt−1) = λ1tci1t + . . . + λptcipt i = 1, 2, ..., N t = 1, 2, ..., T. (6)

If we define εit ≡ Rit − E(Rit|Xt−1), then we may write

Rit = λ1tci1t + . . . + λptcipt + εit i = 1, 2, ..., N, t = 1, 2, ..., T. (7)

It follows from (4) that the errors εit are heteroscedastic and cross-sectionally related conditional

on Xt−1, i.e., E(εitεjt|Xt−1) 6= 0 for i 6= j. We further assume that Fℓt and νit are serially

independent for all ℓ, i and t, so E(εitεjs) = 0, for all i, j and t 6= s.

To estimate λ’s in (7), we form the system of equations

R1t = λ1t c11t + λ2tc12t + . . . + λptc1pt + ε1t

R2t = λ1t c21t + λ2tc22t + . . . + λptc2pt + ε2t (8)

...

RNt = λ1t cN1t + λ2tcN2t + . . . + λptcNpt + εNt,

where {λℓt}
p
ℓ=1

are the market prices of risk to be estimated. The error term of the system,
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εt = [ε1t ε2t . . . εNt]
′ has zero mean and covariance matrix given by

E(εtε
′
t|Xt−1) = Ωt =





σ11t σ12t . . . σ1Nt

σ21t σ22t . . . σ2Nt

...
...

. . .
...

σN1t σN2t . . . σNNt




,

where σijt = E(εitεjt|Xt−1) denotes the covariance, conditional on the value of the state variables,

between the error terms corresponding to different equations i and j at time t. Note that this

context allows for heteroscedasticity (σiit = E(ε2
it|Xt−1)) in each equation and for contemporaneous

correlations (σijt = E(εitεjt|Xt−1)). As mentioned above, all other correlations are zero.

3. Estimation procedure and main results

This section describes the proposed estimator for the coefficients λℓt in (8). For a better de-

scription of the procedure, consider some extra notation: Cs = (C1s C2s . . . CNs)
′ is a N ×p-order

matrix where each term Cis denotes the N -order column vector (ci1s ci2s . . . cips)
′, for i = 1, . . . , N ;

Rs is the N -order column vector (R1s R2s . . . RNs)
′; and λt = (λ1t . . . λpt)

′ is the p-order vector of

prices of risk. Finally, the state-variable p-order column vector is denoted by Xt = (X1t . . . Xmt)
′.

According to this notation, model (8) can be compactly written as

Rt = Ctλt + εt t = 1, . . . , T. (9)

Within this framework, we propose to estimate the time-varying vector of market prices of risk

at each time t, λt, taking into account the structure of the error covariance matrix, the equality

constraints on the coefficients across assets, and the assumed smoothness of the coefficients. In

order to achieve this goal, we minimize the weighted sum of squared residuals using all available

observations:

min
λt

T∑

s=1

Kh,ts(Rs − Csλt)
′Ω−1

s (Rs − Csλt), (10)

where Kh,ts = (Th)−1K((t−s)/(Th)), K(·) denotes the kernel weight used to introduce smoothness

in the path of coefficients and h > 0 is the bandwidth that regulates the degree of smoothness.

7



Solving the normal equations, the resulting estimator has the following closed form

λ̂t =

(
T∑

s=1

Kh,tsC
′
sΩ

−1
s Cs

)−1 T∑

s=1

Kh,tsC
′
sΩ

−1
s Rs. (11)

With the usual standardization, R∗
s = V −1

s Rs and C∗
s = V −1

s Cs, where Vs is the matrix such

that VsV
′
s = Ωs, the optimization problem (10) can be written as

min
λt

T∑

s=1

Kh,ts(R
∗
s − C∗

s λt)
′(R∗

s − C∗
s λt), (12)

which allows us to express the estimator of the market prices of risk (11) in a more compact form

λ̂t =

(
T∑

s=1

Kh,tsC
∗′
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗′
s R∗

s . (13)

Remark 1 For large enough h, the estimator (13) leads to the same estimates as those obtained

in classical SURE model estimation with constant coefficients, subject to the equality constraints:

λ̂ =

(
T∑

s=1

C∗′
s C∗

s

)−1 T∑

s=1

C∗′
s R∗

s =

(
T∑

s=1

C ′
sΩ

−1
s Cs

)−1 T∑

s=1

C ′
sΩ

−1
s Rs. (14)

On the other hand, when h is small enough no smoothness is imposed and the estimator of each λt

takes into account only the N observations corresponding to the same time period (s = t). That

is,

λ̂t = (C∗′
t C∗

t )−1C∗′
t R∗

t = (C ′
tΩ

−1
t Ct)

−1C ′
tΩ

−1
t Rt, (15)

which is equivalent to estimating λt from a cross-sectional regression at time t.

Remark 2 There is a close relation between the estimator in (13) and the estimator proposed in

Shanken (1985), and asymptotically studied in Shanken (1992). Considering constant coefficients

(h → ∞) as in (14) and assuming that the covariances between returns and the risk factors are

time invariant, i.e., Cs = C ∀s, the resulting estimator is

λ̂ =

(
T∑

s=1

C∗′C∗

)−1 T∑

s=1

C∗′R∗
s = (C ′Ω−1C)−1 C ′Ω−1R, (16)

and substituting C and Ω by their estimators, respectively, then λ̂ coincides with the Generalized
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Least Squares (GLS) estimator proposed by Shanken (1985).

In order to analyze the properties of consistency and asymptotic normality of the general es-

timator (13), we study the mean square error of λ̂t, which we define as the sum of mean square

errors of λ̂ℓt for all ℓ, under the assumptions below. We denote this sum by MSE:

MSE(λ̂t) =

p∑

ℓ=1

(
Bias2(λ̂ℓt) + V ar(λ̂ℓt)

)

≡ S2(λ̂t) + V (λ̂t).

Assumption (A1) The market prices of risk are smooth functions of the time index; that is,

λℓt = λℓ(t/T ) where each λℓ is a smooth function in C2[0, 1].

Assumption (A2) The weight function K(u) is a symmetric second order kernel with compact

support [−1, 1], Lipschitz continuous, and its Fourier transform is absolutely integrable, such that
∫

u2K2(u)du and
∫

K4(u)du are bounded.

Assumption (A3) The conditional covariance can only vary with time through the state vector at

time t−1, Xt−1. That is, ciℓt = ciℓ(Xt−1), where it is assumed that ciℓ is at least twice differentiable

for all partial derivatives.

Assumption (A4) Both Cit and Xit are statistically independent of εis, for all s ≥ t. Moreover,

we assume the process (9) with finite distributions such that the sequence {Xit, Cit, εit} is strong

α-mixing with coefficients α(k) of order 6/5; that is α(k) = O(k−δ), with δ > 6/5. All moments

up to order 12 + θ exist and they are uniformly bounded, for some positive θ.

Assumption (A5) At each time t, the unconditional expectation E(C∗′
t C∗

t ) = Gt is symmetric

and strictly positive definite, and it can be decomposed as a smooth function of t/T , at least twice

differentiable and uniformly bounded, plus a term of order O(T−1).

Assumption (A6) The error term εt has zero mean conditional on Xt−1 and conditional covari-

ance matrix Ωt = E(εtε
′
t|Xt−1), symmetric and positive definite.

Assumption (A7) Let σijt be a generic term in Ω−1
t . The p-order matrix




T∑

s=1

N∑

i,j=1

Kh,ts σijtCi,sC
′
j,s



 , (17)

is positive definite and uniformly bounded from above and below.

Assumption (A8) The smoothing parameter h goes to zero and Th goes to infinity, as the sample

size T goes to infinity.
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Assumption (A1) imposes smoothness on the market prices of risk. (A2) holds for technical

reasons in kernel estimation. (A3) imposes smoothness on the explanatory variables. (A4) and

(A5) ensure that the generating distribution process for the data is locally stationary, which allows

for time-varying means, variances and also serial correlations. These types of processes are very

useful and realistic since they can help model nonstationary variables with a nonexplosive behavior

(see Dalhaus (1997), and Dalhaus (2000). We also assume smoothness in errors’ covariances. (A6)

excludes equations with exploiting variances or with lineary dependent error terms and (A7) ensures

that the estimator is identified. (A8) is standard in nonparametric estimation.

