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Abstract

The aim of this technical report is to present some detailed explanations in order to help to understand
and use the algorithm Branch and Fix Coordination for solving MultiStage Mixed Integer Problems (BFC-
MSMIP). We have developed an algorithmic approach implemented ina C++ experimental code that uses
the optimization engine COmputational INfrastructure forOperations Research (COIN-OR) for solving the
auxiliary linear and mixed 0-1 submodels. Now, we give the computational and implementational descrip-
tion in order to use this open optimization software not onlyin the implementation of our procedure but also
in similar schemes to be developed by the users.
Keywords Multistage stochastic mixed 0-1 programming, Branch-and-Fix Coordination, nonanticipativity
constraints, scenario cluster partitioning, COIN-OR library.
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1 Introduction

In this paper we present some technical notes for easily using of the algorithm Branch and Fix Coordination for
solving MultiStage Mixed Integer Problems (BFC-MSMIP), see Escudero et al (2009) and (2010). We have
developed an algorithmic approach implemented in a C++ experimental code. It uses the optimization engine
COmputational INfrastructure for Operations Research (COIN-OR) (seehttp://www.
oin-or.org and
Laugee-Heimer, R. (2003)) for solving the auxiliary linearand mixed 0-1 submodels. In this technical report
we give the computational and implementational description in order to use this open source optimization
software not only in the implementation of our own procedurebut also in similar schemes to be developed by
the users.

The remainder of the papes is as follows. Section 2 presents the optimization problem to be solved
and a general scheme of its decomposition in cluster submodels. Some of the main decisions to structure the
information in the implementation of the algorithm are given in Section 3. In Section 4 appears the description
of the algorithm such as it has been published in Escudero et al (2010). Section 5 describes the main steps of
the implementation. An alternative way of storing and branching on the 0-1 variables is presented in Section
6. Section 7 gives some aditional information about the instances namedP1 to P16 taken from the same
paper, and Section 8 gives some details about how to compile and link the code withCOIN-ORlibrary.

2 Mixed integer stochastic model

We will consider, the following multistage mixed 0-1 model

min ∑
t∈T

atxt +ctyt

s.t.A′
txt−1 +Atxt +B′

tyt−1 +Btyt = bt ∀t ∈ T

xt ∈ {0,1}nx, yt ∈ R
+ny ∀t ∈ T ,

(1)

whereat andct are the vectors of the objective function,A′
t , B′

t , At andBt are the constraint matrices for
the 0-1 and continuous variables related to staget −1 andt, respectively, andT the set of stages.bt is the
right-hand-side (rhs) andxt , yt , are thenx andny dimensional vectors of the 0-1 and continuous variables for
staget, respectively.

We will denote withT = |T |, the number of stages, andT − = T −{T} will denote the set of stages
except the last one.

This model can be extended to consider uncertainty in some ofthe main parameters, in our case, the
objective function, therhs and the constraint matrix coefficients. To introduce uncertainty in the parameters,
we will use a scenario analysis approach. In this sense,Ω will denote the set of scenarios, andω ∈ Ω will
represent one specific scenario.

The splitting variablerepresentation of the mixed 0-1 Deterministic Equivalent Model (DEM) of the
stochastic version with complete recourse of the deterministic multistage problem (1) can be expressed as

(MIP) zMIP = min ∑
ω∈Ω

∑
t∈T

wω(

aω
t xω

t +cω
t yω

t

)

s.t. A′ω
t xω

t−1 +Aω
t xω

t +B′ω
t yω

t−1 +Bω
t yω

t = bω
t , ∀ω ∈ Ω, t ∈ T

xω
t −xω ′

t = 0, ∀ω ,ω ′ ∈ Ωg : ω 6= ω ′, g∈ Gt , t ∈ T −

yω
t −yω ′

t = 0, ∀ω ,ω ′ ∈ Ωg : ω 6= ω ′
, g∈ Gt , t ∈ T −

xω
t ∈ {0,1}, yω

t ∈ R
+, ∀ω ∈ Ω, t ∈ T ,

(2)
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wherewω is the likelihood or probability asigned by the modeler to scenarioω , such that∑ω∈Ω wω = 1. The
indexω in the model given above denote the copy of the coefficient or variable related to scenarioω .

Let alsoG denote the set of scenario groups, andGt , the subset of scenario groups that belong to stage
t ∈T , such thatG =∪t∈T Gt . Let us suppose that we have selected a number of scenario clusters, sayq. This
valueq can be selected as a divisor of|Ω|. Then, 1≤ |Ωp| = |Ω|

q ≤ |Ω|, whereΩp gives the set of scenarios
in clusterp, for p = 1, ...,q. The idea is to decompose theDEM model into scenario cluster models. These
scenario cluster models are linked by the nonanticipativity constraints, see below.

As an additional notation, letG p ⊂G denote the set of scenario groups for clusterp, such thatΩg∩Ωp 6= /0
means thatg∈ G p andΩg is the set of the scenarios related to groupg.

An equivalent and alternative representation of theDEM (2) can be given by the mixture of the compact
(into the clusters) and the splitting variable representation (between them). It can be given in terms of the
scenario-cluster models as follows,

(MIP) ZMIP = min
q

∑
p=1

∑
g∈G p

wg(a
gxg +cgyg)

s.t. A′
gxπ(g) +Agxg +B′

gyπ(g) +Bgyg = bg
, ∀g∈ G

p
, p = 1, ...,q

xg
p−xg

p′ = 0, ∀g∈ G
p∩G

p′
, p 6= p′ (3)

yg
p−yg

p′ = 0, ∀g∈ G
p∩G

p′
, p 6= p′

xg ∈ {0,1}, yg ∈ R
+
, ∀g∈ G

p
, p = 1, ...,q.

wherewg is the likelihood of scenario groupg, with g ∈ G p, such thatwg = ∑
ω∈Ωg

wω . xg andyg are the

copy of thex, y vectors of variables for scenario groupg. Moreover,xg
p, yg

p, xg
p′ , andyg

p′ , for g ∈ G p∩G p′ ,
denote the set of common variables, i.e, the set of variablesrelated to the scenario groupg, and common to
scenario clustersp and p′. xg

p, xg
p′ , are copies of the variablesxg andyg

p, yg
p′ , are copies of the variablesyg.

