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Abstract

In this paper we analyze the optimal management of a joint own-
ership ¯shery exploitation model where agents use di®erent ¯shing
gears. As opposed to other works, we consider a model in which the
¯shing technology a®ects resource's growth not only through the har-
vest function, but also through the natural growth rate of the resource.
The main objective is to capture the evidence that some ¯shing gears
alter the habitat of the resource, and may alter the natural growth
rate of the resource.

The main result we obtain is that, when the natural growth of
the resource is altered by the ¯shing technology, the optimal stock
is not independent of how harvest quotas are distributed among the
agents. Thus, in this context, a ¯shing policy that determines, ¯rst,
the optimum stock and, secondly, decides on how to distribute the
harvest among the di®erent agents will not be e±cient.
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1 Introduction

There is considerable world-wide concern about the negative e®ects that the

exploitation of ¯shing resources is having on the equilibrium of the marine

ecosystem. And even though it is not easy to quantify the e®ect, it certainly

does depend, among other things, on the technology or ¯shing gear used

to harvest the resource. Thus, for example, some ¯shing gears alter the

habitat of the resource by changing the quantity of the existing foodstu®, or

even by modifying the composition according to types and sizes of natural

communities or by altering the recruitment rate of the resource (Lleonart et

al. 1996). In this case, it can be asserted that the ¯shing technology employed

can a®ect the natural growth rate of the resource. In fact, there is a tendency

to di®erentiate between ¯shing gears as a function of their selectivity, that is,

according to their capacity to in°uence negatively the natural growth of the

resource in terms of a reduction of its recruitment rate. Some of the current

con°icts in relation with ¯shing resources are due precisely to the existence

of several agents, who use di®erent ¯shing gears and compete for the same

resource1.

However, a common practice in the economic literature on ¯shing

resources has been to assume that the ¯shing activity a®ects the net growth

of the resource solely through the harvest rate, whereas the natural growth

rate is a function of the resource's own biomass and of the environmental

conditions of the sea. These conditions are usually assumed stable and

constant. Some recent research holds that joint exploitation when using

di®erent technology a®ects the harvest function (Garza Gil 1998, Guti¶errez

and Da Rocha 1998) but not the natural growth function. On the other

hand, some papers where ¯shing technology's selectivity has been taken into

1The \tuna war" between the Basque and French °eet in the Gulf of Biscay, is just an
example. The Basque °eet uses gears such as boulters, \curricanes" or live fodder, which
are much more selective than the large driftnets used by the French °eet.
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account, only consider the bycatch generated in a multispeci¯c ¯shery (Boyce

1996, Turner 1997, Ward 1994).

In this paper we analyze the optimal management of a ¯shing resource

, taking into account that the natural growth function depends on the

¯shing technology employed. Concretely, we include in the growth function a

variable that depends on the selectivity level of the technology and this a®ects

the intrinsic growth rate of the resource2. We assume that the resource is

exploited by two agents or countries that use di®erent technologies, thus,

the natural growth function depends not only on the selectivity level of the

technology used by each agent, but also on the harvest share they obtain.

The principal aim of the paper is to analyze how the optimal stock of

the resource depends on the way in which the ¯shing quotas are distributed

among the countries. In order to do this, ¯rstly, we have compute the optimal

stock and harvest rate assuming that the ¯shing quotas are determined

exogenously; secondly, we have obtained the optimal stock and harvest shares

that maximize the discounted net °ow of the ¯shery.

The former case re°ects how the Common Fishing Policy of the European

Community (CFP) operates; it is based on the assignment of a ¯xed

percentage (quota) of the Total Allowable Catch (TAC) to each State

Member. The TACs are determined annually for each specie whereas

the shares each country has in these TACs have remained ¯xed for years

according to the Relative Stability Principle. The main result we obtain is

that, when quotas are given, the optimum stock is not independent of how

the harvest is shared amongst the agents if these agents use ¯shing gears

with di®erent selectivity level. Therefore, in these cases the current design

of the CFP is not e±cient since this policy determines the quotas and the

harvest rate (TAC) separately without taking into account that they are not

independent.

The paper is structured in the following way. In section 2 the basic

model is presented and the basic assumptions are explained. In section 3

2The vegetative growth rate of a resource approaches to the intrinsic growth rate when
the population tends to zero.
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the stock and the optimum harvest are calculated when the allocation of the

quotas is determined exogenously. In section 4 the same analysis is carried

out but assuming that the technologies di®er in their selectivity level and

generate di®erent unit harvest costs. Section 5 determines the optimum

stock and quotas simultaneously. Finally, section 6 summarizes the main

results obtained.

