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Abstract

The aim of this technical report is to present some detaigtheations in order to help to understand
and use the algorithm Branch and Fix Coordination for sgjWhultiStage Mixed Integer ProblemBEC-
MSMIP). We have developed an algorithmic approach implementedGa+ experimental code that uses
the optimization engine COmputational INfrastructure@gerations ResearcQIN-OR for solving the
auxiliary linear and mixed 0-1 submodels. Now, we give thepotational and implementational descrip-
tion in order to use this open optimization software not dnlthe implementation of our procedure but also
in similar schemes to be developed by the users.

Keywords Multistage stochastic mixed 0-1 programming, Branch-Bid€oordination, nonanticipativity
constraints, scenario cluster partitioning, COIN-ORdityr
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1 Introduction

In this paper we present some technical notes for easilgwdithe algorithm Branch and Fix Coordination for
solving MultiStage Mixed Integer ProblemBFC-MSMIB), see Escudera ef al (2009) and (2010). We have
developed an algorithmic approach implemented in a C++raxjgatal code. It uses the optimization engine
COmputational INfrastructure for Operations ResealC®IN-OR (seehttp://www.coin-or.org and
Laugee-Heimer, R (2003)) for solving the auxiliary lin@ad mixed 0-1 submodels. In this technical report
we give the computational and implementational descriptivorder to use this open source optimization
software not only in the implementation of our own procedurealso in similar schemes to be developed by
the users.

The remainder of the papes is as follows. Section 2 preshat®ptimization problem to be solved
and a general scheme of its decomposition in cluster subisid8eme of the main decisions to structure the
information in the implementation of the algorithm are give Section 3. In Section 4 appears the description
of the algorithm such as it has been published in Escudedq2d40). Section 5 describes the main steps of
the implementation. An alternative way of storing and brang on the 0-1 variables is presented in Section
6. Section 7 gives some aditional information about theaims¢s name@1 to P16 taken from the same
paper, and Section 8 gives some details about how to compiléirgk the code withCOIN-ORilibrary.

2 Mixed integer stochastic model

We will consider, the following multistage mixed 0-1 model
min 'y aX + Gty

te.
SLAX-1+AX +BY-1+By = VteT 1)
% € {0,1}™ y e R Vte 7,

wherea; andc; are the vectors of the objective functiofi, B{, A. andB; are the constraint matrices for
the 0-1 and continuous variables related to stagd andt, respectively, and” the set of stagedy is the
right-hand-siderhs) andx, y, are theny andny dimensional vectors of the 0-1 and continuous variables for
stage, respectively.

We will denote withT = |.77|, the number of stages, and~ = .7 — {T} will denote the set of stages
except the last one.

This model can be extended to consider uncertainty in sonteeofnain parameters, in our case, the
objective function, thehs and the constraint matrix coefficients. To introduce uraety in the parameters,
we will use a scenario analysis approach. In this seQseijll denote the set of scenarios, ande Q will
represent one specific scenario.

The splitting variablerepresentation of the mixed 0-1 Deterministic Equivalerdddl (DEM) of the
stochastic version with complete recourse of the detestiininultistage problenil1) can be expressed as

(MIP) zwp = min 5 5 w”(a’”+c’y’)
weQte!

S ACXY  + APXP + Bi®yP | + BPyP = b, VweQ, te 7
X —x =0, Vo, €Qq: w# W, ge%, te T
Y-y =0, Vo, €Qq:w# W, ge%, te T
x*€{0,1}, yWeR", VweQ, te .7,

(2)


http://www.coin-or.org

wherew® is the likelihood or probability asigned by the modeler tersgriow, such thaty ,cqw® = 1. The
indexw in the model given above denote the copy of the coefficientdable related to scenario.

Let also¥ denote the set of scenario groups, &dthe subset of scenario groups that belong to stage
t € .7, such thaty = Uic #%. Let us suppose that we have selected a number of scenastersiusay. This
valueq can be selected as a divisor|6f|. Then, 1< |QP| = % < |Q|, whereQP gives the set of scenarios
in clusterp, for p=1,...,9. The idea is to decompose tB&EM model into scenario cluster models. These
scenario cluster models are linked by the nonanticipgtednstraints, see below.

As an additional notation, &P C ¢ denote the set of scenario groups for cluptesuch thafdg N QP # 0
means thaf) € 4P andQg is the set of the scenarios related to grgup

An equivalent and alternative representation of @M () can be given by the mixture of the compact
(into the clusters) and the splitting variable represémtafbetween them). It can be given in terms of the
scenario-cluster models as follows,

q
(MIP) Zyip = miny ;wg(agxg+c9y9)
p=1ge¥P

s.t. A™9) + ApE+By™9) + Byyd = b9, Yge¥P p=1,..,q

X —x3 =0, YgePny¥ p#p (3)

Yo-yy =0, vge¥Png” p#p
xde€{0,1}, YW eR", Vge¥P p=1,..q.

wherewy is the likelihood of scenario groug, with g € 4P, such thawg = 3 w®. x9 andy9 are the
WEQq

copy of thex, y vectors of variables for scenario grogp Moreover,x$, y3, x%,, andy%, forge ¥Pn@¥,
denote the set of common variables, i.e, the set of variablated to the scenario grogpand common to
scenario clusterp andp’. x3, x%, are copies of the variable§ andyS3, y%, are copies of the variablg8.
11(g) denotes the scenario group related to the immediate presiecef nodeg in the scenario tree, such
that 1(g) € % ()1, for g € 4 — %, wheret(g) is the stage to which scenario groggelongs to, such that
9€ %)