Theorem 1 Under the set of assumptions (A1) to (A8), the MSE for the estimator defined in

(13), has bias and variance,

S2(λ̂t) =
h4d2

K

4

∥∥∥∥
∂2λt

∂t∂t
+ 2G−1

t

∂Gt

∂t

∂λt

∂t

∥∥∥∥
2

2

+ o(h4) (18)

and

V (λ̂t) =
cK

Th
tr(G−1

t ) + o((Th)−1) (19)

where Gt = E(C∗′
t C∗

t ), and the constants related to the kernel, dK and cK , are defined as dK =
∫

u2K(u)du and cK =
∫

K2(u)du, respectively.

Remark 3 It is important to observe that under assumptions (A1) to (A8), the asymptotic order

and the leading terms are the same considering either stationary or locally stationary variables.

Corollary 1 Consider model (9) and a consistent estimator Ω̂s = V̂sV̂
′
s of Ωs = VsV

′
s . Then, under

the same assumptions of Theorem 1, and if either

(i) Ω̂s − Ωs = o(MSE(λ̂t)), or

(ii) the entries in Cs are bounded,

the Feasible Generalized Least Squares (FGLS) estimator

λ̂FGLS
t =

(
T∑

s=1

Kh,tsC
′
sΩ̂

−1
s Cs

)−1 T∑

s=1

Kh,tsC
′
sΩ̂

−1
s Rs

has the same asymptotic properties as the estimator (13).
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All previous asymptotic results have been obtained under the assumption that the explanatory

variables are observable and, therefore, they can be used directly in the estimation. However, this

is not the case in the context of beta pricing models, in which explanatory variables are not directly

observable and must be replaced by proxies. Moreover, the procedure to obtain them should ensure

that the properties of the true unobserved variables are preserved.

Taking into account that each element ciℓt of Ct measures the covariance between the return on

the ith asset and the ℓth risk factor, we propose to estimate ciℓt as a conditional rolling smoothed

sample covariance

ĉiℓt = ĉiℓ(Xt−1) =

(
t−1∑

s=t−r

KB(Xs−1 − Xt−1)

)−1 t−1∑

s=t−r

KB(Xs−1 − Xt−1)Piℓs, (20)

where we recall that Xs = (X1s . . . Xms)
′ denotes the vector of state variables. We define Piℓs =

RisFℓs − µRis
(Xs−1)µFℓs

(Xs−1), where µRis(Xs−1) and µFℓs(Xs−1) denote the estimated means of

Ris and Fℓs conditional on Xs−1, respectively. KB is a m-variate kernel KB(u) = |B|−1/2K(B−1/2u),

with smoothing matrix B. That is, (20) can be seen as a one-sided conditional nonparametric es-

timator in a time series model. To avoid inconsistency in the estimation of MPR, it is crucial that

we employ a truncated estimator of ciℓt that uses past information only.

Thus, the resulting Smoothed Generalized Least Squares (SGLS) estimator for the market prices

of risk,

λ̂SGLS
t =

(
T∑

s=1

Kh,tsĈ
∗′
s Ĉ∗

s

)−1 T∑

s=1

Kh,tsĈ
∗′
s R∗

s, (21)

is similar to (13) with C replaced by Ĉ and Ĉ∗
s = V −1

s Ĉs. In order to reach the desirable asymptotic

results some additional assumptions are required:

Assumption (C1) The m-variate kernel K is compactly supported such that
∫

K(u)du = 1

and
∫

uu′K(u)du = µKIp, where µK is a nonnegative scalar and
∫

and du, are the shorthands for
∫ ∫

. . .
∫

Rp and du1 . . . dup, respectively.

Assumption (C2) Consider a sequence of positively definite diagonal bandwidth matrices B =

diag(b2
i1 b2

i2 . . . b2
im) for i = 1, . . . , N , such that |B|1/2 and r/T go to zero, T |B|1/2 and r|B|1/2 go to

infinity as the subsample size (r) and the sample size (T ) go to infinity. Note that the bandwidth

matrices are considered to be equal for all i, to simplify notation and without loss of generality.

Assumption (C3) The distribution of Xt has an order-one-Lipschitz time-varying density,

ft(x) = f(τ, x), where τ = t/T .
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The following proposition states the properties of estimator (20).

Proposition 1 Consider the set of assumptions (A3) to (A6), and (C1) to (C3) then, the estimator

defined by (20) is a consistent estimator of ciℓ(Xt−1), with asymptotic bias and variance:

Bias(ĉiℓ(Xt−1)|Xt−1 = xt−1) = O(trace(B))

V ar(ĉiℓ(Xt−1)|Xt−1 = xt−1) = O

(
1

r|B|1/2

)
.

We are now in a position to derive the asymptotic results for the estimator of the market prices

of risk when the estimators of the conditional covariances described above are employed.

Theorem 2 Under the set of assumptions (A1) to (A8) and (C1) to (C3), using the covariance

estimator (Ĉt) whose elements are defined in (20), the SGLS estimator for the market prices of

risk defined in (21) is consistent, with the same asymptotic results for the two components of the

MSE as in Theorem 1.

Corollary 2 Consider model (9) with the consistent estimator of Ct defined in (20) and a con-

sistent estimator Ω̂ = V̂sV̂
′
s for Ωs = VsV

′
s . Then, under the assumptions in Theorem 2, and if

either

(i) Ω̂s − Ωs = o(MSE(λ̂SGLS
t )), or

(ii) the entries in C are bounded,

the Smoothed Feasible Generalized Least Squares (SFGLS) estimator

λ̂SFGLS
t =

(
T∑

s=1

Kh,tsĈ
′
sΩ̂

−1
s Ĉs

)−1 T∑

s=1

Kh,tsĈ
′
sΩ̂

−1
s Rs (22)

has the same asymptotic properties as in the previous theorems.

The following proposition provides a consistent estimator for the error covariance matrix that

must be estimated in advance in order to compute the estimated market prices of risk defined in

(22).

Proposition 2 Consider the estimator for a generic element of the covariance matrix,

σ̂ijt =

(
T∑

s=1

KG(Xs−1 − Xt−1)

)−1 T∑

s=1

KG(Xs−1 − Xt−1)(Rit − λ̂tĈit)
′(Rjt − λ̂tĈjt) (23)
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with KG(u) = |G|−1/2K(G−1/2u), being G the m-order smoothing matrix and K a m-variate second

order kernel. Under assumptions (A1)-(A8), (C3) and the kernel KG satisfying (C1) and (C2)

(although no assumption for r is needed here), (23) provides a consistent estimator for a generic

term of Ωt, for each t.

The next (pointwise) asymptotic distribution for the estimator of λt, allows us to test for

invariance of the prices of the risk factors through time or to test whether the price of risk factors

is different from zero.

Theorem 3 Assume (A1)-(A8) and (C1)-(C3), consider h = o(T−1/5), such that the bias tends

to zero faster than the variance, and that either (i) or (ii) in Corollary 2 holds. Then, the SGLS

estimator of λt at k different locations t1, . . . , tk converges in distribution to the multivariate normal

as,

(
(Th)1/2(λ̂SGLS

tj − λtj )
)k

j=1

p
−→ N(0, cKG−1

tj
). (24)

Finally, using the consistent estimator for Gtj defined in Lemma 1 (in the Appendix), we can obtain

confidence intervals for the k selected λ’s.

4. Implementation

The proposed estimator for the SURE model with unknown explanatory variables requires the

selection of several smoothing parameters: the matrix of bandwidths used to estimate conditional

covariances between risk factors and asset returns, B; the smoothing parameter used to estimate

time-varying market prices of risk, h; and the matrix of bandwidths used to estimate the residuals’

conditional covariance matrix, H.

In general situations, the bandwidths are selected using data-driven methods like cross-validation,

penalized sum of squared residuals or plug-in methods. For a detailed discussion of each see Härdle

(1990), Wand and Jones (1995) or Fan and Gijbels (1996), among others. For multivariate cases, the

penalty methods, such as Rice or Generalized Cross-Validation, are appropriate, easy to interpret

and faster to compute than the others.