2 The basic model

We consider a joint ownership ¯shery exploitation model. To simplify, we

assume that only two countries (or agents) exploit the resource. We denote

Country 1 and Country 2's harvest shares as ® = h1(t)
h(t)

and (1 ¡ ®) = h2(t)
h(t)
,

respectively, where h(t) is the total harvest rate.

It is common to assume that the natural growth function of the resource

takes the form F (x) = rx(1 ¡ x
K
)3, where k; r and x stand for the carrying

capacity or maximum biomass size, the intrinsic growth rate and resource's

stock or biomass, respectively. Our aim is to introduce in this function the

e®ect that the di®erent ¯shing technologies have on the natural growth of

the resource. Firstly, we de¯ne °i ¸ 1 as a parameter that measures the

selectivity level of the technology used by country i: If country i uses a

technology which doesn't a®ect the natural growth of the resource (a very

selective technology), °i takes the unit value. But if country i
0s technology

a®ects, in a negative way, the natural growth of the resource (non selective

technology), °i will be greater than unity. Secondly, we take into account

that the e®ect of the ¯shing technology on the growth of the resource also

depends on the percentage of harvest caught with that technology. In order

to introduce these two e®ects in the growth function, we de¯ne a variable, µ,

which depends on the selectivity level of the ¯shing technology used by each

country and on the harvest shares in the following way

µ(°1; °2; ®) = 1¡ ®°1 ¡ (1¡ ®) °2; µ · 0:

3This is the logistic function, ¯rst proposed by P.F.Verlhust in 1838.
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Finally, we de¯ne er = r+ µ as the observed growth rate of the resource.
Taking into account the previous de¯nitions, the equation that describes

the natural growth of the resource in our model can be written as

G(x; µ) = [r + µ] x
·
1¡ x

K

¸
; (1)

It must be noted that as long as µ · 04, the observed growth rate of the

resource (er) will always be lower than or equal to the intrinsic growth rate
(r); in such a way that G(x; µ) · F (x); 8x. Should be noted that parameter
µ appears in the natural growth function of the resource in order to re°ect

that this growth depends on the harvest technology.

The net growth of the resource or population dynamics will be described

by the following equation

dx

dt
= G(x; µ)¡ h(t): (2)

The harvest function for each country is assumed to be linear in the rate

of its ¯shing e®ort (Li(t))
5 and in the stock x(t); so that

hi(t) = qLi(t)x(t) i = 1; 2; (3)

where q is the catchability coe±cient, which is supposed to be constant and

equal for both countries.

We shall also assume that both countries face a world demand for the

harvested ¯sh which is in¯nitely elastic, and that the e®ort input supply

functions are also in¯nitely elastic. We denote the unit cost of ¯shing e®ort

by a and the price of ¯sh by p. Country i0s total cost of ¯shing e®ort is equal

to aLi(t), and, by equation (3), the unit cost of harvesting can be expressed

as

4When °1 = °2 = 1 the observed growth rate (
»
r) and the intrinsic growth rate (r)

meet, as long as µ = 0. But if °1 > 1 or °2 > 1, µ will be negative for all ® ¸ 0 and
»
r will

be lower than r.
5As usual, we suppose that the e®ort variable is an index that adds all the inputs used

to capture the resource (capital and labor).
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c(x) =
a

qx
: (4)

3 Optimum stock when harvest shares are

given

In this section we consider that the harvest shares obtained by each country

(® and (1 ¡ ®)) are exogenously determined by a supranational authority

and that they are time invariant6.

The objective functional for each country is its discounted net cash °ow

from the ¯shery which can be expressed as

vp1 =
Z 1

0
e¡±t® [p¡ c(x)]h(t)dt; (5)

vp2 =
Z 1

0
e¡±t (1¡ ®) [p¡ c(x)] h(t)dt; (6)

where ± > 0 is the discount rate.

