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1 IntroductionTraditionally, the structural parameters of the sample selection model have been estimatedby using two step techniques. This estimation method was originally proposed by Heckman(1979) and it is widely used in many applications. An important drawback of this estimatoris that it heavily relies on assumptions such as the correct speci�cation of the selection equa-tion. Misspeci�cation of the model causes, in most of the cases, two step estimators of thebehavioral parameters to be inconsistent, and predictions obtained from a misspeci�ed modelcan be highly erroneous. This has motivated researchers to investigate two step estimatorsthat are consistent under weaker assumptions on the selection equation and therefore therisk of misspeci�cation is disminished. Some of these estimators are proposed by Robinson(1988), Cosslet (1991), Ahn & Powell (1993) and Andrews & Schafgans (1997).The estimator proposed by Heckman (1979) performs particullary well under standardassumptions such as normality of the joint distribution of the errors, statistical independencebetween errors and explanatory variables or linearity of the index. When departures fromthe previous assumptions are detected, then, semiparametric methods are recommended. Insome applications of sample selection models, it has been remarked that normality of theconditional distribution of the selection equation or linear index functions are not unrea-sonable assumptions (See Melenberg & Van Soest, 1996 and Fernández & Rodríguez-Poo,1997). The same can not be said about the independence because it is rather common to de-tect conditional heteroskedasticity in the selection equation. Under the previous conditions,well known results from asymptotic theory claim that semiparametric estimators presenta better performance, however it could be of great interest for the practitioner to know ifthis is also the case in �nite sample sizes. In this paper we investigate by simulation the�nite sample performance of the two step estimators proposed by Heckman (1979) and Ahn& Powell (1993) under standard assumptions (normality and linear index), but includingheteroskedasticity that depends on the index.In the simulations we will study both bias and �nite sample distribution of the parame-ter estimators related to the percentage of truncation in the sample, the correlation betweensample selection and participation equations, and di�erent degrees of omited heteroskedas-ticity. The results show that i) for the parametric model, the magnitude of the bias depends2



positively on the degree of omitted heteroskedasticity. However, this e�ect is larger whenboth amount of truncation and correlation are high. This result is in the same directionas the one obtained by Nawata and Nagase (1996). ii) The semiparametric estimator isseriously biased when both the correlation and the amount of truncation are high under themaintained hipotheses that the selection errors are normally distributed.However, compared to the two step Heckman approach, the semiparametric one has alower bias when the selection errors are not normally distributed. This coincides with theresults from Schafgans (1997). There have been other studies that have analyzed the �nitesample size behavior of other alternative estimators. The robustness of tobit maximum like-lihood estimators to departures from homoskedasticity has been studied in deep by Maddala& Nelson (1975), Hurd (1979) and Arabmazar & Schmidt (1981). In censored sample se-lection models, Goldberger (1983) and Schafgans (1997) studied the robustness of two stepestimator derived by Heckman (1979) to non-normality.The paper is organized as follows. In the next section we introduce the theoretical modeland we provide some statistical results for the asymptotic bias of two step estimators of thesample selection model in the presence of omitted heteroskedasticity. The main interest ofthis part is that we derive a linear relationship between the asymptotic bias of the Heckmanestimator and the correlation coe�cient. In section 3 we study the �nite sample propertiesof both two step estimators. In section four we present the conclusions, and �nally in section�ve we prove the main statistical results.2 Model and statistical resultsIn this section we investigate the asymptotic properties of the two step sample selectionestimators proposed by Heckman (1979) and Ahn & Powell (1993) when there is omited het-eroskedasticity in sample selection mechanism. To this end, �rst, we introduce the statisticalmodel and the main assumptions.The variables y1 and y2 are generated according to the following processy1i = xT1i�0 + u1i (1)di = 1(y1i > 0) (2)3