The model to consider for each scenariaster p=1,...,q can be expressed by tetempactepresenta-
tion,
(MIPP)  zP =min é wg(a9x8 4 c9y9)
gegpP

S.LAXTY + A+ By + B8 = b9 Vge gP 4
x3€{0,1}, Y eR" Vg e 4P,

Theq problems[(#) are linked by th&onanticipativityconstraints:

x%—x%, =0 (5)
y%_y%/ = Oa (6)

Yge ¥PN¥P, such thap # p'. From here to the end of the paper, we will use the notan%)mnly when we
want to distinguish between two diferent clustprandp’, as in the nonanticipativity constraink3 (5) ahH (6).
In other cases, we will usé or y9, with g € ¢P, to denote the vectors of variables for each scenario cluste
p, andxtP notation in order to denote the stagand scenario cluste.



3 Main decisions for information structuring

The main program for the algorithm BFC-MSMIP is nani&felC_MS.cpp. It is written in C++ with several
references to functions from the libraB©OIN-ORto store and solve linear and mixed 0-1 auxilary submodels.
The following external references to own functions are devics:

e vectores.cpp It builds the scenario tree and establishes the relatipigiween scenario-cluster prob-
lems and théEM. It sets the number of contingencies, the last scenariopgaod the weight for each
stage; it also sets the ancestor group, the stage and tHanasy variable for each scenario group; it
defines the relations between the scenario cluster proldechtheDEM and assigns the order for the
binary variables by indexes and scenario groups.

e modelos.cpp It generates the coefficients of the optimization probl#mat is, the vectors, c, b and
the matrices\, A, BandB'. In our case, this function either read data file or geneitsesidorandomly.

e parama3.cp. It structures the coefficients for tiEEM by setting all the indixes of the objective function,
nonzero elements of the matrix of constraints, bounds é&lles and bounds of constraints as required
by COIN-OR

e param4.cpp. It structures the coefficients in similar way as param3.&up for the scenario-cluster
models.

e optimo.cpp. It checks the integrality of thevariables in the relaxed problem.

e ooptimo.cpp. It checks the integrality and nonanticipativity congttaifor thex variables between
scenario-cluster problems.

e ooptimo3.cpp It checks the nonanticipativity constraints for the contisy variables between scenario-
cluster problems.

To solve any Multistage Stochastic Mixed Integer ProblensP) with T stages and contingencies or
outlooks at each stage'("* scenarios) we have to determine the problem dimensionsérdnces. Also we
have used a file namanst_MS.hwith the integer constants, as well as the dimensions ofttags.of the
problem. We introduce in the auxiliary fifgn.headerthe neccessary includes to the files .hpCafIN-OR
and to the files .h of C++.

1. In order to use th€OIN-ORlibrary, we have introduced the coefficients of each optation model
by using indices representation. Arrays such éshj[], dels[], nrowindx[], mcolindx[],
drowlo[],drowup[], dcollo[] or dcolup[], must be dimensioned with integer constants such
as:ncols (number of variableshrows (number of constraints) antklements (number of nonzero
elements). All of these integer constants are defined icdifsst MS.h

2. One of the essential decisions to structure the impleatientof the algorithm is the way of building
theq clusters.

We have built the clusters in our computational experienceading the following idea. If =1 we
generate = r! =r clusters (= 2 for g =r? ort = 3 for g = r3); and then, the clusters are explicitly
linked by nonanticipativity constraints for the stage 1t (i 1) ( stages 1,2 if = 2 or stages 1,2,3 if
t=23).

That is, for theq=r (or q = r? or q = r3) cluster problems, we are considering 8psitting variable
representation of the variables of the stagesl (ort = 1,2 ort = 1,2,3). Consequently they are
explicitly linked by nonanticipativity constraints in thge=r (or g = r? or q = r) cluster models.



Moreover, we are considering thiempactvariable representation of the variables of the stage®, 3
(ort = 3 or none of them, because in the last stdgehere is not nonanticipativity constraints).

For example, in case @f=r we are considering the splitting variable representatidh@model for
the variables of stage 1 in tlie=r cluster models.

To select each of these casgs=r, g = r? or g = r® we use the following integer constants.
We setnc1=(T — 1) —t for t=1,2,3 anchc2=0 in the fileconst_MS.has follows,

#define ncl 1

#define nc2 0O

In our computational experience (we have T=4 periods) ttshiiies are,
(nc1,nc2)=(2,0)forg=r,

(nc1,nc2)=(1,0)forq=r?, and

(nc1,nc2)=(0,0) forq=r3.

. Other important decision in the implementation of theathm is to choose between the strategies to
branch with the 0-1 variables. Consequently the type of lerob to solve at each clustpr=1,...,q
areMIPP mixed integer problems with more or less 0-1 variables.