To solve the selection problem in this specific context, we proceed in two steps. In the first step,

we address the selection of B and h jointly. In the second step, we select the smoothing parameter

matrix H. For the first step, we propose to minimize a penalized sum of squared residuals

(NT )−1

T∑

t=1

(Rt − Ĉt(B)λ̂t(h))′(Rt − Ĉt(B)λ̂t(h)) G(h, B), (25)
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where G(h, B) denotes the penalizing function. It is well known that a sum of squared residuals

equal to zero is easily obtained for bandwidths very close to zero. Note, however, that since the

estimator of Ct defined in (20) does not include the observation at time t, there is no need to

penalize the selection of B. Thus, we will use a function that only penalizes low values of h, i.e.,

G(h, B) = G(h). In particular, in the Generalized Cross Validation method, the penalty is

G(h) ≈
(
1 − (NT )−1traceP (h)

)−2
, (26)

where P (h) is the projection matrix

K(0)

Th

N∑

i=1

T∑

t=1

[
C ′

is

(
C′

iKh,tCi

)−1
C′

i

]
Zt, (27)

where Cis = (ci1t ci2t . . . cipt)
′ is defined above, the T × p-order matrix Ci = (Ci1 Ci2 . . . CiT )′ is the

data matrix corresponding to the ith equation, Kh,t = diag{Kh,ts}
T
s=1 is a T -order diagonal matrix

with kernel weights, and Zt is a T order column vector with tth element equal to one and rest of

elements equal to zero.

Once the smoothing parameters B and h have been selected, the second step is to select the

smoothing parameter matrix H for the errors’ covariance matrix. In particular, for fixed B and h,

we estimate MPR and obtain the model’s errors. Then, we select H that minimizes the weighted

sum of squared residuals

T∑

t=1

(Rt − Ĉtλ̂t)
′Ω̂−1

t (H)(Rt − Ĉtλ̂t) (28)

where the estimator of any generic term of Ω̂, σ̂ijt, is given by (23).

The λ̂’s estimated with the selected H are then used again to obtain the model residuals, and

reestimate conditional covariances, the residual covariance matrix and the new λ̂’s. For this reason,

it is possible that the smoothing parameters selected in the first step are not optimal. This problem

suggests the need to iterate in order to attempt to converge to final λ̂’s. However, changing B and

h in this iterative procedure does not provide a convergent method. Therefore, we cannot ensure

optimality of all smoothing parameters.

5. Monte Carlo study

As explained above, the nonparametric estimator of factor sensitivities is more efficient than the

traditional Fama-MacBeth rolling estimator when betas or covariances are believed to be functions
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of a set of variables capturing the state of the system. Another advantage is the fact that the weight

of past observations used in the estimation process is optimally determined for each data set rather

than established ex-ante by the researcher. It is interesting to study whether these features lead

to more accurate estimates of betas in small samples for two reasons. First, estimated betas are

important by themselves. For instance, they are necessary inputs in risk management problems.

Second, more accurate betas can improve the estimation of market prices of risk in the second-pass

estimation. To evaluate the ability of the nonparametric approach to capture the dynamics of

time-varying betas relative to that of the more traditional rolling estimator, we conduct a Monte

Carlo simulation study. In particular, we focus on the conditional version of the three-factor model

of Fama and French (FF) (1993) in which betas are allowed to vary through time:

Rit = βim,tRmt + βismb,tRsmbt + βihml,tRhmlt + ǫit, i = 1, . . . , N t = 1, . . . T, (29)

where Rm, Rsmb and Rhml denote the returns on the market portfolio (in excess of the risk-free

rate), on the size-factor mimicking portfolio (SMB) and on the book-to-market-factor mimicking

portfolio (HML), respectively.

To simplify the analysis, we set N = 1, so we can omit the asset subscript, and assume constant

betas with respect to SMB and HML, i.e., βsmb,t = βsmb and βhml,t = βhml for all t.4 We model

βm,t as a function of lagged values of two state variables, denoted by X1 and X2. More specifically,

we employ two variables that are commonly used in the literature: the dividend yield on the market

portfolio, computed as the sum of dividends on the S&P500 index in the last 12 months divided by

the index level at the end of the year, and the default spread as proxied by the difference between the

average rates of Moody’s Baa- and Aaa-rated corporate debt. Data used to compute the dividend

yield and the default spread were obtained from CRSP and the Federal Reserve Economic Data

database.

To simulate returns, we start by generating market betas, βm,t, for t = 1 . . . T , using data on the

lagged state variables in the January 1964-December 2005 period and according to four different

specifications:

βm,t = 1 − 20X1,t−1 (30)

βm,t = 1 − 20X1,t−1 + 900X2
1,t−1 (31)

βm,t = 1 − 20X1,t−1 + 900X2
1,t−1 + 30X2,t−1 − 200x2

2,t−1 − 2500X1,t−1X2,t−1 (32)

βm,t = 1 − 8X1,t−1e
−100X1,t−1 − 20X2,t−1e

−100X2,t−1 (33)

4We set βsmb = 0.8 and βhml = 0.4 in all simulations.
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For each series of βm,t we then simulate 1,000 paths, indexed by j, of asset return realizations,

Rj
t = βim,tRmt + βismbRsmbt + βihmlRhmlt + ǫj

t , for t = 1, . . . , T . Henceforth, we refer to each one

of the four models corresponding to (30)-(33) as Model 1-Model 4. Realizations of the three Fama-

French factors were downloaded from Kenneth French’s website and are orthogonalized.5 Random

errors, ǫj
t , are drawn independently from N(0, σ = 0.04).

We estimate the vector of conditional betas for each simulated path using a kernel estimator

that is analogous to the nonparametric estimator of the conditional covariances proposed above

(20):

β̂NP,j
t =

(
t−1∑

s=t−60

KB(Xs−1 − Xt−1)FsF
′
s

)−1 t−1∑

s=t−60

KB(Xs−1 − Xt−1)Fs(R
j
s)

′, (34)

where Fs denotes the vector of the orthogonalized three Fama-French factors and simulated asset

returns, Rj
s, are demeaned.

To compare the accuracy of the nonparametric estimator with that of the rolling betas, i.e.,

betas estimated in overlapping rolling samples of prior data, we also estimate for each one of the

simulated paths:

β̂ROLL,j
t =

(
t−1∑

s=t−60

FsF
′
s

)−1 t−1∑

s=t−60

Fs(R
j
s)

′. (35)

Finally, we compute the mean square error of each series of estimated betas as well as the

average mean square error for all simulated paths within each model. That is, we compute MSEj =

(1/T )
∑T

t=1
(β̂j

mt − βmt)
2 and MSE = (1/1000)

∑
1000

j=1
MSEj .

Simulation results are presented in Table 1. In column one, we report for each model the

percentage of simulated paths for which the MSE is lower for the nonparametric estimator of

market beta than for the rolling estimator. Columns two and three report mean square errors

averaged across all simulations for each model and each estimator. Results in Table 1 indicate that

the nonparametric estimator is more accurate for all models: The percentage of times that the

nonparametric estimator is superior to the rolling estimator ranging between 81.5% of the times

(Model 4) and 97.4% (Model 1). Average MSE are also lower for the nonparametric estimator for

all four models.

Figure 1 displays boxplots of the empirical distribution of MSE for each model and both esti-

mators. More specifically, boxplots show graphically the median MSE, as well as the first quartile

(q1) and third quartile (q3), the limits q3 + w(q3–q1) and q1–w(q3–q1) with w = 1.5, and values

outside those limits. The figure shows that the first quartile, the median MSE and the third quar-

5We orthogonalize the size factor by regressing Rsmb on Rm. We then define the orthogonalized size factor as
the residuals from that regression. Next, we regress Rhml on Rm and the orthogonalized size factor, and define the
orthogonalized book-to-market factor analogously.
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tile are all lower for the nonparametric estimator than for the rolling estimator. The most striking

difference is achieved for Model 1: The third quartile of the empirical MSE distribution is lower

for the nonparametric estimator than the first quartile for the rolling estimator. We may therefore

conclude that under the specifications considered, the nonparametric estimator clearly outperforms

the rolling estimator in terms of providing more accurate estimates of betas.

To gain further insight on the performance of the nonparametric estimator relative to the rolling

estimator, in Figure 2 we plot the median, the first and the third quartiles of estimated betas for

both estimators under the four specifications together with the true betas. The figure shows that

the nonparametric estimator performs remarkably well under the four specifications, especially in

the pre-1990 period. The median estimated beta tracks closely the true beta and the interquartile

range is very narrow. The rolling estimator, in contrast, appears to respond slower to changes in the

true beta. Also the interquartile range is substantially wider in all cases than for the nonparametric

estimator.