y2i = xT2i�0 + u2i i� di = 1 (3)The explanatory variables xj = (x1j x2j) are de�ned in R(K1+K2) and �0 = (�0 �0) is avector of parameters. 1(�) is the indicator function and (u1i; u2i) are unobservable randomvariables. We make the following assumptions about the explanatory variables, the randomerrors and the parameter vector.(A.1) The vectors (y1i; y2i; di; xT1i; xT2i) are independently and identically distributed acrossi, having �nite sixth-order moments. Moreover, the conditional density function ofthe index xT1�0 given di > 0, and the moment function E hdix2ijxT1i�0i are four ordercontinuously di�erentiable.Furthermore, we make the following assumption about the parameter vector � = (�; �)(A.2) � 2 B. B is an open bounded subset of the Euclidean (K1 + K2)-space. �0 is aninterior point of B.(A.3) Some component of x1 must be excluded from x2.For the random error we assume the following(A.4)  u1u2 �����X = xi! � N 0@ 00 ! ;0@ f �xT1i�0�2 f �xT1i�0� ��2f �xT1i�0� ��2 �22 1A1A ;In assumption (A.4) we assume joint normality of the random errors but not independencefrom the explanatory variables. In fact, joint normality is a su�cient condition for con-sistency of the Heckman's two step estimator, but not necessary. Olsen (1980), shows thesame result assuming both normality of u1 and linearity of the conditional expectation ofu2 with respect to u1. The heteroskedasticity considered in assumption (A.4) depends onthe explanatory variables of the selection equation through the index, however, we need alsosome additional assumptions on the behavior of the conditional variance.(A.5) The function f(�) is known, and it is bounded above and below and at least fourtimes continuously di�erentiable with respect to the index.4



Finally, we need to include also the following assumption on the variables that appear in theselection equation x1(A.6) The vector x1 can be partioned as x1 = (x(1)1 ; x(2)1 ), where x(1)1 is continuously dis-tributed and x(2)1 is discrete. The joint density of l (x1) has a compact support. If theconditional density function of x(1)1i given x(2)1i = x(2)1 is l(x(1)jx(2)), then for each x1 insome known compact subset X of the support of x1, the following conditions hold:1. l(x(1)jx(2)) > lo for some lo = lo(x2) > 02. The functions E[d2i jx1i = x1]l(x(1)jx(2)) and [g(x1)]2l(x(1)jx(2)) are continuous anduniformly bounded.3. The number of points of support of x(2) in X is �nite .Note that assumptions (A.5) and (A.6) are stronger than the ones needed for obtainingthe results for the Heckman estimator, however they are required for the semiparametricestimator.We make now a brief introduction to the two step estimators that we are going to analyze.For the Heckman's estimator, equation (3) can be rede�ned by noting thatE (y2jdi = 1;X = xi) = xT2i�0 + E (u2jdi = 1) (4)as y2i = xT2i�0 + ��2�0 �xT1i�0�+ �i (5)for i such that di = 1. Where �i = y2i � E (y2jdi = 1;X = xi) and, assuming (A.4), �0(z) =� � zf(z)�, �0(z) = � � zf(z)�, with �(z) = �(z)�(z) , where �(�) and �(�) are respectively thestandard gaussian density and cumulative distribution functions. Note that E (�jX = xi) = 0and the variance of �i is given byV (�jX = xi) = �22 � �2�22 " x1i�0f (xT1i�0)�0 �xT1i�0�+ �0 �xT1i�0�2# (6)To facilitate further the discussion of Heckman's estimator, we can rewrite (5) again asy2i = xT2i� + ��2� �xT1i�̂�+ �i + �i (7)5



where �i = ��2 h�0 �xT1i�0�� � �xT1i�̂�i : (8)for i such that di = 1. �̂ are standard probit maximum likelihood estimates. Recall that weare interested in the behavior of ̂ under omitted heteroskedasticity in the selection equation.Therefore, the likelihood function that we are using to estimate �0 does not account for theheteroskedasticity.�̂ = argmax�2B nXi=1 �di ln �� �xT1i���+ (1 � di) ln �1� � �xT1i���� : (9)We can rewrite (7) in vector notation asy = Ẑ + �+ � (10)where y, � and � are the corresponding vectors and Ẑ = �X �̂� is a matrix where Xcontains the values of x2 and �̂ contains the values of the Mill's ratio evaluated at pointsxT1i�̂ for i such that di = 1. Finally,  = (� ��2). Heckman's two step estimator is de�nedas ̂ = �ẐT Ẑ��1 ẐTy (11)Ahn and Powell (1993) propose to estimate the subset of parameters � (except for theintercept which is not identi�ed in this type of estimators) using the following expression�̂n = 24 n2 !�1 n�1Xi=1 nXj=i+1 ŵijn (~xi � ~xj) (x2i � x2j)T35�1 � n2 !�1 n�1Xi=1 nXj=i+1 ŵijn (~xi � ~xj) (y2i � y2j) (12)where the sequence of weights isŵijn = 1h2nK2  ĝi � ĝjh2n ! didj for i; j = 1; :::; n (13)and the ~xi's are instruments that can be any linear combination of the variables included inthe �rst equation x1. The kernel function isK2(u) = � 3k(u)� k �u� �� (� 2 � 1) (14)6