To do this we define the variablerartipo in file const_ MS.has follows: if ivartipo is equal to

1, we will use BFC1 (INTEGER), ifivartipo is equal to 2, we will use BFC2 (MIXED), and if
ivartipo is equal to 3, we will use BFC3 (MIXED-INTEGER). In the fitmnst_MS.hthe sentence

is for example

#define ivartipo 1

That is, by usindi.vartipo we select the strategy to solve the problem.

(a) Strategy BFC1 or INTEGERi¢artipo=1)

e Branch on/fix the 0-1 variable until stage— 1 (except the last stage, since there are not
nonanticipativity constraints in the last stage).

e Solve the mixed integer problenvll PP for each cluster p, in these problems all 0-1 variables
are considered as integer except the fixed variables.

e The relaxedEM submodels namedIPTNF andMIP are mixed integer problems with 0-1
variables in the last stage.

(b) Strategy BFC2 or MIXED:{vartipo=2)

e Branch on/fix the 0-1 variable until stagrel for q = r (t=2 for q = r? or t=3 for q = r3).
The clusters are explicitly linked by nonanticipativityrstraints for the stage 1, (stages 1,2
or stages 1,2,3).

e Solve the mixed integer problerb PP for each cluster p. In these problems we consider as
integer variables the 0-1 variables related the stage®uiitkxplicit nonanticipativity. That
is,

— If g=r we consider as continuous variables, the 0-1 variablesigéstl and we consider
as integer variables, the 0-1 variables of the stages 2 and 8fahe periodl' = 4,

— If g=r? we consider as continuous variables, the 0-1 variableseoftidges 1,2 and we
consider as integer variables, the 0-1 variables of thees2aand of the period = 4

— If g=r2 we consider as continuous variables, the 0-1 variableseo$tiges 1,2,3 and
we consider as integer variables, the 0-1 variables of thiegh& = 4.



e The problemavIPTNF andMIPf are mixed integer problems and they have 0-1 variables
in the stages without explicit nonanticipativity constitai In these models the integrality
constraints for the 0-1 variables in the stages with impfionanticipativity are relaxed.

(c) Strategy BFC3 or MIXED-INTEGER:i{artipo=3)

e Branch onf/fix the 0-1 variable until stagrel for q = r (t=2 for q = r? or t=3 for q = r?).
The clusters are explicitly linked by nonanticipativityrstraints for the stage 1, (stages 1,2
or stages 1,2,3).

e Solve the mixed integer problenvll PP for each cluster p, in these problems all 0-1 variables
are considered as integer except the fixed variables.

e The problem#IPTNF andMIP' are mixed integer problems with 0-1 variables in the stages
without explicit nonanticipativity.

Note that forq = r® we branch on/fix in the same way for BFC1 and BFC3 .

4. At the top of the procedure, other relevant decision isldlaeer bound to calculate at the root node.
That is, a lower bound of the objective function value (redrtimat we are in a minimization problem).

The inicio constant is used inonst_MS.hto make this choice. linicio is equal to O, the lower
bound of the objective function & p, if iniciois equal to 1 the lower bound of the objective function
is max{Z_p, Surq,th} and if iniciois equal to 2 we have to solye= 1, ...,q mixed integer problems
with optimal function value{, and the lower bound of the objecuve functiondsmzy,. In our
computational experience this constant always takes the 2a

4  General description of the algorithmBFC-MSMI P

We present the algorithBFC-MSMIPfor using the three strategies presented abB#€ 1, BFC2andBFC3

We have chosen thaepth firststrategy for thél NF branching selection. When there is a guarantee that the
incumbent solution could not be produced by the succeBbldtsin both branches, thenkactrackingto the
immediate ancestdrNF is performed.

In the Steps 4, 7, 9 and 10 of the procedure, the subinderotes the index it#, i.e., the corresponding
set over which the algorithm proceeds by branching on. Thdireality of this last set|.#| depends upon the
branching strategy to select, see Table 2 below.

The procedure is as follows:

Procedure

Step 0: Initialize Zyp := +o.
Step 1: Solve the scenario-cluster related mixed 0-1 problévi®P, Vp=1,...,q, and compute the lower
boundZ, = Z, ,, for the choice ofj(t) = r', to use for the root node.

If there is any (0-1x variable that takes different values in the scenario-eelatusters, then go to Step
2.

If there is any (continuous)—variables that takes different values in the scenariatedlelusters, then
go to Step 6.

Otherwise, the optimal solution to the original problem haen found and, s@wp := Z, and stop.

Step 2: Initialize i := 1 and go to Step 4.



Step 3: Reset =i+ 1.
If i =|.#|+1where is the subset of variables until sta§ie- 1 in BFC1 or until stage witht <T —1
in BFC2 or BFC3 then go to Step 8.

Step 4: Branchx? :=0,¥ge 9P, p=1,...,q.

Step 5: Solve the mixed 0-1 scenario-cluster related submotHBP Vp=1,...,q, for the choice ofj(t) =
r',t=1,..,T — 1 and compute the bourl = Z , for BFC1 andBFC3, andz; = Z},, for BFC2.
If Z; > Zwp then go to Step 7.
If there is anyx variable that either takes fractional values or takes dffevalues for some of thg
scenariaclustersthen go to Step 3.

If all the y variables take the same value for all scenatisters p=1,...,q then updat&wp := Z
and goto Step 7.