We are interested in the optimal harvest rate for each country but,

previously, it is necessary to obtain the optimal equilibrium biomass. Let

us suppose that there exists a supranational authority who chooses the stock

that maximizes the sum of the present value of the revenues obtained from

the ¯shery by both countries, that is

vp =
Z 1

0
e¡±t [p¡ c(x)] h(t)dt (7)

s:t:
dx
dt
= G(x; µ)¡ h(t);

x(t) ¸ 0;

h(t) 2 [h min; h max] ;

where vp = vp1 + vp2:

The Hamiltonian of this problem is

6As mentioned in the introduction, this assumption corresponds to the Common
Fisheries Policy (CFP) applied by the European Union.
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H = e¡±t [p¡ c (x)] h(t) + ¸(t) (G(x; µ)¡ h(t)) ; (8)

where ¸(t), the costate variable, is the shadow price of the resource discounted

back to t = 0. The ¯rst order conditions of the problem are

@H

@h
= 0 = e¡±t [p¡ c (x)]¡ ¸(t); (9)

d¸

dt
= ¡@H

@x
= e¡±tc0 (x)h(t)¡ ¸(t)Gx(x; µ); (10)

@H

@¸(t)
=
dx

dt
= G(x; µ)¡ h(t): (11)

Solving equations (9), (10) and (11), we obtain that the optimal stock in

the steady state, x¤, must satisfy the following condition

± = Gx(x
¤; µ)¡ c0 (x¤)G(x¤; µ)

[p¡ c (x¤)] : (12)

This condition implicitly determines the optimal equilibrium biomass,

x¤; and it di®ers from the usual modi¯ed Golden Rule equation, because the

yield on the marginal rate investment (r.h.s.) depends on parameter µ, and

therefore the ¯shing technology and harvest shares of the countries. In fact,

both the resource's marginal productivity, Gx(x
¤; µ); and the marginal stock

e®ect, c
0(x)G(x;µ)
[p¡c(x)] , will decrease if the selectivity level of the countries' ¯shing

technology decreases or if the harvest quota of the less selective country

increases.

As proven by Munro (1979), we know that when the natural growth

function of the resource does not depend on the di®erences between countries,

the stock and the optimal harvest are independent of the distribution of

¯shing quotas among the countries. However, equation (12) shows that if

the ¯shing technology a®ects the natural growth of the resource, then the

stock as well as the optimal harvest are not independent of the distribution

of harvest among the countries.

Solving equation (12) for x¤; we get
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x¤ =
K

4

"
1¡ ±

(r + µ)
+

a

pqK
+

s
(1¡ ±

(r + µ)
+

a

pqK
)2 +

8±a

(r + µ)pqK

#
:

(13)

Following Clark (1990), we de¯ne the following dimensionless variables

Z =
a

pqK
and ½ =

±

(r + µ)
;

where Z is described by Mesterton-Gibbons (1993) as an \inverse e±ciency

parameter" (it is equal to the open access biomass level) and ½ is known as

the bionomic growth ratio. Making use of these de¯nitions, equation (12)

can be rewritten as

x¤ =
K

4

·
1¡ ½+ Z +

q
(1¡ ½+ Z)2 + 8½Z

¸
: (14)

This equation shows how the optimal equilibrium biomass depends on

the e®ect that the ¯shing technology and harvest shares have on the natural

growth of the resource. Besides, the optimal harvest also depends on the

¯shing technology used by the countries, as long as in the steady state

h¤(t) = G(x¤; µ).

This implies that the supranational authority, who determines the harvest

shares, should take into account that two di®erent distributions may imply a

di®erent optimum biomass and, as a consequence, a di®erent optimal harvest

rate. The following propositions show how the sharing of quotas a®ects the

optimal biomass and pro¯ts obtained from the ¯shery.

Proposition 1

If the ¯shing technology of country 1 is more (less) selective than the

one of country 2, the greater (smaller) the share of country 1 is, the greater

(smaller) the optimal equilibrium biomass will be. That is

°1 Q °2 ) dx¤

d®
R 0:
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Proof : See the Appendix.

Proposition 2

If the ¯shing technology of country 1 is more (less) selective than the

one of country 2, the greater (smaller) the share of country 1 is, the greater

(smaller) the pro¯ts obtained from the ¯shery will be. That is

°1 Q °2 ) d¼¤

d®
R 0:

Proof : See the Appendix.

These propositions show that the equilibrium biomass and the pro¯ts

obtained by the society from the ¯shery will be higher when there is a rise

in the quota of the country with the most selective technology. On the other

hand, it becomes obvious that the optimal biomass doesn't depend on the

quota sharing when both countries are identical (°1 = °2):

We shall next use a numerical example to illustrate these results. Let

us suppose a ¯shery where r = 1:2, K = 1:500:000 tones, q = 0:0000025;

± = 0:1; a = 400:000 ptas./¯shing days and p = 200:000 ptas./Ton. Besides,

it is assumed that the ¯shing technology of country 1 is very selective, °1 = 1:

First, we consider that both countries receive an egalitarian share (® = 0:5)

in order to calculate how the changes in the ¯shing technology of country

2 (from °2 = 1 to °2 > 1) a®ect the optimal biomass, optimal harvest and

revenues from the ¯shery. Table 1 shows that for °1 < °2; the egalitarian

distribution implies that the optimal biomass and harvest and total bene¯ts

in the steady state decrease as long as the negative e®ect of the ¯shing gear

of country 2 increases. If this negative e®ect is strong enough, it may cancel

the intrinsic growth rate of the resource and reduce its productivity to zero,

thus, the optimal solution would be to lead the resource to its extinction.