6. Empirical application

In this section we apply the non-parametric method presented above to estimate conditional

covariances and MPR in a flexible conditional version of the Fama and French (1993) three-factor

model. By providing consistent estimates of time-varying market prices of risk as well as confidence

intervals, our method makes it possible to identify time variation in the price of common risk

factors. This is a desirable advantage over parametric methods that assume constant MPR since a

statistically insignificant constant MPR associated with a risk factor may hide the fact that the risk

factor is actually priced for certain subperiods or that the sign of the price has changed throughout

the full sample period. We then compare the performance of the nonparametric approach to that of

several alternatives that have been proposed in the literature in terms of their ability to predict the

cross-section of future returns. This comparison enables us to establish whether the nonparametric

approach leads to better estimates not only of factor sensitivities but also of MPR and, ultimately,

asset expected returns.

6.1. Model and Data

We consider a particular case of the asset pricing relation (6) where the marketwide factors are

the orthogonalized three Fama-French factors described in the previous section:

E(Rit|Xt−1) = λm,tcim,t + λsmb,tcismb,t + λhml,tcihml,t i = 1, 2, ..., N t = 1, 2, ..., T. (36)
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Like other studies, we use data on the 25 equity portfolios formed by sorting individual stocks

on market capitalization and book-to-market (Fama and French (1993). Monthly data on the 25

portfolio returns and the one-month risk-free rate were downloaded from Kenneth French’s website.

We follow closely Ferson and Harvey (1999) and select five conditioning variables (Xt−1) that

have been used in the literature on stock return predictability: (1) the annual dividend yield of the

S&P 500 index (“DP”); (2) the slope of the term structure (“term”) as proxied by the difference

between the yield on the ten-year Treasury bond and the yield on a one-year Treasury bill; (3)

the default spread (“def”); (4) the one-month Treasury bill yield (“Tb1m”); and (5) the difference

between the monthly returns of a three-month and a one-month Treasury bill (“hb3”). DP , Tb1m,

and hb3 were constructed from data obtained from CRSP. Data on term and def were obtained

from the Federal Reserve’s FRED database.

Our final sample contains 510 monthly observations of factor realizations, portfolio returns and

lagged state variables in the July 1963-December 2005 period.

6.2. Estimation results

We start by estimating nonparametrically the conditional covariances of returns with the three

risk factors and for each one of the 25 portfolios. We then estimate the time-varying market prices

of risk associated with each factor.

To estimate conditional covariances at time t, we use 60 months of prior data on portfolio

returns, factor realizations and conditioning variables. This results in a loss of 60 observations in

the estimation of MPR. To mitigate the effects of the well-known curse of dimensionality that affects

non-parametric estimation, we use only two conditioning variables at a time. More specifically,

since DP has the most predictive power over future returns in univariate predictive regressions

(unreported), we consider four pairs of conditioning variables, each one combining DP with one of

the remaining four state variables.

In Table 2 we report summary statistics of nonparametrically estimated MPR associated with

the three Fama-French factors. For the sake of brevity, we report results only when the two

conditioning variables are DP and term. Results for other choices of conditioning variables are

similar and available from the authors upon request. Each panel in Table 2 shows the minimum, the

mean, the standard deviation, and maximum values of λ̂m, λ̂smb, and λ̂hml in a different subperiod.

We also report the fraction of months in each subperiod in which estimated MPR are positive, and

both positive and statistically significant at the 5% level. Results reveal that the prices associated

with exposure to the market and the book-to-market risk factors are positive most of the time and

with similar frequency: 84% and 84.67% of all months, respectively. However, the price of book-
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to-market risk is statistically significant more often (about 29% of the time in the full sample)

than the price of market risk (only 6% of all observations). The prices of risk associated with both

risk factors are statistically significant more often in the 1996-2005 subperiod (15.83% and 35.83%,

respectively) than in other subperiods. In contrast with these results, the price of the risk factor

associated with size is negative on average in all subperiods with the exception of the 1976-1985

subperiod, and is positive only for 38.22% of all observations. Moreover, the price of size risk is

never both positive and statistically significant. This price exhibits the highest standard deviation

in the full sample. Interestingly, these results are broadly consistent with the finding by Ferson and

Harvey (1999) that only the price of book-to-market risk is statistically significant in the 1963-1994

sample period.

Figure 3 displays estimated MPR associated with the three Fama-French factors as well as 95%

confidence intervals. Again, we report results obtained when DP and term are the only conditioning

variables. The figure reveals that market prices of risk have varied substantially through time.

Although the price of market risk has been consistently positive, it is not statistically significant

most of the time, an important exception being the late nineties, when λ̂m reached its maximum

value. Another interesting insight revealed by Figure 3 is that the price of size risk appears to have

risen in the post-1999 period. Finally, although the book-to-market risk factor has been consistently

priced by investors, the price associated with this risk factor appears to have varied through time:

It achieved a peak in the early nineties and stayed at high levels again in the 2001-2005 period.

Taken together, our estimation results indicate that lack of significance of prices of the Fama-

French market and size risk factors found by Ferson and Harvey (1999) survives a flexible speci-

fication of the conditional FF model: Only the price of book-to-market risk is often positive and

statistically significant. However, our results also suggest that MPR exhibit substantial variation

through time. More specifically, the risk factor identified with the return on the market portfolio

has been positive and significant in certain subperiods, even though the average price of this factor

does not appear to be distinguishably different from zero.

6.3. Forecasting results

Ferson and Harvey (1999) test whether constant or linear FF factor betas can explain the cross-

section of conditional expected returns against the alternative that conditional expected returns

are captured by forecasts based on predictive OLS regressions of returns on lagged state variables.

They find that including the OLS-forecast in cross-sectional regressions reduces the significance of

Fama-MacBeth coefficients on both SMB and HML betas. Moreover, the coefficient on the OLS-

forecast variable remains highly significant. They interpret these results as evidence against both
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the unconditional and conditional versions of the FF model.

To evaluate the ability of the nonparametric approach to capture the cross-section of conditional

expected returns, we perform a test that is similar to that employed by Ferson and Harvey (1999).

First, for each month t we use information up to t − 1 to estimate nonparametrically conditional

covariances between asset returns and the risk factors. We also estimate the MPR corresponding

to the last observation, i.e., λ̂t−1, and use them together with conditional covariances to compute

conditional expected returns, which we denote by ÊNP
t−1 (Rit). Like Ferson and Harvey (1999), for

each month t and each portfolio i in our sample, we also run the predictive OLS regression:

Ris = δ′it−1Xs−1 + uis s = 1, 2, ..., t − 1, (37)

and compute the fitted conditional expected return from the empirical model, ÊOLS
t−1 (Rit) ≡ δ̂′it−1Xt−1.

We then estimate a series of cross-sectional regressions at each point in time:

Rit = φ0t + φNPtÊ
NP
t−1 (Rit) + φOLStÊ

OLS
t−1 (Rit) + ηit i = 1, 2, ..., N. (38)

Finally, the Fama-MacBeth coefficients are computed from the time series of regression coeffi-

cients.6 The idea of the test is that under the null hypothesis that the conditional FF holds, we

would expect the estimated coefficient on ÊNP
t−1 (Rit) to be close to unity provided that our non-

parametric approach yields accurate estimates of both conditional covariances and market prices of

risk. Like Ferson and Harvey (1999), we include ÊOLS
t−1 (Rit) in the regression to confront the model

with a powerful empirically motivated alternative.

To put the results for the nonparametric model in perspective, we also estimate conditional

expected returns from the parametric model. More specifically, we estimate the four parametric

versions of the FF model considered by Ferson and Harvey (1999): (1) an unconditional FF model

with betas estimated using expanding samples;7 (2) an unconditional FF model with betas esti-

mated using 60-month rolling samples; (3) a conditional FF model with betas that are linear in the

lagged state variables estimated using expanding samples;8 and (4) a conditional FF model with

linear betas estimated using 60-month rolling samples. In all cases, rewards per unit of beta risk

are estimated as the Fama-MacBeth coefficients from cross-sectional regressions of returns on betas

6Regression (38) is run 330 months, which means that 180 observations are lost: 60 months of prior data are used
to estimate conditional covariances; a minimum of 60 months of prior data are then used to estimate market prices
of risk; and the first 60 return forecasts are used to choose the bandwidths that minimize forecasting errors.

7The expanding sample used to estimate factor betas at time t includes all observations from the first month to
month t − 1.

8Linear betas are estimated from the time series regression: Rit = a0i + (bm0i + b′m1iXt−1) Rm,t +
(bsmb0i + b′smb1iXt−1) Rsmb,t + (bhml0i + b′hml1iXt−1) Rhml,t + νit.
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over the previous 60 months.9 We use the notation ÊP
t−1(Rit) to denote return forecasts implied

by the parametric implementation of the FF model.