Step 6: Solve the mixed 0-1 submod®IPF; for BFC1or MIPNF for BFC2and BFC3to satisfy the

nonanticipativity constraints for thgvariables in the give@mNF integer set Notice that the solution

value is denoted bg' NF.

Updatesz = mln{ziTN':, ZMHD}.

If i=1].7], thengoto Step 7.

Solve the mixed 0-1 submod\si‘IIIPI 1_4 for BFClor Ml F’It for BFC2andBFC3 where the fractionad
vanables are the non-yBf branched on at the currefiNF. Notice that the solution value is denoted
byZ.
If z| < z TNF andz| < ZM|p and all the fractionat variables take 0-1 values in the solution of the model
MIP updateZyp ;= z| and goto Step 7.
TNF _

Ifz
Step 7: Prune the branch.
If x)=0,vge %P, p=1,...,q, then go to Step 10.

z| orz| > Zwmip, then go to Step 7, otherwise go to Step 3.

Step 8: Reset :=i—1.
If i = 0 then stop, since the optimal soluti@g,p has been found.

Step9: If X’ =1,Vge ¢¥P, p=1,...,q, then go to Step 8.

Step 10: Branchx! :=1,vgc 9P, p=1,...,q.
goto Step 5.

5 Description of the implementation

The steps of the main prograBC_MS.cppare as follows:

1. The sentencesinclude "pm.header", #include "const_MS.h" and the#include for the exter-
nal and own functions agectores.cpp, modelos.cpp, param3.cp, param4.cpp, optarcpp, oop-
timo.cpp andooptimo3.cpp The declaration and dimension of all the own external fiomstand all
the external arrays are performed.

2. Initializations. For example, the upper bound of the tiagefunction,Zyp = .



. Calls to external functiomectoresto build the scenario tree and to establish the relationsefeen
scenario-cluster problems and th&M.

. Calls to external functiomodelosto generate the coefficients of the minimization problem.

. Pointers for the solver, for each of th@énber0fModels+1 submodels, by usin@siClpSolverInterface
as follows,

OsiClpSolverInterface *soll;

soll=new OsiClpSolverInterface[number0fModels+1];

With these sentences, we declare a pointer to an array iwlgcstore the cluster models in the first po-
sitions (fromO until number0fModels-1), and the whole modelin the last positiatufiber0fModels).

. Calls to external functioparam3 to introduce the parameters generated in functimuelos as the
coefficients of the objective function and constraints Far dlefinition of the whole problem in compact
representation. This problem is saved in the last positianber0fModels, of the array of models.

The following calls avoid to load the whole problem,

CoinPackedMatrix ACOMPLETE(true,nrowindx,mcolindx,dels,noncero);

soll[number0fModels].loadProblem (ACOMPLETE,dcolo,dcolup,dobj,drowlo,drowup);

This structure of storing allows to calculate a lower boufithe objective function by solving the last
model, in numberOfModel position, i.e., the linear problgimear relaxation) with the nonanticipativ-
ity constraintsZ p. (Remind that we are at the root node).

. Calls to external functioparam4 to introduce the parameters generated in funatimraelos as co-
efficients of the objective function and constraints for dedinition of each of thej=r (or q=r? or

q = rd) cluster problems in compact representation.

There arenumber0fModels models, one for each cluster, and the external function tipet<orre-
sponding parameter information given Imodelosand param4 to define each cluster model. This
structure avoid to loadumber0fModels cluster problems with the calls to the following functions,
whereimodel varies from0 to number0fModels-1:

CoinPackedMatrix ACLUSTER(true,nrowindxq,mcolindxq,delsq,nonceroq) ;
soll[imodel] .loadProblem (ACLUSTER,dcoloq,dcolupq,dobjq,drowloq,drowupq) ;

We can calculate the lower bound of the objective functiorsblying each of thewumber0fModels
mixed integer problemsMIPé’, p =1,...,q without the nonanticipativity constraints, and compui th
lower bound asSun’pZ(’io. (Remind that we are at the root node).

To solve each of the mixed integer models we use the callstéutictions:

CbcModel pmO(soll[imodell);
pmO . branchAndBound () ;

. Before starting the branching procedure, we check witghetkternal functiorooptimo if the corre-
sponding 0-1 variables satisfy the nonanticipativity ¢oaiats; and we check with the external function
ooptimo3if the corresponding continuous variables satisfy the ntiogativity constraints. If the 0-1
variables and the continuous variables satisfy the nocipativity constraints, we have obtained the
optimal solution. In other case we start branching on the/8riables by groups of scenarios.
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Figure 1: Scenario cluster partitioning, fpe= r = 2 (left), g =r? = 4 (central) andy = r® = 8 (right)

9. Branching procedure. Notice that the number of clustpesy, g = r? or g = r2 has been previously

selected. We show in Figuf@ 1 an example of the scenarioetlpstrtitioning for these values of
whereT = 4. Observe that we are in the left situation of the figurg# r = 2, in the central situation
if q=r2 =4 and in the right situation iff = r3 = 8.

We begin by fixing to zero the first 0-1 variable, i 1, and theny’ = 0, Vg € ¥P, at each cluster, i.e.
p=1,..q.

Firstly, we explain the branching order for the strategie€B and BFC3 because in both strategies we
branch until the stage where we consider the splitting representation of the @riables.

For the strategy BFC1 we branch until the stdge 1, and we have variables in splitting representation
until staget, and variables in compact representation from stager.