(Insert Table 1)
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We now assume that °1 = 1 and °2 = 1:15 and allow the harvest shares

to vary. In Table 2 we show how changes in the harvest shares a®ect the

optimal biomass, the optimal total harvest and the observed growth rate (er).

(Insert table 2)

It can be observed that if the quota of the most selective country

decreases, the observed growth rate falls, and this implies a reduction of

optimum biomass and total harvest.

In this section, we have analyzed how optimal biomass depends on the

sharing of the quota among countries, but assuming that the selectivity of the

¯shing technology only a®ects the natural growth function. In the following

section, we take into account that the unit e®ort cost also depends on the

selectivity level of the ¯shing gear.

4 Optimum stock when quotas sharing is

given and harvesting costs di®er between

countries

It seems natural to think that di®erences in the selectivity level of ¯shing

gears will generate di®erent unit e®ort costs. In this paper we assume that

di®erences in the harvesting cost are due to di®erences in the unit cost of the

¯shing e®ort7. Thus, we de¯ne unit harvesting costs for each country as

ci(x) =
ai
qx

i = 1; 2; (15)

where ai is country i
0s unit price of ¯shing e®ort and q is the catchability

coe±cient.

7Fishing gears that di®er in their selectivity level may also imply a di®erent catchability
coe±cient or may require di®erent intensity of inputs, capital and labor. These are some
of the reasons that may explain the di®erences in unit harvesting costs.
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As in the previous section, we assume that the quota sharing is given so

that the planner will determine the optimal stock maximizing the following

objective functional

vp =
Z 1

0
e¡±t [® [p¡ c1(x)] + (1¡ ®) [p¡ c2(x)]]h(t)dt (16)

subject to the same restrictions of problem (7) in the previous section. From

the ¯rst order conditions, we obtain the following equation which implicitly

determines the optimal stock of the resource

± = Gx(x
¤; µ)¡ [®c01 (x

¤) + (1¡ ®) c02 (x¤)]G(x¤; µ)
[p¡ (®c1 (x¤) + (1¡ ®) c2 (x¤))]

: (17)

Solving this equation for x¤, we obtain

x¤ =
K

4

·
1¡ ½+ Z 0 +

q
(1¡ ½+ Z 0)2 + 8½Z 0

¸
; (18)

where Z 0 = ®a1+(1¡®)a2
pqK

and ½ = ±
(r+µ)

.

Once again, we reach the result that the optimal stock depends on

how optimal harvests are shared between both countries although now the

\inverse e±cient parameter" (Z 0) also depends on the quota sharing as long

as the unit cost harvesting di®ers between countries. Equation (18) shows

that the share of optimal harvest a®ects the optimal biomass, x¤; through

½ and through Z 0; in such a way that now the e®ect of quota sharing on

the optimal stock will depend on what the di®erences between the countries

are with respect to the selectivity of their ¯shing technology and their unit

harvesting cost. As long as

dx¤

d½
< 0;

dx¤

dZ 0
> 0;

d½

d®
=

±

(r + µ)2
(°1 ¡ °2) T 0 , °1 T °2;
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and
dZ 0

d®
=
a1 ¡ a2
pqK

T 0 , a1 T a2;

the sign of dx
¤

d®
may be positive or negative depending on whether °1 Q °2

and a1 T a2. In order to determine the sign of dx
¤

d®
; we have to consider the

following di®erent cases:

Case Di®erences between countries d½
d®

dZ0
d®

dx¤
d®

(1) °1 > °2; a1 > a2 + + ?
(2) °1 > °2; a1 < a2 + ¡ ¡
(3) °1 < °2; a1 > a2 ¡ + +
(4) °1 < °2; a1 < a2 ¡ ¡ ?

In cases (1) and (4), the di®erences between the countries are such that

assigning a higher quota harvest to country 1 may have a positive or a

negative e®ect on the optimal biomass, whereas in cases (2) and (3) the

optimal biomass increases if country 1 receives a higher quota harvest8.