π(g) denotes the scenario group related to the immediate predecessor of nodeg in the scenario tree, such
thatπ(g) ∈ Gt(g)−1, for g∈ G −G1, wheret(g) is the stage to which scenario groupg belongs to, such that
g∈ Gt(g).

The model to consider for each scenariocluster p= 1, . . . ,q can be expressed by thecompactrepresenta-
tion,

(MIPp) zp =min ∑
g∈G p

wg(a
gxg +cgyg)

s.t. A′
gxπ(g) +Agxg +B′

gy
π(g) +Bgyg = bg ∀g∈ G p

xg ∈ {0,1}, yg ∈ R
+ ∀g∈ G p,

(4)

Theq problems (4) are linked by thenonanticipativityconstraints:

xg
p−xg

p′ = 0 (5)

yg
p−yg

p′ = 0, (6)

∀g∈ G p∩G p′, such thatp 6= p′. From here to the end of the paper, we will use the notation,xg
p, only when we

want to distinguish between two diferent clustersp andp′, as in the nonanticipativity constraints (5) and (6).
In other cases, we will usexg or yg, with g∈ G p, to denote the vectors of variables for each scenario cluster
p, andxt p notation in order to denote the staget and scenario clusterp.
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3 Main decisions for information structuring

The main program for the algorithm BFC-MSMIP is namedBFC_MS.cpp. It is written in C++ with several
references to functions from the libraryCOIN-ORto store and solve linear and mixed 0-1 auxilary submodels.
The following external references to own functions are as follows:

• vectores.cpp. It builds the scenario tree and establishes the relationship between scenario-cluster prob-
lems and theDEM. It sets the number of contingencies, the last scenario group and the weight for each
stage; it also sets the ancestor group, the stage and the lastbinary variable for each scenario group; it
defines the relations between the scenario cluster problemsand theDEM and assigns the order for the
binary variables by indexes and scenario groups.

• modelos.cpp. It generates the coefficients of the optimization problem,that is, the vectorsa, c, b and
the matricesA, A′, B andB′. In our case, this function either read data file or generatesit seudorandomly.

• param3.cp. It structures the coefficients for theDEM by setting all the indixes of the objective function,
nonzero elements of the matrix of constraints, bounds of variables and bounds of constraints as required
by COIN-OR.

• param4.cpp. It structures the coefficients in similar way as param3.cpp, but for the scenario-cluster
models.

• optimo.cpp. It checks the integrality of thex variables in the relaxed problem.

• ooptimo.cpp. It checks the integrality and nonanticipativity constraints for thex variables between
scenario-cluster problems.

• ooptimo3.cpp. It checks the nonanticipativity constraints for the continuosyvariables between scenario-
cluster problems.

To solve any Multistage Stochastic Mixed Integer Problem (MSMIP) withT stages andr contingencies or
outlooks at each stage (rT−1 scenarios) we have to determine the problem dimensions and tolerances. Also we
have used a file namedconst_MS.hwith the integer constants, as well as the dimensions of the arrays of the
problem. We introduce in the auxiliary filepm.headerthe neccessary includes to the files .hpp ofCOIN-OR
and to the files .h of C++.

1. In order to use theCOIN-ORlibrary, we have introduced the coefficients of each optimization model
by using indices representation. Arrays such as,dobj[℄, dels[℄, nrowindx[℄, m
olindx[℄,drowlo[℄,drowup[℄, d
ollo[℄ or d
olup[℄, must be dimensioned with integer constants such
as:n
ols (number of variables),nrows (number of constraints) andnelements (number of nonzero
elements). All of these integer constants are defined in fileconst_MS.h.

2. One of the essential decisions to structure the implementation of the algorithm is the way of building
theq clusters.

We have built the clusters in our computational experience by using the following idea. Ift = 1 we
generateq = r1 = r clusters (t = 2 for q = r2 or t = 3 for q = r3); and then, the clusters are explicitly
linked by nonanticipativity constraints for the stage 1 (ift = 1) ( stages 1,2 ift = 2 or stages 1,2,3 if
t = 3).

That is, for theq = r (or q = r2 or q = r3) cluster problems, we are considering thesplitting variable
representation of the variables of the stagest = 1 (or t = 1,2 or t = 1,2,3). Consequently they are
explicitly linked by nonanticipativity constraints in theq = r (or q = r2 or q = r3) cluster models.
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Moreover, we are considering thecompactvariable representation of the variables of the stagest = 2,3
(or t = 3 or none of them, because in the last stage,T, there is not nonanticipativity constraints).

For example, in case ofq = r we are considering the splitting variable representation of the model for
the variables of stage 1 in theq = r cluster models.

To select each of these cases:q = r, q = r2 or q = r3 we use the following integer constants.

We setn
1=(T −1)− t for t=1,2,3 andn
2=0 in the fileconst_MS.has follows,#define n
1 1#define n
2 0
In our computational experience (we have T=4 periods) the posibilities are,

(n
1,n
2)=(2,0) forq = r,

(n
1,n
2)=(1,0) forq = r2, and

(n
1,n
2)=(0,0) forq = r3.

3. Other important decision in the implementation of the algorithm is to choose between the strategies to
branch with the 0-1 variables. Consequently the type of problems to solve at each clusterp = 1, ...,q
areMIPp mixed integer problems with more or less 0-1 variables.