Let xg forge ¢P, p=1,...,q, denote théth variable of scenario groupand clustemp (see Figur&l2).
For strategies BFC2 and BFC3,
.Hwﬂmme_demStMWl{124589mlﬂamg2{1367&13M1Q
Thenx}; = x5 = 0,x}i ; =X3,, =0,..., until the last 0-1 variable of the first stage=( 1).

e Ifwe haveq=r?=4clusters, the@! = {1 2,4,8,9},92=1{1,2,510,11},%9%={1,3,6,12,13}
andg* = {1 3,7,14,15} and updatlng =i+ 1 for each variable:

X} =5 =X = %5 = 0,X}j, 1 = X3 1 =G, 1 = X4 1 =0, ..., until the last 0-1 variable of the
first stageg 1 andp 1,2,3,4).

Then, x4 =x5 =0,x%,, =x5,, =0, ..., until the last 0-1 variable of the second stage-@2
andp=1,2).

And,x3 =x3 = 0,53 ; =%3,, =0, ..., until the last 0-1 variable of the second stage @ and
p=34).

o If we haveq = r3 = 8 clusters, thew! = {1,2,4,8}, 9% = {1,2,4,9},9° = {1,2,5,10}, ¥* =
{1,2,5,11}, 9°> = {1,3,6,12}, 45 = {13613}%?7 {13714}and@?8 {1,3,7,15}. And



updatingi =i+ 1, we fix: xj; = x5 =X = x5 = x5 =x§ =x4 =x§ =0, and,xj; = x5, =

X1 =Xbi1 = X511 =X§11=X4,1=x5,1=0, ..., until the last 0-1 variable of the first stage
(g=l1landp=1,...,8).

Thenxg =x5 =x5 =x3 =0,X¢, 1 =%§,,=%5,, =%3.,=0, ..., until the last 0-1 variable of
the second stagg & 2 andp=1,2,3,4).

X=X =X =x3 =0, =x3,1 =X, =%, =0, ..., until the last 0-1 variable of the
second staggy(= 3 andp =5,6,7,8).

And finally,

Xt =%4 =0,%4,, =x3,,=0, ..., until the last 0-1 variable of tHE — 1 stage § = 4 and
Eg,:::;%: 0, %31 =%X3,1 =0, ..., until the last 0-1 variable of tHE — 1 stage ¢ = 5 and
)Eg:_;(é%)_ 0, Xgi+l = x%+1 =0, ..., until the last 0-1 variable of thE — 1 stage § = 6 and
X;I_:7’Xél): 0, X}, 1 =X, =0, ..., until the last 0-1 variable of tHE — 1 stage ¢ = 7 and
p=7,8).
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Figure 2:x§ variables, fog=r, q=r?, andq = r3, wherer = 2

For strategy BFC1, we show only one case because the otleaersrgrsimilar.
If we haveq = r = 2 clusters, the®w! = {1,2,4,5,8,9,10,11} and¥? = {1,3,6, 7,12,13,14, 15} and
we branch on/fix until stag€ — 1.

Since the variables are stored in compact representatiom $taget + 1 = 2 to stagel — 1 =3, we
must fixxj; = x§ = 0, X}, = %5, =0, ..., until the last 0-1 variable of the first stage with thene
value in the two clusterp=1,2 (g=1).
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Thenx? =0, x%,, =0, ..., until the last 0-1 variable of the second stage siheevariables are
compacted i, for the clustep = 1 (g = 2).

Thenx3; = 0,%3,, =0, ..., until the last 0-1 variable of the second stage simve the variables are
compacted irxgi, for the clusterp =2 (g = 3).

Xt =0,%;,, =0, ..., untilthe last 0-1 variable of tie— 1 stage since now the variables are compacted
in x3;, for the clustep = 1 (g = 4).
X3 =0,x3,, =0, ..., untilthe last 0-1 variable of tfe— 1 stage since now the variables are compacted
in x3;, for the clustep = 1 (g =5).
x§ =0,%5 4, =0, ..., until the last 0-1 variable of tfle— 1 stage since now the variables variables are
compacted irxgi, for the clusterp =2 (g = 6).
x§ =0,x5,,=0,..., untilthe last 0-1 variable of tie— 1 stage since now the variables are compacted
in x5, for the clustep =2 (g=7).

10. We solve the clusters and compute the lower boufid for example with the expressia = Z}’O =
3 p-12o for BFC3.
If Z; > Zwip, then prune the branch.

If Z, < Zmip and all variables satisfy the nonanticipativity consttsinhen update the lower bound
Zwip = Z; and prune the branch.

If Z; < Zmip and there is any variable that either takes fractional values or takes dffevalues for
some of they scenaricclusterstheni =i+ 1andx’ =0vge 9P, p=1,...,q.

If all 0-1 variables satisfy the nonanticipativity constta but the continuous variables do not satisfy
the nonanticipativity constraints, then solve M&P,"NF submodel and compuNF. UpdateZyp =

min{z'NF. Zyp}. Solve thelVIIPif submodel and computé.
If z < Z/NF andz' < Zwp and all 0-1 variables satisfy the nonanticipativity coastts. Update
Zvip = Zif-
If zif =z NFor zif > Zwip, then prune the branch.