In the ¯rst case, if the harvest quota of country 1 increases, the optimal

biomass may increase or decrease because two opposite e®ects arise9. On

the one hand, country 1 has the less selective technology (°1 > °2), and

an increase in his quota (®) implies a reduction of the growing rate of

the resource, and, as a result, the equilibrium biomass tends to be lower.

On the other hand, country 1 has the highest harvesting cost (a1 > a2)

and an increase in his quota implies a higher \inverse e±cient parameter"

(dZ
0

d®
> 0 , a1 > a2) and optimal biomass tends to be higher (

dx¤
dZ0 > 0).

Therefore, the ¯nal e®ect of an increase in the harvest quota of country 1

will depend on the degree of the di®erences between the selectivity of the

¯shing gear and the harvesting unit cost. In table 3, this ambiguous e®ect is

shown.
8When both countries use a technology with the same degree of selectivity (°1 = °2)

and they have di®erent unit harvesting costs (a1 6= a2); the optimal biomass will be higher
if the percentage of the country with the highest unit cost increases.

9The fourth case is similar to the ¯rst case as two opposite e®ects arise again when the
quota share of country 1 increases.
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(Insert table 3)

It can be observed that given a certain di®erence in the selectivity of

the ¯shing technology, optimal biomass may increase or decrease with the

harvest quota of country 1 depending on how great the di®erences in unit

harvesting costs between the countries are.

In the second case, if country 1 receives a higher quota harvest the optimal

biomass will decrease. On the one hand, as in the ¯rst case, country 1 has the

less selective technology (°1 > °2) and an increase in his quota (®) implies a

reduction of the optimal biomass. But on the other hand, country 1 has now

the lowest harvesting cost (a1 < a2), and an increase in his quota implies a

lower \inverse e±cient parameter" (dZ
0

d®
< 0 , a1 < a2), in such a way that

the optimal biomass tends to be lower (dx
¤

dZ0 > 0). Therefore, the ¯nal e®ect

of an increase in the harvest quota of country 1 is a reduction of the optimal

biomass10.

Since optimal biomass is not independent of how optimal harvest is shared

among countries, the planner should simultaneously determine optimal

quotas and optimal biomass. This problem will be looked into the following

section.

5 Joint determination of optimal biomass

and harvest quotas

The results obtained in the previous section show that given the assumptions

of our model, the optimal stock is not independent of how the harvest quotas

are shared out. The aim of this section is to analyze the joint determination

of the optimal stock and the ¯shing quotas. We assume that these quotas

must be strictly positive for both countries as we want to consider a situation

in which there is not possibility of restricting the access of a country to the

10Following a similar reasoning, it can be explained why in the third case optimal
biomass increases as country 1's harvest quota increases.
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resource11.

The social planner's aim is to maximize the discounted net cash °ow from

the ¯shery, subject to the same restrictions as in the previous section. The

share is not now given and, therefore, we will have two control variables rather

than one. For simplicity, we consider each country's harvest as the control

variables, h1(t) and h2(t)
12, in such a way that the objective functional can

be expressed now as

vp =
Z 1

0
e¡±t [(p¡ c1(x)) h1(t) + (p¡ c2(x)) h2(t)] dt: (19)

The Hamiltonian of this problem can be written as

H = e¡±t [[p¡ c1 (x)] h1(t) + [p¡ c2(x)] h2(t)]+¸(t) (G(x; µ)¡ h1(t)¡ h2(t))
(20)

and the ¯rst order conditions are

@H

@hi
= 0 = e¡±t [p¡ ci (x)] + ¸(t) (Ghi(x; µ)¡ 1) i = 1; 2; (21)

d¸

dt
= ¡@H

@x
= e¡±t (c01 (x) h1(t) + c

0
2 (x) h2(t))¡ ¸(t)Gx(x; µ); (22)

@H

@¸(t)
=
dx

dt
= G(x; µ)¡ h1(t)¡ h2(t): (23)

As equation (21) shows, we must now take into account the e®ect of

the harvest rate of each country on the natural growth of the resource. This

e®ect is measured by the term Ghi(x; µ), which is the derivative of the natural

growth function (1) with respect to the harvest rate of each country and is

equal to

11If we allow that the whole quota go to just one country, the other should be
compensated in a proper way. This could be done by side payo®s, but these are not
always wellcome by countries because of socioeconomic aspects linked with the population
involved in ¯shing activities.

12The same result will be obtained if we consider the total harvest rate, h(t); and the
share, ®, as the control variables.
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Ghi(x; µ) = µhix
·
1¡ x

K

¸
where µhi =

hj(t)

h2(t)
(°j ¡ °i) : (24)

As can be observed, the e®ect that the harvest of each country has on the

natural growth of the resource will be di®erent depending on the selectivity

degree of the technology of each country and on how the harvest is shared

between both of them. Besides, if °i 6= °j, this term will always be positive

for one country and negative for the other.