To do this we define the variableivartipo in file const_MS.has follows: if ivartipo is equal to
1, we will use BFC1 (INTEGER), ifivartipo is equal to 2, we will use BFC2 (MIXED), and ifivartipo is equal to 3, we will use BFC3 (MIXED-INTEGER). In the fileconst_MS.hthe sentence
is for example#define ivartipo 1
That is, by usingivartipo we select the strategy to solve the problem.

(a) Strategy BFC1 or INTEGER: (ivartipo=1)

• Branch on/fix the 0-1 variable until stageT − 1 (except the last stage, since there are not
nonanticipativity constraints in the last stage).

• Solve the mixed integer problemsMIPp for each cluster p, in these problems all 0-1 variables
are considered as integer except the fixed variables.

• The relaxedDEM submodels namedMIPTNF andMIP f are mixed integer problems with 0-1
variables in the last stage.

(b) Strategy BFC2 or MIXED: (ivartipo=2)

• Branch on/fix the 0-1 variable until staget=1 for q = r (t=2 for q = r2 or t=3 for q = r3).
The clusters are explicitly linked by nonanticipativity constraints for the stage 1, (stages 1,2
or stages 1,2,3).

• Solve the mixed integer problemsMIPp for each cluster p. In these problems we consider as
integer variables the 0-1 variables related the stages without explicit nonanticipativity. That
is,

– If q= r we consider as continuous variables, the 0-1 variables of stages 1 and we consider
as integer variables, the 0-1 variables of the stages 2 and 3 and of the periodT = 4,

– If q = r2 we consider as continuous variables, the 0-1 variables of the stages 1,2 and we
consider as integer variables, the 0-1 variables of the stage 3 and of the periodT = 4

– If q = r3 we consider as continuous variables, the 0-1 variables of the stages 1,2,3 and
we consider as integer variables, the 0-1 variables of the period T = 4.

5



• The problemsMIPTNF andMIP f are mixed integer problems and they have 0-1 variables
in the stages without explicit nonanticipativity constraints. In these models the integrality
constraints for the 0-1 variables in the stages with implicit nonanticipativity are relaxed.

(c) Strategy BFC3 or MIXED-INTEGER: (ivartipo=3)

• Branch on/fix the 0-1 variable until staget=1 for q = r (t=2 for q = r2 or t=3 for q = r3).
The clusters are explicitly linked by nonanticipativity constraints for the stage 1, (stages 1,2
or stages 1,2,3).

• Solve the mixed integer problemsMIPp for each cluster p, in these problems all 0-1 variables
are considered as integer except the fixed variables.

• The problemsMIPTNF andMIP f are mixed integer problems with 0-1 variables in the stages
without explicit nonanticipativity.

Note that forq = r3 we branch on/fix in the same way for BFC1 and BFC3 .

4. At the top of the procedure, other relevant decision is thelower bound to calculate at the root node.
That is, a lower bound of the objective function value (remind that we are in a minimization problem).

Theini
io constant is used inconst_MS.hto make this choice. Ifini
io is equal to 0, the lower
bound of the objective function isZLP, if ini
io is equal to 1 the lower bound of the objective function
is max{ZLP, SumpZ

p
t } and if ini
io is equal to 2 we have to solvep = 1, ...,q mixed integer problems

with optimal function valuesZp
0,0 and the lower bound of the objective function isSumpZp

0,0. In our
computational experience this constant always takes the value 2.

4 General description of the algorithmBFC-MSMIP

We present the algorithmBFC-MSMIPfor using the three strategies presented above,BFC1, BFC2andBFC3.
We have chosen thedepth firststrategy for theTNF branching selection. When there is a guarantee that the
incumbent solution could not be produced by the successorTNFsin both branches, then abactrackingto the
immediate ancestorTNF is performed.

In the Steps 4, 7, 9 and 10 of the procedure, the subindexi denotes the index inI , i.e., the corresponding
set over which the algorithm proceeds by branching on. The cardinality of this last set,|I | depends upon the
branching strategy to select, see Table 2 below.

The procedure is as follows:

Procedure

Step 0: Initialize ZMIP := +∞.

Step 1: Solve the scenario-cluster related mixed 0-1 problems,MIPp, ∀p = 1, . . . ,q, and compute the lower
boundZ0 = Zt

0,0, for the choice ofq(t) = rt , to use for the root node.

If there is any (0-1)x variable that takes different values in the scenario-related clusters, then go to Step
2.

If there is any (continuous)y−variables that takes different values in the scenario-related clusters, then
go to Step 6.

Otherwise, the optimal solution to the original problem hasbeen found and, so,ZMIP := Z0 and stop.

Step 2: Initialize i := 1 and go to Step 4.

6



Step 3: Reseti := i +1.

If i = |I |+1 whereI is the subset of variables until stageT−1 in BFC1 or until staget with t ≤ T−1
in BFC2 orBFC3 then go to Step 8.

Step 4: Branchxg
i := 0,∀g∈ G p, p = 1, . . . ,q.

Step 5: Solve the mixed 0-1 scenario-cluster related submodels,MIPp ∀p = 1, . . . ,q, for the choice ofq(t) =
rt , t = 1, ...,T −1 and compute the boundZi = Zt

i,0, for BFC1 andBFC3, andZi = Zt
i,t , for BFC2.

If Zi ≥ ZMIP then go to Step 7.

If there is anyx variable that either takes fractional values or takes different values for some of theq
scenarioclustersthen go to Step 3.

If all the y variables take the same value for all scenarioclusters p= 1, . . . ,q then updateZMIP := Zi
and go to Step 7.

Step 6: Solve the mixed 0-1 submodelMIPTNF
i,T−1 for BFC1 or MIPTNF

i,t for BFC2 andBFC3 to satisfy the
nonanticipativity constraints for they variables in the givenTNF integer set. Notice that the solution
value is denoted byzTNF

i .

UpdateZMIP := min{zTNF
i , ZMIP}.

If i = |I |, then go to Step 7.