for � = p2 and k(v) = 1516 �1� v2�2 I (jvj < 1) (15)and ĝi is a multivariate kernel regression estimatorĝi = 1nh1n Pnj=1QKk=1K1 �xki�xkjh1n � dj1nh1n Pnj=1QKk=1K1 �xki�xkjh1n � i = 1; ::; n: (16)Note that in order to implement this procedure we need to use two di�erent bandwidths.This can create several problems, and empirically it represents an important drawback ofthis method. It is also necessary to use two di�erent kernels. In our computations we haveused the gaussian kernel for K1 (:) and the kernel proposed in Powell (1987) for K2 (:). Theresults obtained tend to be more sensible to the choice of h2 than to the choice of h1. Theprevious expressions for the kernel functions ful�ll conditions (3.5), (3.9) and (3.10) fromAhn and Powell (1993). Furthermore, the bandwidth must be chosen according to conditions(3.6) and (3.11) from the same paper.Now, we give two results about the asymptotic behavior of the previous estimators underthe above assumptions.Proposition 1 Assume the data satisfy restrictions (2) and (3). In addition assume thatconditions (A.1) to (A.5) hold, and�� = argmax�2BE " nXi=1 �di ln �� �xT1i���+ ((1� di) ln �1 �� �xT1i����!# ; (17)then ̂ = 0 + ��2G�1 hG�H�1� h (��; �0)� g (��; �0)i+ op(1) (18)where G = 0BBB@ E hx2xT2 jd = 1i E hxT2 � �xT1��� jd = 1iE hxT2 � �xT1��� jd = 1i E �� �xT1���2 jd = 1� 1CCCAg (��; �0) = 0B@ E hx2� �xT1���� x2�0 �xT1�0� jd = 1iE �� �xT1���2 � � �xT1����0 �xT1�0� jd = 1� 1CA7



G� = 0BB@ E h�0 �xT1���x2xT1 jd = 1iE h2�0 �xT1���� �xT1 ���x1 � �0 �xT1 ����0 �xT1�0� jd = 1i 1CCAh (��; �0) = E 0@ �0 �xT1�0�� � �xT1����(xT1 ��) [1� �(xT1 ��)]� �xT1���x11AH� = H1� +H2�;whereH1� = E 0@ �2 �xT1���x1xT1�(xT1��)2 [1 � �(xT1��)]2 ��0 �xT1�0� �1� �0 �xT1�0��+ ��0 �xT1�0�� � �xT1 ����2�1Aand H2� = E 0@24 �0 �xT1 �0�� � �xT1 ����(xT1 ��) [1 � �(xT1��)]35�0 �xT1���x1xT11Aas n tends to in�nity.According to Proposition 1, the asymptotic bias of the Heckman's estimator dependslinearly on the correlation coe�cient and, through a nontrivial expression on the degreeof heteroskedasticity that appears in the speci�cation error. Furthermore, the amount oftruncation is also relevant when computing the asymptotic bias since if there is not truncationat all, then the speci�cation error in the probit model does not a�ect the statistical propertiesof the Heckman's two step estimator.For the Ahn-Powell estimator, we have the following consistency result,Proposition 2 Assume the data satisfy restrictions (2) and (3). In addition assume thatconditions (A.1) to (A.6) hold, then�̂n = �0 +Op  1pn!as n tends to in�nity.In the next section, we investigate by simulations how the correlation, the omited het-eroskedasticity and the amount of truncation a�ect the bias of di�erent two step estimators.Mainly, a parametric one, the Heckman's estimator, and a semiparametric estimator pro-posed by Ahn and Powell (1993). 8