If we solve the ¯rst order conditions (21), (22) and (23) (h(t) = G(x¤; µ)),

we obtain the following modi¯ed golden rule for the optimal biomass in the

steady state

± = Gx(x
¤; µ)¡

h
hi
h
c0i (x

¤) + hj
h
c0j (x

¤)
i
G(x¤; µ) (1¡Ghi(x¤; µ))

p¡ ci (x¤)
: i; j = 1; 2

(25)

When the social planner computes the optimal stock, he/she equals the

ratio of marginal revenue to the e®ect that the ¯shing activity of both

countries has on the natural growth rate. Each possible share of total harvest

implies a di®erent e®ect upon the marginal growth rate, and so, a univocal

determination of the optimal biomass (x¤) and the harvest shares (h¤1 and

h¤2) is not possible. However, taking into account that we are interested in an

interior solution in the feasible space with positive quotas for both countries,

we can determine some necessary conditions that ought to be satis¯ed.

Solving the ¯rst order condition (21) for i = 1; 2, we have that

[p¡ c1 (x)]
1¡Gh1(x; µ)

=
[p¡ c2 (x)]
1¡Gh2(x; µ)

: (26)

Condition (26) states that the optimal control requires that the ratio between

marginal revenues and the harvest e®ect of each country on the natural

growth rate should be equal for both countries. As long as Ghi(x; µ) and

Ghj (x; µ) always have opposite sign, it is necessary to guarantee that both

be, in absolute value, lesser than one, in order to satisfy equation (26).

Lemma 1
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For the existence of a steady state in the interior of the feasible

control space, a necessary condition is that Ghi(x; µ) 2j (0; 1) j
and this implies that

(°i ¡ °j)
h¤i
h¤
<

»
r 8 °i > °j: (27)

Proof : See the Appendix.

If °i > °j, then we have that (°i ¡ °j)
h¤i
h¤ > 0 and therefore

»
r> 0: In

other words, this lemma states that the negative e®ect of the selectivity of

the ¯shing gear on the natural growth rate cannot be so high as to cancel

the growth of the resource.

Lemma 2

If country 1's ¯shing technology is more (less) selective than

country 2's, i.e., °1 < °2 (°1 > °2), an interior solution requires

that

a1 > a2 (a1 < a2):

Proof : See the Appendix.

This lemma states that a necessary condition to achieve an optimal

interior solution is that the country with the least selective technology must

have the lowest unit harvesting cost. We can therefore conclude that, when

both countries have identical unit harvesting costs but a di®erent selectivity

¯shing technology, the optimal solution cannot imply positive quotas for both

countries.

In the previous section we have distinguished four cases with di®erent

possible asymmetries between countries, in terms of ai and °i. The next table

shows in which of those cases the optimal harvest quota for each country will

be positive.
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Case Di®erences between countries Percentage Country 1 Percentage Country 2
(1) °1 > °2; a1 > a2 0 1
(2) °1 > °2; a1 < a2 [0; 1] [0; 1]
(3) °1 < °2; a1 > a2 [0; 1] [0; 1]
(4) °1 < °2; a1 < a2 1 0

As can be seen in this table, an interior solution may be optimal in two of

the cases, that is, when the least selective country has a lower unit harvesting

cost than the other.

We have obtained necessary conditions for an interior solution to the

problem, but they are not su±cient to guarantee that there exist an interior

solution. This can be observed in the following numerical example. Let us use

the ¯shery example in section 3 to show that the least selective country should

have a certain cost advantage to make a positive quota for both countries

optimal. We take as given the countries' selectivity ¯shing technology,

(°1 = 1; °2 = 1:15) and the unit e®ort cost of country, a1 = 400:000 ptas./

¯shing day. Besides, we consider a ¯xed target biomass13, x¤ = 1:1305£ 106,
which is the optimum when the shares are given. Using equation (26) we

compute the optimal harvest quotas for the di®erent unit harvesting cost of

country 2.

(Insert table 4)

Table 4 shows the range of the unit e®ort cost of country 2 for which there

exists a positive share for both countries. For a given di®erence between

countries in the selectivity of the ¯shing technology, we ¯nd that the quota

of the least selective country rises as long as its unit cost of harvesting goes

13We consider a given biomass which is obtained from Table 2. We should remember
that a univocal determination of harvest shares and optimal biomass is not possible, due
to the existing interaction between them.
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down. Besides, if its cost advantage is high enough, the optimal policy implies

a corner solution where only the least selective country exploits the resource.