11. If we have fixed to O all 0-1 variables until the stage thathave decided, we go up fixing to 1 the last
variable.
¥=1vge 9P, p=1,...q

We solve thep cluster models and compu;e: Z},O = Egzlzﬁo, for example with this expression for
each lower bound at each node by using the straBegy3.

Repeat the step 9.
Updatei =i —1.

6 Another procedure for branching/storing the variables

Alternatively to the criteria given in item 9 of Sectibh 5etl is another equivalent procedure for storing the
variables and, consequently, branching. We will use thewahg notation for this purpose:

(In Figurel3 we introduce the new notation for the indexeféwariables). Let}p denote the correspond-
ing variable fort =1,2T —1=3, p=1,...,q, and wherd varies in the subset of variables of thstage.

Now, we have to fixtP = XP =0, p,p’ = 1,...,q until staget.
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Figure 3:XP variables, forg=r, q=r2, andq = r3, wherer = 2

For strategies BFC2 and BFC3,

If we haveq =r = 2 clusters, updating=i+ 1:
xtt=x'?2=0,xt, =x!2, =0, ..., until the last 0-1 variable of the first stage, for tdusp = 1,2.

If we haveq = r? = 4 clusters, updating=i + 1:

xr=xt2=xB=xl*=0,xY =x!2 =x13 =x!¥ =0,..., until the last 0-1 variable of the first stage,
for clustersp=1,2,3,4.

Then,x?! = x?2 = 0, x?l, = x?2, =0, ..., until the last 0-1 variable of the second stage, fostelrs
p=1,2.

And, x?* = x#* =0, x23, =&, =0, ..., until the last 0-1 variable of the second stage, fostelrs
p=234.

If we haveq = r3 = 8 clusters, we have to branch on/fix variables until stige1 = 3, updating
i=i4+1:

xl=x2=xB=xl4=xP=xl®=xl"=x18=0,

X =xt2 =xd3) =t = x5 =xd® =x'7, =x!8 =0, ..., until the last 0-1 variable of the first
stage, for clusterp=1,2,3,4,5,6,7,8.

X =xP2 =xP =x* =0, =x#2, =x?3 =%} =0, ..., until the last 0-1 variable of the second
stage, for clusterp=1,2,3,4.

X=X =" =x8=0,x2° =x2, =x¥/, =x?8, =0, ..., until the last 0-1 variable of the second

stage, for clusterp=5,6,7,8.
3 =x32=0,x, =x%¥, =0, ..., until the last 0-1 variable of tfle— 1 stage, for clusterp = 1,2.
X3 =x=0,%, =3, =0, ..., until the last 0-1 variable of tfile— 1 stage, for clusterp = 3,4.
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X3 =x36 =0, =x%, =0, ..., until the last 0-1 variable of tfle— 1 stage, for clusterp = 5,6.
And finally, x*" =x¥ = 0,x*/, =x38, =0, ..., until the last 0-1 variable of tie— 1 stage, for clusters
p=7,8.

For strategy BFC1 we show only one case because the othesisrala.

If we haveq =r = 2 clusters and we branch on/fix until stafe- 1, updating =i + 1:

X =xt?2=0,xt =x2, =0, ..., until the last 0-1 variable of the first stage, for tdusp = 1,2.

The variables of the second and the third stage are compiactedh cluster.

x?*1=0,x%, =0, ..., until the last 0-1 variable of the second stege ) for the clustep = 1.

x?2=0,x%2, =0, ..., until the last 0-1 variable of the second stage ) for the clustep = 2.

%1 =0,%, =0, ..., until the last 0-1 variable of the stage 1) for the clustep = 1.
x¥2=0,x%2, =0, ..., until the last 0-1 variable of the stage+ 1) for the clustep = 2.

7 Computational experience. Instances P1to P16

The instances named P1 to P16 have been generated as agtartudb a pilot case. As a result, small,
medium and large scale sized instances have been generated.

In this section we present some of the main results obtaméuei computational experience while opti-
mizing a general multistage mixed 0-1 problem. Table 1 gikesstructure of the scenario tree, and the linear
relaxation and stochastic solutions for th&M. The headings are as follows: Tree, scenario tree in terms
of the outcomes and the number of stag€¥; number of scenario$s/|, number of scenario groupgj p
solution value of th&P relaxation of the original problenzp, solution value of the original problerGAP,

optimality gap defined a%ZM'Z%ZLP) (in %); andT,_p, elapsed time (in seconds) to obtain #e solution.

Table 1: Stochastic solution
Instance Tree |Q| || Zp Zvip GAP Tp

P1 3 8 15 4116.3 408827 98319 0.0
P2 3 8 15 11753.2 624636 5214.6 0.0
P3 . 8 15 119944 664294 54384 0.0
P4 3 8 15 5262.5 356204 6668.7 0.1
P5 3 27 40 49525 436517 8714.0 0.1
P6 3 27 40 4577.7 335477 72285 0.1
P7 3 8 15 24622.6 1398840 5581.1 0.1
P8 3 27 40 108119 617938 56153 0.1
P9 3 27 40 11781.1 612964 51029 0.1
P10 Vi 64 85 13089.5 810074 6088.7 0.3
P11 6 216 259 6126.2 604693 9770.6 0.7
P12 ¢ 216 259 87585 763052 8612.1 1.3
P13 P 343 400 62456 544014 86104 1.6
P14 $ 729 820 5263.66 473741 8900.2 3.0
P15 16 1000 1111 49739 468610 9321.3 8.6
P16 1¢ 1000 1111 6117.4 654229 10594.5 10.5

Table 2 shows, in the three last columns, the number of Oiahbias over which the algorithm proceeds
by branching on. The cardinality of this s¢t#|, depends upon the branching strategy to select. The new
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headings are as follow$:#*|, number of the 0-1 variables to branch on/fix until stages2|, number of the

0-1 variables to branch on/fix until stage 2; 0@, number of the 0-1 variables to branch on/fix until stage
3.