3 Finite sample analysisIn this section we want to make a comparison of the small sample behavior of two stepsample selection estimators. We will focus our atention in several issues, mainly, how di�erentdegrees of truncation and correlation a�ect the bias and �nite sample distribution of two stepsemiparametric estimators in the presence of heteroskedasticity that depends on the index. Infact, the presence of omited heteroskedasticity is well know that leads to the inconsistencyof the Heckman estimator but makes the semiparametric estimator still consistent. Wewould be interested in detecting cases, where for small sample sizes, the performance of theHeckman estimator is still better than the semiparametric one.In order to perform our simulations we start from a model developed in (2) and (3).Note that we only observe y2i if y1i > 0. Moreover, it is assumed that each observation ofy1i is drawn from a distribution with a di�erent variance. The random errors are speci�edaccording to assumptions (A.3) and (A.4), and the values of the explanatory variables x1and x2 are determined as follows:� x2 is a vector of a constant and three explanatory variables, two of them are dummyvariables and the other one is a random variable distributed uniformly on (0,2).� x1 is a vector of a constant and it contains also the vector x2. We have included alsothree additional variables, two dummy variables and a continuous variable which iscorrelated with the variance of this equation (x(k)1 ). In order to allow for correlationbetween this explanatory variable and the variance let us de�ne �rst two gaussianindependent random variables, v2 and w2, with zero mean and unit variance. Then thecontinuous variable is constructed as followsx(k)1i = a(1� c2)1=2v2i + acw2iand E �u2jX(k) = x(k)1i � = �2 �x(k)1i � = exp(bw2i):Note that 0@ x(k)1ilog ��2 �x(k)1i �� 1A � N   00 ! ; a2 cabcab b2 !! ;9



The stochastic part of the model is generated following the procedure developed by Hurd(1979). Let v1 and w1 be two gaussian independent random variables with zero mean andunit variance. Then using the following transformation�1i = (1 � �2)1=2v1i + �w1i�2i = �2w1iit is possible to show that  �1�2 ! � N   00 ! ; 1 ��2��2 �22 !! ;Finally, u1i = �(x(k)1i )�1i and u2i = �2i.The parameters take the following values �T = (�;�1:1; 1:5; 0:5; 2:0;�0:1;�3:0)T and�T = (2:0;�1:75; 1:3)T .The in�uence of four parameters on the estimates of � is explored. These parametersare the intercept of the participation equation, denoted by �, wich controls the amount oftruncation; the variation in � which is a measure of the heteroskedasticity; the correlationbetween x1 and � and the correlation between u1 and u2, �.Since the variance of log�i is b2, the heteroskedasticity in u1i (�i) increases with b. Thepoint of view taken here is that x and � are �xed, bounded numbers (with � bounded awayfrom zero). There are, of course, many other ways to generate 'reasonable' values of x and�, even it is not really crucial that the sequence x and log� be precisely normal or evenindependent.Once the values of the parameter vectors � and � are �xed, we can obtain the samplesfor y1 and y2.Both parametric and semiparametric estimators of � were obtained for all combinationsof the intercept, � = 0:5; 4:0; b = 0:0; 2:0; 4:0; 8:0; c = 0:5; 0:0;�0:5; and � = 0:9; 0:0;�0:5.The value of a is �xed in 3.0. The parametric model is homoskedastic when b = 0:0 butheteroskedastic in all the other cases. When � = 0:0, u1 and u2 are independent and thetwo equations of the sample selection model are estimated independently. The amount oftruncation is about 30% when � = 4:0 and 70% when � = 0:5 and we have considered fourdi�erent sample sizes, N = 250; 500; 1000; 2000. The number of replications is 500.10



In the following graphics we summarize the most interesting outcomes. In graphics 1.ato 1.d we present nonparametric density estimates of the distribution of Heckman's twostep estimates for di�erent degrees of correlation (� = 0:0 and 0:9), di�erent amounts oftruncation (30% and 70%) and di�erent degrees of heteroskedasticity (b = 0:0, 2:0, 4:0 and8:0). The sample size is N = 1000. Other parameters in the simulation have been set toc = 0:5 and a = 3:0.