Tables 3 and 4 report results for the nonparametric and the parametric estimation methods,

respectively. To complete the analysis, we also report results from univariate regressions. The

regression coefficient on the forecast based on the nonparametric FF model is positive, with values

ranging from 0.67 to 0.91, and statistically significant at least at the 5% significance level in all

cases. Moreover, none of of the intercepts is statistically significant. We interpret these results as

evidence in favor of the flexible version of the conditional three-factor model. When the OLS-based

forecast is included in the regression, the coefficient on ÊNP
t−1 (Rit) is still positive in all cases but its

value decreases by half and becomes statistically insignificant. The coefficient on the OLS-based

forecast, however, is statistically significant, although both its value and its statistical significance

are lower than in the case in which ÊOLS
t−1 (Rit) is the only regressor.

When returns are regressed on forecasts obtained from different parametric implementations

of the FF model (Table 4), estimated slope coefficients are positive in all cases but lower than

the coefficients obtained from the univariate regressions of Table 3, and they are never statistically

significant. Interestingly, the lowest coefficients are obtained when betas are estimated using rolling

samples rather than expanding samples. Further, the conditional model in which betas are allowed

to vary linearly with the conditioning variables estimated with rolling samples provides the poorest

fit: The slope coefficient takes the lowest value and the intercept becomes significant at the 5% level.

If model-based forecasts are confronted with the OLS-based forecast, the coefficient on ÊP
t−1(Rit)

becomes negative in all cases although not significant at any conventional significance level, while

the coefficient on ÊOLS
t−1 (Rit) remains high and statistically significant at the 1% level in all cases.

We may conclude from these results that our nonparametric approach to estimating the condi-

tional FF model improves substantially upon alternative parametric methods in terms of forecasting

the cross-section of future returns. However, nonparametric FF-based forecasts are still dominated

by forecasts obtained from simple OLS regressions of returns on lagged state variables.

7. Summary and conclusions

In this paper we show how to estimate consistently time-varying market prices of risk in a general

conditional beta pricing model without imposing any parametric structure on factor sensitivities

or market prices of risk. The method can be seen as a nonparametric analogue of the two-pass

approach developed by Fama and MacBeth (1973) to estimate and test unconditional beta pricing

9In unreported results we also compute prices of beta risk as the average of the previous 30 regression coefficients
and obtain qualitatively similar results.
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models.

Like previously proposed nonparametric estimation methods, the method presented in this

paper is not subject to Ghysels’ critique (Ghysels (1998), that misspecification of time-varying

conditional moments and market prices of risk may induce larger pricing errors than those obtained

by unconditional beta pricing models. Unlike previous proposals, however, ours does not assume

that risk factors can be identified with portfolio returns, so it can be applied to a more general

family of models. Moreover, our method provides estimates of both factor sensitivities and market

prices of risk, which can be used to estimate expected returns for the purposes of forecasting future

returns or estimating the cost of capital.

To evaluate the performance of the method in empirical analysis, we first carry out a simula-

tion study and then apply the method to data on equity returns. Both analyses are based on the

Fama-French three factor model. Simulation results suggest that the nonparametric methodology

provides more accurate estimates of conditional betas than the traditional rolling-sample approach

when beta depends on observable state variables. Estimation results using data on the 25 size and

book-to-market sorted portfolios are consistent with prior evidence on the significance of market

prices associated with the Fama-French risk factors. However, our results also suggest that infer-

ence based on constant market prices of risk may hide that fact that risk factors are significantly

priced in specific subperiods. Finally, our nonparametric version of the Fama-French model does a

much better job at forecasting the cross-section of future stock returns than previously proposed

parametric implementations, although the performance of the Fama-French model declines when

confronted with purely empirical forecasts.

22



Appendix

In order to prove Theorem 1 the following lemma are needed.

Lemma 1 Under Assumptions (A2) to (A5), and (A8), it holds that

T∑

s=1

Kh,tsC
∗′
s C∗

s
a.s.
−→ Gt,

(Th)
T∑

s=1

K2
h,tsC

∗′
s C∗

s
p

−→ cKGt.

Proof of Lemma 1

To simplify notation we denote any generic scalar term of TKh,tsC
∗′
s C∗

s as Zs = TKh,tsc
∗
sc

∗
s. Zs

is a α−mixing sequence of size 6/5 with the proper bounded moments, and E(Zs) = 1

hK
(

t−s
Th

)
gs,

that tends to gt. Therefore, the first result follows from the Strong Law of Large Numbers in White

(1984), Corollary 3.48, for dependent variables under mixing conditions. The second result can be

proven following similar steps. �

Proof of Theorem 1

First we write the Mean Square Error

MSE(λ̂t) = trE[(λ̂t − λt)(λ̂t − λt)
′]

= || Bias(λ̂t) ||
2
2 + trV ar(λ̂t) = S2(λ̂t) + V (λ̂t).

Then, note that

λ̂t − λt =

(
T∑

s=1

Kh,tsC
∗′
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗′
s R∗

s − λt

=

(
T∑

s=1

Kh,tsC
∗′
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗′
s C∗

s (λs − λt)

+

(
T∑

s=1

Kh,tsC
∗′
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗′
s εs

has a random denominator. We overcome this problem redefining the bias and variance terms using

the weight W ∗
t = G−1

t

∑T
s=1

Kh,tsC
∗′
s C∗

s . Hence, the redefined bias is Bias∗(λ̂t) = Bias(W ∗
t λ̂t). For
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technical reasons, we use different bandwidths for W ∗
t and for λ̂t, say h∗ and h respectively, such

that the following condition holds:

E ‖ W ∗
t − I ‖2

E ‖ λ̂t − λt ‖2
= o(1), (39)

as T goes to infinity. This condition establishes that W ∗
t goes to the identity at a faster rate than

the mean square error goes to zero, and this implies that the rate of convergence for the mean

square error must be suboptimal, which in this case means slower than T−4/5.

Considering the term defined by Bias∗

Bias∗(λ̂t) = G−1
t

T∑

s=1

Kh,tsE(C∗′
s C∗

s )(λs − λt) + G−1
t

T∑

s=1

Kh,tsE(C∗′
s ε∗s)

= G−1
t

T∑

s=1

Kh,tsE(C∗′
s C∗

s )(λs − λt),

since E(C∗′
s ε∗s) = E(C∗′

s E(ε∗s|C
∗′
s )) = 0. Using the Taylor expansion with t − s = Thu,

Bias∗(λ̂t) = G−1
t

T∑

s=1

Kh,tsGs(λs − λt)

= G−1
t

∫
K(u)

[
Gt − hu

∂Gt

∂t
+ o(h2)

] [
−

∂λt

∂t
hu +

1

2

∂2λt

∂t∂t
(hu)2 + o(h2)

]

=
1

2
dkh

2

(
∂2λt

∂t∂t
+ 2G−1

t

∂Gt

∂t

∂λt

∂t

)
+ o

(
h2
)
.

Thus,

S2(λ̂t) =
1

4
d2

kh
4

∥∥∥∥
∂2λt

∂t∂t
+ 2G−1

t

∂Gt

∂t

∂λt

∂t

∥∥∥∥
2

2

+ o(h4).