We can thus conclude that, when the social planner tries to

simultaneously determine optimal stock and optimal harvest shares, an

interior solution will be optimal only for certain asymmetries between

countries. Besides, the planner would only be able to determine for each

quota sharing its corresponding optimal biomass, or vice versa, solving

conditions (26) and (25) simultaneously.

6 Conclusions

The fact that certain ¯shing gears or ¯shing technologies may a®ect

the resource's natural growth rate negatively seems fairly straightforward.

However, in the economic literature on ¯shing resources, it has always been

assumed that the natural growth of a resource is a function of its own biomass

and of the sea's environmental conditions, and these are considered to be

stable and constant.

In this paper we analyze the optimal management of a ¯shery where

the natural growth function for the ¯shing resource depends on the ¯shing

technology employed. We have included in the growth function a variable

which depends on the selectivity level of the ¯shing gear and which a®ects the

resource's intrinsic growth rate. Concretely, it is supposed that the natural

growth function depends not only on the selectivity level of the technology,

but also on the harvest share obtained with that technology.

First, we determine the optimal stock and harvest under the assumption

that there exists a supranational authority which determines the ¯shing

quotas exogenously. And this is the way in which the Common Fisheries

Policy (CFP) acts, that is, it assigns to each State Member the right to ¯sh

a ¯xed percentage (quota) of the Total Allowable Catches (TAC) which is

determined for each specie annually. The principal result obtained is that

the optimum stock is not independent of how the harvest is shared among

the agents. Therefore, the current CFP cannot be e±cient if the ¯shing
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technologies of the State Members do not have the same level of selectivity.

In this case, an optimal CFP should determine the stock and the harvest

quotas simultaneously. In this paper, we deal with a ¯rst analysis of the

implications that this type of policy would entail when both countries, in

addition to using di®erent technologies, have di®erent unit harvest costs. We

have thus concluded that a solution with positive harvest quotas for both

countries will only be optimal for certain asymmetries between countries.
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APPENDIX

Proof of Proposition 1

Lets start by checking that °1<°2 ) dx¤
d®
> 0, where x¤ is given by equation

(15). Taking into account that °1<°2 ) dµ
d®
> 0 and given that d

»
r
dµ
> 0 and

d½

d
»
r
< 0, what we now have to prove is that dx¤

d½
< 0: In order to check that

dx¤
d®
< 0 when °1<°2, we have also to prove that

dx¤
d½
< 0, because in this case

dµ
d®
< 0.

We have therefore to prove that

dx¤

d½
=
K

4

2
4¡1 + (1¡ ½+ Z)(¡1) + 4Zq

(1¡ ½+ Z)2 + 8½Z

3
5 < 0; (28)

and this implies that

(1¡ ½+ Z)(¡1) + 4Z <
q
(1¡ ½+ Z)2 + 8Z½:

Having made some operations the previous condition entails that

8Z(Z ¡ 1) < 0;

in such a way that dx
¤

d½
< 0 =) Z < 1. In other words, the \inverse e±cient

parameter" must be lower than one and this condititon is always ful¯lled.

We can check it by using equation (4) to rewrite Z as

Z =
c(x¤)x¤

pK
; (29)

where x¤ < K; because lim
t!1

x(t) = K; and c(x¤) < p: Therefore, if the ¯shery

is being exploited, then Z < 1.

Proof of Proposition 2

In the steady state, pro¯ts from the ¯shery are given by

¼¤ = [p¡ c(x¤)] h¤
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in such a way that

d¼¤

d®
= [p¡ c(x¤)]dh

¤

d®
¡ h¤dc(x

¤)

dx¤
dx¤

d®
;

where

dc(x¤)

dx¤
=

¡a
q (x¤)2

< 0;

dx¤

d®
R 0 depending on °1 Q °2:

Then,

(¡h¤dc(x
¤)

dx¤
dx¤

d®
) R 0 if °1 Q °2;

and if we prove that dh¤
d®
R 0 if °1 Q °2, we will have proven proposition 2.