Graphic 1.a Density estimates with � = 0:0 and 30% of truncation. Parametric estimation.
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Graphic 1.b Density estimates with � = 0:0 and 70% of truncation. Parametric estimation.

Graphic 1.c Density estimates with � = 0:9 and 30% of censoring. Parametric estimation.12



Graphic 1.d Density estimates with � = 0:9 and 70% of censoring. Parametric estimation.From these graphics we observe the following issues. First, as it could be expected, thecorrelation plays a crucial role in the performance of the Heckman estimator. Even for veryhigh levels of heteroskedasticity, under uncorrelated disturbances the Heckman estimator isunbiased and it presents a nice symmetric distribution (see Graphics 1.a. and 1.b.). Underthis setting, the bias and the distribution is not a�ected by the degree of truncation. Second,when the correlation is high, the estimator becomes severely biased as far as the degree ofomitted heteroskedasticity increases. The degree of truncation seems to a�ect the skewnessof the distribution rather than its symmetry. This means that in situations with high levelsof correlation and degree of omited heteroskedasticity, the percentage of truncation does nota�ect seriously the bias of the estimator.In graphics 2.a to 2.d we present nonparametric density estimates of the distribution ofthe semiparametric estimates proposed by Ahn and Powell (1993) for di�erent degrees ofcorrelation (� = 0:0 and 0:9), di�erent amounts of truncation (30% and 70%) and di�erentdegrees of heteroskedasticity (b = 0:0, 2:0, and 4:0). Other parameters in the simulation havebeen set to c = 0:5 and a = 3:0. The sample size is 1000. We remark that we only present13



results for the estimates of the slopes since the intercept is not identi�able in semiparametricmodels. As it was remarked by Heckman (1990) this is an importat drawback of thesemethods and Andrews and Schafgans (1997) propose a consistent semiparametric estimatorfor the intercept. Since we are interested in comparing the slope parameters we do notpresent results for the intercept.

Graphic 2.a Density estimates with � = 0:0 and 30% of truncation. Semiparametric estimation.
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Graphic 2.b Density estimates with � = 0:0 and 70% of truncation. Semiparametric estimation.

Graphic 2.c Density estimates with � = 0:9 and 30% of truncation. Semiparametric estimation.15



Graphic 2.d Density estimates with � = 0:9 and 70% of truncation. Semiparametric estimation.The results obtained for the semiparametric estimator proposed by Ahn and Powell (1993)coincide with those obtained by Schafgans (1997) when analyzing the e�ect of misspeci�-cation in the error distribution of two step sample selection estimates. As it could be ex-pected from the theoretical results, this estimator is robust to heteroskedasticity. However,it presents a serious drawback that it is not detected by the asymptotic theory. It is seri-ously a�ected by the amount of truncation. In fact, for some cases, mainly high levels ofcorrelation and high percentage of truncation, the semiparametric estimator presents a verypoor small sample size performance if compared against the Heckman estimator.4 ConclusionsThis paper analyzes the perfomance of two step estimators for sample selection modelsunder misspeci�cation of the conditional variance in the probit equation. We compare theestimators proposed by Heckman (1979) and Ahn and Powell (1993). We present sometheoretical results and we use Monte Carlo techniques to compare the performance of both16



types of estimators.For the parametric two step estimator, if the correlation between equations is small, thespeci�cation error has little e�ect in the estimator bias. Moreover, under this situation, theamount of truncation a�ects positively the bias.We also remark that if the amount of truncation is bigger the bias due to the misspec-i�cation of the conditional variance is higher. Obviously, when the correlation is small thebias is not a�ected by the degree of truncation. Finally, the e�ect of the di�erent degrees ofheteroskedasticity is very important when both correlation and truncation are high.For the semiparametric estimator, the estimator turns to be robust to heteroskedasticitythat depends on the index, however, it is seriously a�ected by the amount of truncationwhen the correlation is high. In this case, the bias tends to be bigger than in the parametriccase.5 Proof of main resultsPrevious to the proof of Proposition 1, we need the following lemmaLemma 1 (Newey and McFadden, 1994)If zi is i.i.d., and a (z; �) is continuous at �0 with probability one, and there is a neighborhoodN of �0 such that E [sup�2N ka (z; �) k] < 1, then for any ~� !p �0, n�1Pni=1 a �zi; ~�� !pE [a (z; �0)].For a proof of this lemma, see Newey and McFadden (1994), p. 2156.Proof of Proposition 1:In order to show Proposition 1, letg (xi;�; ) = �2diziy2i + 2dizizTi  i = 1; � � � ; nwhere zTi = �xT2i � �xT1i���T andh (xi;�) = di �� �xT1i���(xT1i�) [1� �(xT1i�)]� �xT1i�� x1i i = 1; � � � ; n17