The variance term is given by

V ar(λ̂t) = V ar(λ̂t − λt) = V ar




(

T∑

s=1

Kh,tsC
∗′
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗′
s R∗

s





= V ar




(

T∑

s=1

Kh,tsC
∗′
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗′
s C∗

s (λs − λt)

+

(
T∑

s=1

Kh,tsC
∗′
s C∗

s

)−1 T∑

s=1

Kh,tsC
∗′
s εs



 ,
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and using the redefined variance term, V ar∗(λ̂t) = V ar(W ∗
t λ̂t), it follows

V ar∗(λ̂t) = V ar

[
G−1

t

T∑

s=1

Kh,tsC
∗′
s C∗

s (λs − λt)

]
+ V ar

[
G−1

t

T∑

s=1

Kh,tsC
∗′
s εs

]
. (40)

Since the cross terms cancel because E(εs|C
∗
s ) = 0, the sum of variances can be split into two

terms:

V (λ̂t) = trV ar∗(λ̂t) = trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗′
s C∗

s (λs − λt)

]

+ trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗′
s εs

]
= V1 + V2. (41)

For the first term and taking into account that Gs = E(C∗′
s C∗

s ) it follows

V1 = trV ar

(
G−1

t

T∑

s=1

Kh,tsC
∗′
s C∗

s (λs − λt)

)
= trG−1

t V ar

(
T∑

s=1

Kh,tsC
∗′
s C∗

s (λs − λt)

)
G−1

t

= trG−1
t E




T∑

s=1

Kh,ts

(
C∗′

s C∗
s − Gs

)
(λs − λt)

(
T∑

s=1

Kh,ts

(
C∗′

s C∗
s − Gs

)
(λs − λt)

)′


G−1
t

= trG−1
t E

(
T∑

s=1

T∑

s′=1

Kh,tsKh,ts′
(
C∗′

s C∗
s − Gs

)
(λs − λt)(λs′ − λt)

′
(
C∗′

s′ C
∗
s′ − Gs′

)
)

G−1
t

= tr
T∑

s=1

T∑

s′=1

Kh,tsKh,ts′(λs − λt)(λs′ − λt)
′E
[(

C∗′
s′ C

∗
s′ − Gs′

)
G−1

t G−1
t

(
C∗′

s C∗
s − Gs

)]

= tr
T∑

s=1

T∑

s′=1

Kh,tsKh,ts′(λs − λt)(λs′ − λt)
′Qs,s′ , (42)

where Qs,s′ = E
[(

C∗′
s′ C

∗
s′ − Gs′

)
G−1

t G−1
t (C∗′

s C∗
s − Gs)

]
is a bounded p-order square matrix. Ex-

pression (42) can be divided in two parts, those corresponding to same terms and the cross terms.

When s = s′

tr
T∑

s=1

K2
h,ts(λs − λt)(λs − λt)

′Qs,s,
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where Qss is bounded and has same order as

T∑

s=1

K2
h,ts(λs − λt)(λs − λt)

′ = (Th)−1

∫
K2(u)(−hu

∂λt

∂t
+ o(h))(−hu

∂λt

∂t
+ o(h))′du =

= (Th−1)h2 ∂λt

∂t

(
∂λt

∂t

)′(∫
u2K2(u)du

)
+ o(h2) = O

(
h

T

)
.

For the cross terms, s 6= s′

tr
T∑

s,s′=1

s6=s′

Kh,tsKh,ts′(λs − λt)(λs′ − λt)
′Qs,s′

has same order as

T∑

s,s′=1

s6=s′

Kh,tsKh,ts′(λs − λt)(λs′ − λt)
′ = O

(
h

T
+

1

T 2

)
.

Thus V1 = O
(

h
T + 1

T 2

)
.

For the second term in (41) and taking into account that E(ε∗s|C
∗
s ) = 0:

V2 = trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗′
s ε∗s

]
= trG−1

t V ar

[
T∑

s=1

Kh,tsC
∗′
s ε∗s

]
G−1

t

= trG−1
t E




T∑

s=1

Kh,tsC
∗′
s ε∗s

(
T∑

s=1

Kh,tsC
∗′
s ε∗s

)′


G−1
t

= trG−1
t E

[
T∑

s=1

T∑

s′=1

Kh,tsKh,ts′C
∗′
s ε∗sε

∗
s′C

∗
s′

]
G−1

t .

Now, since E(εisεjs′) = 0 for all s 6= s′, E(ε∗isε
∗
js′) = 0 and

V2 = trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗′
s ε∗s

]
= trG−1

t E

[
T∑

s=1

K2
h,tsC

∗′
s ε∗sε

∗
sC

∗
s

]
G−1

t

= trG−1
t E

[
T∑

s=1

K2
h,tsC

∗′
s E (ε∗sε

∗
s|C

∗
s )C∗

s

]
G−1

t .
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Then, as E (ε∗sε
∗
s|C

∗
s ) = I and using the result (39) of Lemma 1 we have that

V2 = trV ar

[
G−1

t

T∑

s=1

Kh,tsC
∗′
s ε∗s

]
=

ck

Th
trG−1

t GtG
−1
t + o((Th)−1) =

ck

Th
trG−1

t + o((Th)−1).

Finally, since the order of V1 is negligible with respect to V2 and (39) holds, we have

V (λ̂) =
ck

Th
trG−1

t + o((Th)−1),

from where it follows that the order of the leading term in the variance coincides with the order of

the variance term in standard results. �

Proof of Corollary 1

Either condition (i) or (ii) provides, together with the rest of assumptions, the sufficient condi-

tions of regularity to check that the convergence of Ω̂s to Ωs implies the equivalence between the

asymptotic properties of λ̂FGLS
t and λ̂t. �

Proof of Proposition 1

In order to deal with the random denominator, we define the modified bias

Bias⋆(ĉiℓ(Xt−1)|Xt−1 = xt−1) = Bias

[
1

rf(τ, x′
t−1

)

t−1∑

s=t−r

KB(Xs−1 − xt−1)ĉiℓ(xt−1)

]

with τ = t/T . Then

Bias⋆(ĉiℓ(Xt−1)|Xt−1 = xt−1) =
1

rf(τ, x′
t−1

)

t−1∑

s=t−r

(
E [KB (Xs−1 − xt−1)Piℓs] − f(τ, x′

t−1)ciℓ(xt−1)
)

and, since Piℓs = ciℓ(Xs−1) + us with E(us|Xs−1) = 0:

Bias⋆(ĉiℓ(Xt−1)|Xt−1 = xt−1) =
1

rf(τ, x′
t−1

)

t−1∑

s=t−r

(
E [KB(Xs−1 − xt−1)ciℓ(Xs−1)] − f(τ, x′

t−1)ciℓ(xt−1)
)

=
1

rf(τ, x′
t−1

)

t−1∑

s=t−r

[∫
KB (ω − xt−1) ciℓ(ω)f

(
s/T, ω′

)
dω − f(t/T, x′

t−1)ciℓ(xt−1)

]
.
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Now, define

fs(x) ≡ f(s/T, x),

Dc(xt−1) ≡

(
∂ciℓ(xt−1)

∂x1t−1

. . .
∂ciℓ(xt−1)

∂xpt−1

)′

,

Dfs
(x′

t−1) ≡

(
∂fs(x

′
t−1)

∂x1t−1

. . .
∂fs(x

′
t−1)

∂xpt−1

)
,

and the (p× p)-order matrices Hc(xt−1) and Hfs
(x′

t−1) having as generic terms, (j, j′),
∂2ciℓ(xt−1)

∂xjt∂xj′t

and
∂2∂fs(x

′
t−1)

∂xjt∂xj′t
respectively.

Using a standard multivariate kernel of order two and the Lipschitz condition for the density

f ; we have that

Bias⋆(ĉiℓ(Xt−1)|Xt−1 = xt−1) =

=
1

rf(τ, x′
t−1

)

t−1∑

s=t−r

[∫
K(z)ciℓ(xt−1 + B1/2z)fs

(
x′

t−1 + B1/2z′
)

dz − ft(x
′
t−1)ciℓ(xt−1)

]

=
1

rf(τ, x′
t−1

)

t−1∑

s=t−r

[∫
K(z)

(
ciℓ(xt−1) + (B1/2z)′Dc(xt−1) +

1

2
(B1/2z)′Hc(xt−1)(B

1/2z) + o(trace(B))

)
×

(
fs(x

′
t−1) + (B1/2z′)′Dfs

(x′
t−1) +

1

2
(B1/2z′)′Hfs

(x′
t−1)(B

1/2z′) + o(trace(B))

)
dz − ft(x

′
t−1)ciℓ(xt−1)

]

=
1

rf(τ, x′
t−1

)

t−1∑

s=t−r

1

2
tr

(
BHc(xt−1)

∫
K(z)zz′dz

)
fs(x

′
t−1)

+
1

rf(τ, x′
t−1

)

t−1∑

s=t−r

ciℓ(xt−1)
(
fs(x

′
t−1) − ft(x

′
t−1)

)
+ O(trace(B))

=
1

rf(τ, x′
t−1

)

µK

2
tr (BHc(xt−1))

t−1∑

s=t−r

fs(x
′
t−1)

+
1

rf(τ, x′
t−1

)

t−1∑

s=t−r

ciℓ(xt−1)
(
fs(x

′
t−1) − ft(x

′
t−1)

)
+ O(trace(B))

=
µK

2
tr (BHc(xt−1)) +

1

rf(τ, x′
t−1

)

t−1∑

s=t−r

ciℓ(xt−1)O
( r

T

)
+ O(trace(B))

= O(trace(B)) + O
( r

T

)
.