Solve the mixed 0-1 submodelMIP f
i,T−1 for BFC1or MIP f

i,t for BFC2andBFC3, where the fractionalx
variables are the non-yetBF branched on at the currentTNF. Notice that the solution value is denoted
by zf

i .

If zf
i < zTNF

i andzf
i < ZMIP and all the fractionalx variables take 0-1 values in the solution of the model

MIP f
i , updateZMIP := zf

i and go to Step 7.

If zTNF
i = zf

i or zf
i ≥ ZMIP, then go to Step 7, otherwise go to Step 3.

Step 7: Prune the branch.

If xg
i = 0, ∀g∈ G p, p = 1, . . . ,q, then go to Step 10.

Step 8: Reseti := i −1.

If i = 0 then stop, since the optimal solutionZMIP has been found.

Step 9: If xg
i = 1, ∀g∈ G p, p = 1, . . . ,q, then go to Step 8.

Step 10: Branchxg
i := 1,∀g∈ G p, p = 1, . . . ,q.

go to Step 5.

5 Description of the implementation

The steps of the main programBFC_MS.cppare as follows:

1. The sentences#in
lude "pm.header", #in
lude "
onst_MS.h" and the#in
lude for the exter-
nal and own functions asvectores.cpp, modelos.cpp, param3.cp, param4.cpp, optimo.cpp, oop-
timo.cpp andooptimo3.cpp. The declaration and dimension of all the own external functions and all
the external arrays are performed.

2. Initializations. For example, the upper bound of the objetive function,ZMIP = ∞.
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3. Calls to external functionvectoresto build the scenario tree and to establish the relationshipbetween
scenario-cluster problems and theDEM.

4. Calls to external functionmodelosto generate the coefficients of the minimization problem.

5. Pointers for the solver, for each of thenumberOfModels+1submodels, by usingOsiClpSolverInterfa
e
as follows,OsiClpSolverInterfa
e *sol1;sol1=new OsiClpSolverInterfa
e[numberOfModels+1℄;
With these sentences, we declare a pointer to an array in which we store the cluster models in the first po-
sitions (from0 until numberOfModels-1), and the whole model in the last position (numberOfModels).

6. Calls to external functionparam3 to introduce the parameters generated in functionmodelos, as the
coefficients of the objective function and constraints for the definition of the whole problem in compact
representation. This problem is saved in the last position,numberOfModels, of the array of models.

The following calls avoid to load the whole problem,CoinPa
kedMatrix ACOMPLETE(true,nrowindx,m
olindx,dels,non
ero);sol1[numberOfModels℄.loadProblem (ACOMPLETE,d
olo,d
olup,dobj,drowlo,drowup);
This structure of storing allows to calculate a lower bound of the objective function by solving the last
model, in numberOfModel position, i.e., the linear problem(linear relaxation) with the nonanticipativ-
ity constraints,ZLP. (Remind that we are at the root node).

7. Calls to external functionparam4 to introduce the parameters generated in functionmodelos, as co-
efficients of the objective function and constraints for thedefinition of each of theq = r (or q = r2 or
q = r3) cluster problems in compact representation.

There arenumberOfModels models, one for each cluster, and the external function getsthe corre-
sponding parameter information given bymodelosandparam4 to define each cluster model. This
structure avoid to loadnumberOfModels cluster problems with the calls to the following functions,
whereimodel varies from0 to numberOfModels-1:CoinPa
kedMatrix ACLUSTER(true,nrowindxq,m
olindxq,delsq,non
eroq);sol1[imodel℄.loadProblem (ACLUSTER,d
oloq,d
olupq,dobjq,drowloq,drowupq);
We can calculate the lower bound of the objective function bysolving each of thenumberOfModels
mixed integer problems,MIPp

0 , p = 1, ...,q without the nonanticipativity constraints, and compute the
lower bound as,SumpZ

p
0,0. (Remind that we are at the root node).

To solve each of the mixed integer models we use the calls to the functions:Cb
Model pm0(sol1[imodel℄);pm0.bran
hAndBound();
8. Before starting the branching procedure, we check with the external functionooptimo if the corre-

sponding 0-1 variables satisfy the nonanticipativity constraints; and we check with the external function
ooptimo3 if the corresponding continuous variables satisfy the nonanticipativity constraints. If the 0-1
variables and the continuous variables satisfy the nonanticipativity constraints, we have obtained the
optimal solution. In other case we start branching on the 0-1variables by groups of scenarios.
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Figure 1: Scenario cluster partitioning, forq = r = 2 (left), q = r2 = 4 (central) andq = r3 = 8 (right)

9. Branching procedure. Notice that the number of clusters,q = r, q = r2 or q = r3 has been previously
selected. We show in Figure 1 an example of the scenario cluster partitioning for these values ofq
whereT = 4. Observe that we are in the left situation of the figure ifq = r = 2, in the central situation
if q = r2 = 4 and in the right situation ifq = r3 = 8.

We begin by fixing to zero the first 0-1 variable, i.ei = 1, and then,xg
i = 0,∀g∈ G p, at each cluster, i.e.

p = 1, ...,q.

Firstly, we explain the branching order for the strategies BFC2 and BFC3 because in both strategies we
branch until the staget, where we consider the splitting representation of the 0-1 variables.

For the strategy BFC1 we branch until the stageT−1, and we have variables in splitting representation
until staget, and variables in compact representation from stagemt +1.

Let xg
pi for g∈ G p, p = 1, . . . ,q, denote theith variable of scenario groupg and clusterp (see Figure 2).

For strategies BFC2 and BFC3,

• If we haveq= r = 2 clusters, thenG 1 = {1,2,4,5,8,9,10,11}andG 2 = {1,3,6,7,12,13,14,15}.
Then,x1

1i = x1
2i = 0, x1

1i+1 = x1
2i+1 = 0,. . . , until the last 0-1 variable of the first stage (g = 1).