Using the mean value theorem and the in�uence representation for �̂ then it is possible toshow that ̂ � 0 = (�1n nXi=1 @@T g (xi; �̂; �))�1�8<:1n nXi=1 g (xi;��; 0) + "1n nXi=1 @@�T g (xi; ��; 0)# "�1n nXi=1 @@�T h (xi; ��)#�1 1n nXi=1 h (xi;��)9=;where �� lies between [�̂; ��], and � between [̂; 0]. Now, using assumptions (A.1) to (A.6)and Lemma 1 the following results follow by applying a LLN1n nXi=1 @@T g (xi; �̂; �) !p 2l (x1)�0 �xT1�0�G1n nXi=1 g (xi;��; 0) !p 2��2l (x1)�0 �xT1�0� g (��; �0)1n nXi=1 @@�T g (xi; ��; 0) !p 2��2l (x1)�0 �xT1�0�G�1n nXi=1 @@�T h (xi; ��) !p H�1n nXi=1 h (xi;��) !p h (��; �0)This closes the proof.Proof of Propositon 2:The model introduced in equations (2) and (3) and conditions (A.1) to (A.6) is a partic-ular case of the model considered by Ahn and Powell (1993), p. 5, equations (2.1) to (2.4).To show this recall that under assumptions (A.4) and (A.5) the selection correction termfrom A-P takes the following form � (x1i) = �0 �xT1i�0�18



where �(z) is the Mill's ratio. Therefore, assumption (3.2) from A-P is ful�lled. Assumption(A.1) is assumption (3.1) from A-P and assumptions (A.1) and (A.3) imply assumptions(3.3) and (3.4) from A-P. Assumption (A.1) guaranties that the index function is continu-ously distributed (assumption (3.3) from A-P) and �nally assumption (3.7) (Smoothness ofdensities and conditional expectations) is veri�ed because of assumptions (A.1), (A.4) and(A.5). Finally, assumption (A.6) is assumption (3.8) from A-P.Then, Corollary 3.1 from Ahn and Powell (1993), p. 16 applies and the proof is done.References[1] Ahn, H. and Powell, J. (1993). Semiparametric estimation of censored selection modelswith a nonparametric selection mechanism. Journal of Econometrics, 58, 3-29.[2] Andrews, D. and Schafgans, M. (1997). Semiparametric Estimation of the intercept ofa sample selection model. Review of Economic Studies, forthcoming.[3] Arabmazar, A. and Schmidt, P. (1981). Further evidence on the robustness of the tobitestimator to heteroskedasticity. Journal of Econometrics, 17, 253-258.[4] Arabmazar, A. and Schmidt, P. (1982). An investigation of the robustness of the tobitestimator to non-normality. Econometrica, 50, 1055-1063.[5] Cosslet, S. R. (1991). Semiparametric estimation of a regression model with sampleselectivity. In Barnett, W.; J. Powell and G. Tauchen eds. Nonparametric and semi-parametric methods in econometrics and statistics. Proceedings of the �fth internationalsimposium in Economic Theory and Econometrics. C.U.P., 175-197.[6] Fernández, A. and Rodríguez-Poo, J.M. (1997). Estimation and speci�cation testing infemale labor participation models: Parametric and semiparametricmethods. Economet-ric Reviews, 16, 229-247.[7] Goldberger, A. (1983). Abnormal selection bias. In: S. Karlin, T. Amemiya and L. Good-man, eds. Studies in Econometrics, Time Series and Multivariate Statistics. AcademicPress. 19
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