Next, we obtain the redefined variance for a generic term ĉiℓ(Xt−1):
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V ar⋆(ĉiℓ(Xt−1)|Xt−1 = xt−1) =
1

r2f2(τ, x′
t−1

)
V ar

[
t−1∑

s=t−r

KB(Xs−1 − xt−1)piℓs

]

=
1

r2f2(τ, x′
t−1

)

[
t−1∑

s=t−r

V ar (KB(Xs−1 − xt−1)piℓs|xt−1)

+
t−1∑

s,s′=t−r

s6=s′

Cov (KB(Xs−1 − xt−1)piℓs, KB(Xs′ − xt−1)piℓs′ |xt−1)





=
1

r2f2(τ, x′
t−1

)

[
t−1∑

s=t−r

V ar (KB(Xs−1 − xt−1)(ciℓ(xs−1) + uiℓs)|xt−1)

+
t−1∑

s,s′=t−r

s6=s′

Cov (KB(Xs−1 − xt−1)(ciℓ(xs−1) + uiℓs), KB(Xs′ − xt−1)(ciℓ(xs′) + uiℓs′)|xt−1)





=
1

r2f2(τ, x′
t−1

)

[
t−1∑

s=t−r

V ar (KB(Xs−1 − xt−1) uiℓs|xt−1) +
t−1∑

s=t−r

V ar (KB(Xs−1 − xt−1) ciℓ(xs−1)|xt−1)

+
t−1∑

s,s′=t−r

s6=s′

Cov (KB(Xs−1 − xt−1)ciℓ(Xs−1), KB(Xs′−1 − xt−1)ciℓ(Xs′−1)|xt−1)

+
t−1∑

s,s′=t−r

s6=s′

Cov(KB(Xs−1 − xt−1) uiℓs, KB(Xs′ − xt−1) uiℓs′ |xt−1)





=
1

r2f2(τ, x′
t−1

)

[
t−1∑

s=t−r

V ar(KB(Xs−1 − xt−1) uiℓs|xt−1) +
t−1∑

s=t−r

V ar (KB(Xs−1 − xt−1) ciℓ(xs−1)|xt−1)

+

t−1∑

s,s′=t−r

s6=s′

Cov (KB(Xs−1 − xt−1)ciℓ(Xs−1), KB(Xs′−1 − xt−1)ciℓ(Xs′−1)|xt−1)



 = T1 + T2 + T3,

since for s 6= s′ the conditional expectation E(uiℓsuiℓs′) cancels and, therefore, only the diagonal

29



terms remain. For T1

T1 =
1

r2f2(τ, x′
t−1

)

[
t−1∑

s=t−r

E(K2
B(Xs−1 − xt−1)E(u2

iℓs|Xs−1)|xt−1)

]

=
σ2

uiℓ

r2f2(τ, x′
t−1

)

[
t−1∑

s=t−r

E(K2
B(Xs−1 − xt−1)|xt−1)

]

=
σ2

uiℓ

r2f2(τ, x′
t−1

)

[
t−1∑

s=t−r

∫
K2

B(z − xt−1)f
(
s/T, z′

)
dz

]

=
σ2

uiℓ

r2f2(τ, x′
t−1

)|B|1/2

t−1∑

s=t−r

∫
K2(u)

(
f(τ, x′

t−1) + O(traceB1/2) + O
( r

T

))
du

=
σ2

uiℓ

rf(τ, x′
t−1

)|B|1/2

∫
K2(u)du + h.o.t. = O

(
1

r|B|1/2

)
+ h.o.t.

For T2

T2 =
1

r2f2(τ, x′
t−1

)

t−1∑

s=t−r

V ar (KB(Xs−1 − xt−1) ciℓ(xs−1)|xt−1)

=
1

r2f2(τ, x′
t−1

)

t−1∑

s=t−r

[∫
K2

B(w − xt−1)c
2
iℓ(w)fs(w

′)dw −

(∫
KB(w − xt−1)ciℓ(w)fs(w

′)dw

)2
]

=
1

r2f2(τ, x′
t−1

)

t−1∑

s=t−r

[
|B|−1/2

∫
K2(z)c2

iℓ(xt−1 + B1/2z)fs(x
′
t−1 + B1/2z′)dz

−

(∫
K(z)ciℓ(xt−1 + B1/2z)fs(x

′
t−1 + B1/2z′)dz

)2
]

=
1

r2f2(τ, x′
t−1

)|B|1/2

t−1∑

s=t−r

[(
c2
iℓ(xt−1)fs(x

′
t−1)

∫
K2(u)du + O(traceB1/2)

)

−|B|1/2
(
ciℓ(xt−1)fs(x

′
t−1) + O(traceB1/2)

)2
]

=
c2
iℓ(xt−1)

r2f2(τ, x′
t−1

)|B|1/2

∫
K2(u)du

t−1∑

s=t−r

(
f(τ, x′

t−1) + O(traceB1/2) + O
( r

T

))
+ h.o.t

=
c2
iℓ(xt−1)

rf(τ, x′
t−1

)|B|1/2

∫
K2(u)du + h.o.t. = O

(
1

r|B|1/2

)
+ h.o.t.

And finally for the third term, T3,

T3 =
1

r2f2(τ, x′
t−1

)

t−1∑

s,s′=t−r

s6=s′

Cov [KB(Xs−1 − xt−1)ciℓ(Xs−1), KB(Xs′−1 − xt−1)ciℓ(Xs′−1)|xt−1] .
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Using (A4)

r∑

k=1

Cov [KB(Xs−1 − xt−1)ciℓ(Xs−1), KB(Xs+k − xt−1)ciℓ(Xs+k)|xt−1]

is uniformly bounded and, hence, the order of T3 is O(r−1), negligible with respect to T1 and T2.

Therefore, the final expression for each (i, ℓ) variance term is

V ar⋆(ĉiℓ(Xt−1)|Xt−1 = xt−1) =
c2
iℓ(xt−1) + σ2

uiℓ

rf(τ, x′
t−1

)|B|1/2

∫
K2(u)du + h.o.t.

and the proof is complete. �

Proof of Theorem 2

It is sufficient to check that the proof of Theorem 1 follows for the estimated covariances instead

of the real ones. First, note that (A4) holds for the estimated covariances (Ĉ) and that (A5) holds

up to order o(1); that is, E(Ĉ∗′
t Ĉ∗

t ) = E(C∗′
t C∗

t ) + o(1) = Gt + o(1).

Now, the steps of the proof of Theorem 1 follow straightforward using Ĉ instead of C. Only

the second term for the variance (41) need an extra step.

The second term for the variance can be written as,

V ar

(
G−1

t

T∑

s=1

Kh,tsĈ
∗′
s ε∗s

)
=

= G−1
t E



E




∑

s

K2
h,tsĈ

∗′
s ε∗sε

∗′
s Ĉ∗

s +
∑

s6=s′

Kh,tsKh,ts′Ĉ
∗′
s ε∗sε

∗′
s′Ĉ

∗
s′ |Ĉ

∗
s







G−1
t

= G−1
t E

[
∑

s

K2
h,tsĈ

∗′
s ε∗sε

∗′
s Ĉ∗

s +
∑

s<s′

Kh,tsKh,ts′Ĉ
∗′
s ε∗sE(ε∗′s′ |Ĉ

∗
s , Ĉ∗

s′ , εs)Ĉ
∗
s′

+
∑

s>s′

Kh,tsKh,ts′C
∗′
s E(ε∗s|Ĉ

∗
s , Ĉ∗

s′ , εs′)ε
∗′
s′Ĉ

∗′
s′

]
G−1

t

= G−1
t E

[
∑

s

K2
h,tsĈ

∗′
s ε∗sε

∗′
s′Ĉ

∗
s

]
G−1

t ,

since εs is independent of the past information. Using the fact that E(Ĉ∗′
t Ĉ∗

t ) = E(C∗′
t C∗

t ) =
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Gt + o(1), it finally holds

V ar

(
G−1

t

T∑

s=1

Kh,tsĈ
∗′
s ε∗s

)
=

ck

Th
G−1

t + o((Th)−1)

and this step completes the proof. �

Proof of Corollary 2

Apply the same arguments than in Corollary 1. �

Lemma 2 Under Assumptions (A3) to (A5) and (C1) to (C3); it holds that

1

r

t−1∑

s=t−r

KG(Xs−1 − xt−1)
a.s.
−→ f(τ, xt−1), (43)

where τ = t/T .