• If we haveq= r2 = 4 clusters, thenG 1 = {1,2,4,8,9},G 2 = {1,2,5,10,11},G 3 = {1,3,6,12,13}
andG 4 = {1,3,7,14,15} and updatingi = i +1 for each variable:
x1

1i = x1
2i = x1

3i = x1
4i = 0, x1

1i+1 = x1
2i+1 = x1

3i+1 = x1
4i+1 = 0, . . . , until the last 0-1 variable of the

first stage (g = 1 andp = 1,2,3,4).
Then,x2

1i = x2
2i = 0, x2

1i+1 = x2
2i+1 = 0, . . . , until the last 0-1 variable of the second stage (g = 2

andp = 1,2).
And,x3

3i = x3
4i = 0,x3

3i+1 = x3
4i+1 = 0, . . . , until the last 0-1 variable of the second stage (g= 3 and

p = 3,4).

• If we haveq = r3 = 8 clusters, thenG 1 = {1,2,4,8}, G 2 = {1,2,4,9},G 3 = {1,2,5,10}, G 4 =
{1,2,5,11}, G 5 = {1,3,6,12}, G 6 = {1,3,6,13},G 7 = {1,3,7,14} andG 8 = {1,3,7,15}. And

9



updatingi = i + 1, we fix: x1
1i = x1

2i = x1
3i = x1

4i = x1
5i = x1

6i = x1
7i = x1

8i = 0, and,x1
1i = x1

2i+1 =

x1
3i+1 = x1

4i+1 = x1
5i+1 = x1

6i+1 = x1
7i+1 = x1

8i+1 = 0, . . . , until the last 0-1 variable of the first stage
(g = 1 andp = 1, . . . ,8).

Thenx2
1i = x2

2i = x2
3i = x2

4i = 0, x2
1i+1 = x2

2i+1 = x2
3i+1 = x2

4i+1 = 0, . . . , until the last 0-1 variable of
the second stage (g = 2 andp = 1,2,3,4).
x3

5i = x3
6i = x3

7i = x3
8i = 0, x3

5i+1 = x3
6i+1 = x3

7i+1 = x3
8i+1 = 0, . . . , until the last 0-1 variable of the

second stage (g = 3 andp = 5,6,7,8).
And finally,
x4

1i = x4
2i = 0, x4

1i+1 = x4
2i+1 = 0, . . . , until the last 0-1 variable of theT − 1 stage (g = 4 and

p = 1,2).
x5

3i = x5
4i = 0, x5

3i+1 = x5
4i+1 = 0, . . . , until the last 0-1 variable of theT − 1 stage (g = 5 and

p = 3,4).
x6

5i = x6
6i = 0, x6

5i+1 = x6
6i+1 = 0, . . . , until the last 0-1 variable of theT − 1 stage (g = 6 and

p = 5,6).
x7

7i = x7
8i = 0, x7

7i+1 = x7
8i+1 = 0, . . . , until the last 0-1 variable of theT − 1 stage (g = 7 and

p = 7,8).

t = 1

z1 x1
1

z2 x1
2

x1
1 = x1

2

t = 2 t = 3 t = 4

q = r

t = 1

z1 x1
1

z2 x1
2

z3 x1
3

z4 x1
4

x1
1 = x1

2 = x1
3 = x1

4

t = 2

x2
1

x2
2

x3
3

x3
4

x2
1 = x2

2

x3
3 = x3

4

t = 3 t = 4

q = r2

t = 1

z1 x1
1

z2 x1
2

z3 x1
3

z4 x1
4

z5 x1
5

z6 x1
6

z7 x7
7

z8 x1
8

x1
1 = x1

2 = x1
3 = x1

4 = x1
5 = x1

6 = x1
7 = x1

8

t = 2

x2
1

x2
2

x2
3

x2
4

x3
5

x3
6

x3
7

x3
8

x2
1 = x2

2 = x2
3 = x2

4

x3
5 = x3

6 = x3
7 = x3

8

t = 3

x4
1

x4
2

x5
3

x5
4

x6
5

x6
6

x7
7

x7
8

x4
1 = x4

2

x5
3 = x5

4

x6
5 = x6

6

x7
7 = x8

t = 4

q = r3

Figure 2:xg
p variables, forq = r, q = r2, andq = r3, wherer = 2

For strategy BFC1, we show only one case because the others are very similar.

If we haveq = r = 2 clusters, thenG 1 = {1,2,4,5,8,9,10,11} andG 2 = {1,3,6, 7,12,13,14,15} and
we branch on/fix until stageT −1.

Since the variables are stored in compact representation from staget + 1 = 2 to stageT − 1 = 3, we
must fixx1

1i = x1
2i = 0, x1

1i+1 = x1
2i+1 = 0, . . . , until the last 0-1 variable of the first stage with the same

value in the two clustersp = 1,2 (g = 1).
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Then x2
1i = 0, x2

1i+1 = 0, . . . , until the last 0-1 variable of the second stage since the variables are
compacted inx2

1i , for the clusterp = 1 (g = 2).

Thenx3
2i = 0, x3

2i+1 = 0, . . . , until the last 0-1 variable of the second stage since now the variables are
compacted inx3

2i , for the clusterp = 2 (g = 3).

x4
1i = 0,x4

1i+1 = 0, . . . , until the last 0-1 variable of theT−1 stage since now the variables are compacted
in x4

1i , for the clusterp = 1 (g = 4).

x5
1i = 0,x5

1i+1 = 0, . . . , until the last 0-1 variable of theT−1 stage since now the variables are compacted
in x5

2i , for the clusterp = 1 (g = 5).

x6
2i = 0, x6

2i+1 = 0, . . . , until the last 0-1 variable of theT −1 stage since now the variables variables are
compacted inx6

2i , for the clusterp = 2 (g = 6).

x7
2i = 0,x7

2i+1 = 0, . . . , until the last 0-1 variable of theT−1 stage since now the variables are compacted
in x7

2i , for the clusterp = 2 (g = 7).