Table 2: Number of 0-1 variables to branch on/fix
Instance Tree;® Q] |¢9| |4 |47 |3

P1 3 8 15 5 15 35
P2 3 8 15 10 30 70
P3 2 8 15 10 30 70
P4 3 8 15 10 30 70
P5 3 27 40 5 20 65
P6 3 27 40 5 20 65
P7 2 8 15 20 60 140
P8 3 27 40 10 40 130
P9 3 27 40 10 40 130
P10 Ve 64 85 10 40 210
P11 ¢ 216 259 6 42 258
P12 6 216 259 8 56 344
P13 7 343 400 6 48 342
P14 ¢ 729 820 5 50 455
P15 1¢ 1000 1111 5 55 555
P16 1¢ 1000 1111 6 66 666

Notice that for BFC1, this number is always equal.t6?).
For instance P4, we havg = 10.

e If g=r! =2, we have 2 clusters, ang’!| = n, = 10.
In the first stage we branch on/fid; = x3, = 0 or 1, in clustep = 1 we usex}; fori =1,...10 and in
clusterp = 2 we useq; fori = 1,...10, there are 10 variables in each cluster.

e If q=r? =4, we have 4 clusters, ang’?| = ny(1+r) = 10+ 20= 30.

In the first stage we branch on/fi}, = X3, = x}, =X}, =0 or 1i = 1,...10, there are 10 variables in
each cluster.

In the second stage we branch on#fx=x2 = 0 or 1i = 1,...10 then we branch on/fix, = x5, = 0
orli=1,...10, there are 20 in each cluster.

e If g=r3 =8, we have 8 clusters, and’3| = ny(14r +r?) = 10+ 20+ 40= 70.
In the first stage we branch on/fig = x5, = x3 = x5 =x¢ =x& =x% =x§ =0or 1i = 1,...10, there
are 10 variables in each cluster.

In the second stage we branch on#ffx= x5, = x5 = x3 =0 or 1i = 1,...10 then we branch on/fix
X2 =x3 =x3 =x5 =00r1,i=1,...10, there are 20 variables in each cluster.

In the third stage we branch on/fig = x§ =0or 1,i =1,...10, thenx3, = x3, = 0 or 1, and we branch
onffixx¢ =xg =0o0r1,i=1,...10, thenxy = x5 = 0or 1,i = 1,...10, there are 40 variables in each
cluster.

When we solve the cluster models stage by stage we only solve the clugtérat have changed.

If we branch on/fix untit = 2 (r>=4) when we branch on/fix, = x3, = 0 or 1 we use the values of the
variables<, andxZ; to calculatez! andz? hence we do not solve the submodelsfic 3 andp = 4 to obtain
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Z andZ* since these values will not change. Then, we branch oxgfix xz = 0 or 1, and we use the values
of the variables andx to calculatez> andZ*. For the same reason, we will not solve the submodels for
p=1andp=2,z andz. See Figur&l2.

When we are branching on/fixing thevariable to 0 we solvg submodels, then previously to fix the
i + 1-variable to 0 we check if this variable is fixed to 0 in all suddelsp to solve if we are in this situation
we check the same to the- 2 variable, and so on. In other case we continue branchirfixiogy thei 4 1
variable.

We do the same if we branching on/fixing tiwariable to 1.

TabledB[# andl5 show the main parameters in the clustersasfdy each of the strategi®&-=C1, BFC2
andBFC3, respectively.

In each table, and for each of the cluster partitioning sielecq =r, q = r2 or q = r3, the number
of branching nodes is given, i.e., the number of nodes exaihin the corresponding branching trag,
the number oMIPTNF problems that are solved!NF; and the elapsed time (in seconds) for obtaining the
optimal solution with the corresponding strate@c. In the last column, the headifigo|y corresponds to
the total time (in seconds) to obtain the optimal solutigrnthie plain use of the optimization engine COIN-OR
over the whole model without any decomposition.