Proof of Lemma 2

Following similar steps than in Lemma 1, define Zs = KG(Xs−1 − xt−1). The sequence Zs has

mean f(s/T, xs−1) and therefore E
(
(1/r)

∑t−1

s=t−r Zs

)
= f(τ, xt−1) + o(1). A direct application of

White (1984), Corollary 3.48, leads to the result. �

Proof of Proposition 2

It holds following the proof of Proposition 1. �

Proof of Theorem 3

Consider the sequence of variables Zt defined as

Zt =

T∑

s=1

Kh,tsĈ
∗′
s ε∗s. (44)

Using White and Domowitz (1984), it is sufficient to verify that, since their Assumption A holds,

the result in their Theorem 2.4 applies. Since the bias is negligible with respect to the variance

term, the result follows straightforward by applying Crammer.

�
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Table 1
Monte Carlo simulation results.

% (MSENP < MSEROLL) MSE
NP

MSE
ROLL

Model 1 97.4 0.0135 0.0298
Model 2 84.9 0.0182 0.0278
Model 3 82.5 0.0275 0.0356
Model 4 81.5 0.0221 0.0300

Note: This table reports results from a Monte Carlo simulation study of the nonparametric (NP) and the
rolling (ROLL) estimators of market betas in a conditional Fama-French three factor model. Market betas
are generated under four different parametric models: a linear univariate function of the Dividend Yield
(Model 1); a quadratic univariate function of the dividend yield (Model 2); a quadratic bivariate function of
the dividend yield and the default spread (Model 3); and an exponential bivariate function of the dividend
yield and the default spread (Model 4). For each model, column 2 reports the percentage of simulations for
which Mean Square Errors (MSE) are lower for the nonparametric estimator of beta than for the rolling
beta, column 3 reports MSE for the nonparametric estimator averaged across all simulations, and column 4
reports MSE for the rolling estimator averaged across all simulations.
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Table 2
Estimation results: nonparametric market prices of risk.

λ̂m λ̂smb λ̂hml

July 1968 - December 1975
Min -0.012 -0.090 -0.061
Mean 0.027 -0.047 0.019
S.D. 0.034 0.018 0.055
Max 0.078 -0.017 0.095
% Positive 62.22 0.00 55.56
% Positive and Significant (5% level) 1.11 0.00 28.89

January 1976 - December 1985
Min -0.011 -0.042 -0.005
Mean 0.011 0.041 0.059
S.D. 0.018 0.037 0.044
Max 0.054 0.093 0.126
% Positive 68.33 81.67 88.33
% Positive and Significant (5% level) 0.00 0.00 31.67

January 1986 - December 1995
Min 0.019 -0.062 -0.004
Mean 0.040 -0.035 0.068
S.D. 0.020 0.019 0.040
Max 0.089 0.004 0.122
% Positive 100.00 5.83 96.67
% Positive and Significant (5% level) 5.83 0.00 19.17

January 1996 - December 2005
Min 0.026 -0.117 -0.014
Mean 0.043 -0.023 0.057
S.D. 0.024 0.052 0.032
Max 0.102 0.026 0.097
% Positive 100.00 55.83 90.83
% Positive and Significant (5% level) 15.83 0.00 35.83

Full Sample
Min -0.012 -0.117 -0.061
Mean 0.031 -0.014 0.053
S.D. 0.027 0.049 0.046
Max 0.102 0.093 0.126
% Positive 84.00 38.22 84.67
% Positive and Significant (5% level) 6.00 0.00 28.89

Note: This table reports summary statistics of nonparametrically estimated market prices of risk in a flexible
conditional Fama-French model. Conditional covariances between asset returns (the 25 size and book-to-
market portfolios) and risk factors (market, size, and book-to-market) are estimated nonparametrically as a
function of the lagged dividend yield and the slope of the term structure of interest rates.
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Table 3
Forecasting results: nonparametric approach.

Constant ÊNP
t−1 (Rit) ÊOLS

t−1 (Rit)

Panel A. OLS-based forecast

0.612∗∗ 0.457∗∗∗

(0.284) (0.133)

Panel B. Conditioning variables for nonparametric FF: DP , term

0.377 0.909∗∗∗

(0.362) (0.333)
0.294 0.461 0.302∗∗

(0.381) (0.309) (0.129)

Panel C. Conditioning variables for nonparametric FF: DP , def

0.424 0.668∗∗

(0.362) (0.313)
0.338 0.331 0.255∗∗

(0.369) (0.271) (0.125)

Panel D. Conditioning variables for nonparametric FF: DP , Tb1m

0.447 0.741∗∗

(1.243) (2.189)
0.420 0.350 0.261∗∗

(0.368) (0.299) (0.127)

Panel E. Conditioning variables for nonparametric FF: DP , hb3

0.443 0.719∗∗

(0.350) (0.310)
0.296 0.360 0.274∗∗

(0.363) (0.272) (0.126)

Note: This table reports Fama-MacBeth coefficients and standard errors computed from cross-sectional
regressions of monthly returns on one-month-ahead return forecasts computed using past information.
ÊOLS

t−1
(Rit) denotes the return forecast obtained from an OLS time-series regression of asset returns on

lagged values of the five conditioning variables: DP ; term; def ; Tb1m; and hb3. ÊNP
t−1

(Rit) denotes the
return forecast implied by the conditional Fama-French factor estimated nonparametrically using DP and
term as conditioning variables. The sample period is from July 1978 to December 2005. One, two, and three
asterisks denote statistical significance at the 10%, 5%, and 1% significance level, respectively.
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Table 4
Forecasting results: parametric approach.

Constant ÊP
t−1(Rit) ÊOLS

t−1 (Rit)

Panel A. OLS-based forecast

0.612∗∗ 0.457∗∗∗

(0.284) (0.133)

Panel B. Constant betas, expanding samples

0.536 0.417
(0.469) (0.398)
0.742 -0.056 0.346∗∗∗

(0.449)∗ (0.362) (0.127)

Panel C. Constant betas, rolling samples

0.676∗ 0.289
(0.403) (0.329)
0.833∗∗ -0.061 0.362∗∗∗

(0.392) (0.296) (0.127)

Panel C. Linear betas, expanding samples

0.623 0.335
(0.417) (0.323)
0.804 -0.091 0.367∗∗∗

(0.401) (0.293) (0.132)

Panel E. Linear betas, rolling samples

0.780∗∗ 0.150
(0.328) (0.208)
0.797∗∗ -0.152 0.431∗∗∗

(0.319) (0.183) (0.131)

Note: This table reports Fama-MacBeth coefficients and standard errors computed from cross-sectional
regressions of monthly returns on return forecasts computed using past information. ÊOLS

t−1
(Rit) denotes

the one-month-ahead return forecast obtained from an OLS time-series regression of asset returns on lagged
values of five conditioning variables: DP ; term; def ; Tb1m; and hb3. ÊP

t−1
(Rit) denotes the return forecast

implied by a parametric version of the Fama-French model. Returns are expressed in percentages. The sample
period is from July 1978 to December 2005. One, two, and three asterisks denote statistical significance at
the 10%, 5%, and 1% significance level, respectively.
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Fig. 1. Monte Carlo Study: Boxplots of Mean Square Errors of nonparametric and rolling beta estimators.

Market betas are generated under four different parametric models: a linear univariate function of the

Dividend Yield (Model 1); a quadratic univariate function of the dividend yield (Model 2); a quadratic

bivariate function of the dividend yield and the default spread (Model 3); and an exponential bivariate

function of the dividend yield and the default spread (Model 4).
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Fig. 2. Monte Carlo Study: Nonparametric versus rolling beta estimators. Each graph displays the

generated market beta, βm,t (thick solid line), the median estimated beta (thin solid line), and the first and

third quartiles of estimated betas (dotted lines). Market betas are generated under four different models: a

linear univariate function of the dividend yield (Model 1); a quadratic univariate function of the dividend

yield (Model 2); a quadratic bivariate function of the dividend yield and the default spread (Model 3); and

an exponential bivariate function of the dividend yield and the default spread (Model 4).
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Fig. 3. Nonparametric estimates of market prices of risk associated with the market risk factor, λm,t (top

panel), the size risk factor, λsmb,t (middle panel), and the book-to-market risk factor, λhml,t (bottom panel)

in the period from July 1968 to December 2005. Dashed lines represent 95% confidence bands.
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