10. We solve thep clusters and compute the lower boundZi , for example with the expressionZi = Zt
i,0 =

∑q
p=1zp

i,0 for BFC3.

If Zi ≥ ZMIP, then prune the branch.

If Zi < ZMIP and all variables satisfy the nonanticipativity constraints, then update the lower bound
ZMIP = Zi and prune the branch.

If Zi < ZMIP and there is anyx variable that either takes fractional values or takes different values for
some of theq scenarioclusters, theni = i +1 andxg

i = 0 ∀g∈ G p, p = 1, ...,q.

If all 0-1 variables satisfy the nonanticipativity constraints but the continuous variables do not satisfy
the nonanticipativity constraints, then solve theMIPTNF

i submodel and computezTNF
i . UpdateZMIP =

min{zTNF
i ,ZMIP}. Solve theMIP f

i submodel and computezf
i .

If zf
i < zTNF

i and zf
i < ZMIP and all 0-1 variables satisfy the nonanticipativity constraints. Update

ZMIP = zf
i .

If zf
i = zTNF

i or zf
i ≥ ZMIP, then prune the branch.

11. If we have fixed to 0 all 0-1 variables until the stage that we have decided, we go up fixing to 1 the last
variable.

xg
i = 1 ∀g∈ G p, p = 1, ...,q

We solve thep cluster models and computeZi = Zt
i,0 = ∑q

p=1zp
i,0, for example with this expression for

each lower bound at each node by using the strategyBFC3.

Repeat the step 9.

Updatei = i −1.

6 Another procedure for branching/storing the variables

Alternatively to the criteria given in item 9 of Section 5, there is another equivalent procedure for storing the
variables and, consequently, branching. We will use the following notation for this purpose:

(In Figure 3 we introduce the new notation for the indexes in the variables). Letxt p
i denote the correspond-

ing variable fort = 1,2,T −1 = 3, p = 1, ...,q, and wherei varies in the subset of variables of thet-stage.

Now, we have to fixxt p
i = xt p′

i = 0, p, p′ = 1, . . . ,q until staget.

11



t = 1
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t = 3 t = 4
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t = 1
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3 x11
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3 x12
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3 x15
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3 x16
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3 x17
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x21
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x26

x27
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x25 = x26 = x27 = x28
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x31

x32
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x35
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x31 = x32

x33 = x34

x35 = x36

x37 = x38

t = 4

q = r3

Figure 3:xt p variables, forq = r, q = r2, andq = r3, wherer = 2

For strategies BFC2 and BFC3,

• If we haveq = r = 2 clusters, updatingi = i +1:

x11
i = x12

i = 0, x11
i+1 = x12

i+1 = 0, . . . , until the last 0-1 variable of the first stage, for clustersp = 1,2.

• If we haveq = r2 = 4 clusters, updatingi = i +1:

x11
i = x12

i = x13
i = x14

i = 0,x11
i+1 = x12

i+1 = x13
i+1 = x14

i+1 = 0, . . . , until the last 0-1 variable of the first stage,
for clustersp = 1,2,3,4.

Then,x21
i = x22

i = 0, x21
i+1 = x22

i+1 = 0, . . . , until the last 0-1 variable of the second stage, for clusters
p = 1,2.

And, x23
i = x24

i = 0, x23
i+1 = x24

i+1 = 0, . . . , until the last 0-1 variable of the second stage, for clusters
p = 3,4.

• If we haveq = r3 = 8 clusters, we have to branch on/fix variables until stageT − 1 = 3, updating
i = i +1:

x11
i = x12

i = x13
i = x14

i = x15
i = x16

i = x17
i = x18

i = 0,

x11
i+1 = x12

i+1 = x13
i+1 = x14

i+1 = x15
i+1 = x16

i+1 = x17
i+1 = x18

i+1 = 0, . . . , until the last 0-1 variable of the first
stage, for clustersp = 1,2,3,4,5,6,7,8.

x21
i = x22

i = x23
i = x24

i = 0, x21
i+1 = x22

i+1 = x23
i+1 = x24

i+1 = 0, . . . , until the last 0-1 variable of the second
stage, for clustersp = 1,2,3,4.

x25
i = x26

i = x27
i = x28

i = 0, x25
i+1 = x26

i+1 = x27
i+1 = x28

i+1 = 0, . . . , until the last 0-1 variable of the second
stage, for clustersp = 5,6,7,8.

x31
i = x32

i = 0, x31
i+1 = x32

i+1 = 0, . . . , until the last 0-1 variable of theT −1 stage, for clustersp = 1,2.

x33
i = x34

i = 0, x33
i+1 = x34

i+1 = 0, . . . , until the last 0-1 variable of theT −1 stage, for clustersp = 3,4.
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x35
i = x36

i = 0, x35
i+1 = x36

i+1 = 0, . . . , until the last 0-1 variable of theT −1 stage, for clustersp = 5,6.

And finally,x37
i = x38

i = 0,x37
i+1 = x38

i+1 = 0, . . . , until the last 0-1 variable of theT−1 stage, for clusters
p = 7,8.

For strategy BFC1 we show only one case because the others aresimilar.

If we haveq = r = 2 clusters and we branch on/fix until stageT −1, updatingi = i +1:

x11
i = x12

i = 0, x11
i+1 = x12

i+1 = 0, . . . , until the last 0-1 variable of the first stage, for clustersp = 1,2.

The variables of the second and the third stage are compactedin each cluster.

x21
i = 0, x21

i+1 = 0, . . . , until the last 0-1 variable of the second stage (t = 2) for the clusterp = 1.

x22
i = 0, x22

i+1 = 0, . . . , until the last 0-1 variable of the second stage (t = 2) for the clusterp = 2.

x31
i = 0, x31

i+1 = 0, . . . , until the last 0-1 variable of the stage (T −1) for the clusterp = 1.

x32
i = 0, x32

i+1 = 0, . . . , until the last 0-1 variable of the stage (T −1) for the clusterp = 2.