Table 3: Cluster analysis f@FC1

Instance q=r q=r? q=r3

n" nTNF Terc n" nTNF Terc n" nTNF Terc Tcoin
P1 1 0 0.2 1 0 0.2 38 3 1.7 0.3
P2 11 0 32.8| 1431 594 416.2 23402 151 1310.7 268.3
P3 9 0 15.9| 333 134 106.7 2621 234 315.9 279.3
P4 132 62 53.6| 153 41 32.8 745 15 31.9 4.8
P5 1 0 0.7 10 0 1.3 851 13 63.7 5.9
P6 1 0 1.1 114 49 63.7 1269 36 117.5 7.6
P7 782 371 3722.0| 5237 2078 5314.5 100938 182 13646.3 -
P8 27 0 194.8| 5962 2606 10459.7 69531 902 10222.% 7034.1
P9 423 210 1204.5 - - - - - - -
P10 12 0 4829 - - - - - - -
P11 - - - - - - - - - -
P12 15 0 1043.2 - - - - - - -
P13 12 0 2714 - - - - - - 1 13910.1
P14 - - - - - - 3337 9 12401.3 3790.0
P15 8 0 19425 - - - - - - -
P16 10 0 1327.6| 133 0 443.6 - - - -
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Table 4: Cluster analysis f8@FC2

Instance q=r =r? =r3

n" nTNF Terc n" n™NF Terc " o™ Tgec | Teow
P1 1 0 0.2 1 0 0.2 84 2 3.1 0.3
P2 69 0 67.2| 1185 21 183.7| 186295 151 8935.2 268.3
P3 29 0 36.1 609 8 136.5| 54505 71 2642. 279.3
P4 33 2 19.9 155 1 16.7 1607 15 79.6 4.8
P5 1 0 0.7 75 0 7.0 2023 13 113.7 5.9
P6 1 0 1.1 71 2 12.6 2277 30 138.5 7.6
P7 257 8 7413.6| 18947 31 5744.1 - - - -
P8 107 0 372.1| 1937 26 6360.1 - - - 7034.1
P9 - - - 5051 52 18022.8 - - - -
P10 35 0 569.5 - - - - - - -
P11 23 1 13230.5 201 2 19849.0 -
P12 21 0 926.8 - - - - - - -
P13 15 0 313.2| 1235 26 12585.5 - - - 1 13910.1
P14 17 1 1680.8 335 4 4515.7 5174 9 8351.27 3790.0
P15 11 0 21198 - - - - - - -
P16 13 0 15816 211 0 5817 - - - -

Table 5: Cluster analysis f8@FC3

Instance q=r q=r? =r3

n" nTNF Terc n" n™NF Terc n" n™NF Terc | Tcoin
P1 1 0 0.2 1 0 0.2 38 3 1.7 0.3
P2 11 0 32.8| 347 50 330.0] 23402 151 1310.7 268.3
P3 9 0 15.9 93 14 255.1 2621 234 315.9 279.3
P4 12 2 14.1 73 1 6.5 745 15 31.9 4.8
P5 1 0 0.7 10 0 1.3 851 13 63.7 5.9
P6 1 0 1.1 24 4 14.8 1269 36 117.5 7.6
P7 68 14 10945.5 1279 99 5412.9 100938 182 13646.3 -
P8 27 0 194.8| 822 26 12051.4 69531 902 10222.5% 7034.1
P9 - - - | 2223 52 17339.0 - - - -
P10 12 0 482.9 - - - - - - -
P11 - - - - - - - - - -
P12 15 0 1043.2 - - - - - - -
P13 12 0 271.4| 776 26 12433.3 - - - 1 13910.1
P14 13 1 1582.9| 225 4 8541.0 3337 9 12401.3 3790.0
P15 8 0 1942.5 - - - - - - -
P16 10 0 1327.6] 133 0 443.6 - - - -

8 Compilation and linking with COIN-OR library

Our algorithmic approach has been implemented in a C++ @xpetal code. This code is going to be

submitted for publication through a new project, to @@IN-ORweb page.

It uses the optimization engin@OIN-ORfor solving the linear and mixed-integer submodels and the
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complete linear model. The computational experiments werelucted in a Workstation Sun FIRE v245,
under Solaris System 1.0, with 2 CPU of 1.5 Ghz and 4 Gb of RAM.

We have downloaded and installed the source code for thedG@ackage for UNIX-like systems. After
doing this, you can find the executables, libraries and hddds in the “bin”, “lib” and “include” subdirec-
tory, respectively.

Then, you can link your own code with the installed librariés particular, our computational scheme
uses the librarie<1p, Cbc andCoinUtils.

For compiling and linking, a Makefile must be created with de@pendences between the main program,
BFC_MS, the own external functions and the COIN library.

You can find examples for a Makefile in the examples subdirgcsee also the information at

https://projects.coin-or.org/BuildTools/wiki/user-examples

References

Escudero LF, Garin A, Merino M, Pérez G (2009) BFC-MSMIP: aaat Branch-and-Fix Coordination
approach for solving multistage stochastic mixed 0-1 protd. TOP, 17(1):96-122.

Escudero LF, Garin A, Merino M, Pérez G (2010) On BFC-MSMHatsigies for scenario cluster partitioning,
and twin node family branching selection and bounding folltistage stochastic mixed 0-1 problems.
Computers and Operations Reseafith 738-753.

Laugee-Heimer, R (2003) The Common INterface for OperatRasearchBM, Journal of Research and
Developmentd7(1):57-66.fittp: //www.coin-or.org)

17


https://projects.coin-or.org/BuildTools/wiki/user-examples
http://www.coin-or.org)

	caratula_dt201002
	dt201002_sincaratula
	Introduction
	Mixed integer stochastic model
	Main decisions for information structuring
	 General description of the algorithm BFC-MSMIP 
	Description of the implementation 
	 Another procedure for branching/storing the variables
	Computational experience. Instances P1 to P16
	Compilation and linking with COIN-OR library