We know that d
»
r
dµ
> 0 and d½

d
»
r
< 0 when °1 < °2. Using the \bionomic growth

rate parameter" presented in the main text and taking into account that in

the steady state h = G(x¤; µ) =
»
r (x¤ ¡ (x¤)2

K
), we obtain that

dh¤

d½
=
d
»
r

d½
(x¤ ¡ (x¤)2

k
)+

»
r
dx¤

d½
(1¡ 2x¤

k
) =

»
r½
»
r
h¤ + x½h

¤
x (30)

What we now have to prove is that dh¤
d½
is always negative, hence dx¤

d®

and dh¤
d®
will be possitive or negative depending on °1 Q °2. Equation (30)

depends on the resource's growth function and on the productivity weighted

by
»
r½
»
r
< 0 and x½ < 0, and so for x¤ < k

2
,

»
r½
»
r
h¤ and x½hx will be negative

and, therefore, dh
¤

d½
as well. But it is also known (Munro and Clark 1985)

that the optimal biomass in the steady state must be higher than k
2
.

To see how in this case dh¤
d½
is negative we will formulate the equilibrium

biomass as a proportion of the carrying capacity of the resource x¤ = A¤k

(0 < A¤ < 1). Now equation (30) changes to

dh¤

d½
= ¡k »

r

2
664
»
r

±
A¤(1¡ A¤)

(+)

¡ dA¤

d½
(1¡ 2A¤)
(+)

3
775 (31)
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To prove that dh¤
d½
is negative, we have to show that the second term in

brackets of equation (31) is lower than the ¯rst one equation With this aim,

we will have to formulate equation (28) in terms of A¤

dA¤

d½
=
1

4

2
4¡1 + (1¡ ½+ Z)(¡1) + 4Zq

(1¡ ½+ Z)2 + 8½Z

3
5 (32)

Then, from (32) we know that dA
¤

d½
2 (¡1

2
; 0); and since we are considering

an optimal biomass x¤ > k
2
it is clear that A¤ 2 (12 ; 1). The maximum value

of
¯̄
¯dA¤
d½

¯̄
¯ is equal to (1 ¡ A¤), in such a way that by equation (31), dh

¤
d½
< 0

will occur if

»
r

±
A¤ > 2A¤ ¡ 1

And it is easy to show that this condition is always satis¯ed.

Proof of Lemma 1

When °i 6= °j, Ghi(x; µ) and Ghj(x; µ) have opposite signs, and for the

feasibility of condition (26), these both terms must be, in absolute value,

lesser than the unity.

In the steady state, we have that G(x; µ) = h (t) and replacing this

condition in equation (24) we obtain

Ghi(x; µ) =
hj
»
r h

(°j ¡ °i) ;

and

hj
»
r h

(°j ¡ °i) < 1 ) hj

h
(°j ¡ °i) <

»
r when °j > °i:

Proof of Lemma 2

From lemma 1 we know that if °2 > °1; then Gh1(x; µ) 2 (0; 1) and

Gh2(x; µ) 2 (¡1; 0). Therefore, equation (26) requires that

p¡ c1 (x) < p¡ c2 (x) ;

which implies that a1 > a2; as long as c1 (x) =
a1
qx
and c2 (x) =

a2
qx
:
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Table 1:
Biomass, harvest and pro¯ts when °1 = 1
°2 X(£106)(1) h(1) ¼(2)

1 1.1317 3.3344£105 1.9546£1010
1.15 1.1305 3.1329£105 1.8318£1010
2 1.1194 1.9882£105 1.1346£1010
3 1.0584 6.2319£104 3.0429£109

>3.4 0 - -

(1) Tones; (2) Pesetas

Table 2:
Biomass and harvest for di®erent shares

® X(£106)(1) »
r h (£105)(1) h1 (£105)(1) h2 (£105)(1)

® = 1 1.1317 1.2000 3.3344 3.3344 0
® = 0:75 1.1311 1.1712 3.2338 2.4253 0.8084
® = 0:5 1.1305 1.1250 3.1329 1.1566 1.5664
® = 0:25 1.2990 1.0875 3.0318 0.7579 2.2738
® = 0 1.2920 1.0500 2.9310 0 2.9310

(1) Tones
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Table 3:
Optimal stock evolution when °1(1:2) > °2(1:1) and a1(400:000) > a2

® X(1)for a2 = 376000 X for a2 = 398231 X for a2 = 399000
0 1:104250 1:128183 1:129010
0:2 1:109044 1:128210 1:128871
0:4 1:113835 1:128222 1:128719
0:6 1:118621 1:128222 1:128554
0:8 1:123404 1:128210 1:128376
1 1:128183 1:128183 1:128183

(1) (£106)

Table 4:
Country's quota for di®erent unit harvesting costs

a1 a2 ®
400:000 ¸ 392:250 1
400:000 390:560 0:75
400:000 387:910 0:5
400:000 383:190 0:25
400:000 · 372:460 0
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