7 Computational experience. Instances P1 to P16

The instances named P1 to P16 have been generated as a perturbation of a pilot case. As a result, small,
medium and large scale sized instances have been generated.

In this section we present some of the main results obtained in the computational experience while opti-
mizing a general multistage mixed 0-1 problem. Table 1 givesthe structure of the scenario tree, and the linear
relaxation and stochastic solutions for theDEM. The headings are as follows: Tree, scenario tree in terms
of the outcomes and the number of stages;|Ω|, number of scenarios;|G |, number of scenario groups;ZLP

solution value of theLP relaxation of the original problem;zMIP, solution value of the original problem;GAP,
optimality gap defined as(ZMIP−ZLP)

ZLP
(in %); andTLP, elapsed time (in seconds) to obtain theZLP solution.

Table 1: Stochastic solution
Instance Tree |Ω| |G | ZLP zMIP GAP TLP

P1 23 8 15 4116.3 408827 9831.9 0.0
P2 23 8 15 11753.2 624636 5214.6 0.0
P3 23 8 15 11994.4 664294 5438.4 0.0
P4 23 8 15 5262.5 356204 6668.7 0.1
P5 33 27 40 4952.5 436517 8714.0 0.1
P6 33 27 40 4577.7 335477 7228.5 0.1
P7 23 8 15 24622.6 1398840 5581.1 0.1
P8 33 27 40 10811.9 617938 5615.3 0.1
P9 33 27 40 11781.1 612964 5102.9 0.1
P10 43 64 85 13089.5 810074 6088.7 0.3
P11 63 216 259 6126.2 604693 9770.6 0.7
P12 63 216 259 8758.5 763052 8612.1 1.3
P13 73 343 400 6245.6 544014 8610.4 1.6
P14 93 729 820 5263.66 473741 8900.2 3.0
P15 103 1000 1111 4973.9 468610 9321.3 8.6
P16 103 1000 1111 6117.4 654229 10594.5 10.5

Table 2 shows, in the three last columns, the number of 0-1 variables over which the algorithm proceeds
by branching on. The cardinality of this set,|I |, depends upon the branching strategy to select. The new
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headings are as follows:|I 1|, number of the 0-1 variables to branch on/fix until stage 1;|I 2|, number of the
0-1 variables to branch on/fix until stage 2; and|I 3|, number of the 0-1 variables to branch on/fix until stage
3.

Table 2: Number of 0-1 variables to branch on/fix
Instance Tree,r3 |Ω| |G | |I 1| |I 2| |I 3|

P1 23 8 15 5 15 35
P2 23 8 15 10 30 70
P3 23 8 15 10 30 70
P4 23 8 15 10 30 70
P5 33 27 40 5 20 65
P6 33 27 40 5 20 65
P7 23 8 15 20 60 140
P8 33 27 40 10 40 130
P9 33 27 40 10 40 130
P10 43 64 85 10 40 210
P11 63 216 259 6 42 258
P12 63 216 259 8 56 344
P13 73 343 400 6 48 342
P14 93 729 820 5 50 455
P15 103 1000 1111 5 55 555
P16 103 1000 1111 6 66 666

Notice that for BFC1, this number is always equal to|I 3|.

For instance P4, we havenx = 10.

• If q = r1 = 2, we have 2 clusters, and|I 1| = nx = 10.

In the first stage we branch on/fixx1
1i = x1

2i = 0 or 1, in clusterp = 1 we usex1
1i for i = 1, . . .10 and in

clusterp = 2 we usex1
2i for i = 1, . . .10, there are 10 variables in each cluster.

• If q = r2 = 4, we have 4 clusters, and|I 2| = nx(1+ r) = 10+20= 30.

In the first stage we branch on/fixx1
1i = x1

2i = x1
3i = x1

4i = 0 or 1 i = 1, . . .10, there are 10 variables in
each cluster.

In the second stage we branch on/fixx2
1i = x2

2i = 0 or 1 i = 1, . . .10 then we branch on/fixx3
3i = x3

4i = 0
or 1 i = 1, . . .10, there are 20 in each cluster.

• If q = r3 = 8, we have 8 clusters, and|I 3| = nx(1+ r + r2) = 10+20+40= 70.

In the first stage we branch on/fixx1
1i = x1

2i = x1
3i = x1

4i = x1
5i = x1

6i = x1
7i = x1

8i = 0 or 1i = 1, . . .10, there
are 10 variables in each cluster.

In the second stage we branch on/fixx2
1i = x2

2i = x2
3i = x2

4i = 0 or 1 i = 1, . . .10 then we branch on/fix
x3

5i = x3
6i = x3

7i = x3
8i = 0 or 1,i = 1, . . .10, there are 20 variables in each cluster.

In the third stage we branch on/fixx4
1i = x4

2i = 0 or 1,i = 1, . . .10, thenx5
3i = x5

4i = 0 or 1, and we branch
on/fix x6

5i = x6
6i = 0 or 1,i = 1, . . .10, thenx7

7i = x7
8i = 0 or 1,i = 1, . . .10, there are 40 variables in each

cluster.

When we solve theq cluster models stage by stage we only solve the clustersp that have changed.

If we branch on/fix untilt = 2 (r2=4) when we branch on/fixx2
1i = x2

2i = 0 or 1 we use the values of the
variablesx2

1i andx2
2i to calculatez1 andz2 hence we do not solve the submodels forp = 3 andp = 4 to obtain
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z3 andz4 since these values will not change. Then, we branch on/fixx2
3i = x2

4i = 0 or 1, and we use the values
of the variablesx2

3i andx2
4i to calculatez3 andz4. For the same reason, we will not solve the submodels for

p = 1 andp = 2, z1 andz2. See Figure 2.

When we are branching on/fixing thei variable to 0 we solveq submodels, then previously to fix the
i +1-variable to 0 we check if this variable is fixed to 0 in all submodelsp to solve if we are in this situation
we check the same to thei + 2 variable, and so on. In other case we continue branching on/fixing the i + 1
variable.

We do the same if we branching on/fixing thei variable to 1.

Tables 3, 4 and 5 show the main parameters in the cluster analysis for each of the strategiesBFC1, BFC2
andBFC3, respectively.

In each table, and for each of the cluster partitioning selection, q = r, q = r2 or q = r3, the number
of branching nodes is given, i.e., the number of nodes examinated in the corresponding branching tree,nn;
the number ofMIPTNF problems that are solved,nTNF; and the elapsed time (in seconds) for obtaining the
optimal solution with the corresponding strategy,TBFC. In the last column, the headingTCOIN corresponds to
the total time (in seconds) to obtain the optimal solution, by the plain use of the optimization engine COIN-OR
over the whole model without any decomposition.

Table 3: Cluster analysis forBFC1

Instance q = r q = r2 q = r3

nn nTNF TBFC nn nTNF TBFC nn nTNF TBFC TCOIN

P1 1 0 0.2 1 0 0.2 38 3 1.7 0.3
P2 11 0 32.8 1431 594 416.2 23402 151 1310.7 268.3
P3 9 0 15.9 333 134 106.7 2621 234 315.9 279.3
P4 132 62 53.6 153 41 32.8 745 15 31.9 4.8
P5 1 0 0.7 10 0 1.3 851 13 63.7 5.9
P6 1 0 1.1 114 49 63.7 1269 36 117.5 7.6
P7 782 371 3722.0 5237 2078 5314.5 100938 182 13646.3 -
P8 27 0 194.8 5962 2606 10459.7 69531 902 10222.5 7034.1
P9 423 210 1204.5 - - - - - - -
P10 12 0 482.9 - - - - - - -
P11 - - - - - - - - - -
P12 15 0 1043.2 - - - - - - -
P13 12 0 271.4 - - - - - - 13910.1
P14 - - - - - - 3337 9 12401.3 3790.0
P15 8 0 1942.5 - - - - - - -
P16 10 0 1327.6 133 0 443.6 - - - -
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Table 4: Cluster analysis forBFC2

Instance q = r q = r2 q = r3

nn nTNF TBFC nn nTNF TBFC nn nTNF TBFC TCOIN

P1 1 0 0.2 1 0 0.2 84 2 3.1 0.3
P2 69 0 67.2 1185 21 183.7 186295 151 8935.2 268.3
P3 29 0 36.1 609 8 136.5 54505 71 2642.0 279.3
P4 33 2 19.9 155 1 16.7 1607 15 79.6 4.8
P5 1 0 0.7 75 0 7.0 2023 13 113.7 5.9
P6 1 0 1.1 71 2 12.6 2277 30 138.5 7.6
P7 257 8 7413.6 18947 31 5744.1 - - - -
P8 107 0 372.1 1937 26 6360.1 - - - 7034.1
P9 - - - 5051 52 18022.8 - - - -
P10 35 0 569.5 - - - - - - -
P11 23 1 13230.5 201 2 19849.0 -
P12 21 0 926.8 - - - - - - -
P13 15 0 313.2 1235 26 12585.5 - - - 13910.1
P14 17 1 1680.8 335 4 4515.7 5174 9 8351.2 3790.0
P15 11 0 2119.8 - - - - - - -
P16 13 0 1581.6 211 0 581.7 - - - -

Table 5: Cluster analysis forBFC3

Instance q = r q = r2 q = r3

nn nTNF TBFC nn nTNF TBFC nn nTNF TBFC TCOIN

P1 1 0 0.2 1 0 0.2 38 3 1.7 0.3
P2 11 0 32.8 347 50 330.0 23402 151 1310.7 268.3
P3 9 0 15.9 93 14 255.1 2621 234 315.9 279.3
P4 12 2 14.1 73 1 6.5 745 15 31.9 4.8
P5 1 0 0.7 10 0 1.3 851 13 63.7 5.9
P6 1 0 1.1 24 4 14.8 1269 36 117.5 7.6
P7 68 14 10945.5 1279 99 5412.9 100938 182 13646.3 -
P8 27 0 194.8 822 26 12051.4 69531 902 10222.5 7034.1
P9 - - - 2223 52 17339.0 - - - -
P10 12 0 482.9 - - - - - - -
P11 - - - - - - - - - -
P12 15 0 1043.2 - - - - - - -
P13 12 0 271.4 776 26 12433.3 - - - 13910.1
P14 13 1 1582.9 225 4 8541.0 3337 9 12401.3 3790.0
P15 8 0 1942.5 - - - - - - -
P16 10 0 1327.6 133 0 443.6 - - - -

8 Compilation and linking with COIN-OR library

Our algorithmic approach has been implemented in a C++ experimental code. This code is going to be
submitted for publication through a new project, to theCOIN-ORweb page.

It uses the optimization engineCOIN-OR for solving the linear and mixed-integer submodels and the
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complete linear model. The computational experiments wereconducted in a Workstation Sun FIRE v245,
under Solaris System 1.0, with 2 CPU of 1.5 Ghz and 4 Gb of RAM.

We have downloaded and installed the source code for the CoinAll package for UNIX-like systems. After
doing this, you can find the executables, libraries and header files in the “bin”, “lib” and “include” subdirec-
tory, respectively.

Then, you can link your own code with the installed libraries. In particular, our computational scheme
uses the libraries:Clp, Cb
 andCoinUtils.

For compiling and linking, a Makefile must be created with thedependences between the main program,
BFC_MS, the own external functions and the COIN library.

You can find examples for a Makefile in the examples subdirectory, see also the information athttps://proje
ts.
oin-or.org/BuildTools/wiki/user-examples
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